1
|
Ramirez G, Broeckling C, Herndon M, Stoltz M, Ebel GD, Dobos KM. Investigating the lipid profile of Anopheles stephensi mosquitoes across developmental life stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101312. [PMID: 39178499 DOI: 10.1016/j.cbd.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
Holometabolous insects undergo a distinct transition in their development, tightly correlated with shifting feeding patterns from larval stages and some adult phases to non-feeding phases as pupae and during other adult phases. Furthermore, the intricate life cycle of mosquitoes involves a sequence of developmental stages influenced by aquatic and terrestrial factors, demanding precise energy resource orchestration. Lipids serve multifaceted roles, encompassing energy storage, membrane structure, and participation in signal transduction and molecular recognition processes. A significant gap in the current research landscape is the need for a comprehensive study exploring the lipid repertoire throughout the developmental stages of Anopheles stephensi mosquitoes. We undertook an analysis of the An. stephensi metabolome across all life stages. We hypothesized that An. stephensi mosquitoes will have unique lipid metabolite markers for each life stage. A specific extraction and LC-MS based lipidomic approach was used to test this hypothesis. Our findings demonstrated that our methods were successful, with lipids comprising 62.15 % of the analyzed metabolome. Additionally, phospholipids (PL), lysophospholipids (LPL), sphingomyelin (SM), and triglycerides (TG) were abundant and dynamic across all life stages. Interestingly, comparison between the L1 and L2 lipidome revealed a dominant pattern of specific TGs in decreased abundance between these two life stages. Lastly, 20-hydroxyecdysone (20E), was found to be present in similar abundance across all 4 larval stages. These data indicate that there may be lipid metabolome pathways serving unique roles during mosquito development that may be used to explore laboratory management of colonies, parasite resistance, and environmental adaptation.
Collapse
Affiliation(s)
- Gabriela Ramirez
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Corey Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, CO, USA
| | - MaKala Herndon
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Madison Stoltz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Singh P, Kumar P, Pande V, Kumar V, Dhiman RC. Untargeted metabolomics-based response analysis of temperature and insecticide exposure in Aedes aegypti. Sci Rep 2022; 12:2066. [PMID: 35136077 PMCID: PMC8825845 DOI: 10.1038/s41598-022-05630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we utilized an untargeted NMR metabolomics approach to identify the vector response in terms of metabolic profiling after temperature and insecticide exposure in comparison with the control. Clearly, temperature and insecticide exposure cause changes in the underlying metabolism, and the NMR metabolomic profile enables a direct examination of the immediate response of the vector to cope up with these changes. The present study was designed in four parts: A-Aedes aegypti were exposed to 40 °C for one-hour, DDT-4%, malathion-5%, and deltamethrin-0.05% separately and, part B-D; one-hour exposure at 35 °C and 40 °C temperatures followed by one-hour exposure to insecticide. The resultant metabolite profiles were compared with the control. In response to temperature and insecticide exposure, several metabolites and altered pathways were identified. Citrate, maltose, lipids, Nicotinate, Choline, Pyruvate and β-hydroxybutyrate were found as important components of major biological pathways such as tri-carboxylic acid cycle, branched amino acid degradation, glycolysis/gluconeogenesis, amino acid metabolism, lipid and carbohydrate metabolism, nucleotide PRPP pathway, and phospholipid metabolism. Furthermore, the results also suggest that the changes imposed by exposure to temperature and insecticides individually, are reversed with combined exposure, thus negating the impact of each other and posing a threat to the control of Aedes-borne diseases such as dengue, chikungunya, Zika and yellow fever.
Collapse
Affiliation(s)
- Poonam Singh
- ICMR National Institute of Malaria Research, New Delhi, Delhi, India
| | - Pradeep Kumar
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Virendra Kumar
- Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh C Dhiman
- ICMR National Institute of Malaria Research, New Delhi, Delhi, India.
| |
Collapse
|
4
|
Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 2021; 13:100311. [PMID: 34485670 PMCID: PMC8403752 DOI: 10.1016/j.onehlt.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer (BU), the second most common mycobacterial disease in West Africa, is a necrotizing skin disease that can lead to high morbidity in affected patients. The disease is caused by Mycobacterium ulcerans (MU), whose major virulence factor is mycolactone. Although early infection can be treated with antibiotics, an effective preventative strategy is challenging due to unknown reservoir(s) and unresolved mode(s) of transmission. Further, disease occurrence in remote locations with limited access to health facilities further complicates disease burden and associated costs. We discuss here MU transmission hypotheses and investigations into environmental reservoirs and discuss successes and challenges of studying MU and Buruli ulcer across human, animal, and environmental interfaces. We argue that a One Health approach is needed to advance the understanding of MU transmission and designing management scenarios that prevent and respond to epidemics. Although previous work has provided significant insights into risk factors, epidemiology and clinical perspectives of disease, understanding the bacterial ecology, environmental niches and role of mycolactone in natural environments and during infection of the human host remains equally important to better understanding and preventing this mysterious disease.
Collapse
|
5
|
Gallichotte EN, Dobos KM, Ebel GD, Hagedorn M, Rasgon JL, Richardson JH, Stedman TT, Barfield JP. Towards a method for cryopreservation of mosquito vectors of human pathogens. Cryobiology 2021; 99:1-10. [PMID: 33556359 DOI: 10.1016/j.cryobiol.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes.
Collapse
Affiliation(s)
- Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, USA; Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Jennifer P Barfield
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Tang XT, Ibanez F, Tamborindeguy C. Quenching autofluorescence in the alimentary canal tissues of Bactericera cockerelli (Hemiptera: Triozidae) for immunofluorescence labeling. INSECT SCIENCE 2020; 27:475-486. [PMID: 30663253 DOI: 10.1111/1744-7917.12660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/29/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli Šulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, "Candidatus Liberibacter solanacearum" (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2 O2 ) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above-mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2 O2 , or SBB treatments. The compatibility assays indicated that irradiation and H2 O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
7
|
Previšić A, Rožman M, Mor JR, Acuña V, Serra-Compte A, Petrović M, Sabater S. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135333. [PMID: 31822419 DOI: 10.1016/j.scitotenv.2019.135333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 05/24/2023]
Abstract
The current knowledge on bioaccumulation of emerging contaminants (ECs) in aquatic invertebrates exposed to the realistic environmental concentrations is limited. Even less is known about the effects of chemical pollution exposure on the metabolome of aquatic invertebrates. We conducted an in situ translocation experiment with passive filter-feeding caddisfly larvae (Hydropsyche sp.) in an effluent-influenced river in order to i) unravel the bioaccumulation (and recovery) dynamics of ECs in aquatic invertebrates, and ii) test whether exposure to environmentally realistic concentrations of ECs will translate into metabolic profile changes in the insects. The experiment was carried out at two sites, upstream and downstream of the discharge of an urban wastewater treatment plant effluent. The translocated animals were collected at 2-week intervals for 46 days. Both pharmaceuticals and endocrine disrupting compounds (EDCs) were detected in water (62 and 7 compounds, respectively), whereas in Hydropsyche tissues 5 EDCs accumulated. Overall, specimens from the upstream site translocated to the impacted site reached higher ECs concentrations in their tissues, as a reflection of the contaminants' water concentrations. However, bioaccumulation was a temporary process susceptible to change under lower contaminant concentrations. Non-targeted metabolite profiling detected fine metabolic changes in translocated Hydropsyche larvae. Both translocations equally induced stress, but it was higher in animals translocated to the impacted site.
Collapse
Affiliation(s)
- Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain.
| | - Marko Rožman
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Jordi-René Mor
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Albert Serra-Compte
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Faculty of Sciences - University of Girona, Campus de Montilivi, 17003 Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
8
|
Smith ML, Styczynski MP. Systems Biology-Based Investigation of Host-Plasmodium Interactions. Trends Parasitol 2018; 34:617-632. [PMID: 29779985 DOI: 10.1016/j.pt.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
Malaria is a serious, complex disease caused by parasites of the genus Plasmodium. Plasmodium parasites affect multiple tissues as they evade immune responses, replicate, sexually reproduce, and transmit between vertebrate and invertebrate hosts. The explosion of omics technologies has enabled large-scale collection of Plasmodium infection data, revealing systems-scale patterns, mechanisms of pathogenesis, and the ways that host and pathogen affect each other. Here, we provide an overview of recent efforts using systems biology approaches to study host-Plasmodium interactions and the biological themes that have emerged from these efforts. We discuss some of the challenges in using systems biology for this goal, key research efforts needed to address those issues, and promising future malaria applications of systems biology.
Collapse
Affiliation(s)
- Maren L Smith
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Malaria Host-Pathogen Interaction Center, Emory University, Atlanta, GA 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Malaria Host-Pathogen Interaction Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Evidences of the Low Implication of Mosquitoes in the Transmission of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:1324310. [PMID: 28932250 PMCID: PMC5592421 DOI: 10.1155/2017/1324310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
Background Buruli ulcer (BU) continues to be a serious public health threat in wet tropical regions and the mode of transmission of its etiological agent, Mycobacterium ulcerans (MU), remains poorly understood. In this study, mosquito species collected in endemic villages in Benin were screened for the presence of MU. In addition, the ability of mosquitoes larvae to pick up MU from their environment and remain colonized through the larval developmental stages to the adult stage was investigated. Methods 7,218 adults and larvae mosquitoes were sampled from endemic and nonendemic villages and screened for MU DNA targets (IS2404, IS2606, and KR-B) using qPCR. Results. MU was not detected in any of the field collected samples. Additional studies of artificially infected larvae of Anopheles kisumu with MU strains revealed that mosquitoes larvae are able to ingest and host MU during L1, L2, L3, and L4 developmental stages. However, we noticed an absence of these bacteria at both pupae and adult stages, certainly revealing the low ability of infected or colonized mosquitoes to vertically transmit MU to their offspring. Conclusion The overall findings highlight the low implication of mosquitoes as biological vectors in the transmission cycle of MU from the risk environments to humans.
Collapse
|
10
|
Hoxmeier JC, Fleshman AC, Broeckling CD, Prenni JE, Dolan MC, Gage KL, Eisen L. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci Rep 2017; 7:44394. [PMID: 28287618 PMCID: PMC5347386 DOI: 10.1038/srep44394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
The causal agents of Lyme disease in North America, Borrelia burgdorferi and Borrelia mayonii, are transmitted primarily by Ixodes scapularis ticks. Due to their limited metabolic capacity, spirochetes rely on the tick blood meal for nutrients and metabolic intermediates while residing in the tick vector, competing with the tick for nutrients in the blood meal. Metabolomics is an effective methodology to explore dynamics of spirochete survival and multiplication in tick vectors before transmission to a vertebrate host via tick saliva. Using gas chromatography coupled to mass spectrometry, we identified statistically significant differences in the metabolic profile among uninfected I. scapularis nymphal ticks, B. burgdorferi-infected nymphal ticks and B. mayonii-infected nymphal ticks by measuring metabolism every 24 hours over the course of their up to 96 hour blood meals. Specifically, differences in the abundance of purines, amino acids, carbohydrates, and fatty acids during the blood meal among the three groups of nymphal ticks suggest that B. mayonii and B. burgdorferi may have different metabolic capabilities, especially during later stages of nymphal feeding. Understanding mechanisms underlying variable metabolic requirements of different Lyme disease spirochetes within tick vectors could potentially aid development of novel methods to control spirochete transmission.
Collapse
Affiliation(s)
- J Charles Hoxmeier
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Amy C Fleshman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marc C Dolan
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Kenneth L Gage
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | - Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
11
|
Singh D, Son SY, Lee CH. Perplexing Metabolomes in Fungal-Insect Trophic Interactions: A Terra Incognita of Mycobiocontrol Mechanisms. Front Microbiol 2016; 7:1678. [PMID: 27807434 PMCID: PMC5069422 DOI: 10.3389/fmicb.2016.01678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
The trophic interactions of entomopathogenic fungi in different ecological niches viz., soil, plants, or insect themselves are effectively regulated by their maneuvered metabolomes and the plethora of metabotypes. In this article, we discuss a holistic framework of co-evolutionary metabolomes and metabotypes to model the interactions of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving fungal biocontrol mechanisms are reported in the context of much aggrandized fungal entomotoxins while the adaptive response mechanisms of host insects are relatively overlooked. The present review asserts that the selective pressure exerted among the competing or interacting species drives alterations in their overall metabolomes which ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics offers a most generic and tractable model to assess the fungal-insect antagonism in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz., secondary metabolites falling in the categories of NRP's (non-ribosomal peptides), PK's (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects overcome mycosis through employing different layers of immunity manifested as altered metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates, lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings within conventional premise of fungal entomotoxicity and the evolution of truculent immune response among host insect. The metabolomic frameworks for fungal-insect interaction can potentially transmogrify our current comprehensions of biocontrol mechanisms to develop the hypervirulent biocontrol strains with least environmental concerns. Moreover, the interaction metabolomics (interactome) in complementation with other -omics cascades could further be applied to address the fundamental bottlenecks of adaptive co-evolution among biological species.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| | - Su Y Son
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| | - Choong H Lee
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| |
Collapse
|
12
|
Kapranas A, Snart CJP, Williams H, Hardy ICW, Barrett DA. Metabolomics of aging assessed in individual parasitoid wasps. Sci Rep 2016; 6:34848. [PMID: 27713504 PMCID: PMC5054366 DOI: 10.1038/srep34848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022] Open
Abstract
Metabolomics studies of low-biomass organisms, such as small insects, have previously relied on the pooling of biological samples to overcome detection limits, particularly using NMR. We show that the differentiation of metabolite profiles of individual 1 mg parasitoid wasps of different ages is possible when using a modified sample preparation and a combination of untargeted NMR and LC-MS based metabolomics. Changes were observed between newly emerged and older wasps in glycerolipids, amino acids and circulatory sugars. This advance in chemical profiling has important implications for the study of the behaviour and ecology of parasitoids and many other species of small organisms because predictions and observations are typically made at the level of the individual. Thus, the metabolomic state of low-biomass individuals can now be related to their behaviour and ecological performance. We discuss specifically the utility of age-related metabolomic profiling but our new approach can be applied to a wide range of biological research.
Collapse
Affiliation(s)
| | - Charles J. P. Snart
- School of Biosciences, University of Nottingham, LE12 5RD, UK
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Huw Williams
- School of Chemistry, University of Nottingham, NG7 2RD, UK
| | - Ian C. W. Hardy
- School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
13
|
Niang F, Sarfo FS, Frimpong M, Guenin-Macé L, Wansbrough-Jones M, Stinear T, Phillips RO, Demangel C. Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease. Sci Rep 2015; 5:17693. [PMID: 26634444 PMCID: PMC4669498 DOI: 10.1038/srep17693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022] Open
Abstract
Infection of human skin with Mycobacterium ulcerans, the causative agent of Buruli ulcer, is associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with progressive disease show alterations in their serum proteome, likely reflecting the inhibition of secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, lysolipids and purine catabolites. Together, these data demonstrate that M. ulcerans infection causes systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells.
Collapse
Affiliation(s)
- Fatoumata Niang
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| | | | | | - Laure Guenin-Macé
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| | | | - Timothy Stinear
- University of Melbourne, Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard O Phillips
- Komfo Anokye Teaching Hospital, Kumasi, Ghana.,Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Caroline Demangel
- Institut Pasteur, Unité d'Immunobiologie de l'Infection, Paris, France.,CNRS URA 1961, Paris, France
| |
Collapse
|