1
|
Feng X, Zhang D, Wang G, Lu L, Feng F, Wang X, Yu C, Chai Y, Zhang J, Li W, Liu J, Sun H, Yao L. Mechanisms and Therapeutic Strategies for Minority Cell-Induced Paclitaxel Resistance and Tumor Progression Mediated by Mechanical Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417805. [PMID: 40270447 DOI: 10.1002/advs.202417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Chemotherapy remains a prevalent strategy in cancer therapy; however, the emergence of drug resistance poses a considerable challenge to its efficacy. Most drug resistance arises from the accumulation of genetic mutations in a minority of resistant cells. The mechanisms underlying the emergence and progression of cancer resistance from these minority-resistant cells (MRCs) remain poorly understood. This study employs force-induced remnant magnetization spectroscopy (FIRMS) alongside various biological investigations to reveal the mechanical pathways for MRCs fostering drug resistance and tumor progression. The findings show that minority Paclitaxel-resistant cancer cells have enhanced mechanical properties. These cells can transmit high-intensity forces to surrounding sensitive cells (SCs) through the force transducer, Merlin. This force transmission facilitates the assimilation of surrounding SCs, subsequently strengthening the contraction and adhesion of tumor cells. This process is termed "mechano-assimilation," which accelerates the development of drug resistance and tumor progression. Interestingly, disturbances and reductions of mechano-assimilation within tumors can restore sensitivity to Paclitaxel both in vitro and in vivo. This study provides preliminary evidence highlighting the contribution of MRCs to the development of drug resistance and malignancy, mediated through mechanical interactions. It also establishes a foundation for future research focused on integrating mechanical factors into innovative cancer therapies.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guoxun Wang
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Liwei Lu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuyu Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Chanchan Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yahong Chai
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wenchao Li
- Senior Department of Pediatrics, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, 100007, P. R. China
| | - Jing Liu
- Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Hongxia Sun
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Science, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Zheng X, Sun Z, Wang S, Liu Q, Zhu B, Ren Z, Fan D, Zhang C, Fu X, Jin Y, Luo J, Wang J, Ren B. SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop. Mol Cell Biochem 2025:10.1007/s11010-025-05242-x. [PMID: 40056339 DOI: 10.1007/s11010-025-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Xiufen Zheng
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Zedong Sun
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Shi Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
- Department of Surgery, Wu Han Wu Chang Hospital, Wuhan, 430063, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Biqing Zhu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Zhijian Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Dingwei Fan
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China
| | - Chunping Zhang
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Xinyin Fu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Yan Jin
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Hainan, 570102, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital and Nanjing Medical University Affiliated Cancer Hospital and Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, China.
| |
Collapse
|
3
|
Wang N, Chen M, Wu M, Liao Y, Xia Q, Cai Z, He C, Tang Q, Zhou Y, Zhao L, Zou Z, Chen Y, Han L. High-adhesion ovarian cancer cell resistance to ferroptosis: The activation of NRF2/FSP1 pathway by junctional adhesion molecule JAM3. Free Radic Biol Med 2025; 228:1-13. [PMID: 39706500 DOI: 10.1016/j.freeradbiomed.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Ovarian cancer remains a significant challenge due to the lack of effective treatment and the resistance to conventional therapies. Ferroptosis, a form of regulated cell death characterized by iron-depend and lipid peroxidation, has emerged as a potential therapeutic target in cancer. Ovarian cancer has been reported to exert an "iron addiction" phenotype which makes it is susceptible to ferroptosis inducers. However, we found here that high-adhesion ovarian cancer cells were resistant to ferroptosis. Mechanistically, by PCR array, we identified junctional adhesion molecule 3 (JAM3) as a key mediator of ferroptosis resistance in high-adhesion ovarian cancer cells. Knockdowning and blocking JAM3 sensitized cancer cells to ferroptosis inducers RSL3 and erastin, while JAM3 overexpression conferred resistance to these agents. In addition, JAM3 also promoted ovarian cancer cells resistance to chemotherapeutic agent cisplatin in vitro and in vivo by inhibiting ferroptosis. Furthermore, we demonstrated that JAM3 promoted ferroptosis resistance through NRF2-induced upregulation of FSP1, a critical suppressor of lipid peroxidation. Inhibition of the NRF2/FSP1 pathway eliminated high-adhesion, JAM3 overexpressed ovarian cancer cells resistance to ferroptosis, and decreased cancer cells resistance to cisplatin. Moreover, JAM3 high expression was associated with poor prognosis in patients with ovarian cancer. Altogether, this study provided novel insights into the molecular mechanisms underlying ferroptosis resistance and identify JAM3 as a potential therapeutic target for combating drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Min Chen
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Manting Wu
- The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511300, China
| | - Yuan Liao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zheyou Cai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Yuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Lei Zhao
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Yibing Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| | - Liping Han
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Spirtos AN, Aljardali MW, Challa S, Koul S, Lea JS, Kraus WL, Camacho CV. RBN-2397, a PARP7 Inhibitor, Synergizes with Paclitaxel to Inhibit Proliferation and Migration of Ovarian Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608802. [PMID: 39229139 PMCID: PMC11370341 DOI: 10.1101/2024.08.20.608802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Objectives Mono(ADP-ribosyl)ation (MARylation), a post translational modification of proteins, is emerging as an important regulator of the biology of cancer cells. PARP7 (TiPARP), a mono (ADP-ribosyl) transferase (MART), MARylates its substrate α-tubulin in ovarian cancer cells, promoting destabilization of microtubules, cell growth, and migration. Recent development of RBN-2397, a potent inhibitor that selectively acts on PARP7, has provided a new tool for exploring the role of PARP7 catalytic activity in biological processes. In this study, we investigated the role of PARP7 catalytic activity in the regulation of ovarian cancer cell biology via MARylation of α-tubulin. Methods Ovarian cancer cell lines (OVCAR4, OVCAR3) were treated with RBN-2397 and paclitaxel, both separately and in combination. Western blotting and immunoprecipitation confirmed the effects of RBN-2397 on α-tubulin MARylation and stabilization. Cell proliferation and migration were assessed, and α-tubulin stabilization was quantified using immunofluorescent imaging. RNA-sequencing was performed to assess the effects on gene expression changes. Results RBN-2397 inhibited PARP7 activity, decreasing α-tubulin MARylation, leading to its stabilization, and reducing cancer cell proliferation and migration. The addition of paclitaxel further enhanced these effects, highlighting a synergistic interaction between the two drugs. Mutating the site of PARP7-mediated MARylation on α-tubulin similarly resulted in microtubule stabilization and decreased cell migration in the presence of paclitaxel. Conclusions This study demonstrates that targeting PARP7 with RBN-2397, particularly in combination with paclitaxel, offers an effective strategy for inhibiting aggressive ovarian cancer cell phenotypes. Our findings underscore the potential of combining PARP7 inhibitors with established chemotherapeutics to enhance treatment efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Alexandra N. Spirtos
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - Marwa W. Aljardali
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - Sneh Koul
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - Jayanthi S. Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX United States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX United States
| |
Collapse
|
5
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 PMCID: PMC11352508 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| |
Collapse
|
6
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
7
|
Mejia Peña C, Skipper TA, Hsu J, Schechter I, Ghosh D, Dawson MR. Metronomic and single high-dose paclitaxel treatments produce distinct heterogenous chemoresistant cancer cell populations. Sci Rep 2023; 13:19232. [PMID: 37932310 PMCID: PMC10628134 DOI: 10.1038/s41598-023-46055-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
More than 75% of epithelial ovarian cancer (EOC) patients experience disease recurrence after initial treatment, highlighting our incomplete understanding of how chemoresistant populations evolve over the course of EOC progression post chemotherapy treatment. Here, we show how two paclitaxel (PTX) treatment methods- a single high dose and a weekly metronomic dose for four weeks, generate unique chemoresistant populations. Using mechanically relevant alginate microspheres and a combination of transcript profiling and heterogeneity analyses, we found that these PTX-treatment regimens produce distinct and resilient subpopulations that differ in metabolic reprogramming signatures, acquisition of resistance to PTX and anoikis, and the enrichment for cancer stem cells (CSCs) and polyploid giant cancer cells (PGCCs) with the ability to replenish bulk populations. We investigated the longevity of these metabolic reprogramming events using untargeted metabolomics and found that metabolites associated with stemness and therapy-induced senescence were uniquely abundant in populations enriched for CSCs and PGCCs. Predictive network analysis revealed that antioxidative mechanisms were likely to be differentially active dependent on both time and exposure to PTX. Our results illustrate how current standard chemotherapies contribute to the development of chemoresistant EOC subpopulations by either selecting for intrinsically resistant subpopulations or promoting the evolution of resistance mechanisms. Additionally, our work describes the unique phenotypic signatures in each of these distinct resistant subpopulations and thus highlights potential vulnerabilities that can be exploited for more effective treatment.
Collapse
Affiliation(s)
- Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Thomas A Skipper
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Jeffrey Hsu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Ilexa Schechter
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michelle R Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA.
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Reardon MM, Guerrero M, Alatrash N, MacDonnell FM. Exploration of the Pharmacophore for Cytoskeletal Targeting Ruthenium Polypyridyl Complexes. ChemMedChem 2023; 18:e202300347. [PMID: 37574460 DOI: 10.1002/cmdc.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Ruthenium(II) trisdiimine complexes of the formula, [Ru(dip)n (L-L)3-n ]2+ , where n=0-3; dip=4,7-diphenyl-1,10-phenanthroline; L-L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) were prepared and tested for cytotoxicity in two cell lines (H358, MCF7). Cellular uptake and subcellular localization were determined by harvesting treated cells and determining the ruthenium concentration in whole or fractionated cells (cytosolic, nuclear, mitochondrial/ ER/Golgi, and cytoskeletal proteins) by Ru ICP-MS. The logP values for the chloride salts of these complexes were measured and the data were analyzed to determine the role of lipophilicity versus structure in the various biological assays. Cellular uptake increased with lipophilicity but shows the biggest jump when the complex contains two or more dip ligands. Significantly, preferential cytoskeletal localization is also correlated with increased cytotoxicity. All of the RPCs promote tubulin polymerization in vitro, but [Ru(dip)2 phen]2+ and [Ru(dip)3 ]2+ show the strongest activity. Analysis of the pellet formed by centrifugation of MTs formed in the presence of [Ru(dip)2 phen]2+ establish a binding stoichiometry of one RPC per tubulin heterodimer. Complexes of the general formula [Ru(dip)2 (L-L)]2+ possess the necessary characteristics to target the cytoskeleton in live cells and increase cytotoxicity, however the nature of the L-L ligand does influence the extent of the effect.
Collapse
Affiliation(s)
- Melissa M Reardon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Matthew Guerrero
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| |
Collapse
|
9
|
Medjahed Z, Chaher-Bazizi N, Atmani-Kilani D, Ahmane N, Ruiz-Larrea MB, Sanz JIR, Charid I, Amant F, Fonayet JV, Saidene N, Atmani D, Richard T. A novel flavonol glycoside and six derivatives of quercetin and kaempferol from Clematis flammula with antioxidant and anticancer potentials. Fitoterapia 2023; 170:105642. [PMID: 37567483 DOI: 10.1016/j.fitote.2023.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Clematis flammula leaves are traditionally used in Algeria to treat rheumatoid arthritis. Our aim was to identify the main compounds in this plant in order to characterize its antioxidant and anticancer activities. A new flavonol compound, kaempferol 3-O-[(6-O- caffeoyl)- glucosyl(1 → 2)]-(6-Ocaffeoyl) glucoside-7-O-rhamnoside (6) along with six known flavonol molecules were isolated from an ethanolic extract of Clematis flammula leaves. The chemical structures of these flavonols were elucidated using NMR and high resolution-MS spectroscopies. Antioxidant activities of the extract were revealed through its elimination of superoxide radical (O2.-) produced enzymatically (49.7 ± 1.52% at 50 μg/ml) and non-enzymatically (34 ± 1.2% at 100 μg/ml), probably related to its inhibition of the xanthine oxidase form of the xanthine oxidoreductase (XOR) enzyme (25.05 ± 2.33 μg/mL at 100 μg/mL), but mostly to that of the NADH oxidase form of the enzyme (69.16 ± 4.0%). Cytotoxicity tests of the extract on human hepatoma cell line HepG2 and ovarian cancer cell lines A2780 and OVCAR3 were promising especially regarding A2780 cell line (IC50: 77.0 μg/mL), which was comparable to taxol (IC50:76.9 μg/mL).
Collapse
Affiliation(s)
- Zineb Medjahed
- Laboratoire de Toxicologie Moléculaire, Faculté des Sciences de la Nature et de la Vie, Université de Jijel, 18000 Jijel, Algérie
| | - Nassima Chaher-Bazizi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Dina Atmani-Kilani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie.
| | - Nadjia Ahmane
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Marie Begoña Ruiz-Larrea
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - José Ignacio Ruiz Sanz
- Department of Physiology, Medicine and Nursery School, University of the Basque Country, Leioa, Spain
| | - Imane Charid
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Frédéric Amant
- Department of Oncology, Gynecologic Oncology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Josep Valls Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Naima Saidene
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Djebbar Atmani
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algérie
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
10
|
Shimolina L, Gulin A, Khlynova A, Ignatova N, Druzhkova I, Gubina M, Zagaynova E, Kuimova MK, Shirmanova M. Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells. Int J Mol Sci 2023; 24:12186. [PMID: 37569560 PMCID: PMC10419023 DOI: 10.3390/ijms241512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa-Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Alexander Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Alexandra Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Nadezhda Ignatova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| | - Margarita Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin st. 4, 119991 Moscow, Russia; (A.G.); (M.G.)
| | - Elena Zagaynova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia;
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London (White City Campus), London W12 0BZ, UK;
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.S.); (A.K.); (N.I.); (I.D.)
| |
Collapse
|
11
|
Mize BK, Salvi A, Ren Y, Burdette JE, Fuchs JR. Discovery and development of botanical natural products and their analogues as therapeutics for ovarian cancer. Nat Prod Rep 2023; 40:1250-1270. [PMID: 37387219 PMCID: PMC10448539 DOI: 10.1039/d2np00091a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Covering: 2015 through the end of July 2022Ovarian cancer is one of the most common cancers affecting the female reproductive organs and has the highest mortality rate among gynecological cancers. Although botanical drugs and their derivatives, namely members of the taxane and camptothecin families, represent significant therapeutics currently available for the treatment of ovarian cancer, new drugs that have alternative mechanisms of action are still needed to combat the disease. For this reason, many efforts to identify additional novel compounds from botanical sources, along with the further development of existing therapeutics, have continued to appear in the literature. This review is designed to serve as a comprehensive look at both the currently available small-molecule therapeutic options and the recently reported botanically-derived natural products currently being studied and developed as potential future therapeutics that could one day be used against ovarian cancer. Specifically, key properties, structural features, and biological data are highlighted that are important for the successful development of potential agents. Recently reported examples are specifically discussed in the context of "drug discovery attributes," including the presence of structure-activity relationship, mechanism of action, toxicity, and pharmacokinetic studies, to help indicate the potential for future development and to highlight where these compounds currently exist in the development process. The lessons learned from both the successful development of the taxanes and camptothecins, as well as the strategies currently being employed for new drug development, are expected to ultimately help guide the future development of botanical natural products for ovarian cancer.
Collapse
Affiliation(s)
- Brittney K Mize
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
12
|
Schlesinger T, Stockfleth E, Grada A, Berman B. Tirbanibulin for Actinic Keratosis: Insights into the Mechanism of Action. Clin Cosmet Investig Dermatol 2022; 15:2495-2506. [PMID: 36415541 PMCID: PMC9675993 DOI: 10.2147/ccid.s374122] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023]
Abstract
Actinic keratosis (AK) is a common pre-neoplastic skin lesion constituted by uncontrolled proliferation of atypical keratinocytes that may evolve to squamous cell carcinoma. With global prevalence increasing, AK is expected to be the most common carcinoma of the skin. Tirbanibulin is a reversible tubulin polymerization inhibitor with potent anti-proliferative and anti-tumoral effects. In-vivo and in-vitro studies have shown that tirbanibulin significantly inhibits cell proliferation, tumor growth and downregulates Src signaling with no overt toxicity. Early phase and Phase III trials have shown high lesion clearance, compliance, and few side effects of once daily tirbanibulin treatment. This review discusses tirbanibulin anti-cancer activity, focusing on tubulin polymerization and Src signaling inhibitory effects, highlighting relevant literature and novel preclinical results from the ATNXUS-KX01-001 study. Furthermore, we address the relevant findings obtained in recent clinical trials to evaluate the safety, efficacy, pharmacokinetics, clearance efficacy, and side effects of the 1% tirbanibulin ointment applied once daily. In summary, we highlight preclinical and clinical evidence on the use of tirbanibulin as an effective and safe treatment option for AK.
Collapse
Affiliation(s)
| | - Eggert Stockfleth
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Berman
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Sheng H, Feng Q, Quan Q, Sheng X, Zhang P. Inhibition of STAT3 reverses Taxol-resistance in ovarian cancer by down-regulating G6PD expression in vitro. Biochem Biophys Res Commun 2022; 617:62-68. [PMID: 35689843 DOI: 10.1016/j.bbrc.2022.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
Ovarian cancer is the eminent gynecological malignancy and chemoresistance remains a major reason for poor in ovarian cancer patients. Taxol has been proved as the most effective chemotherapeutic agent against ovarian cancer. However development of Taxol resistance remains a major problem. Here, we report that STAT3, directly activates pentose-phosphate pathway to exert pro-oncogenic effects on Taxol resistance of ovarian cancer. In addition, we found that STAT3, p-STAT3 and glucose-6-phosphate dehydrogenase (G6PD) protein levels are upregulated in Taxol resistant cell lines compared with Taxol sensitive cell lines. Furthermore, inhibition of STAT3 decreased G6PD mRNA expression level and enhanced the sensitivity of Taxol resistant cell to Taxol. Finally, we found that STAT3 directly binds to the G6PD promoter region and promotes the expression of G6PD at transcriptional level. Taken together, our data indicate that activation of STAT3 promotes ovarian cancer cell proliferation, colony formation, and Taxol resistance via augmenting G6PD expression and pentose-phosphate metabolism flux, which provides a potential therapeutic target that may improve prognosis by decreasing G6PD expression and enhancing Taxol-sensitivity.
Collapse
Affiliation(s)
- Hao Sheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, PR China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, PR China
| | - Qi Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, PR China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, PR China
| | - Qiang Quan
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Xiugui Sheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, PR China.
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, PR China.
| |
Collapse
|
14
|
Darvishi B, Eisavand MR, Majidzadeh-A K, Farahmand L. Matrix stiffening and acquired resistance to chemotherapy: concepts and clinical significance. Br J Cancer 2022; 126:1253-1263. [PMID: 35124704 PMCID: PMC9043195 DOI: 10.1038/s41416-021-01680-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) refers to the non-cellular components of the tumour microenvironment, fundamentally providing a supportive scaffold for cellular anchorage and transducing signaling cues that orchestrate cellular behaviour and function. The ECM integrity is abrogated in several cases of cancer, ending in aberrant activation of a number of mechanotransduction pathways and induction of multiple tumorigenic events such as extended proliferation, cell death resistance, epithelial-mesenchymal transition and most importantly the development of chemoresistance. In this regard, the present study mainly aims to elucidate how the ECM-stiffening process may contribute to the development of chemoresistance during cancer progression and what pharmacological approaches are required for tackling this issue. Hence, the first section of this review explains the process of ECM stiffening and the ways it may affect biochemical pathways to induce chemoresistance in a clinic. In addition, the second part focuses on describing some of the most important pharmacological agents capable of targeting ECM components and underlying pathways for overcoming ECM-induced chemoresistance. Finally, the third part discusses the obtained results from the application of these agents in the clinic for overcoming chemoresistance.
Collapse
Affiliation(s)
- Behrad Darvishi
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Eisavand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- grid.417689.5Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Lee AH, Mejia Peña C, Dawson MR. Comparing the Secretomes of Chemorefractory and Chemoresistant Ovarian Cancer Cell Populations. Cancers (Basel) 2022; 14:1418. [PMID: 35326569 PMCID: PMC8946241 DOI: 10.3390/cancers14061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers.
Collapse
Affiliation(s)
- Amy H. Lee
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
| | - Carolina Mejia Peña
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| | - Michelle R. Dawson
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA;
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA;
| |
Collapse
|
16
|
Enkhbat M, Zhong B, Chang R, Geng J, Lu LS, Chen YJ, Wang PY. Harnessing Focal Adhesions to Accelerate p53 Accumulation and Anoikis of A549 Cells Using Colloidal Self-Assembled Patterns (cSAPs). ACS APPLIED BIO MATERIALS 2022; 5:322-333. [PMID: 35034455 DOI: 10.1021/acsabm.1c01109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular matrix (ECM) of the tumor microenvironment (TME), including topography and biological molecules, is crucial in cancer cell attachment, growth, and even the sensitivity to the chemo and cell drugs treatment. This study hypothesizes that mimic ECM structures can alter the attachment and drug sensitivity of cancer cells. A family of artificial ECM called colloidal self-assembled patterns (cSAPs) was fabricated to mimic tumor ECM structures. Cell adhesion, proliferation, and drug sensitivity of the A549 non-small cell lung cancer (NSCLC) cells were studied on 24 cSAPs, named cSAP#1-cSAP#24, where surface topography and wettability were distinct. The results showed that cell adhesion and cell spreading were generally reduced on cSAPs compared to the flat controls. In addition, the synergistic effect of cSAPs and several chemo drugs on cell survival was investigated. Interestingly, A549 cells were more sensitive to the combination of doxorubicin and cSAP#4. Under this condition, the focal adhesion kinase (FAK) signaling was downregulated while p53 signaling was upregulated, confirmed by real-time PCR and western blot analysis. It indicates that the specific surface structure could induce higher drug sensitivity and in vitro anoikis of A549 cells. A serum alternative, human platelet lysate (hPL), and different cSAPs were examined to verify our hypothesis. The result further confirmed that cell adhesion strongly affected the drug sensitivity of A549 cells. This study demonstrates that the tumor ECM is vital in cancer cell activity and drug sensitivity; therefore, it should be considered in drug discovery and therapeutic regimens.
Collapse
Affiliation(s)
- Myagmartsend Enkhbat
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Boya Zhong
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ray Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jin Geng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Peng-Yuan Wang
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Sato M, Sato S, Shintani D, Hanaoka M, Ogasawara A, Miwa M, Yabuno A, Kurosaki A, Yoshida H, Fujiwara K, Hasegawa K. Clinical significance of metabolism-related genes and FAK activity in ovarian high-grade serous carcinoma. BMC Cancer 2022; 22:59. [PMID: 35027024 PMCID: PMC8756654 DOI: 10.1186/s12885-021-09148-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Administration of poly (ADP-ribose) polymerase (PARP) inhibitors after achieving a response to platinum-containing drugs significantly prolonged relapse-free survival compared to placebo administration. PARP inhibitors have been used in clinical practice. However, patients with platinum-resistant relapsed ovarian cancer still have a poor prognosis and there is an unmet need. The purpose of this study was to examine the clinical significance of metabolic genes and focal adhesion kinase (FAK) activity in advanced ovarian high-grade serous carcinoma (HGSC). METHODS The RNA sequencing (RNA-seq) data and clinical data of HGSC patients were obtained from the Genomic Data Commons (GDC) Data Portal and analysed ( https://portal.gdc.cancer.gov/ ). In addition, tumour tissue was sampled by laparotomy or screening laparoscopy prior to treatment initiation from patients diagnosed with stage IIIC ovarian cancer (International Federation of Gynecology and Obstetrics (FIGO) classification, 2014) at the Saitama Medical University International Medical Center, and among the patients diagnosed with HGSC, 16 cases of available cryopreserved specimens were included in this study. The present study was reviewed and approved by the Institutional Review Board of Saitama Medical University International Medical Center (Saitama, Japan). Among the 6307 variable genes detected in both The Cancer Genome Atlas-Ovarian (TCGA-OV) data and clinical specimen data, 35 genes related to metabolism and FAK activity were applied. RNA-seq data were analysed using the Subio Platform (Subio Inc, Japan). JMP 15 (SAS, USA) was used for statistical analysis and various types of machine learning. The Kaplan-Meier method was used for survival analysis, and the Wilcoxon test was used to analyse significant differences. P < 0.05 was considered significant. RESULTS In the TCGA-OV data, patients with stage IIIC with a residual tumour diameter of 1-10 mm were selected for K means clustering and classified into groups with significant prognostic correlations (p = 0.0444). These groups were significantly associated with platinum sensitivity/resistance in clinical cases (χ2 test, p = 0.0408) and showed significant relationships with progression-free survival (p = 0.0307). CONCLUSION In the TCGA-OV data, 2 groups classified by clustering focusing on metabolism-related genes and FAK activity were shown to be associated with platinum resistance and a poor prognosis.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Mieko Hanaoka
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Yabuno
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Akira Kurosaki
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Hiroyuki Yoshida
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | | | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
18
|
Dan VM, Raveendran RS, Baby S. Resistance to Intervention: Paclitaxel in Breast Cancer. Mini Rev Med Chem 2021; 21:1237-1268. [PMID: 33319669 DOI: 10.2174/1389557520999201214234421] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.
Collapse
Affiliation(s)
- Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Reji Saradha Raveendran
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
19
|
A novel small molecule LLL12B inhibits STAT3 signaling and sensitizes ovarian cancer cell to paclitaxel and cisplatin. PLoS One 2021; 16:e0240145. [PMID: 33909625 PMCID: PMC8081214 DOI: 10.1371/journal.pone.0240145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer deaths among American women. Platinum and taxane combination chemotherapy represents the first-line approach for ovarian cancer, but treatment success is often limited by chemoresistance. Therefore, it is necessary to find new drugs to sensitize ovarian cancer cells to chemotherapy. Persistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling plays an important role in oncogenesis. Using a novel approach called advanced multiple ligand simultaneous docking (AMLSD), we developed a novel nonpeptide small molecule, LLL12B, which targets the STAT3 pathway. In this study, LLL12B inhibited STAT3 phosphorylation (tyrosine 705) and the expression of its downstream targets, which are associated with cancer cell proliferation and survival. We showed that LLL12B also inhibits cell viability, migration, and proliferation in human ovarian cancer cells. LLL12B combined with either paclitaxel or with cisplatin demonstrated synergistic inhibitory effects relative to monotherapy in inhibiting cell viability and LLL12B-paclitaxel or LLL12B-cisplatin combination exhibited greater inhibitory effects than cisplatin-paclitaxel combination in ovarian cancer cells. Furthermore, LLL12B-paclitaxel or LLL12B-cisplatin combination showed more significant in inhibiting cell migration and growth than monotherapy in ovarian cancer cells. In summary, our results support the novel small molecule LLL12B as a potent STAT3 inhibitor in human ovarian cancer cells and suggest that LLL12B in combination with the current front-line chemotherapeutic drugs cisplatin and paclitaxel may represent a promising approach for ovarian cancer therapy.
Collapse
|
20
|
Feng J, Peng Z, Gao L, Yang X, Sun Z, Hou X, Li E, Zhu L, Yang H. ClC-3 promotes paclitaxel resistance via modulating tubulins polymerization in ovarian cancer cells. Biomed Pharmacother 2021; 138:111407. [PMID: 33765585 DOI: 10.1016/j.biopha.2021.111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancers (EOC) present as malignant tumors with high mortality in the female reproductive system diseases. Acquired resistance to paclitaxel (PTX), one of the first-line treatment of EOC, remains a therapeutic challenge. ClC-3, a member of the voltage-gated Cl- channels, plays an essential role in a variety of cellular activities, including chemotherapeutic resistance. Here, we demonstrated that the protein expression and channel function of ClC-3 was upregulated in PTX resistance A2780/PTX cells compared with its parental A2780 cells. The silence of ClC-3 expression by siRNA in A2780/PTX cells partly recovered the PTX sensitivity through restored the G2/M arrest and resumed the chloride channel blocked. ClC-3 siRNA both inhibited the expression of ClC-3 and β-tubulin, whereas the β-tubulin siRNA reduced the expression of itself only, without affecting the expression of ClC-3. Moreover, treatment of ClC-3 siRNA in A2780/PTX cells increased the polymerization ratio of β-tubulin, and the possibility of proteins interaction between ClC-3 and β-tubulin was existing. Take together, the over-expression of ClC-3 protein in PTX-resistance ovarian cancer cells promotes the combination of ClC-3 and β-tubulin, which in turn increase the ration of free form and decrease the quota of the polymeric form of β-tubulin, and finally reduce the sensitivity to PTX. Our findings elucidated a novel function of ClC-3 in regulating PTX resistance and ClC-3 could serve as a potential target to overcome the PTX resistance ovarian cancer.
Collapse
Affiliation(s)
- Jiezhu Feng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zihan Peng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiurou Yang
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zele Sun
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Enze Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China.
| |
Collapse
|
21
|
Hao W, Zhao H, Li Z, Li J, Guo J, Chen Q, Gao Y, Ren M, Zhao X, Yue W. Identification of potential markers for differentiating epithelial ovarian cancer from ovarian low malignant potential tumors through integrated bioinformatics analysis. J Ovarian Res 2021; 14:46. [PMID: 33726773 PMCID: PMC7968266 DOI: 10.1186/s13048-021-00794-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Epithelial ovarian cancer (EOC), as a lethal malignancy in women, is often diagnosed as advanced stages. In contrast, intermediating between benign and malignant tumors, ovarian low malignant potential (LMP) tumors show a good prognosis. However, the differential diagnosis of the two diseases is not ideal, resulting in delays or unnecessary therapies. Therefore, unveiling the molecular differences between LMP and EOC may contribute to differential diagnosis and novel therapeutic and preventive policies development for EOC. Methods In this study, three microarray data (GSE9899, GSE57477 and GSE27651) were used to explore the differentially expressed genes (DEGs) between LMP and EOC samples. Then, 5 genes were screened by protein–protein interaction (PPI) network, receiver operating characteristic (ROC), survival and Pearson correlation analysis. Meanwhile, chemical-core gene network construction was performed to identify the potential drugs or risk factors for EOC based on 5 core genes. Finally, we also identified the potential function of the 5 genes for EOC through pathway analysis. Results Two hundred thirty-four DEGs were successfully screened, including 81 up-regulated genes and 153 down-regulated genes. Then, 5 core genes (CCNB1, KIF20A, ASPM, AURKA, and KIF23) were identified through PPI network analysis, ROC analysis, survival and Pearson correlation analysis, which show better diagnostic efficiency and higher prognostic value for EOC. Furthermore, NetworkAnalyst was used to identify top 15 chemicals that link with the 5 core genes. Among them, 11 chemicals were potential drugs and 4 chemicals were risk factors for EOC. Finally, we found that all 5 core genes mainly regulate EOC development via the cell cycle pathway by the bioinformatic analysis. Conclusion Based on an integrated bioinformatic analysis, we identified potential biomarkers, risk factors and drugs for EOC, which may help to provide new ideas for EOC diagnosis, condition appraisal, prevention and treatment in future. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00794-0.
Collapse
Affiliation(s)
- Wende Hao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jiahao Guo
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Meng Ren
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
22
|
Le Large TYS, Bijlsma MF, El Hassouni B, Mantini G, Lagerweij T, Henneman AA, Funel N, Kok B, Pham TV, de Haas R, Morelli L, Knol JC, Piersma SR, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Focal adhesion kinase inhibition synergizes with nab-paclitaxel to target pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2021; 40:91. [PMID: 33750427 PMCID: PMC7941981 DOI: 10.1186/s13046-021-01892-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a very lethal disease, with minimal therapeutic options. Aberrant tyrosine kinase activity influences tumor growth and is regulated by phosphorylation. We investigated phosphorylated kinases as target in PDAC. METHODS Mass spectrometry-based phosphotyrosine proteomic analysis on PDAC cell lines was used to evaluate active kinases. Pathway analysis and inferred kinase activity analysis was performed to identify novel targets. Subsequently, we investigated targeting of focal adhesion kinase (FAK) in vitro with drug perturbations in combination with chemotherapeutics used against PDAC. Tyrosine phosphoproteomics upon treatment was performed to evaluate signaling. An orthotopic model of PDAC was used to evaluate the combination of defactinib with nab-paclitaxel. RESULTS PDAC cell lines portrayed high activity of multiple receptor tyrosine kinases to various degree. The non-receptor kinase, FAK, was identified in all cell lines by our phosphotyrosine proteomic screen and pathway analysis. Targeting of this kinase with defactinib validated reduced phosphorylation profiles. Additionally, FAK inhibition had anti-proliferative and anti-migratory effects. Combination with (nab-)paclitaxel had a synergistic effect on cell proliferation in vitro and reduced tumor growth in vivo. CONCLUSIONS Our study shows high phosphorylation of several oncogenic receptor tyrosine kinases in PDAC cells and validated FAK inhibition as potential synergistic target with Nab-paclitaxel against this devastating disease.
Collapse
Affiliation(s)
- T Y S Le Large
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - M F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - B El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy
| | - T Lagerweij
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - A A Henneman
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - N Funel
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - B Kok
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - T V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - R de Haas
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - L Morelli
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - J C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - S R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC-Start-Up, Fondazione Pisana per la Scienza, Pisa, Italy.
| | - C R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Yang F, Zhao Z, Cai S, Ling L, Hong L, Tao L, Wang Q. Detailed Molecular Mechanism and Potential Drugs for COL1A1 in Carboplatin-Resistant Ovarian Cancer. Front Oncol 2021; 10:576565. [PMID: 33680916 PMCID: PMC7928381 DOI: 10.3389/fonc.2020.576565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
Carboplatin resistance in ovarian cancer (OV) is a major medical problem. Thus, there is an urgent need to find novel therapeutic targets to improve the prognosis of patients with carboplatin-resistant OV. Accumulating evidence indicates that the gene COL1A1 (collagen type I alpha 1 chain) has an important role in chemoresistance and could be a therapeutic target. However, there have been no reports about the role of COL1A1 in carboplatin-resistant OV. This study aimed to establish the detailed molecular mechanism of COL1A1 and predict potential drugs for its treatment. We found that COL1A1 had a pivotal role in carboplatin resistance in OV by weighted gene correlation network analysis and survival analysis. Moreover, we constructed a competing endogenous RNA network (LINC00052/SMCR5-miR-98-COL1A1) based on multi-omics data and experiments to explore the upstream regulatory mechanisms of COL1A1. Two key pathways involving COL1A1 in carboplatin resistance were identified by co-expression analysis and pathway enrichment: the "ECM-receptor interaction" and "focal adhesion" Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, combining these results with those of cell viability assays, we proposed that ZINC000085537017 and quercetin were potential drugs for COL1A1 based on virtual screening and the TCMSP database, respectively. These results might help to improve the outcome of OV in the future.
Collapse
Affiliation(s)
- Feng Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ziyu Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shaoyi Cai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Ling
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,School of Pharmacy, Sun Yat-Sen University, Guangzhou, China
| | - Leying Hong
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qin Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
24
|
The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol Oncol 2020; 159:563-572. [PMID: 32958270 DOI: 10.1016/j.ygyno.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND High fatality in ovarian cancer is attributed to metastasis, propagated by the release of multi-cellular aggregates/spheroids into the peritoneal cavity and their subsequent mesothelial invasion of peritoneal organs. Spheroids are therefore a common and clinically relevant in vitro model for ovarian cancer research. Spheroids in patients vary significantly in size and shape and display enhanced resistance to anti-cancer drugs compared to monolayers. However, there is no consensus on how spheroid size and shape affect drug resistance. Moreover, existing data regarding the influence of epithelial-to-mesenchymal transition (EMT) profile on spheroid shape and migration is inconclusive. METHODS We formed spheroids with OVCAR-3 and OVCAR-8 cells, chosen for their established genetic similarity to the patient tumor samples. We monitored their morphology using confocal microscope with dipping objective and fluorescent microscope. We characterized important EMT biomarkers; E-cadherin, Vimentin and Slug through western blotting in monolayers and spheroids. We treated these spheroids with Taxol and Cisplatin and investigated their migratory profile based on their morphology. RESULTS We report two distinct multicellular structures: loose aggregates (OVCAR-3) and compact spheroids (OVCAR-8). We attribute these different morphologies to the expression of the EMT biomarkers, and their changes upon spheroid formation. Importantly, we did not observe a difference in resistance to the anti-cancer drugs as a function of spheroid size and shape. However, migration capacity of compact spheroid (OVCAR-8) was 15-fold higher compared to that of loose aggregates (OVCAR-3). CONCLUSIONS These results highlight the importance of spheroid size and shape on anti-cancer drug resistance and migration profiles. The results of this study can, therefore, help to elucidate general rules for ovarian cancer studies based on 3D samples.
Collapse
|
25
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
26
|
Ke FY, Chen WY, Lin MC, Hwang YC, Kuo KT, Wu HC. Novel monoclonal antibody against integrin α3 shows therapeutic potential for ovarian cancer. Cancer Sci 2020; 111:3478-3492. [PMID: 32648337 PMCID: PMC7541015 DOI: 10.1111/cas.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer has a high recurrence rate after platinum‐based chemotherapy. To improve the treatment of ovarian cancer and identify ovarian cancer‐specific antibodies, we immunized mice with the human ovarian carcinoma cell line, SKOV‐3, and generated hybridoma clones. Several rounds of screening yielded 30 monoclonal antibodies (mAbs) with no cross‐reactivity to normal cells. Among these mAbs, OV‐Ab 30‐7 was found to target integrin α3 and upregulate p53 and p21, while stimulating the apoptosis of cancer cells. We further found that binding of integrin α3 by OV‐Ab 30‐7 impaired laminin‐induced focal adhesion kinase phosphorylation. The mAb alone or in combination with carboplatin and paclitaxel inhibited tumor progression and prolonged survival of tumor‐bearing mice. Moreover, immunohistochemical staining of ovarian patient specimens revealed higher levels of integrin α3 in cancer cells compared with normal cells. By querying online clinical databases, we found that elevated ITGA3 expression in ovarian cancer is associated with poor prognosis. Taken together, our data suggest that the novel mAb, OV‐Ab 30‐7, may be considered as a potential therapeutic for ovarian cancer.
Collapse
Affiliation(s)
- Feng-Yi Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsinchu County, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
28
|
Sarwar M, Sykes PH, Chitcholtan K, Evans JJ. Extracellular biophysical environment: Guilty of being a modulator of drug sensitivity in ovarian cancer cells. Biochem Biophys Res Commun 2020; 527:180-186. [PMID: 32446364 DOI: 10.1016/j.bbrc.2020.04.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The roles of the extracellular biophysical environment in cancer are barely studied. This study considers the possibility that cell-like topography of a cancer cell environment may influence chemo-responses. Here, a novel bioimprinting technique was employed to produce cell-like topography on the polystyrene substrates used for cell culture. In this work, we have shown that extracellular biophysical cues generated from the topography alter the chemosensitivity of ovarian cancer cells. The three-dimensionality of the bioimprinted surface altered the cell-surface interaction, which consequently modulated intracellular signalling and chemoresponses. Sensitivity to platinum was altered more than that to paclitaxel. The effect was largely mediated through the integrin/focal adhesion system and the Rho/ROCK pathway. Moreover, the results provided evidence that biophysical cues also modulate MAPK signalling associated with chemo-resistance in ovarian cancer. Therefore, the novel findings from of this study revealed for the first time that the effects of the biophysical environment, such as substrate topography, influences ovarian cancer cell responses to clinical drugs. These observations suggest that a full clinical understanding of ovarian cancer will include biophysical aspects of tumour microenvironment.
Collapse
Affiliation(s)
- Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand; MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| |
Collapse
|
29
|
Kletzmayr A, Clement Frey F, Zimmermann M, Eberli D, Millan C. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody‐Based Therapeutics in Overcoming Chemoresistance. Biotechnol J 2020; 15:e1900439. [DOI: 10.1002/biot.201900439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Kletzmayr
- CellSpring AGETH Zürich ieLab Zürich Switzerland
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical Sciences, ETH Zurich Zürich 8093 Switzerland
| | | | | | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell TherapyUSZ Zürich 8952 Switzerland
| | - Christopher Millan
- CellSpring AGETH Zürich ieLab Zürich Switzerland
- Laboratory for Tissue Engineering and Stem Cell TherapyUSZ Zürich 8952 Switzerland
| |
Collapse
|
30
|
Huang HK, Lin YH, Chang HA, Lai YS, Chen YC, Huang SC, Chou CY, Chiu WT. Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca 2+ entry-mediated turnover of focal adhesions. J Biomed Sci 2020; 27:36. [PMID: 32079527 PMCID: PMC7033940 DOI: 10.1186/s12929-020-00630-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. Methods Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. Results We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. Conclusion Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ho-Kai Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, 736, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
31
|
Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci 2020; 6:160. [PMID: 32118030 PMCID: PMC7025524 DOI: 10.3389/fmolb.2019.00160] [Citation(s) in RCA: 650] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are complex organ-like structures that consist not only of tumor cells but also of vasculature, extracellular matrix (ECM), stromal, and immune cells. Often, this tumor microenvironment (TME) comprises the larger part of the overall tumor mass. Like the other components of the TME, the ECM in solid tumors differs significantly from that in normal organs. Intratumoral signaling, transport mechanisms, metabolisms, oxygenation, and immunogenicity are strongly affected if not controlled by the ECM. Exerting this regulatory control, the ECM does not only influence malignancy and growth of the tumor but also its response toward therapy. Understanding the particularities of the ECM in solid tumor is necessary to develop approaches to interfere with its negative effect. In this review, we will also highlight the current understanding of the physical, cellular, and molecular mechanisms by which the pathological tumor ECM affects the efficiency of radio-, chemo-, and immunotherapy. Finally, we will discuss the various strategies to target and modify the tumor ECM and how they could be utilized to improve response to therapy.
Collapse
Affiliation(s)
- Erik Henke
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| | - Rajender Nandigama
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Fakhri S, Abbaszadeh F, Jorjani M, Pourgholami MH. The effects of anticancer medicinal herbs on vascular endothelial growth factor based on pharmacological aspects: a review study. Nutr Cancer 2019; 73:1-15. [DOI: 10.1080/01635581.2019.1673451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Habicht J, Mooneyham A, Shetty M, Zhang X, Shridhar V, Winterhoff B, Zhang Y, Cepela J, Starr T, Lou E, Bazzaro M. UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biol Ther 2019; 20:1304-1313. [PMID: 31328624 PMCID: PMC6783119 DOI: 10.1080/15384047.2019.1632637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.
Collapse
Affiliation(s)
- Juri Habicht
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Medicine, Brandenburg Medical School Theodor Fontane , Neuruppin , Germany
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of MN , Minneapolis , MN , USA
| | - Jason Cepela
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Timothy Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota , Minneapolis , MN , USA.,Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis , MN , USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
34
|
Nakatake M, Kurosaki H, Kuwano N, Horita K, Ito M, Kono H, Okamura T, Hasegawa K, Yasutomi Y, Nakamura T. Partial Deletion of Glycoprotein B5R Enhances Vaccinia Virus Neutralization Escape while Preserving Oncolytic Function. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:159-171. [PMID: 31236440 PMCID: PMC6580015 DOI: 10.1016/j.omto.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/09/2019] [Indexed: 11/12/2022]
Abstract
Vaccinia virus (VV) has been utilized in oncolytic virotherapy, but it risks a host antiviral immune response. VV has an extracellular enveloped virus (EEV) form consisting of a normal virion covered with a host-derived outer membrane that enables its spread via circulation while evading host immune mechanisms. However, the immune resistance of EEV is only partial, owing to expression of the surface protein B5R, which has four short consensus repeat (SCR) domains that are targeted by host immune factors. To engineer a more effective virus for oncolytic virotherapy, we developed an enhanced immune-evading oncolytic VV by removing the SCRs from the attenuated strain LC16mO. Although deletion of only the SCRs preserved viral replication, progeny production, and oncolytic activity, deletion of whole B5R led to attenuation of the virus. Importantly, SCR-deleted EEV had higher neutralization resistance than did B5R-wild-type EEV against VV-immunized animal serum; moreover, it retained oncolytic function, thereby prolonging the survival of tumor-bearing mice treated with anti-VV antibody. These results demonstrate that partial SCR deletion increases neutralization escape without affecting the oncolytic potency of VV, making it useful for the treatment of tumors under the anti-virus antibody existence.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Nozomi Kuwano
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kosuke Horita
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Mai Ito
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiromichi Kono
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-City, Saitama 350-1298, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Takafumi Nakamura
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
35
|
Mutant p53 regulates LPA signaling through lysophosphatidic acid phosphatase type 6. Sci Rep 2019; 9:5195. [PMID: 30914657 PMCID: PMC6435808 DOI: 10.1038/s41598-019-41352-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has indicated that high-grade serous ovarian cancer (HGSOC) originates in the fallopian tube, where the earliest known genetic lesion is the mutation of TP53. In addition to such genetic changes, HGSOC is characterized by altered metabolism, including the production of oncogenic lipids such as lysophosphatidic acid (LPA). To understand the crosstalk between TP53 mutations and LPA signaling, we utilized primary fallopian tube epithelial cells (FTEC) engineered to overexpress mutant p53. We found that gain-of-function (GOF) p53 mutations downregulated the LPA-degrading enzyme lysophosphatidic acid phosphatase type 6 (ACP6), leading to upregulation of focal adhesion signaling in an LPA-dependent manner. Although highly expressed in normal fallopian tube epithelium, ACP6 expression was significantly reduced in ovarian cancer tumors and early in situ lesions. Downregulation of ACP6 in ovarian cancer cells was necessary and sufficient to support HGSOC proliferation, adhesion, migration, and invasion. Using mouse models of metastasis, we established that attenuation of ACP6 expression was associated with increased tumor burden. Conversely, overexpression of ACP6 suppressed invasive behavior. These data identify an involvement of oncogenic p53 mutations in LPA signaling and HGSOC progression through regulation of ACP6 expression.
Collapse
|
36
|
Breed C, Hicks DA, Webb PG, Galimanis CE, Bitler BG, Behbakht K, Baumgartner HK. Ovarian Tumor Cell Expression of Claudin-4 Reduces Apoptotic Response to Paclitaxel. Mol Cancer Res 2019; 17:741-750. [PMID: 30606772 DOI: 10.1158/1541-7786.mcr-18-0451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/11/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
A significant factor contributing to poor survival rates for patients with ovarian cancer is the insensitivity of tumors to standard-of-care chemotherapy. In this study, we investigated the effect of claudin-4 expression on ovarian tumor cell apoptotic response to cisplatin and paclitaxel. We manipulated claudin-4 gene expression by silencing expression [short hairpin RNA (shRNA)] in cells with endogenously expressed claudin-4 or overexpressing claudin-4 in cells that natively do not express claudin-4. In addition, we inhibited claudin-4 activity with a claudin mimic peptide (CMP). We monitored apoptotic response by caspase-3 and Annexin V binding. We examined proliferation rate by counting the cell number over time as well as measuring the number of mitotic cells. Proximity ligation assays, immunoprecipitation (IP), and immunofluorescence were performed to examine interactions of claudin-4. Western blot analysis of tubulin in cell fractions was used to determine the changes in tubulin polymerization with changes in claudin-4 expression. Results show that claudin-4 expression reduced epithelial ovarian cancer (EOC) cell apoptotic response to paclitaxel. EOCs without claudin-4 proliferated more slowly with enhanced mitotic arrest compared with the cells expressing claudin-4. Furthermore, our results indicate that claudin-4 interacts with tubulin, having a profound effect on the structure and polymerization of the microtubule network. In conclusion, we demonstrate that claudin-4 reduces the ovarian tumor cell response to microtubule-targeting paclitaxel and disrupting claudin-4 with CMP can restore apoptotic response. IMPLICATIONS: These results suggest that claudin-4 expression may provide a biomarker for paclitaxel response and can be a target for new therapeutic strategies to improve response.
Collapse
Affiliation(s)
- Christopher Breed
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Douglas A Hicks
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Patricia G Webb
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Carly E Galimanis
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Kian Behbakht
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado.,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | - Heidi K Baumgartner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado. .,Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
37
|
Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018; 25:R663-R685. [PMID: 30400025 DOI: 10.1530/erc-18-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Perinatology Research Branch, NICHD/NIH, Wayne State University, Detroit, Michigan, USA
| | - Lewis Perrin
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - John Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
38
|
Lin SR, Weng CF. PG-Priming Enhances Doxorubicin Influx to Trigger Necrotic and Autophagic Cell Death in Oral Squamous Cell Carcinoma. J Clin Med 2018; 7:jcm7100375. [PMID: 30347872 PMCID: PMC6210351 DOI: 10.3390/jcm7100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022] Open
Abstract
Synergistic effects between natural compounds and chemotherapy drugs are believed to have fewer side effects with equivalent efficacy. However, the synergistic potential of prodigiosin (PG) with doxorubicin (Dox) chemotherapy is still unknown. This study explores the synergistic mechanism of PG and Dox against oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines were treated with different PG/Dox combinatory schemes for cytotoxicity tests and were further investigated for cell death characteristics by cell cycle flow cytometry and autophagy/apoptosis marker labelling. When OSCC cells were pretreated with PG, the cytotoxicity of the subsequent Dox-treatment was 30% higher than Dox alone. The cytotoxic efficacy of PG-pretreated was found better than those of PG plus Dox co-treatment and Dox-pretreatment. Increase of Sub-G1 phase and caspase-3/LC-3 levels without poly (ADP-ribose) polymeras (PARP) elevation indicated both autophagy and necrosis occurred in OSCC cells. Dox flux after PG-priming was further evaluated by rhodamine-123 accumulation and Dox transporters analysis to elucidate the PG-priming effect. PG-priming autophagy enhanced Dox accumulation according to the increase of rhodamine-123 accumulation without the alterations of Dox transporters. Additionally, the cause of PG-triggered autophagy was determined by co-treatment with endoplasmic reticulum (ER) stress or AMP-activated protein kinase (AMPK) inhibitor. PG-induced autophagy was not related to nutrient deprivation and ER stress was proved by co-treatment with specific inhibitor. Taken together, PG-priming autophagy could sensitize OSCC cells by promoting Dox influx without regulation of Dox transporter. The PG-priming might be a promising adjuvant approach for the chemotherapy of OSCC.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
39
|
Xuan B, Ghosh D, Cheney EM, Clifton EM, Dawson MR. Dysregulation in Actin Cytoskeletal Organization Drives Increased Stiffness and Migratory Persistence in Polyploidal Giant Cancer Cells. Sci Rep 2018; 8:11935. [PMID: 30093656 PMCID: PMC6085392 DOI: 10.1038/s41598-018-29817-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Polyploidal giant cancer cells (PGCCs) have been observed by pathologists in patient tumor samples and are especially prominent in late stage, high grade disease or after chemotherapy. However, they are often overlooked due to their apparent dormancy. Recent research has shown PGCCs to be chemoresistant and express stem-like features, traits associated with disease progression and relapse. Here, we show the preferential survival of PGCCs during Paclitaxel (PTX) treatment and used multiple particle tracking analysis to probe their unique biophysical phenotype. We show that PGCCs have higher inherent cytoplasmic and nuclear stiffness in order to withstand the mechanical stress associated with their increased size and the chemical stress from PTX treatment. Inhibitor studies show the involvement of a dysregulated RhoA-Rock1 pathway and overall actin cytoskeletal network as the underlying mechanism for the altered biophysical phenotype of PGCCs. Furthermore, PGCCs exhibit a slow but persistent migratory phenotype, a trait commonly associated with metastatic dissemination and invasiveness. This work demonstrates the clinical relevance and the need to study this subpopulation, in order to devise therapeutic strategies to combat disease relapse. By highlighting the unique biophysical phenotype of PGCCs, we hope to provide unique avenues for therapeutic targeting of these cells in disease treatment.
Collapse
Affiliation(s)
- Botai Xuan
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Deepraj Ghosh
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Emily M Cheney
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Elizabeth M Clifton
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Michelle R Dawson
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA.
- Brown University, Center for Biomedical Engineering, Providence, 02912, USA.
- Brown University, School of Engineering, Providence, 02912, USA.
| |
Collapse
|
40
|
Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Transl Psychiatry 2018; 8:135. [PMID: 30046097 PMCID: PMC6060177 DOI: 10.1038/s41398-018-0182-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/11/2018] [Indexed: 12/23/2022] Open
Abstract
The ankyrin 3 gene (ANK3) is a well-established risk gene for psychiatric illness, but the mechanisms underlying its pathophysiology remain elusive. We examined the molecular effects of disrupting brain-specific Ank3 isoforms in mouse and neuronal model systems. RNA sequencing of hippocampus from Ank3+/- and Ank3+/+ mice identified altered expression of 282 genes that were enriched for microtubule-related functions. Results were supported by increased expression of microtubule end-binding protein 3 (EB3), an indicator of microtubule dynamics, in Ank3+/- mouse hippocampus. Live-cell imaging of EB3 movement in primary neurons from Ank3+/- mice revealed impaired elongation of microtubules. Using a CRISPR-dCas9-KRAB transcriptional repressor in mouse neuro-2a cells, we determined that repression of brain-specific Ank3 increased EB3 expression, decreased tubulin acetylation, and increased the soluble:polymerized tubulin ratio, indicating enhanced microtubule dynamics. These changes were rescued by inhibition of glycogen synthase kinase 3 (GSK3) with lithium or CHIR99021, a highly selective GSK3 inhibitor. Brain-specific Ank3 repression in neuro-2a cells increased GSK3 activity (reduced inhibitory phosphorylation) and elevated collapsin response mediator protein 2 (CRMP2) phosphorylation, a known GSK3 substrate and microtubule-binding protein. Pharmacological inhibition of CRMP2 activity attenuated the rescue of EB3 expression and tubulin polymerization in Ank3-repressed cells by lithium or CHIR99021, suggesting microtubule instability induced by Ank3 repression is dependent on CRMP2 activity. Taken together, our data indicate that ANK3 functions in neuronal microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings reveal cellular and molecular mechanisms underlying brain-specific ANK3 disruption that may be related to its role in psychiatric illness.
Collapse
|
41
|
Cha HJ, An SK, Kim TJ, Lee JH. Alteration of microRNA profiling in sphere-cultured ovarian carcinoma cells. Oncol Lett 2018; 16:2016-2022. [PMID: 30008895 DOI: 10.3892/ol.2018.8818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is an aggressive and lethal cancer, which in part, can be attributed to complications in the effective detection of this disease during early stages of progression. Frequently, epithelial ovarian cancer is disseminated to the abdominal cavity and forms multicellular aggregates. This unique early metastatic event, and formation of the multicellular aggregate is implicated to provide a basis for understanding the underlying molecular mechanisms of metastasis in ovarian cancer. Therefore, a 3-dimensional (3D) sphere culture system was established in the present study to mimic the later stages of ovarian cancer. The aim of the present study was to investigate whether microRNAs (miRNAs), which have functions in metastasis and chemoresistance in various cancer models, are altered in ovarian cancer cells by 3-dimensional (3D) culture. A multicellular aggregate of SKOV3ip1 ovarian carcinoma cells was generated using a 3D sphere culture system. Cell viability analysis demonstrated that the sphere-cultured SKOV3ip1 cells exhibited chemoresistance compared with those in a conventional 2-dimensional (2D) monolayer cultured SKOV3ip1 system. Under the same experimental conditions, 71 upregulated miRNAs and 63 downregulated miRNAs were identified in the 3D sphere-cultured SKOV3ip1 cells. The predicted targets of the 3D sphere-culture specific miRNAs were further identified using PITA, microRNAorg and TargetScan. Compared with the target gene pool and Kyoto Encyclopedia of Genes and Genomes pathway, the present study provides evidence that the 3D sphere culture-specific miRNAs regulated sphere formation and chemoresistance in 3D sphere-cultured SKOV3ip1 cells. Overall, the results of the present study demonstrated that miRNA-mediated regulation is implicated to provoke features of SKOV3ip1 multicellular aggregation, including sphere formation and chemoresistance.
Collapse
Affiliation(s)
- Hwa Jun Cha
- Department of Beauty Care and Cosmetics, Osan University, Osan, Gyeonggi 18119, Republic of Korea.,Molecular-Targeted Drug Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Kwan An
- Molecular-Targeted Drug Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea.,Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul 04619, Republic of Korea
| |
Collapse
|
42
|
Belgodere JA, King CT, Bursavich JB, Burow ME, Martin EC, Jung JP. Engineering Breast Cancer Microenvironments and 3D Bioprinting. Front Bioeng Biotechnol 2018; 6:66. [PMID: 29881724 PMCID: PMC5978274 DOI: 10.3389/fbioe.2018.00066] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal-cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments.
Collapse
Affiliation(s)
- Jorge A. Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob B. Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Department of Medicine, Section Hematology/Oncology, Tulane University, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jangwook P. Jung
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
43
|
McKenzie AJ, Hicks SR, Svec KV, Naughton H, Edmunds ZL, Howe AK. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci Rep 2018; 8:7228. [PMID: 29740072 PMCID: PMC5940803 DOI: 10.1038/s41598-018-25589-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 01/13/2023] Open
Abstract
There is growing appreciation of the importance of the mechanical properties of the tumor microenvironment on disease progression. However, the role of extracellular matrix (ECM) stiffness and cellular mechanotransduction in epithelial ovarian cancer (EOC) is largely unknown. Here, we investigated the effect of substrate rigidity on various aspects of SKOV3 human EOC cell morphology and migration. Young’s modulus values of normal mouse peritoneum, a principal target tissue for EOC metastasis, were determined by atomic force microscopy (AFM) and hydrogels were fabricated to mimic these values. We find that cell spreading, focal adhesion formation, myosin light chain phosphorylation, and cellular traction forces all increase on stiffer matrices. Substrate rigidity also positively regulates random cell migration and, importantly, directional increases in matrix tension promote SKOV3 cell durotaxis. Matrix rigidity also promotes nuclear translocation of YAP1, an oncogenic transcription factor associated with aggressive metastatic EOC. Furthermore, disaggregation of multicellular EOC spheroids, a behavior associated with dissemination and metastasis, is enhanced by matrix stiffness through a mechanotransduction pathway involving ROCK, actomyosin contractility, and FAK. Finally, this pattern of mechanosensitivity is maintained in highly metastatic SKOV3ip.1 cells. These results establish that the mechanical properties of the tumor microenvironment may play a role in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J McKenzie
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Stephanie R Hicks
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Kathryn V Svec
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Hannah Naughton
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Zöe L Edmunds
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States
| | - Alan K Howe
- University of Vermont Larner College of Medicine, Department of Pharmacology, and the University of Vermont Cancer Center, Burlington, United States.
| |
Collapse
|
44
|
Esophageal cancer cells resistant to T-DM1 display alterations in cell adhesion and the prostaglandin pathway. Oncotarget 2018; 9:21141-21155. [PMID: 29765526 PMCID: PMC5940380 DOI: 10.18632/oncotarget.24975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate that specifically targets HER2 thanks to its antibody component trastuzumab. In spite of responses to this novel agent, acquired resistance to treatment remains a major obstacle. Prolonged in vitro exposure of the gastroesophageal junction cancer cell line OE-19 to T-DM1, in the absence or presence of ciclosporin A resulted in the selection of two resistant cell lines to T-DM1. T-DM1-resistant cells presented an increased expression of adhesion genes, altered spreading and higher sensitivity to anoikis than parental cells. A resistant cell line showed decreased adhesion strength, increased migration speed and increased sensitivity to RhoA inhibition. Genes involved in the prostaglandin pathway were deregulated in resistant models. Addition of prostaglandin E2 to T-DM1 partially restored its cytotoxic activity in resistant models. This work demonstrates that T-DM1-resistance may be associated with alterations of cell adhesion and the prostaglandin pathway, which might constitute novel therapeutic targets.
Collapse
|
45
|
Holovenko Y, Korshykov I. Species diversity and distribution of lichens in Kryvyi Rih quarry dump complexes. UKRAINIAN BOTANICAL JOURNAL 2018. [DOI: 10.15407/ukrbotj75.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Sayeed A, Lu H, Liu Q, Deming D, Duffy A, McCue P, Dicker AP, Davis RJ, Gabrilovich D, Rodeck U, Altieri DC, Languino LR. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation. Oncotarget 2018; 7:52618-52630. [PMID: 27438371 PMCID: PMC5288136 DOI: 10.18632/oncotarget.10522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.
Collapse
Affiliation(s)
- Aejaz Sayeed
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David Deming
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Duffy
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dmitry Gabrilovich
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ulrich Rodeck
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Philadelphia, PA, USA.,Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Ghosh D, Dawson MR. Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:69-90. [PMID: 30368749 DOI: 10.1007/978-3-319-95294-9_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment in a solid tumor includes a multitude of cell types, matrix proteins, and growth factors that profoundly influence cancer cell mechanics by providing both physical and chemical stimulation. This tumor microenvironment, which is both dynamic and heterogeneous in nature, plays a critical role in cancer progression from the growth of the primary tumor to the development of metastatic and drug-resistant tumors. This chapter provides an overview of the biophysical tools used to study cancer cell mechanics and mechanical changes in the tumor microenvironment at different stages of cancer progression, including growth of the primary tumor, local invasion, and metastasis. Quantitative single cell biophysical analysis of intracellular mechanics, cell traction forces, and cell motility can easily be combined with analysis of critical cell fate processes, including adhesion, proliferation, and drug resistance, to determine how changes in mechanics contribute to cancer progression. This biophysical approach can be used to systematically investigate the parameters in the tumor that control cancer cell interactions with the stroma and to identify specific conditions that induce tumor-promoting behavior, along with strategies for inhibiting these conditions to treat cancer. Increased understanding of the underlying biophysical mechanisms that drive cancer progression may provide insight into novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
48
|
Lin W, Li Z. Blueberries inhibit cyclooxygenase-1 and cyclooxygenase-2 activity in human epithelial ovarian cancer. Oncol Lett 2017; 13:4897-4904. [PMID: 28599493 DOI: 10.3892/ol.2017.6094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer (OC) is the sixth and eighth leading cause of cancer mortality among women in developed and developing countries, respectively. Medical therapy is the main method for the treatment of OC. However, drug toxicity and the marked side effects of chemotherapy limit the usage and therapeutic results of the treatments. Therefore, the identification of multi-target agents with few side effects and high effectiveness is required. Traditional Chinese medicine has been used clinically to treat various types of cancer for thousands of years and is considered to possess multiple components and agents, which exert efficient therapeutic functions with few side effects. Although blueberries have previously been used to treat various types of cancer, the effect on OC and precise molecular mechanism of function of the fruit remains unknown. Cyclooxygenase (COX)-1 and COX-2 have been reported to be the biomarkers of OC. Blueberries may affect the progression of OC by affecting COX levels. To investigate the issue, COX-1 and COX-2 were overexpressed or silenced in ovarian cancer SKOV3 cells. The effect of blueberries on SKOV3 cell viability was determined by an MTT assay. Furthermore, a mouse model for OC was established. The results indicated that blueberries inhibited the proliferation of OC cells by downregulating the levels of COX-1 and COX-2. Blueberry (400 mg daily) consumption reduced tumor size significantly in mice with OC compared with the control without blueberry treatment (P<0.05). The results suggest that blueberries should be used to develop a potential non-pharmaceutical therapy for OC.
Collapse
Affiliation(s)
- Wumei Lin
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhigang Li
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
49
|
Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Ogishima J, Eguchi S, Yamashita A, Tomio K, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro. Int J Oncol 2017; 50:1431-1438. [PMID: 28259988 DOI: 10.3892/ijo.2017.3891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in the world, which is linked to its resistance to chemotherapy. Strategies to overcome chemoresistance have been keenly investigated. Culturing cancer cells in suspension, which results in formation of spheroids, is a more accurate reflection of clinical cancer behavior in vitro than conventional adherent cultures. By performing RNA-seq analysis, we found that the focal adhesion pathway was essential in spheroids. The phosphorylation of focal adhesion kinase (FAK) was increased in spheroids compared to adherent cells, and inhibition of FAK in spheroids resulted in inhibition of the downstream mammalian target of the rapamycin (mTOR) pathway in ovarian clear cell carcinomas. This result also suggested that only using a FAK inhibitor might have limitations because the phosphorylation level of FAK could not be reduced to the level in adherent cells, and it appeared that some combination therapies might be necessary. We previously reported that glutamine and glutamate concentrations were higher in spheroids than adherent cells, and we investigated a synergistic effect targeting glutamine metabolism with FAK inhibition on the mTOR pathway. The combination of AOA, a pan-transaminase inhibitor, and PF 573228, a FAK inhibitor, additively inhibited the mTOR pathway in spheroids from ovarian clear cell carcinomas. Our in vitro study proposed a rationale for the positive and negative effects of using FAK inhibitors in ovarian clear cell carcinomas and suggested that targeting glutamine metabolism could overcome the limitation of FAK inhibitors by additively inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
50
|
Miklos W, Heffeter P, Pirker C, Hager S, Kowol CR, van Schoonhoven S, Stojanovic M, Keppler BK, Berger W. Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget 2016; 7:84556-84574. [PMID: 27602951 PMCID: PMC5356681 DOI: 10.18632/oncotarget.11821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
Triapine, an anticancer thiosemicarbazone, is currently under clinical investigation. Whereas promising results were obtained in hematological diseases, trials in solid tumors widely failed. To understand mechanisms causing triapine insensitivity, we have analysed genomic alterations in a triapine-resistant SW480 subline (SW480/tria). Only one distinct genomic loss was observed specifically in SW480/tria cells affecting the phosphodiesterase 4D (PDE4D) gene locus. Accordingly, pharmacological inhibition of PDE4D resulted in significant triapine resistance in SW480 cells. Hence, we concluded that enhanced cyclic AMP levels might confer protection against triapine. Indeed, hyperactivation of both major downstream pathways, namely the protein kinase A (PKA)-cAMP response element-binding protein (Creb) and the exchange protein activated by cAMP (Epac)-Ras-related protein 1 (Rap1) signaling axes, was observed in SW480/tria cells. Unexpectedly, inhibition of PKA did not re-sensitize SW480/tria cells against triapine. In contrast, Epac activation resulted in distinct triapine resistance in SW480 cells. Conversely, knock-down of Epac expression and pharmacological inhibition of Rap1 re-sensitized SW480/tria cells against triapine. Rap1 is a well-known regulator of integrins. Accordingly, SW480/tria cells displayed enhanced plasma membrane expression of several integrin subunits, enhanced adhesion especially to RGD-containing matrix components, and bolstered activation/expression of the integrin downstream effectors Src and RhoA/Rac. Accordingly, integrin and Src inhibition resulted in potent triapine re-sensitization especially of SW480/tria cells. In summary, we describe for the first time integrin activation based on cAMP-Epac-Rap1 signaling as acquired drug resistance mechanism. combinations of triapine with inhibitors of several steps in this resistance cascade might be feasible strategies to overcome triapine insensitivity of solid tumors.
Collapse
Affiliation(s)
- Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Hager
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Sushilla van Schoonhoven
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
- Research Platform “Translational Cancer Therapy Research”, University Vienna and Medical University Vienna, Vienna, Austria
| |
Collapse
|