1
|
Messeha SS, Fidudusola FF, Gendy S, Latinwo LM, Odewumi CO, Soliman KFA. Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis. Nutrients 2025; 17:267. [PMID: 39861398 PMCID: PMC11767473 DOI: 10.3390/nu17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP. Aging is significantly associated with an abnormal ratio of oxidant/antioxidant and modified nuclear factor erythroid-derived two related factor2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway. OS adversely affects bone health by promoting osteoclastic (bone resorbing) activity and impairing osteoblastic (bone-forming cells). Nrf2 is critical in controlling OS and various cellular processes. The expression of Nrf2 is linked to multiple age-related diseases, including OP, and Nrf2 deficiency leads to unbalanced bone formation/resorption and a consequent decline in bone mass. Various drugs are available for treating OP; however, long-term uses of these medicines are implicated in diverse illnesses such as cancer, cardiovascular, and stroke. At the same time, multiple categories of natural products, in particular flavonoids, were proposed as safe alternatives with antioxidant activity and substantial anti-osteoporotic effects.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Fidara F. Fidudusola
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Lekan M. Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Caroline O. Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
2
|
Delgado CA, Poletto E, Vera LNP, Jacques CED, Vianna P, Reinhardt LS, Baldo G, Vargas CR. Effect of genistein and coenzyme Q10 in oxidative damage and mitochondrial membrane potential in an attenuated type II mucopolysaccharidosis cellular model. Cell Biochem Funct 2024; 42:e3932. [PMID: 38332678 DOI: 10.1002/cbf.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.
Collapse
Affiliation(s)
- Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Edina Poletto
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luisa Natalia Pimentel Vera
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Priscila Vianna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Guilherme Baldo
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
3
|
Malinowska M, Nowicka W, Kloska A, Węgrzyn G, Jakóbkiewicz-Banecka J. Efficacy of a Combination Therapy with Laronidase and Genistein in Treating Mucopolysaccharidosis Type I in a Mouse Model. Int J Mol Sci 2024; 25:2371. [PMID: 38397051 PMCID: PMC10889377 DOI: 10.3390/ijms25042371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by α-L-iduronidase deficiency. The standard treatment, enzyme replacement therapy with laronidase, has limited effectiveness in treating neurological symptoms due to poor blood-brain barrier penetration. An alternative is substrate reduction therapy using molecules, such as genistein, which crosses this barrier. This study evaluated the effectiveness of a combination of laronidase and genistein in a mouse model of MPS I. Over 12 weeks, MPS I and wild-type mice received laronidase, genistein, or both. Glycosaminoglycan (GAG) storage in visceral organs and the brain, its excretion in urine, and the serum level of the heparin cofactor II-thrombin (HCII-T) complex, along with behavior, were assessed. The combination therapy resulted in reduced GAG storage in the heart and liver, whereas genistein alone reduced the brain GAG storage. Laronidase and combination therapy decreased liver and spleen weights and significantly reduced GAG excretion in the urine. However, this therapy negated some laronidase benefits in the HCII-T levels. Importantly, the combination therapy improved the behavior of female mice with MPS I. These findings offer valuable insights for future research to optimize MPS I treatments.
Collapse
Affiliation(s)
- Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | | | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| |
Collapse
|
4
|
Murine Fibroblasts and Primary Hepatocytes as Tools When Studying the Efficacy of Potential Therapies for Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 24:ijms24010534. [PMID: 36613977 PMCID: PMC9820816 DOI: 10.3390/ijms24010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a metabolic genetic disease caused by the deficiency of a lysosomal enzyme involved in glycosaminoglycans (GAGs) degradation. MPS I cells have a constant level of GAG synthesis, but disturbed degradation means that GAGs accumulate progressively, impairing cell metabolism. GAG metabolism can be modulated by flavonoids, and these are being studied as therapeutics for MPS. We have optimised the protocol for obtaining fibroblasts and hepatocytes from the MPS I murine model and characterised the cells for their suitability as an in vitro model for testing compounds with therapeutic potential. Methods: Murine primary hepatocytes and fibroblasts were used as a cellular model to study the effect of genistein, biochanin A, and kaempferol on the modulation of the GAG synthesis process. Flavonoids were used individually as well as in two-component mixtures. There were no statistically significant differences in GAG synthesis levels from cell types obtained from either wild-type or MPS I mice. We also showed that MPS I fibroblasts and hepatocytes store GAGs, which makes them useful in vitro models for testing the effectiveness of substrate reduction therapies. Furthermore, tested flavonoids had a different impact on GAG synthesis depending on cell type and whether they were used alone or in a mixture. The tested flavonoids reduce GAG synthesis more effectively in fibroblasts than in hepatocytes, regardless of whether they are used individually or in a mixture. Flavonoids modulate the level of GAG synthesis differently depending on cell types, therefore in vitro experiments performed to assess the effectiveness of potential therapies for metabolic diseases should be carried out using more than one cell model, and only such an approach will allow for full answering scientific questions.
Collapse
|
5
|
Gosis BS, Wada S, Thorsheim C, Li K, Jung S, Rhoades JH, Yang Y, Brandimarto J, Li L, Uehara K, Jang C, Lanza M, Sanford NB, Bornstein MR, Jeong S, Titchenell PM, Biddinger SB, Arany Z. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022; 376:eabf8271. [PMID: 35420934 PMCID: PMC9811404 DOI: 10.1126/science.abf8271] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.
Collapse
Affiliation(s)
- Bridget S Gosis
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shogo Wada
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chelsea Thorsheim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Joshua H Rhoades
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yifan Yang
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Brandimarto
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan B Sanford
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc R Bornstein
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunhye Jeong
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha B Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
7
|
Węsierska M, Kloska A, Medina DL, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Radzińska M, Moskot M, Malinowska M. Cellular and Gene Expression Response to the Combination of Genistein and Kaempferol in the Treatment of Mucopolysaccharidosis Type I. Int J Mol Sci 2022; 23:ijms23031058. [PMID: 35162981 PMCID: PMC8834790 DOI: 10.3390/ijms23031058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
Flavonoids are investigated as therapeutics for mucopolysaccharidosis, a metabolic disorder with impaired glycosaminoglycan degradation. Here we determined the effects of genistein and kaempferol, used alone or in combination, on cellular response and gene expression in a mucopolysaccharidosis type I model. We assessed the cell cycle, viability, proliferation, subcellular localization of the translocation factor EB (TFEB), number and distribution of lysosomes, and glycosaminoglycan synthesis after exposure to flavonoids. Global gene expression was analysed using DNA microarray and quantitative PCR. The type and degree of flavonoid interaction were determined based on the combination and dose reduction indexes. The combination of both flavonoids synergistically inhibits glycosaminoglycan synthesis, modulates TFEB localization, lysosomal number, and distribution. Genistein and kaempferol in a 1:1 ratio regulate the expression of 52% of glycosaminoglycan metabolism genes. Flavonoids show synergy, additivity, or slight antagonism in all analysed parameters, and the type of interaction depends on the concentration and component ratios. With the simultaneous use of genistein and kaempferol in a ratio of 4:1, even a 10-fold reduction in the concentration of kaempferol is possible. Flavonoid mixtures, used as the treatment of mucopolysaccharidosis, are effective in reducing glycosaminoglycan production and storage and show a slight cytotoxic effect compared to single-flavonoid usage.
Collapse
Affiliation(s)
- Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Naples, Italy;
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Marta Radzińska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
| | - Marta Moskot
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Laboratory of Molecular Biology of Human Skin Diseases, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.W.); (A.K.); (J.J.-B.); (M.G.-C.); (M.R.)
- Correspondence: (M.M.); (M.M.); Tel.: +48-58-5236045 (M.M.); +48-58-5236046 (M.M.); Fax: +48-58-5236025 (M.M. & M.M.)
| |
Collapse
|
8
|
Papies J, Emanuel J, Heinemann N, Kulić Ž, Schroeder S, Tenner B, Lehner MD, Seifert G, Müller MA. Antiviral and Immunomodulatory Effects of Pelargonium sidoides DC. Root Extract EPs® 7630 in SARS-CoV-2-Infected Human Lung Cells. Front Pharmacol 2021; 12:757666. [PMID: 34759825 PMCID: PMC8573200 DOI: 10.3389/fphar.2021.757666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Treatment options for COVID-19 are currently limited. Drugs reducing both viral loads and SARS-CoV-2-induced inflammatory responses would be ideal candidates for COVID-19 therapeutics. Previous in vitro and clinical studies suggest that the proprietary Pelargonium sidoides DC. root extract EPs 7630 has antiviral and immunomodulatory properties, limiting symptom severity and disease duration of infections with several upper respiratory viruses. Here we assessed if EPs 7630 affects SARS-CoV-2 propagation and the innate immune response in the human lung cell line Calu-3. In direct comparison to other highly pathogenic CoV (SARS-CoV, MERS-CoV), SARS-CoV-2 growth was most efficiently inhibited at a non-toxic concentration with an IC50 of 1.61 μg/ml. Particularly, the cellular entry step of SARS-CoV-2 was significantly reduced by EPs 7630 pretreatment (10-100 μg/ml) as shown by spike protein-carrying pseudovirus particles and infectious SARS-CoV-2. Using sequential ultrafiltration, EPs 7630 was separated into fractions containing either prodelphinidins of different oligomerization degrees or small molecule constituents like benzopyranones and purine derivatives. Prodelphinidins with a low oligomerization degree and small molecule constituents were most efficient in inhibiting SARS-CoV-2 entry already at 10 μg/ml and had comparable effects on immune gene regulation as EPs 7630. Downregulation of multiple pro-inflammatory genes (CCL5, IL6, IL1B) was accompanied by upregulation of anti-inflammatory TNFAIP3 at 48 h post-infection. At high concentrations (100 μg/ml) moderately oligomerized prodelphinidins reduced SARS-CoV-2 propagation most efficiently and exhibited pronounced immune gene modulation. Assessment of cytokine secretion in EPs 7630-treated and SARS-CoV-2-coinfected Calu-3 cells showed that pro-inflammatory cytokines IL-1β and IL-6 were elevated whereas multiple other COVID-19-associated cytokines (IL-8, IL-13, TNF-α), chemokines (CXCL9, CXCL10), and growth factors (PDGF, VEGF-A, CD40L) were significantly reduced by EPs 7630. SARS-CoV-2 entry inhibition and the differential immunomodulatory functions of EPs 7630 against SARS-CoV-2 encourage further in vivo studies.
Collapse
Affiliation(s)
- Jan Papies
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Žarko Kulić
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Simon Schroeder
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Beate Tenner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin D. Lehner
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Georg Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Paediatrics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcel A. Müller
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Ghosh A, Rust S, Langford-Smith K, Weisberg D, Canal M, Breen C, Hepburn M, Tylee K, Vaz FM, Vail A, Wijburg F, O'Leary C, Parker H, Wraith JE, Bigger BW, Jones SA. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J Inherit Metab Dis 2021; 44:1248-1262. [PMID: 34047372 DOI: 10.1002/jimd.12407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
The aim of this study was to evaluate the efficacy of high dose genistein aglycone in Sanfilippo syndrome (mucopolysaccharidosis type III). High doses of genistein aglycone have been shown to correct neuropathology and hyperactive behaviour in mice, but efficacy in humans is uncertain. This was a single centre, double-blinded, randomised, placebo-controlled study with open-label extension phase. Randomised participants received either 160 mg/kg/day genistein aglycone or placebo for 12 months; subsequently all participants received genistein for 12 months. The primary outcome measure was the change in heparan sulfate concentration in cerebrospinal fluid (CSF), with secondary outcome measures including heparan sulfate in plasma and urine, total glycosaminoglycans in urine, cognitive and adaptive behaviour scores, quality of life measures and actigraphy. Twenty-one participants were randomised and 20 completed the placebo-controlled phase. After 12 months of treatment, the CSF heparan sulfate concentration was 5.5% lower in the genistein group (adjusted for baseline values), but this was not statistically significant (P = .26), and CSF heparan sulfate increased in both groups during the open-label extension phase. Reduction of urinary glycosaminoglycans was significantly greater in the genistein group (32.1% lower than placebo after 12 months, P = .0495). Other biochemical and clinical parameters showed no significant differences between groups. High dose genistein aglycone (160 mg/kg/day) was not associated with clinically meaningful reductions in CSF heparan sulfate and no evidence of clinical efficacy was detected. However, there was a statistically significant reduction in urine glycosaminoglycans. These data do not support the use of genistein aglycone therapy in mucopolysaccharidosis type III. High dose genistein aglycone does not lead to clinically meaningful reductions in biomarkers or improvement in neuropsychological outcomes in mucopolysaccharidosis type III.
Collapse
Affiliation(s)
- Arunabha Ghosh
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Stewart Rust
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Kia Langford-Smith
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Daniel Weisberg
- Paediatric Psychosocial Service, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maria Canal
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Catherine Breen
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michelle Hepburn
- Wellcome Trust Children's Clinical Research Facility, Royal Manchester Children's Hospital, Manchester, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Andy Vail
- Centre for Biostatistics, School of Health Sciences, University of Manchester, UK
| | - Frits Wijburg
- Amsterdam UMC, location Academic Medical Center, Amsterdam, Netherlands
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - J Ed Wraith
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| |
Collapse
|
10
|
Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22126574. [PMID: 34207476 PMCID: PMC8235362 DOI: 10.3390/ijms22126574] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/27/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) encompass a group of glycoproteins composed of unbranched negatively charged heparan sulfate (HS) chains covalently attached to a core protein. The complex HSPG biosynthetic machinery generates an extraordinary structural variety of HS chains that enable them to bind a plethora of ligands, including growth factors, morphogens, cytokines, chemokines, enzymes, matrix proteins, and bacterial and viral pathogens. These interactions translate into key regulatory activity of HSPGs on a wide range of cellular processes such as receptor activation and signaling, cytoskeleton assembly, extracellular matrix remodeling, endocytosis, cell-cell crosstalk, and others. Due to their ubiquitous expression within tissues and their large functional repertoire, HSPGs are involved in many physiopathological processes; thus, they have emerged as valuable targets for the therapy of many human diseases. Among their functions, HSPGs assist many viruses in invading host cells at various steps of their life cycle. Viruses utilize HSPGs for the attachment to the host cell, internalization, intracellular trafficking, egress, and spread. Recently, HSPG involvement in the pathogenesis of SARS-CoV-2 infection has been established. Here, we summarize the current knowledge on the molecular mechanisms underlying HSPG/SARS-CoV-2 interaction and downstream effects, and we provide an overview of the HSPG-based therapeutic strategies that could be used to combat such a fearsome virus.
Collapse
|
11
|
Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. Int J Mol Sci 2021; 22:ijms22084220. [PMID: 33921734 PMCID: PMC8073251 DOI: 10.3390/ijms22084220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in β-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.
Collapse
|
12
|
da Costa A, Metais T, Mouthon F, Kerkovich D, Charvériat M. Evaluating and modulating TFEB in the control of autophagy: toward new treatments in CNS disorders. Fundam Clin Pharmacol 2020; 35:539-551. [PMID: 33259088 DOI: 10.1111/fcp.12634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022]
Abstract
TFEB is a mammalian transcription factor that binds directly to the CLEAR consensus sequence (5'-GTCACGTGAC-3') present in the regulatory regions of genes inducing autophagosome formation, autophagosome-lysosome fusion, hydrolase enzyme expression, and lysosomal exocytosis. By modulating these activities, TFEB coordinates on-demand control over each cell's degradation pathway. Thus, a nuclear signaling pathway regulates cellular energy metabolism through TFEB. Our growing understanding of the role of TFEB and CLEAR in the promotion of healthy clearance together with in vitro and in vivo preclinical findings in various animal models of disease supports the conclusion that the pharmacological activation of TFEB could clear toxic proteins to treat both rare and common forms of neurodegenerative disease.
Collapse
|
13
|
Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med 2020; 15:123. [PMID: 33292395 PMCID: PMC7684757 DOI: 10.1186/s13020-020-00402-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved degradation process for long-lived intracellular proteins and organelles mediated by lysosomes. Deficits in the autophagy-lysosome pathway (ALP) have been linked to a variety of human diseases, including neurodegenerative diseases, lysosomal storage disorders, and cancers. Transcription factor EB (TFEB) has been identified as a major regulator of autophagy and lysosomal biogenesis. Increasing evidence has demonstrated that TFEB activation can promote the clearance of toxic protein aggregates and regulate cellular metabolism. Traditional Chinese medicine (TCM)-derived natural products as important sources for drug discovery have been widely used for the treatment of various diseases associated with ALP dysfunction. Herein, we review (1) the regulation of TFEB and ALP; (2) TFEB and ALP dysregulation in human diseases; (3) TFEB activators from natural products and their potential uses.
Collapse
|
14
|
Kubaski F, Vairo F, Baldo G, de Oliveira Poswar F, Corte AD, Giugliani R. Therapeutic Options for Mucopolysaccharidosis II (Hunter Disease). Curr Pharm Des 2020; 26:5100-5109. [PMID: 33138761 DOI: 10.2174/1381612826666200724161504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.
Collapse
Affiliation(s)
- Francyne Kubaski
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| | | | - Amauri Dalla Corte
- Postgraduation Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Brazil
| | - Roberto Giugliani
- Postgraduate Program in Genetics and Molecular Biology, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
15
|
Shen B, Feng H, Cheng J, Li Z, Jin M, Zhao L, Wang Q, Qin H, Liu G. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J Cell Mol Med 2020; 24:5097-5108. [PMID: 32293113 PMCID: PMC7205797 DOI: 10.1111/jcmm.15139] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcohol fatty liver disease (NAFLD) is a common disease which causes serious liver damage. Geniposide (GEN), a kind of iridoid glycoside extracted from Gardenia jasminoides fruit, has many biological effects, such as resistance to cell damage and anti-neurodegenerative disorder. Lipid accumulation was obvious in tyloxapol-induced liver and oil acid (OA) with palmitic acid (PA)-induced HepG2 cells compared with the control groups while GEN improved the increasing conditions. GEN significantly lessened the total cholesterol (TC), the triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), myeloperoxidase (MPO), reactive oxygen species (ROS) and increased high-density lipoprotein (HDL), superoxide dismutase (SOD) to response the oxidative stress via activating nuclear factor erythroid-2-related factor 2 (Nrf2), haeme oxygenase (HO)-1 and peroxisome proliferator-activated receptor (PPAR)α which may influence the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway in mice and cells. Additionally, GEN evidently decreased the contents of sterol regulatory element-binding proteins (SREBP)-1c, phosphorylation (P)-mechanistic target of rapamycin complex (mTORC), P-S6K, P-S6 and high mobility group protein (HMGB) 1 via inhibiting the expression of phosphoinositide 3-kinase (PI3K), and these were totally abrogated in Nrf2-/- mice. Our study firstly proved the protective effect of GEN on lipid accumulation via enhancing the ability of antioxidative stress and anti-inflammation which were mostly depend on up-regulating the protein expression of Nrf2/HO-1 and AMPK signalling pathways, thereby suppressed the phosphorylation of mTORC and its related protein.
Collapse
Affiliation(s)
- Bingyu Shen
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Haihua Feng
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiaqi Cheng
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Zheng Li
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Meiyu Jin
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Lilei Zhao
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Qi Wang
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Haiyan Qin
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Guowen Liu
- Key Laboratory of ZoonosisMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
16
|
Smiddy NM, DiSalvo M, Allbritton-King JD, Allbritton NL. Microraft array-based platform for sorting of viable microcolonies based on cell-lethal immunoassay of intracellular proteins in microcolony biopsies. Analyst 2020; 145:2649-2660. [PMID: 32048684 PMCID: PMC7117799 DOI: 10.1039/d0an00030b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The majority of bioassays are cell-lethal and thus cannot be used for cell assay and selection prior to live-cell sorting. A quad microraft array-based platform was developed to perform semi-automated cell sampling, bioassay, and banking on ultra-small sample sizes. The system biopsies and collects colony fragments, quantifies intracellular protein levels via immunostaining, and then retrieves the living mother colonies based on the fragments' immunoassay outcome. To accomplish this, a magnetic, microwell-based plate was developed to mate directly above the microraft array and capture colony fragments with a one-to-one spatial correspondence to their mother colonies. Using the Signal Transducer and Activator of Transcription 3 (STAT3) model pathway in basophilic leukemia cells, the system was used to sort cells based on the amount of intracellular STAT3 protein phosphorylation (pSTAT3). Colonies were detected on quad arrays using bright field microscopy with 96 ± 20% accuracy (true-positive rate), 49 ± 3% of the colonies were identified as originating from a single cell, and the majority (95 ± 3%) of biopsied clonal fragments were successfully collected into the microwell plate for immunostaining. After assay, biopsied fragments were matched back to their mother colonies and mother colonies with fragments possessing the greatest and least pSTAT3/STAT3 were resampled for expansion and downstream biological assays for pSTAT3/STAT3 and immune granule exocytosis. This approach has the potential to enable colony screening and sorting based on assays not compatible with cell viability, greatly expanding the cell selection criteria available to identify cells with unique phenotypes for subsequent biomedical research.
Collapse
Affiliation(s)
- Nicole M Smiddy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
17
|
Improved Pharmacokinetics and Tissue Uptake of Complexed Daidzein in Rats. Pharmaceutics 2020; 12:pharmaceutics12020162. [PMID: 32079113 PMCID: PMC7076374 DOI: 10.3390/pharmaceutics12020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacokinetic profile and tissue uptake of daidzein (DAI) was determined in rat serum and tissues (lungs, eyes, brain, heart, spleen, fat, liver, kidney, and testes) after intravenous and intraperitoneal administration of DAI in suspension or complexed with ethylenediamine-modified γ-cyclodextrin (GCD-EDA/DAI). The absolute and relative bioavailability of DAI suspended (20 mg/kg i.v. vs. 50 mg/kg i.p.) and complexed (0.54 mg/kg i.v. vs. 1.35 mg/kg i.p.) was determined. After i.p. administration, absorption of DAI complexed with GCD-EDA was more rapid (tmax = 15 min) than that of DAI in suspension (tmax = 45 min) with a ca. 3.6 times higher maximum concentration (Cmax = 615 vs. 173 ng/mL). The i.v. half-life of DAI was longer in GCD-EDA/DAI complex compared with DAI in suspension (t0.5 = 380 min vs. 230 min). The volume of distribution of DAI given i.v. in GCD-EDA/DAI complex was ca. 6 times larger than DAI in suspension (38.6 L/kg vs. 6.2 L/kg). Our data support the concept that the pharmacokinetics of DAI suspended in high doses are nonlinear. Increasing the intravenous dose 34 times resulted in a 5-fold increase in AUC. In turn, increasing the intraperitoneal dose 37 times resulted in a ca. 2-fold increase in AUC. The results of this study suggested that GCD-EDA complex may improve DAI bioavailability after i.p. administration. The absolute bioavailability of DAI in GCD-EDA inclusion complex was ca. 3 times greater (F = 82.4% vs. 28.2%), and the relative bioavailability was ca. 21 times higher than that of DAI in suspension, indicating the need to study DAI bioavailability after administration by routes other than intraperitoneal, e.g., orally, subcutaneously, or intramuscularly. The concentration of DAI released from GCD-EDA/DAI inclusion complex to all the rat tissues studied was higher than after administration of DAI in suspension. The concentration of DAI in brain and lungs was found to be almost 90 and 45 times higher, respectively, when administered in complex compared to the suspended DAI. Given the nonlinear relationship between DAI bioavailability and the dose released from the GCD-EDA complex, complexation of DAI may thus offer an effective approach to improve DAI delivery for treatment purposes, for example in mucopolysaccharidosis (MPS), allowing the reduction of ingested DAI doses.
Collapse
|
18
|
D’Avanzo F, Rigon L, Zanetti A, Tomanin R. Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment. Int J Mol Sci 2020; 21:E1258. [PMID: 32070051 PMCID: PMC7072947 DOI: 10.3390/ijms21041258] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. This contributes to a heavy clinical phenotype involving most organ-systems, including the brain, in at least two-thirds of cases. In this review, we will summarize the history of the disease during this century through clinical and laboratory evaluations that allowed its definition, its correct diagnosis, a partial comprehension of its pathogenesis, and the proposition of therapeutic protocols. We will also highlight the main open issues related to the possible inclusion of MPS II in newborn screenings, the comprehension of brain pathogenesis, and treatment of the neurological compartment.
Collapse
Affiliation(s)
- Francesca D’Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
- Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; (F.D.); (A.Z.)
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy;
| |
Collapse
|
19
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
20
|
Francisqueti-Ferron FV, Ferron AJT, Garcia JL, Silva CCVDA, Costa MR, Gregolin CS, Moreto F, Ferreira ALA, Minatel IO, Correa CR. Basic Concepts on the Role of Nuclear Factor Erythroid-Derived 2-Like 2 (Nrf2) in Age-Related Diseases. Int J Mol Sci 2019; 20:E3208. [PMID: 31261912 PMCID: PMC6651020 DOI: 10.3390/ijms20133208] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most common age-related diseases and bring insights for future research on the Nrf2 pathway is described. This review shows a controversial response of this transcriptional factor on the presented diseases. This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a possible therapeutic target in the treatment of age-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fernando Moreto
- Medical School, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | | | - Igor Otávio Minatel
- Institute of Biosciences, São Paulo State University, Botucatu 18618-689, SP, Brazil
| | | |
Collapse
|
21
|
The Role of Dimethyl Sulfoxide (DMSO) in Gene Expression Modulation and Glycosaminoglycan Metabolism in Lysosomal Storage Disorders on an Example of Mucopolysaccharidosis. Int J Mol Sci 2019; 20:ijms20020304. [PMID: 30646511 PMCID: PMC6359599 DOI: 10.3390/ijms20020304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022] Open
Abstract
Obstacles to effective therapies for mucopolysaccharidoses (MPSs) determine the need for continuous studies in order to enhance therapeutic strategies. Dimethyl sulfoxide (DMSO) is frequently utilised as a solvent in biological studies, and as a vehicle for drug therapy and the in vivo administration of water-insoluble substances. In the light of the uncertainty on the mechanisms of DMSO impact on metabolism of glycosaminoglycans (GAGs) pathologically accumulated in MPSs, in this work, we made an attempt to investigate and resolve the question of the nature of GAG level modulation by DMSO, the isoflavone genistein solvent employed previously by our group in MPS treatment. In this work, we first found the cytotoxic effect of DMSO on human fibroblasts at concentrations above 3%. Also, our results displayed the potential role of DMSO in the regulation of biological processes at the transcriptional level, then demonstrated a moderate impact of the solvent on GAG synthesis. Interestingly, alterations of lysosomal ultrastructure upon DMSO treatment were visible. As there is growing evidence in the literature that DMSO can affect cellular pathways leading to numerous changes, it is important to expand our knowledge concerning this issue.
Collapse
|
22
|
Abstract
Enzyme replacement therapy is currently considered the standard of care for the treatment of mucopolysaccharidoses (MPS) type I, II, VI, and IV. This approach has shown substantial efficacy mainly on somatic symptoms of the patients, but no benefit was found for other clinical manifestations, such as neurological involvement. New strategies are currently being tested to address these limitations, in particular to obtain sufficient therapeutic levels in the brain. Intrathecal delivery of recombinant enzymes or chimeric enzymes represent promising approaches in this respect. Further innovation will likely be introduced by the recent advancements in the knowledge of lysosomal biology and function. It is now clear that the clinical manifestations of MPS are not only the direct effects of storage, but also derive from a cascade of secondary events that lead to dysfunction of several cellular processes and pathways. Some of these pathways may represent novel therapeutic targets and allow for development of novel or adjunctive therapies for these disorders.
Collapse
Affiliation(s)
- Simona Fecarotta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Serena Gasperini
- Metabolic Rare Disease Unit, Pediatric Department, Fondazione MBBM, University of Milano Bicocca, Monza, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy. .,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
23
|
Fumić B, Končić MZ, Jug M. Development of cyclodextrin-based extract of Lotus corniculatus as a potential substrate reduction therapy in mucopolysaccharidoses type III. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Tebani A, Abily-Donval L, Schmitz-Afonso I, Héron B, Piraud M, Ausseil J, Zerimech F, Gonzalez B, Marret S, Afonso C, Bekri S. Unveiling metabolic remodeling in mucopolysaccharidosis type III through integrative metabolomics and pathway analysis. J Transl Med 2018; 16:248. [PMID: 30180851 PMCID: PMC6122730 DOI: 10.1186/s12967-018-1625-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Metabolomics represent a valuable tool to recover biological information using body fluids and may help to characterize pathophysiological mechanisms of the studied disease. This approach has not been widely used to explore inherited metabolic diseases. This study investigates mucopolysaccharidosis type III (MPS III). A thorough and holistic understanding of metabolic remodeling in MPS III may allow the development, improvement and personalization of patient care. METHODS We applied both targeted and untargeted metabolomics to urine samples obtained from a French cohort of 49 patients, consisting of 13 MPS IIIA, 16 MPS IIIB, 13 MPS IIIC, and 7 MPS IIID, along with 66 controls. The analytical strategy is based on ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Twenty-four amino acids have been assessed using tandem mass spectrometry combined with liquid chromatography. Multivariate data modeling has been used for discriminant metabolite selection. Pathway analysis has been performed to retrieve metabolic pathways impairments. RESULTS Data analysis revealed distinct biochemical profiles. These metabolic patterns, particularly those related to the amino acid metabolisms, allowed the different studied groups to be distinguished. Pathway analysis unveiled major amino acid pathways impairments in MPS III mainly arginine-proline metabolism and urea cycle metabolism. CONCLUSION This represents one of the first metabolomics-based investigations of MPS III. These results may shed light on MPS III pathophysiology and could help to set more targeted studies to infer the biomarkers of the affected pathways, which is crucial for rare conditions such as MPS III.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France.,Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Lenaig Abily-Donval
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France.,Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031, Rouen, France
| | | | - Bénédicte Héron
- Department of Pediatric Neurology, Reference Center of Lysosomal Diseases, Trousseau Hospital, APHP and Sorbonne Université, GRC No 19, Pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, 75012, Paris, France
| | - Monique Piraud
- Service de Biochimie et Biologie Moléculaire Grand Est, Unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est, CHU de Lyon, Lyon, France
| | - Jérôme Ausseil
- INSERM U1088, Laboratoire de Biochimie Métabolique, Centre de Biologie Humaine, CHU Sud, 80054, Amiens Cedex, France
| | - Farid Zerimech
- Laboratoire de Biochimie et Biologie Moléculaire, Université de Lille et Pôle de Biologie Pathologie Génétique du CHRU de Lille, 59000, Lille, France
| | - Bruno Gonzalez
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France.,Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031, Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000, Rouen Cedex, France. .,Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, 76000, Rouen, France.
| |
Collapse
|
25
|
De Pasquale V, Sarogni P, Pistorio V, Cerulo G, Paladino S, Pavone LM. Targeting Heparan Sulfate Proteoglycans as a Novel Therapeutic Strategy for Mucopolysaccharidoses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:8-16. [PMID: 29942826 PMCID: PMC6011039 DOI: 10.1016/j.omtm.2018.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022]
Abstract
Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by the deficiency of lysosomal enzymes needed to catabolize glycosaminoglycans (GAGs). Four therapeutic options are currently considered: enzyme replacement therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell transplantation. However, while some of them exhibit limited clinical efficacy and require high costs, others are still in development. Therefore, alternative treatments for MPSs need to be explored. Here we describe an innovative therapeutic approach based on the use of a recombinant protein that is able to bind the excess of extracellular accumulated heparan sulfate (HS). We demonstrate that this protein is able to reduce lysosomal defects in primary fibroblasts from MPS I and MPS IIIB patients. We also show that, by masking the excess of extracellular accumulated HS in MPS fibroblasts, fibroblast growth factor (FGF) signal transduction can be positively modulated. We, therefore, suggest the use of a competitive binding molecule for HS in MPSs as an alternative strategy to prevent the detrimental extracellular substrate storage.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Patrizia Sarogni
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Giuliana Cerulo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
26
|
Smolińska E, Moskot M, Jakóbkiewicz-Banecka J, Węgrzyn G, Banecki B, Szczerkowska-Dobosz A, Purzycka-Bohdan D, Gabig-Cimińska M. Molecular action of isoflavone genistein in the human epithelial cell line HaCaT. PLoS One 2018; 13:e0192297. [PMID: 29444128 PMCID: PMC5812592 DOI: 10.1371/journal.pone.0192297] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Due to its strong proliferation-reducing effects on keratinocytes, and also anti-inflammatory properties, the isoflavone genistein has already been proposed as a possible antipsoriatic compound. As there is still no detailed information on this topic, we examined the effects of genistein by using an in vitro model of both, normal and "psoriasis-like" keratinocytes at this stage of our work exhaustively testing the selected flavonoid in a mono-treated experimental design. Gene expression studies revealed transcriptional changes that confirms known disease-associated pathways and highlights many psoriasis-related genes. Our results suggested that aberrant expression of genes contributing to the progress of psoriasis could be improved by the action of genistein. Genistein prevented "cytokine mix" as well as TNF-α-induced NF-κB nuclear translocation, with no effect on the PI3K signaling cascade, indicating the luck of turning this pathway into NF-κB activation. It could have attenuated TNF-α and LPS-induced inflammatory responses by suppressing ROS activation. Regardless of the type of keratinocyte stimulation used, reduction of cytokine IL-8, IL-20 and CCL2 production (both at RNA and protein level) following genistein treatment was visible. Because investigations of other groups supported our commentary on potential administration of genistein as a potential weapon in the armamentarium against psoriasis, it is believed that this paper should serve to encourage researchers to conduct further studies on this subject.
Collapse
Affiliation(s)
- Elwira Smolińska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Gdańsk, Poland
| | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Gdańsk, Poland
| | - Aneta Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
27
|
Pierzynowska K, Gaffke L, Hać A, Mantej J, Niedziałek N, Brokowska J, Węgrzyn G. Correction of Huntington's Disease Phenotype by Genistein-Induced Autophagy in the Cellular Model. Neuromolecular Med 2018; 20:112-123. [PMID: 29435951 PMCID: PMC5834590 DOI: 10.1007/s12017-018-8482-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/08/2018] [Indexed: 01/30/2023]
Abstract
Huntington’s disease (HD) is a monogenic disorder, caused by mutations in the HTT gene which result in expansion of CAG triplets. The product of the mutated gene is misfolded huntingtin protein that forms aggregates leading to impairment of neuronal function, neurodegeneration, motor abnormalities and cognitive deficits. No effective cure is currently available for HD. Here we studied effects of genistein (trihydroxyisoflavone) on a HD cellular model consisting of HEK-293 cells transfected with a plasmid bearing mutated HTT gene. Both level of mutated huntingtin and number of aggregates were significantly decreased in genistein-treated HD cell model. This led to increased viability of the cells. Autophagy was up-regulated while inhibition of lysosomal functions by chloroquine impaired the genistein-mediated degradation of the mutated huntingtin aggregates. Hence, we conclude that through stimulating autophagy, genistein removes the major pathogenic factor of HD. Prolonged induction of autophagy was suspected previously to be risky for patients due to putative adverse effects; however, genistein has been demonstrated recently to be safe and suitable for long-term therapies even at doses as high as 150 mg/kg/day. Therefore, results presented in this report provide a basis for the use of genistein in further studies on development of the potential treatment of HD.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Aleksandra Hać
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Natalia Niedziałek
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna Brokowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
28
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
29
|
Fumić B, Jablan J, Cinčić D, Zovko Končić M, Jug M. Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. J Microencapsul 2017; 35:1-12. [PMID: 29168930 DOI: 10.1080/02652048.2017.1409819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work aimed to investigate the potential effect of cyclodextrin encapsulation on intrinsic ability of daidzein (DAD) and genistein (GEN) to inhibit the glycosaminoglycan (GAG) synthesis in fibroblasts originating from patients with mucopolysaccharidosis (MPS), type II and III. DAD or GEN encapsulation with either 2-hydroxypropyl-β-cyclodextrin or sulphobuthylether-β-cyclodextrin were achieved by neat grinding and were characterised by thermal analysis, X-ray powder diffraction, scanning electron microscopy and solubility testing which confirmed the complexes formation with increased solubility with respect to starting compounds. Both isoflavones, as well as their co-ground cyclodextrin complexes reduced GAG levels in the fibroblasts of MPS II and MPS III patients from 54.8-77.5%, in a dose dependent manner, without any significant cytotoxic effect. Cyclodextrin encapsulation did not change the intrinsically high effect of both DAD and GEN on the GAG level reduction in the treated cells, thus could be considered as a part of combination therapies of MPS.
Collapse
Affiliation(s)
- Barbara Fumić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia.,b Department of Laboratory Diagnostics , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Jasna Jablan
- c Faculty of Pharmacy and Biochemistry, Department of Analystical Chemistry , University of Zagreb , Zagreb , Croatia
| | - Dominik Cinčić
- d Faculty of Science, Chemistry Department , University of Zagreb , Zagreb , Croatia
| | - Marijana Zovko Končić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia
| | - Mario Jug
- e Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
30
|
Banecka-Majkutewicz Z, Kadziński L, Grabowski M, Bloch S, Kaźmierkiewicz R, Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Węgrzyn G, Węgrzyn A, Banecki B. Evidence for interactions between homocysteine and genistein: insights into stroke risk and potential treatment. Metab Brain Dis 2017; 32:1855-1860. [PMID: 28748495 DOI: 10.1007/s11011-017-0078-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/19/2017] [Indexed: 01/06/2023]
Abstract
Elevated plasma homocysteine (2-amino-4-sulfanylbutanoic acid) level is a risk factor for stroke. Moreover, it has been suggested that high levels of homocysteine in the acute phase of an ischemic stroke can predict mortality, especially in stroke patients with the large-vessel atherosclerosis subtype. In clinical studies, supplementation with genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) decreased plasma homocysteine levels considerably. Therefore, genistein could be considered as a potential drug for prevention and/or treatment of stroke. However, the mechanism of the effect of genistein on homocysteine level remains to be elucidated. In this report, direct functional interactions between homocysteine and genistein are demonstrated in in vitro experimental systems for determination of methylenetetrahydrofolate reductase (MetF) and glutathione peroxidase (GPx) activities, reconstructed with purified compounds, and in a simple in vivo system, based on measurement of growth rate of Vibrio harveyi and Bacillus subtilis cultures. Results of molecular modelling indicated that homocysteine can directly interact with genistein. Therefore, genistein-mediated decrease in plasma levels of homocysteine, and alleviation of biochemical and physiological effects of one of these compounds by another, might be ascribed to formation of homocysteine-genistein complexes in which biological activities of these molecules are abolished or alleviated.
Collapse
Affiliation(s)
| | - Leszek Kadziński
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Grabowski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Rajmund Kaźmierkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Magdalena Gabig-Cimińska
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Banecki
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
31
|
Platt FM. Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 2017; 17:133-150. [PMID: 29147032 DOI: 10.1038/nrd.2017.214] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) - designated as 'orphan' diseases - are inborn errors of metabolism caused by defects in genes that encode proteins involved in various aspects of lysosomal homeostasis. For many years, LSDs were viewed as unattractive targets for the development of therapies owing to their low prevalence. However, the development and success of the first commercial biologic therapy for an LSD - enzyme replacement therapy for type 1 Gaucher disease - coupled with regulatory incentives rapidly catalysed commercial interest in therapeutically targeting LSDs. Despite ongoing challenges, various therapeutic strategies for LSDs now exist, with many agents approved, undergoing clinical trials or in preclinical development.
Collapse
Affiliation(s)
- Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
32
|
Qiu P, Cui Y, Xiao H, Han Z, Ma H, Tang Y, Xu H, Zhang L. 5-Hydroxy polymethoxyflavones inhibit glycosaminoglycan biosynthesis in lung and colon cancer cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
33
|
Nonsteroidal anti-inflammatory drugs modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways. Sci Rep 2017; 7:43154. [PMID: 28240227 PMCID: PMC5327420 DOI: 10.1038/srep43154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/10/2017] [Indexed: 01/27/2023] Open
Abstract
In this report, selected non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin and nimesulide, and analgesics acetaminophen, alone, as well as in combination with isoflavone genistein as potential glycosaminoglycan (GAG) metabolism modulators were considered for the treatment of mucopolysaccharidoses (MPSs) with neurological symptoms due to the effective blood-brain barrier (BBB) penetration properties of these compounds. We found that indomethacin and nimesulide, but not acetaminophen, inhibited GAG synthesis in fibroblasts significantly, while the most pronounced impairment of glycosaminoglycan production was observed after exposure to the mixture of nimesulide and genistein. Phosphorylation of the EGF receptor (EGFR) was inhibited even more effective in the presence of indomethacin and nimesulide than in the presence of genistein. When examined the activity of phosphatidylinositol-3-kinase (PI3K) production, we observed its most significant decrease in the case of fibroblast exposition to nimesulide, and afterwards to indomethacin and genistein mix, rather than indomethacin used alone. Some effects on expression of individual GAG metabolism-related and lysosomal function genes, and significant activity modulation of a number of genes involved in intracellular signal transduction pathways and metabolism of DNA and proteins were detected. This study documents that NSAIDs, and their mixtures with genistein modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways.
Collapse
|
34
|
Rega LR, Polishchuk E, Montefusco S, Napolitano G, Tozzi G, Zhang J, Bellomo F, Taranta A, Pastore A, Polishchuk R, Piemonte F, Medina DL, Catz SD, Ballabio A, Emma F. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells. Kidney Int 2017; 89:862-73. [PMID: 26994576 DOI: 10.1016/j.kint.2015.12.045] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022]
Abstract
Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis.
Collapse
Affiliation(s)
- Laura R Rega
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | | | - Giulia Tozzi
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Francesco Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Taranta
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Fiorella Piemonte
- Unit for Muscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| |
Collapse
|
35
|
Ghiselli G. Drug-Mediated Regulation of Glycosaminoglycan Biosynthesis. Med Res Rev 2016; 37:1051-1094. [DOI: 10.1002/med.21429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Giancarlo Ghiselli
- Glyconova Srl; Parco Scientifico Silvano Fumero; Via Ribes 5 Colleretto Giacosa, (TO) Italy
| |
Collapse
|
36
|
Moskot M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J, Węsierska M, Bocheńska K, Węgrzyn G. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein. Gene 2016; 585:100-103. [DOI: 10.1016/j.gene.2016.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
37
|
Meng X, Luo Y, Liang T, Wang M, Zhao J, Sun G, Sun X. Gypenoside XVII Enhances Lysosome Biogenesis and Autophagy Flux and Accelerates Autophagic Clearance of Amyloid-β through TFEB Activation. J Alzheimers Dis 2016; 52:1135-50. [DOI: 10.3233/jad-160096] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiangbao Meng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, PR China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, PR China
| | - Tian Liang
- Center of Research on Life Science and Environmental Science, Harbin University of Commerce, Harbin, PR China
| | - Mengxia Wang
- Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jingyu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, PR China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, PR China
| |
Collapse
|
38
|
Fedele AO. Sanfilippo syndrome: causes, consequences, and treatments. APPLICATION OF CLINICAL GENETICS 2015; 8:269-81. [PMID: 26648750 PMCID: PMC4664539 DOI: 10.2147/tacg.s57672] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sanfilippo syndrome, or mucopolysaccharidosis (MPS) type III, refers to one of five autosomal recessive, neurodegenerative lysosomal storage disorders (MPS IIIA to MPS IIIE) whose symptoms are caused by the deficiency of enzymes involved exclusively in heparan sulfate degradation. The primary characteristic of MPS III is the degeneration of the central nervous system, resulting in mental retardation and hyperactivity, typically commencing during childhood. The significance of the order of events leading from heparan sulfate accumulation through to downstream changes in the levels of biomolecules within the cell and ultimately the (predominantly neuropathological) clinical symptoms is not well understood. The genes whose deficiencies cause the MPS III subtypes have been identified, and their gene products, as well as a selection of disease-causing mutations, have been characterized to varying degrees with respect to both frequency and direct biochemical consequences. A number of genetic and biochemical diagnostic methods have been developed and adopted by diagnostic laboratories. However, there is no effective therapy available for any form of MPS III, with treatment currently limited to clinical management of neurological symptoms. The availability of animal models for all forms of MPS III, whether spontaneous or generated via gene targeting, has contributed to improved understanding of the MPS III subtypes, and has provided and will deliver invaluable tools to appraise emerging therapies. Indeed, clinical trials to evaluate intrathecally-delivered enzyme replacement therapy in MPS IIIA patients, and gene therapy for MPS IIIA and MPS IIIB patients are planned or underway.
Collapse
Affiliation(s)
- Anthony O Fedele
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
39
|
Moskot M, Jakóbkiewicz-Banecka J, Smolińska E, Banecki B, Węgrzyn G, Gabig-Cimińska M. Activities of genes controlling sphingolipid metabolism in human fibroblasts treated with flavonoids. Metab Brain Dis 2015; 30. [PMID: 26209177 PMCID: PMC4560762 DOI: 10.1007/s11011-015-9705-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural flavonoids such as genistein, kaempferol and daidzein were previously found to be able to reduce efficiency of glycosaminoglycan synthesis in cells of patients suffering from mucopolysaccharidoses, inherited metabolic diseases with often brain disease symptoms. This feature was employed to test these compounds as potential drugs for treatment other neuronopathic lysosomal storage disorders, in which errors in sphingolipid metabolism occur. In this report, on the basis of DNA microarray analyses and quantitative real time PCR experiments, we present evidence that these compounds modify expression of genes coding for enzymes required for metabolism of sphingolipids in human dermal fibroblasts (HDFa). Expression of several genes involved in sphingolipid synthesis was impaired by tested flavonoids. Therefore, it is tempting to speculate that they may be considered as potential drugs in treatment of LSD, in which accumulation of sphingolipids, especially glycosphingolipids, occurs. Nevertheless, further studies on more advances models are required to test this hypothesis and to assess a therapeutic potential for flavonoids in this group of metabolic brain diseases.
Collapse
Affiliation(s)
- Marta Moskot
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Elwira Smolińska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Kładki 24, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
40
|
Grabowski M, Banecki B, Kadziński L, Jakóbkiewicz-Banecka J, Kaźmierkiewicz R, Gabig-Cimińska M, Węgrzyn G, Węgrzyn A, Banecka-Majkutewicz Z. Genistein inhibits activities of methylenetetrahydrofolate reductase and lactate dehydrogenase, enzymes which use NADH as a substrate. Biochem Biophys Res Commun 2015; 465:363-7. [PMID: 26253470 DOI: 10.1016/j.bbrc.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 01/05/2023]
Abstract
Genistein (5, 7-dihydroxy-3- (4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a natural isoflavone revealing many biological activities. Thus, it is considered as a therapeutic compound in as various disorders as cancer, infections and genetic diseases. Here, we demonstrate for the first time that genistein inhibits activities of bacterial methylenetetrahydrofolate reductase (MetF) and lactate dehydrogenase (LDH). Both enzymes use NADH as a substrate, and results of biochemical as well as molecular modeling studies with MetF suggest that genistein may interfere with binding of this dinucleotide to the enzyme. These results have implications for our understanding of biological functions of genistein and its effects on cellular metabolism.
Collapse
Affiliation(s)
- Michał Grabowski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Bogdan Banecki
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Leszek Kadziński
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | | | - Rajmund Kaźmierkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Gabig-Cimińska
- Laboratory of Molecular Biology (Affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (Affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | |
Collapse
|
41
|
Parafati M, Lascala A, Morittu VM, Trimboli F, Rizzuto A, Brunelli E, Coscarelli F, Costa N, Britti D, Ehrlich J, Isidoro C, Mollace V, Janda E. Bergamot polyphenol fraction prevents nonalcoholic fatty liver disease via stimulation of lipophagy in cafeteria diet-induced rat model of metabolic syndrome. J Nutr Biochem 2015; 26:938-48. [PMID: 26025327 DOI: 10.1016/j.jnutbio.2015.03.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries. Defective autophagy of lipid droplets (LDs) in hepatocytes, also known as lipophagy, has recently been identified as a possible pathophysiological mechanism of NAFLD. Experimental and epidemiological evidence suggests that dietary polyphenols may prevent NAFLD. To address this hypothesis and analyze the underlying mechanisms, we supplemented bergamot polyphenol fraction (BPF) to cafeteria (CAF) diet-fed rats, a good model for pediatric metabolic syndrome and NAFLD. BPF treatment (50 mg/kg/day supplemented with drinking water, 3 months) potently counteracted the pathogenic increase of serum triglycerides and had moderate effects on blood glucose and obesity in this animal model. Importantly, BPF strongly reduced hepatic steatosis as documented by a significant decrease in total lipid content (-41.3% ± 12% S.E.M.), ultrasound examination and histological analysis of liver sections. The morphometric analysis of oil-red stained sections confirmed a dramatic reduction in LDs parameters such as total LD area (48.5% ± 15% S.E.M.) in hepatocytes from CAF+BPF rats. BPF-treated livers showed increased levels of LC3 and Beclin 1 and reduction of SQSTM1/p62, suggesting autophagy stimulation. Consistent with BPF stimulation of lipophagy, higher levels of LC3II were found in the LD subcellular fractions of BPF-expose livers. This study demonstrates that the liver and its lipid metabolism are the main targets of bergamot flavonoids, supporting the concept that supplementation of BPF is an effective strategy to prevent NAFLD.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Antonella Lascala
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Francesca Trimboli
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Antonia Rizzuto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Elvira Brunelli
- Department of Ecology, University of Calabria, Rende, Cosenza, Italy
| | | | - Nicola Costa
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy
| | | | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| | - Elzbieta Janda
- Department of Health Sciences, Magna Graecia University, Campus Germaneto, Catanzaro, Italy; Interregional Research Center for Food Safety and Health, Catanzaro, Italy
| |
Collapse
|