1
|
Jin M, Zhang J, Sun Y, Liu G, Wei X. ANXA5: related mechanisms of osteogenesis and additional biological functions. Front Cell Dev Biol 2025; 13:1553683. [PMID: 40342928 PMCID: PMC12058784 DOI: 10.3389/fcell.2025.1553683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Annexin A5 (ANXA5), also known as Annexin V, is a calcium-dependent phospholipid-binding protein and has a high affinity with phosphatidylserine (PS). This characteristic facilitates its involvement in a wide range of biological functions, including vesicle transport, the formation of mineral phases in the extracellular matrix, anticoagulation and antithrombotic, the inhibition of tumor growth, and apoptosis regulation. ANXA5 plays a role in anti-inflammatory and antithrombotic properties. It also has protective effects on the nervous system. ANXA5 has been reported to facilitate osteogenic differentiation and take part in chondrocyte apoptosis and mineralization. More and more attention is paid to the potential of ANXA5 for bone defect repair. Most current studies on ANXA5 mainly concentrate on immune disorders, pregnancy disorders and serve as a biomarker for various diseases as well as apoptosis detection. However, there is still a lack of systematic studies on ANXA5 involving multiple tissues, including bone, cartilage, vessels, and nerves in the process of bone regeneration. Our study aims to summarize the biological functions in bone tissue and the related signaling pathways of ANXA5. This work provides a theoretical foundation for applying ANXA5 in clinical orthopedics in the future.
Collapse
Affiliation(s)
- Ming Jin
- Zhongshan Clinical College, Dalian University, Dalian, China
- National and Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jingrun Zhang
- Zhongshan Clinical College, Dalian University, Dalian, China
- National and Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yimeng Sun
- Zhongshan Clinical College, Dalian University, Dalian, China
- National and Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ge Liu
- National and Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- National and Local Joint Engineering Laboratory for Orthopedic Implant Material Development, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
2
|
Liu J, Pei C, Jia N, Han Y, Zhao S, Shen Z, Huang D, Chen Q, Wu Y, Shi S, Wang Y, He Y, Wang Z. Preconditioning with Ginsenoside Rg3 mitigates cardiac injury induced by high-altitude hypobaric hypoxia exposure in mice by suppressing ferroptosis through inhibition of the RhoA/ROCK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118861. [PMID: 39326813 DOI: 10.1016/j.jep.2024.118861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng has historically been utilized as a conventional herbal remedy and dietary supplement to enhance physical stamina and alleviate fatigue. The primary active component of Ginseng, Ginsenoside Rg3 (GS-Rg3), possesses diverse pharmacological properties including immune modulation and anti-inflammatory effects. Furthermore, GS-Rg3 has demonstrated efficacy in mitigating tissue and organ damage associated with metabolic disorders such as hypertension, hyperglycemia, and hyperlipidemia. Nevertheless, its potential impact on high-altitude cardiac injury (HACI) remains insufficiently explored. AIM OF THE STUDY The aim of this study was to examine the potential cardioprotective effects of Ginsenoside Rg3, and to investigate how Ginsenoside Rg3 preconditioning can enhance high-altitude cardiac injury by inhibiting the RhoA/ROCK pathway and ferroptosis in cardiac tissue. The findings of this study may contribute to the development of novel therapeutic strategies using traditional Chinese medicine for high-altitude cardiac injury, based on experimental evidence. MATERIALS AND METHODS A hypobaric hypoxia chamber was employed to simulate hypobaric hypoxia conditions equivalent to an altitude of 6000 m. Through a randomization process, groups of six male mice were assigned to receive either saline, Ginsenoside Rg3 at doses of 15 mg/kg or 30 mg/kg, or lysophosphatidic acid (LPA) at 1 mg/kg. The impact of Ginsenoside Rg3 on high altitude-induced arrhythmias was evaluated using electrocardiography. Cardiac pathology sections stained with hematoxylin and eosin were evaluated for damage, with the extent of cardiomyocyte damage observed via transmission electron microscopy. The impact of Ginsenoside Rg3 on high-altitude cardiac injury was investigated through analysis of serum biomarkers for cardiac injury (CK-MB, BNP), inflammatory cytokines (TNF, IL-6, IL-1β), reactive oxygen species (ROS) and glutathione (GSH). The expression levels of hypoxia and hypoxia-related proteins in myocardial tissues from each experimental group were assessed using Western blot analysis. Following a review of the existing literature, the traditional regulatory mechanisms of ferroptosis were examined. Immunofluorescence staining of cardiac tissues and Western blotting techniques were utilized to investigate the impact of Ginsenoside Rg3 on cardiomyocyte ferroptosis through the RhoA/ROCK signaling pathway under conditions of hypobaric hypoxia exposure. RESULTS Pre-treatment with Ginsenoside Rg3 improved high altitude-induced arrhythmias, reduced cardiomyocyte damage, decreased cardiac injury biomarkers and inflammatory cytokines, and lowered the expression of hypoxia-related proteins in myocardial tissues. Both Western blotting and immunofluorescence staining of cardiac tissues demonstrated that exposure to high-altitude hypobaric hypoxia results in elevated expression of ferroptosis and proteins related to the RhoA/ROCK pathway. Experimental validation corroborated that the role of the RhoA/ROCK signaling pathway in mediating ferroptosis. CONCLUSIONS The findings of our study suggest that preconditioning with Ginsenoside Rg3 may attenuate cardiac injury caused by high-altitude hypobaric hypoxia exposure in mice by inhibiting ferroptosis through the suppression of the RhoA/ROCK signaling pathway. These findings contribute to the current knowledge of Ginsenoside Rg3 and high-altitude cardiac injury, suggesting that Ginsenoside Rg3 shows potential as a therapeutic agent for high-altitude cardiac injury.
Collapse
Affiliation(s)
- Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yue Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Sijing Zhao
- School of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, No.82 Da-xue-cheng Road, Chongqing, 401331, China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China.
| |
Collapse
|
3
|
Oxidized-LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX-2 signaling pathway in Leydig cells. Cell Death Dis 2020; 11:626. [PMID: 32796811 PMCID: PMC7429867 DOI: 10.1038/s41419-020-02751-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Abnormal lipid/lipoprotein metabolism induced by obesity may affect spermatogenesis by inhibiting testosterone synthesis in Leydig cells. It is crucial to determine which components of lipoproteins inhibit testosterone synthesis. Circulating oxidized low-density lipoprotein (oxLDL), the oxidized form of LDL, has been reported to be an independent risk factor for decreased serum testosterone levels. However, whether oxLDL has a damaging effect on Leydig cell function and the detailed mechanisms have been rarely studied. This study first showed the specific localization of oxLDL and mitochondrial structural damage in testicular Leydig cells of high-fat diet-fed mice in vivo. We also found that oxLDL reduced the mitochondrial membrane potential (MMP) by disrupting electron transport chain and inhibited testosterone synthesis-related proteins and enzymes (StAR, P450scc, and 3β‑HSD), which ultimately led to mitochondrial dysfunction and decreased testosterone synthesis in Leydig cells. Further experiments demonstrated that oxLDL promoted lipid uptake and mitochondrial dysfunction by inducing CD36 transcription. Meanwhile, oxLDL facilitated COX2 expression through the p38 MAPK signaling pathway in Leydig cells. Blockade of COX-2 attenuated the oxLDL-induced decrease in StAR and P450scc. Our clinical results clarified that the increased serum oxLDL level was associated with a decline in circulating testosterone levels. Our findings amplify the damaging effects of oxLDL and provide the first evidence that oxLDL is a novel metabolic biomarker of male-acquired hypogonadism caused by abnormal lipid metabolism.
Collapse
|
4
|
Shi J, Xiao P, Liu X, Chen Y, Xu Y, Fan J, Yin Y. Notch3 Modulates Cardiac Fibroblast Proliferation, Apoptosis, and Fibroblast to Myofibroblast Transition via Negative Regulation of the RhoA/ROCK/Hif1α Axis. Front Physiol 2020; 11:669. [PMID: 32695015 PMCID: PMC7339920 DOI: 10.3389/fphys.2020.00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis is a common pathological process in multiple cardiovascular diseases, including myocardial infarction (MI). Abnormal cardiac fibroblast (CF) activity is a key event in cardiac fibrosis. Although the Notch signaling pathway has been reported to play a vital role in protection from cardiac fibrosis, the exact mechanisms underlying cardiac fibrosis and protection from it have not yet been elucidated. Similarly, Hif1α and the RhoA/ROCK signaling pathway have been shown to participate in cardiac fibrosis. The RhoA/ROCK signaling pathway has been reported to be an upstream pathway of Hif1α in several pathophysiological processes. In the present study, we aimed to determine the effects of notch3 on CF activity and its relationship with the RhoA/ROCK/Hif1α signaling pathway. Using in vitro experiments, we demonstrated that notch3 inhibited CF proliferation and fibroblast to myofibroblast transition (FMT) and promoted CF apoptosis. A knockdown of notch3 using siRNAs had the exact opposite effect. Next, we found that notch3 regulated CF activity by negative regulation of the RhoA/ROCK/Hif1α signaling pathway. Extending CF-based studies to an in vivo rat MI model, we showed that overexpression of notch3 by the Ad-N3ICD injection attenuated the increase of RhoA, ROCK1, ROCK2, and Hif1α levels following MI and further prevented MI-induced cardiac fibrosis. On the basis of these results, we conclude that notch3 is involved in the regulation of several aspects of CF activity, including proliferation, FMT, and apoptosis, by inhibiting the RhoA/ROCK/Hif1α signaling pathway. These findings are significant to further our understanding of the pathogenesis of cardiac fibrosis and to ultimately identify new therapeutic targets for cardiac fibrosis, potentially based on the RhoA/ROCK/Hif1α signaling pathway.
Collapse
Affiliation(s)
- Jianli Shi
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peilin Xiao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA, United States
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhang L, Qin Z, Li R, Wang S, Wang W, Tang M, Zhang W. The role of ANXA5 in DBP-induced oxidative stress through ERK/Nrf2 pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103236. [PMID: 31404886 DOI: 10.1016/j.etap.2019.103236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/20/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Di-N-butylphthalate (DBP) have given rise to more and more attention due to its unique endocrine toxicity to male reproductive system. Our previous studies have demonstrated antioxidative Nrf2 (nuclear factor erythroid related factor 2) pathway play a vital role in DBP induced oxidative stress injury. ANXA5 (annexin A5), which is highly expressed in testicular Leydig and Sertoli cells, was found upregulated after DBP stimulation. Mouse Leydig and Sertoli cells were exposed to different concentration of DBP for 24 h to examine the ROS (Reactive oxygen species), MDA (Malondialdehyde), SOD (superoxide dismutase) level and ANXA5, Nrf2, NQO1 (NAD(P)H-quinone oxidoreductase 1), HO-1 (heme oxygenase 1) and ERK/P-ERK protein expression by DHE (Dihydroethidium) staining, ELISA (enzyme-linked immunosorbent assay) and Western blot respectively. Firstly, the oxidative stress injury induced by DBP was re-validated. Then, we confirmed the change of Nrf2 pathway and ANXA5 level after DBP exposure to testicular cells. Additionally, overexpressed ANXA5 could activate Nrf2/HO-1/NQO1 antioxidant pathway and significantly attenuate DBP-induced oxidative stress. Ultimately, we demonstrated ANXA5 could increase ERK phosphorylated level and the activated role of ANXA5 on ERK/Nrf2 pathway could be reversed by ERK inhibitor. Overall, this study illuminated that ANXA5 could defend testicle Leydig and Sertoli cells against DBP-induced oxidative stress injury through ERK/Nrf2 pathway.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhiqiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Gong H, Zhou L, Khelfat L, Qiu G, Wang Y, Mao K, Chen W. Rho-Associated Protein Kinase (ROCK) Promotes Proliferation and Migration of PC-3 and DU145 Prostate Cancer Cells by Targeting LIM Kinase 1 (LIMK1) and Matrix Metalloproteinase-2 (MMP-2). Med Sci Monit 2019; 25:3090-3099. [PMID: 31026254 PMCID: PMC6500105 DOI: 10.12659/msm.912098] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background In the pathogenesis and progression of prostate cancer, cell proliferation and cell migration results in tumor invasion and metastasis that is associated with patient morbidity and mortality. Rho-associated protein kinase (ROCK) has previously been shown to be upregulated in prostate cancer, but its biological role remains poorly understood. This study aimed to investigate the role of ROCK in the proliferation and migration of PC-3 and DU145 prostate cancer cells and to identify the possible targets involved by knockdown of ROCK1 and ROCK2 RNA expression. Material/Methods An RNA interference (RNAi) assay was performed to silence the expression of ROCK1 and ROCK2 in the PC-3 and DU145 human prostate cancer cell lines. Cells were also treated with a specific ROCK inhibitor, Y27632. A cell counting kit-8 (CCK-8) assay was used to determine the proliferation rate of prostate cancer cells, and cell migration and invasion assays were performed. Western blot and polymerase chain reaction were used to measure protein and RNA expression levels. Results In PC-3 and DU145 prostate cancer cells, knockdown of ROCK1 and ROCK2 reduced cell migration and invasion. ROCK1 and ROCK2 regulated cell proliferation in PC-3 and DU145 prostate cancer cells. Protein levels of phosphorylated LIM kinase 1 (p-LIMK1) and matrix metalloproteinase-2 (MMP-2) were reduced in ROCK1 and ROCK2 siRNA transfected cells. Conclusions In PC-3 and DU145 human prostate cancer cells, ROCK promoted cell proliferation and migration by targeting LIMK1 and MMP-2.
Collapse
Affiliation(s)
- Hua Gong
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Lan Zhou
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Lotfi Khelfat
- Department of Urology, Cochin Hospital, Paris, France
| | - Guangmin Qiu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Yuemin Wang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Kaili Mao
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (mainland)
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China (mainland).,Department of Urology, Shanghai East Hospital Jian Hospital, Ji'an, Jiangxi, China (mainland)
| |
Collapse
|
7
|
Inhibition of RhoA/ROCK signaling pathway ameliorates hypoxic pulmonary hypertension via HIF-1α-dependent functional TRPC channels. Toxicol Appl Pharmacol 2019; 369:60-72. [DOI: 10.1016/j.taap.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/19/2022]
|
8
|
Hu X, Ge X, Liang W, Shao Y, Jing J, Wang C, Zeng R, Yao B. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis. Syst Biol Reprod Med 2018; 64:368-380. [PMID: 29798686 DOI: 10.1080/19396368.2018.1471554] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. ABBREVIATIONS FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.
Collapse
Affiliation(s)
- Xuechun Hu
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Xie Ge
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Wei Liang
- b Traditional Chinese Medicine Department , Nanjing No. 454 Hospital , Nanjing , PR China
| | - Yong Shao
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Jun Jing
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Cencen Wang
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Rong Zeng
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Bing Yao
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| |
Collapse
|
9
|
Li L, Xing CJ, Cong L, Wan YZ. MiR-223-3p targets ECT2 to regulate cell cycle and apoptosis in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2018; 26:71-79. [DOI: 10.11569/wcjd.v26.i2.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of miRNA-223-3p and epithelial cell transforming sequence 2 oncogene (ECT2) in cell cycle and apoptosis of gastric cancer (GC) cells and to analyze their correlation with clinicopathological characteristics.
METHODS The expression of ECT2 and miR-223-3p in normal gastric mucosa cells (GSE-1) and GC cells (SGC-7901 and BGC-823) was detected by real-time fluorescent quantitative PCR and Western blot. Immunohistochemistry and RT-PCR were used to examine the expression of ECT2 and miR-223-3p in GC tissues and paired adjacent normal tissues, respectively. The correlation between ECT2 and miR-223-3p expression and clinicopathological characteristics was then analyzed. After miRNA-223-3p inhibitor and mimic were used to transfect SGC-7901 cells with LipofectamineTM2000, the expression of miRNA-223-3p and ECT2 was assessed by RT-PCR and Western blot in SGC-7901 cells. After another 24 h culture, the apoptosis rate and cell cycle progression were examined by flow cytometry.
RESULTS The expression levels of ECT2 and miR-223-3p in GC cells were significantly increased as compared with those in normal gastric mucosa cells (P < 0.05 for both). In comparison with tumor adjacent normal tissues, the expression of ECT2 and miR-223-3p in GC tissues was significantly higher (P < 0.05). The expression of ECT2 and miR-223-3p was related to histologic differentiation (P < 0.05), Lauren type (P < 0.05), and TNM stage (P < 0.01), but not with gender, age, Bormann type, or tumor size (P > 0.05). Transfection with miR-223-3p mimic up-regulated ECT2 expression, whereas transfection of miR-223-3p inhibitor downregulated the expression of ECT2. Compared with negative control cells, the apoptosis rate of SGC-7901 cells transfected with miR-223-3p inhibitor significantly increased (P < 0.05), and the percentage of G1 phase cells also significantly increased in miR-223-3p inhibitor transfected cells (P < 0.05).
CONCLUSION MiR-223-3p is closely related with cell cycle and apoptosis of gastric cancer cells, and it can regulate the occurrence and development of GC by influencing the expression of ECT2. ECT2 and miR-223-3p may serve as good factors to indicate the biologic behavior of GC.
Collapse
Affiliation(s)
- Lun Li
- Department of Pathology, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Cheng-Juan Xing
- Department of Pathology, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Ling Cong
- Department of Pathology, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Yi-Zeng Wan
- Department of Pathology, the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| |
Collapse
|
10
|
Shin DW, Kwon YJ, Ye DJ, Baek HS, Lee JE, Chun YJ. Auranofin Suppresses Plasminogen Activator Inhibitor-2 Expression through Annexin A5 Induction in Human Prostate Cancer Cells. Biomol Ther (Seoul) 2017; 25:177-185. [PMID: 27956714 PMCID: PMC5340543 DOI: 10.4062/biomolther.2016.223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
Auranofin has been developed as antirheumatic drugs, which is currently under clinical development for the treatment of chronic lymphocytic leukemia. Previous report showed that auranofin induced apoptosis by enhancement of annexin A5 expression in PC-3 cells. To understand the role of annexin A5 in auranofin-mediated apoptosis, we performed microarray data analysis to study annexin A5-controlled gene expression in annexin A5 knockdown PC-3 cells. Of differentially expressed genes, plasminogen activator inhibitor (PAI)-2 was increased by annexin A5 siRNA confirmed by qRT-PCR and western blot. Treatment with auranofin decreased PAI-2 and increased annexin A5 expression as well as promoting apoptosis. Furthermore, auranofin-induced apoptosis was recovered by annexin A5 siRNA but it was promoted by PAI-2 siRNA. Interestingly, knockdown of annexin A5 rescued PAI-2 expression suppressed by auranofin. Taken together, our study suggests that induction of annexin A5 by auranofin may enhance apoptosis through suppression of PAI-2 expression in PC-3 cells.
Collapse
Affiliation(s)
- Dong-Won Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Jin Ye
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Eun Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Yuan Z, Matias FB, Yi JE, Wu J. T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:47-54. [PMID: 26707243 DOI: 10.1016/j.cbpc.2015.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/03/2023]
Abstract
T-2 toxin is a highly toxic mycotoxin produced by various Fusarium species, mainly, Fusarium sporotrichoides, and has been reported to have toxic effects on reproductive system of adult male animals. This study investigated the dose-dependent cytotoxicity of T-2 toxin on reproductive cells using TM3 Leydig cells. Specifically, the cytotoxic effect of T-2 toxin was assessed by measuring cell viability; lactate dehydrogenase (LDH); malondialdehyde (MDA); antioxidant activity by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and DNA damage; and cell apoptosis. Results showed that T-2 toxin is highly cytotoxic on TM3 Leydig cells. However, Trolox-treated TM3 Leydig cells showed significantly reduced oxidative damage, DNA damage, and apoptosis induced by T-2 toxin. This study proves that T-2 toxin can damage the testes and thus affects the reproductive capacity of animals and humans. Furthermore, oxidative stress plays an important role in the cytotoxic effect of T-2 toxin.
Collapse
Affiliation(s)
- Zhihang Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Froilan Bernard Matias
- Department of Animal Management, College of Veterinary Science and Medicine, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Jin-e Yi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jing Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|