1
|
Huang L, Ma L, Xu J, Wei B, Xue Y, Zhang N, Zhou X, Yang J, Liu ZH, Jiang R. Strong Electronic Interaction in High-Entropy Oxide Enhances Oxygen Evolution Reaction. Inorg Chem 2024; 63:12433-12444. [PMID: 38907721 DOI: 10.1021/acs.inorgchem.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
High-entropy oxides are a new type of material with significant application potential. However, the lack of a universal HEO preparation method severely limits the property study and application of HEOs. Herein, we report a universal approach of spray pyrolysis for the preparation of various HEOs and study the electrocatalytic performance of HEOs toward the oxygen evolution reaction. FeCoNiMoWOx HEO exhibits an overpotential of 281 mV at 10 mA cm-2 and a Tafel slope of 34.5 mV dec-1, which are far superior to those of the corresponding medium-entropy oxide and low-entropy oxide. It is found that the high entropy of the HEO greatly strengthens the interaction between Fe and Mo/W and produces abundant oxygen vacancies (OVs) around Mo and W. This work not only provides a universal preparation method for HEOs but also deepens our understanding of OER catalytic activity of HEOs.
Collapse
Affiliation(s)
- Luo Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lixia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Xu
- Experimental Teaching Department, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Baoqiang Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanzhong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaojie Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
3
|
Schmidt C, Fechner A, Selyshchev O, Zahn DRT. The Influence of Process Parameters on the Microstructural Properties of Spray-Pyrolyzed β-Ga 2O 3. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091455. [PMID: 37177000 PMCID: PMC10179802 DOI: 10.3390/nano13091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
In this work, the deposition of β-Ga2O3 microstructures and thin films was performed with Ga(NO3)3 solutions by ultrasonic nebulization and spray coating as low-cost techniques. By changing the deposition parameters, the shape of β-Ga2O3 microstructures was controlled. Micro-spheres were obtained by ultrasonic nebulization. Micro-flakes and vortices were fabricated by spray coating aqueous concentrated and diluted precursor solutions, respectively. Roundish flakes were achieved from water-ethanol mixtures, which were rolled up into tubes by increasing the number of deposition cycles. Increasing the ethanol-to-water ratio allows continuous thin films at an optimal Ga(NO3)3 concentration of 0.15 M and a substrate temperature of 190 °C to be formed. The monoclinic β-Ga2O3 phase was achieved by thermal annealing at 1000 °C in an ambient atmosphere. Scanning electronic microscopy (SEM), X-ray diffraction (XRD), and UV-Raman spectroscopy were employed to characterize these microstructures. In the XRD study, in addition to the phase information, the residual stress values were determined using the sin2(ψ) method. Raman spectroscopy confirms that the β-Ga2O3 phase and relative shifts of the Raman modes of the different microstructures can partially be assigned to residual stress. The high-frequency Raman modes proved to be more sensitive to shifting and broadening than the low-frequency Raman modes.
Collapse
Affiliation(s)
- Constance Schmidt
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Axel Fechner
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Oleksandr Selyshchev
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
4
|
Cheng X, Bai X, Yang J, Zhu XM, Wang J. Titanium Oxynitride Spheres with Broad Plasmon Resonance for Solar Seawater Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28769-28780. [PMID: 35704447 DOI: 10.1021/acsami.2c03845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The facile production of hollow and solid nitridized submicrometer titania spheres has been successfully realized, with potential for mass production. The nitridation process gives submicrometer titanium oxynitride spheres, which possess a strong and broadband light absorption property. Interband-transition-induced resonance and plasmon resonance have been found to coexist in titanium oxynitride spheres through single-particle dark-field scattering measurements. Theoretical modeling has further confirmed that the excellent light absorption properties of the oxynitride spheres originate from the supported dual-mode optical resonance. A highly efficient, easy-to-build, and self-sustainable device is rationally designed for solar-driven seawater desalination, where the titanium oxynitride spheres function as photothermal transducers. The hollow spheres possess a higher water evaporation rate than the solid ones as the inner surface of the hollow spheres also provides surface sites for interaction with water molecules. Given the outstanding light absorption capability and the unique morphology of the hollow spheres, a water evaporation rate of ∼1.49 kg m-2 h-1 with a solar-to-thermal conversion efficiency of ∼89.1% has been achieved under the illumination of simulated solar light (1 sun, 1 kW m-2). This marks the record performance among reported plasmon-based solar seawater desalination systems.
Collapse
Affiliation(s)
- Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jianhua Yang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR 999078, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Oxygen defective bimodal porous Ni-CeO2−x-MgO-Al2O3 catalyst with multi-void spherical structure for CO2 reforming of CH4. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
7
|
van den Bergh W, Williams ER, Vest NA, Chiang PH, Stefik M. Mesoporous TiO 2 Microparticles with Tailored Surfaces, Pores, Walls, and Particle Dimensions Using Persistent Micelle Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12874-12886. [PMID: 34617769 DOI: 10.1021/acs.langmuir.1c01865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mesoporous microparticles are an attractive platform to deploy high-surface-area nanomaterials in a convenient particulate form that is broadly compatible with diverse device manufacturing methods. The applications for mesoporous microparticles are numerous, spanning the gamut from drug delivery to catalysis and energy storage. For most applications, the performance of the resulting materials depends upon the architectural dimensions including the mesopore size, wall thickness, and microparticle size, yet a synthetic method to control all these parameters has remained elusive. Furthermore, some mesoporous microparticle reports noted a surface skin layer which has not been tuned before despite the important effect of such a skin layer upon transport/encapsulation. In the present study, material precursors and block polymer micelles are combined to yield mesoporous materials in a microparticle format due to phase separation from a homopolymer matrix. The skin layer thickness was kinetically controlled where a layer integration via diffusion (LID) model explains its production and dissipation. Furthermore, the independent tuning of pore size and wall thickness for mesoporous microparticles is shown for the first time using persistent micelle templates (PMT). Last, the kinetic effects of numerous processing parameters upon the microparticle size are shown.
Collapse
Affiliation(s)
- Wessel van den Bergh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Eric R Williams
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalie Alicia Vest
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Pei-Hua Chiang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
8
|
Wu C, Jin Z, Xu K, Wang W, Jia C.
Co
a
Sm
b
O
x
Catalyst with Excellent Catalytic Performance for
NH
3
Decomposition. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cui‐Ping Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Zhao Jin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | | | - Wei‐Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Chun‐Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| |
Collapse
|
9
|
Fu XP, Yu WZ, Li MY, Si R, Ma C, Jia CJ. Facile Fabrication of CeO 2-Al 2O 3 Hollow Sphere with Atomically Dispersed Fe via Spray Pyrolysis. Inorg Chem 2021; 60:5183-5189. [PMID: 33761745 DOI: 10.1021/acs.inorgchem.1c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile spray pyrolysis method is introduced to construct the hollow CeO2-Al2O3 spheres with atomically dispersed Fe. Only nitrates and ethanol were involved during the one-step preparation process using the ultrasound spray pyrolysis approach. Detailed explorations demonstrated that differences in the pyrolysis temperature of the precursors and heat transfer are crucial to the formation of the hollow nanostructure. In addition, iron species were in situ atomically dispersed on the as-formed CeO2-Al2O3 hollow spheres via this strategy, which demonstrated promising potential in transferring syn-gas to valuable gasoline products.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wen-Zhu Yu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Meng-Yuan Li
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Paris C, Karelovic A, Manrique R, Le Bras S, Devred F, Vykoukal V, Styskalik A, Eloy P, Debecker DP. CO 2 Hydrogenation to Methanol with Ga- and Zn-Doped Mesoporous Cu/SiO 2 Catalysts Prepared by the Aerosol-Assisted Sol-Gel Process*. CHEMSUSCHEM 2020; 13:6409-6417. [PMID: 32996706 DOI: 10.1002/cssc.202001951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The preparation of copper-based heterogeneous catalysts dedicated to the hydrogenation of CO2 to methanol typically relies on multi-step procedures carried out in batch. These steps are precisely tailored to introduce the active phase (Cu) and the promoters (e. g., zinc, gallium) onto a preformed support to maximize catalyst performance. However, each process step can be associated with the formation of waste and with the consumption of energy, thereby negatively impacting the environmental performance of the overall catalyst preparation procedure. Here, a direct and continuous production process is proposed for the synthesis of efficient catalysts for the CO2 -to-methanol reaction. Gallium- and zinc-promoted mesoporous Cu-SiO2 catalysts were prepared in one step by the aerosol-assisted sol-gel process. The catalysts consisted of spherical microparticles and featured high specific surface area and pore volume, with interconnected pores of about 6 nm. A strong promoting effect of Ga and Zn was highlighted, boosting the selectivity for methanol at the expense of CO. Upon calcination, it was shown that Cu species (initially trapped in the silica matrix) underwent a migration towards the catalyst surface and a progressive sintering. After optimization, the catalysts obtained via such direct, continuous, simple, and scalable route could compete with the best catalysts reported in the literature and obtained via multi-step approaches.
Collapse
Affiliation(s)
- Charlie Paris
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
- Current address: Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Alejandro Karelovic
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Raydel Manrique
- Carbon and Catalysis (CarboCat), Department of Chemical Engineering Faculty of Engineering, University of Concepcion Barrio Universitario s/n, Concepcion, Chile
| | - Solène Le Bras
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - François Devred
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Vit Vykoukal
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
- Masaryk University, CEITEC MU, Kamenice 5, 62500, Brno, Czech Republic
| | - Ales Styskalik
- Masaryk University, Department of Chemistry, Kotlarska 2, 61137, Brno, Czech Republic
| | - Pierre Eloy
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), Place Louis Pasteur, 1, box L4.01.09, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
11
|
Yang J, Bai H, Guo Y, Zhang H, Jiang R, Yang B, Wang J, Yu JC. Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianhua Yang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Haoyuan Bai
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Han Zhang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Jimmy C. Yu
- Department of Chemistry The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| |
Collapse
|
12
|
Yang J, Bai H, Guo Y, Zhang H, Jiang R, Yang B, Wang J, Yu JC. Photodriven Disproportionation of Nitrogen and Its Change to Reductive Nitrogen Photofixation. Angew Chem Int Ed Engl 2020; 60:927-936. [DOI: 10.1002/anie.202010192] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/07/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jianhua Yang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Haoyuan Bai
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Han Zhang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| | - Jimmy C. Yu
- Department of Chemistry The Chinese University of Hong Kong Shatin, Hong Kong SAR China
| |
Collapse
|
13
|
Li R, Yang Y, Sun N, Kuai L. Mesoporous Cu-Ce-O x Solid Solutions from Spray Pyrolysis for Superior Low-Temperature CO Oxidation. Chemistry 2019; 25:15586-15593. [PMID: 31574171 DOI: 10.1002/chem.201903680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 11/10/2022]
Abstract
Development of Pt group metal-free catalysts for low-temperature CO oxidation remains critical. In this work, active and stable mesoporous Cu-Ce-Ox solid solutions are prepared by using spray pyrolysis. The specific surface areas and pore volumes reach as high as 170 m2 g-1 and 0.24 cm3 g-1 , respectively. The results of CO oxidation study suggest that (1) the catalyst obtained by spray pyrolysis possesses much higher activity than those made by co-precipitation, sol-gel, and hydrothermal methods; (2) the optimal Cu0.2 -Ce0.8 -Ox solid solution presents a reactivity over 28 times that of both single-component CuO and CeO2 at 70 °C. Based on the study of pure-phase Cu-Ce-Ox solid solutions by selective leaching of segregated CuOx species, the active center for CO oxidation is confirmed as the bimetallic Cu-Ce-O site, whereas the individual CuOx particles not only act as spectators but also block the active Cu-Ce-O sites. A low apparent activation energy of approximately 48 kJ mol-1 is detected for CO oxidation at the Cu-Ce-O site, making Cu-Ce-Ox solid solutions able to present high activity at low temperature. Furthermore, the Cu-Ce-Ox catalysts exhibit excellent stability and thermal tolerance toward CO oxidation.
Collapse
Affiliation(s)
- Rengui Li
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Yixuan Yang
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Na Sun
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| | - Long Kuai
- School of Biological and Chemical Engineering, the Key Laboratory of Renewable Energy Materials & Substance Catalytic Conversion of Anhui Higher Education Institutes, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, P.R. China
| |
Collapse
|
14
|
Tastekova EA, Polyakov AY, Goldt AE, Sidorov AV, Oshmyanskaya AA, Sukhorukova IV, Shtansky DV, Grünert W, Grigorieva AV. Facile chemical routes to mesoporous silver substrates for SERS analysis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:880-889. [PMID: 29600149 PMCID: PMC5870146 DOI: 10.3762/bjnano.9.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Mesoporous silver nanoparticles were easily synthesized through the bulk reduction of crystalline silver(I) oxide and used for the preparation of highly porous surface-enhanced Raman scattering (SERS)-active substrates. An analogous procedure was successfully performed for the production of mesoporous silver films by chemical reduction of oxidized silver films. The sponge-like silver blocks with high surface area and the in-situ-prepared mesoporous silver films are efficient as both analyte adsorbents and Raman signal enhancement mediators. The efficiency of silver reduction was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The developed substrates were applied for SERS detection of rhodamine 6G (enhancement factor of about 1-5 × 105) and an anti-ischemic mildronate drug (meldonium; enhancement factor of ≈102) that is known for its ability to increase the endurance performance of athletes.
Collapse
Affiliation(s)
- Elina A Tastekova
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | - Alexander Yu Polyakov
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | - Anastasia E Goldt
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
- Kurnakov Institute for General and Inorganic Chemistry of RAS, Leninsky prospect 31, Moscow 119991, Russia
- Skolkovo Institute of Science and Technology, Nobel str 3, Skolkovo, 143026, Russia
| | - Alexander V Sidorov
- Lomonosov Moscow State University, Leninskie gory 1, bld. 73, Moscow, 119991, Russia
| | | | - Irina V Sukhorukova
- National University of Science and Technology “MISiS”, Leninsky prospect 4, Moscow 119049, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology “MISiS”, Leninsky prospect 4, Moscow 119049, Russia
| | - Wolgang Grünert
- Department of Chemistry and Biochemistry, Ruhr-University at Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | | |
Collapse
|
15
|
Debecker DP, Le Bras S, Boissière C, Chaumonnot A, Sanchez C. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chem Soc Rev 2018; 47:4112-4155. [DOI: 10.1039/c7cs00697g] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aerosol processing technologies represent a major route of innovation in the mushrooming field of heterogeneous catalysts preparation.
Collapse
Affiliation(s)
- Damien P. Debecker
- Université catholique de Louvain
- Institute of Condensed Matter and Nanosciences
- 1348 Louvain-La-Neuve
- Belgium
| | - Solène Le Bras
- Université catholique de Louvain
- Institute of Condensed Matter and Nanosciences
- 1348 Louvain-La-Neuve
- Belgium
| | - Cédric Boissière
- Sorbonne Université
- Collège de France
- PSL University
- CNRS
- Laboratoire de Chimie de La Matière Condensée de Paris LCMCP
| | | | - Clément Sanchez
- Sorbonne Université
- Collège de France
- PSL University
- CNRS
- Laboratoire de Chimie de La Matière Condensée de Paris LCMCP
| |
Collapse
|
16
|
Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B. Mass-Production of Mesoporous MnCo 2 O 4 Spinels with Manganese(IV)- and Cobalt(II)-Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2017; 56:14977-14981. [PMID: 29024224 DOI: 10.1002/anie.201708765] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/11/2022]
Abstract
A mesoporous MnCo2 O4 electrode material is made for bifunctional oxygen electrocatalysis. The MnCo2 O4 exhibits both Co3 O4 -like activity for oxygen evolution reaction (OER) and Mn2 O3 -like performance for oxygen reduction reaction (ORR). The potential difference between the ORR and OER of MnCo2 O4 is as low as 0.83 V. By XANES and XPS investigation, the notable activity results from the preferred MnIV - and CoII -rich surface. The electrode material can be obtained on large-scale with the precise chemical control of the components at relatively low temperature. The surface state engineering may open a new avenue to optimize the electrocatalysis performance of electrode materials. The prominent bifunctional activity shows that MnCo2 O4 could be used in metal-air batteries and/or other energy devices.
Collapse
Affiliation(s)
- Wenhai Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, P. R. China
| | - Long Kuai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, P. R. China
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Sami Ollikkala
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Taru Ahopelto
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Ari-Pekka Honkanen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Mengkang Yu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, No.1 Beijing East Road, Wuhu, 241000, P. R. China
| |
Collapse
|
17
|
Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B. Mass-Production of Mesoporous MnCo2
O4
Spinels with Manganese(IV)- and Cobalt(II)-Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708765] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenhai Wang
- College of Chemistry and Materials Science; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials; Center for Nano Science and Technology; Anhui Normal University; No.1 Beijing East Road Wuhu 241000 P. R. China
| | - Long Kuai
- College of Chemistry and Materials Science; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials; Center for Nano Science and Technology; Anhui Normal University; No.1 Beijing East Road Wuhu 241000 P. R. China
| | - Wei Cao
- Nano and Molecular Systems Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| | - Marko Huttula
- Nano and Molecular Systems Research Unit; University of Oulu; P.O. Box 3000 90014 Oulu Finland
| | - Sami Ollikkala
- Department of Physics; University of Helsinki; P.O. Box 64 00014 Helsinki Finland
| | - Taru Ahopelto
- Department of Physics; University of Helsinki; P.O. Box 64 00014 Helsinki Finland
| | - Ari-Pekka Honkanen
- Department of Physics; University of Helsinki; P.O. Box 64 00014 Helsinki Finland
| | - Simo Huotari
- Department of Physics; University of Helsinki; P.O. Box 64 00014 Helsinki Finland
| | - Mengkang Yu
- College of Chemistry and Materials Science; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials; Center for Nano Science and Technology; Anhui Normal University; No.1 Beijing East Road Wuhu 241000 P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials; Center for Nano Science and Technology; Anhui Normal University; No.1 Beijing East Road Wuhu 241000 P. R. China
| |
Collapse
|
18
|
Jia H, Zhu XM, Jiang R, Wang J. Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2560-2571. [PMID: 28054765 DOI: 10.1021/acsami.6b15184] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Integration of nanoscale plasmonic metals with semiconductors is a promising strategy for utilizing visible and near-infrared light to enhance chemical reactions. Here we report on the preparation of Au/CeO2 microsphere photocatalysts through aerosol spray and the study of their photocatalytic activity toward the aerobic oxidation of 1-phenylethanol under visible light. The microsphere catalysts exhibit a remarkable photocatalytic performance with their turnover frequency values reaching 108 h-1, which is more than 23 times that of (Au core)@(CeO2 shell) nanostructures and much larger than those obtained previously for the visible-light photocatalytic oxidation of 1-phenylethanol. In addition, the Au/CeO2 catalyst shows the best performance among eight types of oxide semiconductor supports. Moreover, the photocatalytic mechanism of the Au/CeO2 catalyst is systematically investigated. This study offers insights for plasmonic hot electron-enabled photocatalysis, which will be valuable for the design of various efficient (plasmonic metal)/semiconductor photocatalysts.
Collapse
Affiliation(s)
- Henglei Jia
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Avenida Wai Long, Taipa, Macau SAR, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| |
Collapse
|
19
|
Ning H, Tao R, Fang Z, Cai W, Chen J, Zhou Y, Zhu Z, Zheng Z, Yao R, Xu M, Wang L, Lan L, Peng J. Direct patterning of silver electrodes with 2.4μm channel length by piezoelectric inkjet printing. J Colloid Interface Sci 2016; 487:68-72. [PMID: 27744171 DOI: 10.1016/j.jcis.2016.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 11/26/2022]
Abstract
The control of channel length is of great significance in the fabrication of thin film transistors (TFTs) with high-speed operation. However, achieving short channel on untreated glass by traditional piezoelectric inkjet printing is problematic due to the impacting and rebounding behaviors of droplet impinging on solid surface. Here a novel method was proposed to obtain short channel length on untreated glass by taking advantage of the difference in the retraction velocities on both sides of an ink droplet. In addition, droplets contact mechanism was first introduced in our work to explain the formation of short channel in the printing process. Through printing droplets array with optimized drop space and adjusting appropriate printing parameters, a 2.4μm of channel length for TFT, to the best of our knowledge, which is the shortest channel on substrate without pre-patterning, was achieved using piezoelectric inkjet printing. This study sheds light on the fabrication of short channel TFT for large size and high-resolution displays using inkjet printing technology.
Collapse
Affiliation(s)
- Honglong Ning
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Ruiqiang Tao
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Zhiqiang Fang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Wei Cai
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Jianqiu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Yicong Zhou
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Zhennan Zhu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Zeke Zheng
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China.
| | - Miao Xu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Lei Wang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Linfeng Lan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, PR China.
| |
Collapse
|
20
|
Wang Q, Geng J, Yuan C, Kuai L, Geng B. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Wang W, Geng J, Kuai L, Li M, Geng B. Porous Mn2 O3 : A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C. Chemistry 2016; 22:9909-13. [PMID: 27258474 DOI: 10.1002/chem.201602078] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support-free porous Mn2 O3 was synthesized by a facile aerosol-spray-assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn-based oxides, such as Mn3 O4 and MnO2 . The rotating ring disk electrode (RRDE) study indicates a typical 4-electron ORR pathway on Mn2 O3 . Furthermore, the porous Mn2 O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2 O3 is a promising candidate to be used as a cathode material in metal-air batteries and alkaline fuel cells.
Collapse
Affiliation(s)
- Wenhai Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Jing Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Long Kuai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Min Li
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P. R. China.
| |
Collapse
|
22
|
Nayak NB, Nayak BB. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders. Sci Rep 2016; 6:26404. [PMID: 27198738 PMCID: PMC4873789 DOI: 10.1038/srep26404] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022] Open
Abstract
Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.
Collapse
Affiliation(s)
- Nadiya B. Nayak
- Department of Ceramic Engineering, National Institute of
Technology Rourkela, Odisha
769 008, India
| | - Bibhuti B. Nayak
- Department of Ceramic Engineering, National Institute of
Technology Rourkela, Odisha
769 008, India
| |
Collapse
|
23
|
Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions. Sci Rep 2016; 6:23175. [PMID: 26980545 PMCID: PMC4793254 DOI: 10.1038/srep23175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/29/2016] [Indexed: 11/08/2022] Open
Abstract
Aqueous sodium borohydride (NaBH4) is well known for its reducing property and well-established for the development of metal nanoparticles through reduction method. In contrary, this research paper discloses the importance of aqueous NaBH4 as a precipitating agent towards development of porous zirconium oxide. The boron species present in aqueous NaBH4 play an active role during gelation as well as phase separated out in the form of boron complex during precipitation, which helps to form boron free zirconium hydroxide [Zr(OH)4] in the as-synthesized condition. Evolved in-situ hydrogen (H2) gas-bubbles also play an important role to develop as-synthesized loose zirconium hydroxide and the presence of intra-particle voids in the loose zirconium hydroxide help to develop porous zirconium oxide during calcination process. Without any surface modification, this porous zirconium oxide quickly adsorbs almost hundred percentages of toxic lead ions from water solution within 15 minutes at normal pH condition. Adsorption kinetic models suggest that the adsorption process was surface reaction controlled chemisorption. Quick adsorption was governed by surface diffusion process and the adsorption kinetic was limited by pore diffusion. Five cycles of adsorption-desorption result suggests that the porous zirconium oxide can be reused efficiently for removal of Pb (II) ions from aqueous solution.
Collapse
|
24
|
Zhao W, Zhang T, Song N, Zhang L, Chen Z, Yang L, Zhou Z. Assembly of composites into a core–shell structure using ultrasonic spray drying and catalytic application in the thermal decomposition of ammonium perchlorate. RSC Adv 2016. [DOI: 10.1039/c6ra08150a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The (3,5-DNB)FeCo and (3,5-DNB)FeCu micro-nanospheres with core–shell structure are prepared by ultrasonic spray drying. The DSC curves indicate that (3,5-DNB)M·M′s with various mixed ratio have different effects on AP thermal decomposition.
Collapse
Affiliation(s)
- Wenyuan Zhao
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Tonglai Zhang
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Naimeng Song
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Linong Zhang
- Innovative Precision Machinery Manufacture Co., Ltd
- Fushun
- China
| | - Zhenkui Chen
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Li Yang
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Zunning Zhou
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
25
|
Kan E, Kuai L, Wang W, Geng B. Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method. Chemistry 2015; 21:13291-6. [DOI: 10.1002/chem.201502008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/05/2022]
|
26
|
Li B, Shao X, Hao Y, Zhao Y. Ultrasonic-spray-assisted synthesis of metal oxide hollow/mesoporous microspheres for catalytic CO oxidation. RSC Adv 2015. [DOI: 10.1039/c5ra14910j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Various transition metal oxide hollow or mesoporous microspheres with improved catalytic activities towards CO oxidation were prepared via a general ultrasonic-spray-assisted method.
Collapse
Affiliation(s)
- Benxia Li
- College of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| | - Xiankun Shao
- College of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| | - Yonggan Hao
- College of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| | - Yan Zhao
- College of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| |
Collapse
|