1
|
Rida Galaly A, Dawood N. Enhancing the Production of Eco-Friendly Silk Fabrics through the Application of Nonthermal Plasma Wettability Techniques. ACS OMEGA 2024; 9:20791-20806. [PMID: 38764619 PMCID: PMC11097167 DOI: 10.1021/acsomega.3c08858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The combination of the effects of nonthermal plasma using atmospheric pressure of plasma jet and the photocatalytic effects of titanium dioxide nanoparticles was used to study the plasma flow modes, electrical characteristics, nonthermal characteristics, antimicrobial measurements, and surface modifications. Using different wettabilities of argon discharges in a laminar flow: (i) wet I, wettability with 2.4 slm argon mixture with oxygen ratio O2, equivalent to 15 mslm (Ar/O2), and (ii) wet II, wettability (Ar/O2) mixture combined with titanium dioxide, to accelerate the inactivation process on the nonwoven fabric surface. For wet 0, wet I, and wet II discharges, the average rate of heat transfer to the nonwoven silk fabric increased significantly. Specifically, it goes from 104.6 to 118.6 and then to 241.7 mW, respectively. The kinetic deactivation rate of Escherichia coli increases starting at 0.20, then going up to 0.32, and finally reaching 0.57 min-1. The increased wettability of the TiO2 photocatalyst results in an enhanced bactericidal rate, which is caused by both the heat impact from the nonthermal jet and potentially photocatalytic disinfection, leading to the generation of active species. The mechanical parameters owing to different wettabilities and plasma interactions with the fabric membrane were tested for the treated samples, such as stiffness, ultimate yield strength, tensile strength, strain, hardening, elongation, resilience, and toughness.
Collapse
Affiliation(s)
- Ahmed Rida Galaly
- Department
of EngineeringScience, Applied College, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Nagia Dawood
- Physics
Department, Faculty of Science, Taibah University, Al Madina Al Monawara 42363, Saudi Arabia
| |
Collapse
|
2
|
Svyntkivska M, Makowski T, Pawlowska R, Kregiel D, de Boer EL, Piorkowska E. Cytotoxicity studies and antibacterial modification of poly(ethylene 2,5-furandicarboxylate) nonwoven. Colloids Surf B Biointerfaces 2024; 233:113609. [PMID: 37925865 DOI: 10.1016/j.colsurfb.2023.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Novel poly(ethylene 2,5-furandicarboxylate) PEF nonwovens were produced by solution electrospinning and further modification. To improve the wettability of the hydrophobic nonwovens with water, they were treated with sodium hydroxide. Cytotoxicity tests carried out with human keratinocytes confirmed that the nonwovens did not have a toxic effect on healthy cells. The hydrophilicity of the sodium hydroxide treated nonwoven favored the adherence of the cells and their growth. In turn, the two-step modification of the nonwovens by reactions with (3-mercaptopropyl)methyldimethoxysilane and silver nitrate permitted to deposit silver particles on the fiber surfaces. The bacteria growth inhibition zones around the tested specimens were observed evidencing their antibacterial activity against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Mariia Svyntkivska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ele L de Boer
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
| | - Ewa Piorkowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
3
|
Sohn YS, Jung SK, Lee SY, Kim HT. Antibacterial Effects of a Carbon Nitride (CN) Layer Formed on Non-Woven Polypropylene Fabrics Using the Modified DC-Pulsed Sputtering Method. Polymers (Basel) 2023; 15:2641. [PMID: 37376286 PMCID: PMC10301604 DOI: 10.3390/polym15122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In the present study, the surface of non-woven polypropylene (NW-PP) fabric was modified to form CN layers using a modified DC-pulsed (frequency: 60 kHz, pulse shape: square) sputtering with a roll-to-roll system. After plasma modification, structural damage in the NW-PP fabric was not observed, and the C-C/C-H bonds on the surface of the NW-PP fabric converted into C-C/C-H, C-N(CN), and C=O bonds. The CN-formed NW-PP fabrics showed strong hydrophobicity for H2O (polar liquid) and full-wetting characteristics for CH2I2 (non-polar liquid). In addition, the CN-formed NW-PP exhibited an enhanced antibacterial characteristic compared to NW-PP fabric. The reduction rate of the CN-formed NW-PP fabric was 89.0% and 91.6% for Staphylococcus aureus (ATCC 6538, Gram-positive) and Klebsiella pneumoniae (ATCC4352, Gram-negative), respectively. It was confirmed that the CN layer showed antibacterial characteristics against both Gram-positive and Gram-negative bacteria. The reason for the antibacterial effect of CN-formed NW-PP fabrics can be explained as the strong hydrophobicity due to the CH3 bond of the fabric, enhanced wetting property due to CN bonds, and antibacterial activity due to C=O bonds. Our study presents a one-step, damage-free, mass-productive, and eco-friendly method that can be applied to most weak substrates, allowing the mass production of antibacterial fabrics.
Collapse
Affiliation(s)
- Young-Soo Sohn
- Department of Biomedical Engineering, Daegu Catholic University, Gyeongsan 38439, Republic of Korea;
| | | | - Sung-Youp Lee
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Hong Tak Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
4
|
Gallingani T, Resca E, Dominici M, Gavioli G, Laurita R, Liguori A, Mari G, Ortolani L, Pericolini E, Sala A, Laghi G, Petrachi T, Arnauld GF, Accorsi L, Rizzoli R, Colombo V, Gherardi M, Veronesi E. A new strategy to prevent biofilm and clot formation in medical devices: The use of atmospheric non-thermal plasma assisted deposition of silver-based nanostructured coatings. PLoS One 2023; 18:e0282059. [PMID: 36812218 PMCID: PMC9946233 DOI: 10.1371/journal.pone.0282059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
In industrialized countries, health care associated infections, the fourth leading cause of disease, are a major health issue. At least half of all cases of nosocomial infections are associated with medical devices. Antibacterial coatings arise as an important approach to restrict the nosocomial infection rate without side effects and the development of antibiotic resistance. Beside nosocomial infections, clot formation affects cardiovascular medical devices and central venous catheters implants. In order to reduce and prevent such infection, we develop a plasma-assisted process for the deposition of nanostructured functional coatings on flat substrates and mini catheters. Silver nanoparticles (Ag NPs) are synthesized exploiting in-flight plasma-droplet reactions and are embedded in an organic coating deposited through hexamethyldisiloxane (HMDSO) plasma assisted polymerization. Coating stability upon liquid immersion and ethylene oxide (EtO) sterilization is assessed through chemical and morphological analysis carried out by means of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In the perspective of future clinical application, an in vitro analysis of anti-biofilm effect has been done. Moreover, we employed a murine model of catheter-associated infection which further highlighted the performance of Ag nanostructured films in counteract biofilm formation. The anti-clot performances coupled by haemo- and cytocompatibility assays have also been performed.
Collapse
Affiliation(s)
- Tommaso Gallingani
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Elisa Resca
- Technopole “Mario Veronesi” (TPM), Mirandola, MO, Italy
| | - Massimo Dominici
- Technopole “Mario Veronesi” (TPM), Mirandola, MO, Italy
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Romolo Laurita
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Anna Liguori
- Department of Chemistry, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Giorgio Mari
- Technopole “Mario Veronesi” (TPM), Mirandola, MO, Italy
| | - Luca Ortolani
- IMM-Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Arianna Sala
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Laghi
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials, Interdepartmental Center for Industrial Research (AMMICIR), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | | | | - Luca Accorsi
- Technopole “Mario Veronesi” (TPM), Mirandola, MO, Italy
| | - Rita Rizzoli
- IMM-Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Vittorio Colombo
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials, Interdepartmental Center for Industrial Research (AMMICIR), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Matteo Gherardi
- Department of Industrial Engineering (DIN), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Advanced Mechanics and Materials, Interdepartmental Center for Industrial Research (AMMICIR), Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | |
Collapse
|
5
|
Pemmada R, Shrivastava A, Dash M, Cui K, Kumar P, Ramakrishna S, Zhou Y, Thomas V, Nanda HS. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Su TL, Chen TP, Liang JF. Green In-Situ Synthesis of Silver Coated Textiles for Wide Hygiene and Healthcare Applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Novi VT, Gonzalez A, Brockgreitens J, Abbas A. Highly efficient and durable antimicrobial nanocomposite textiles. Sci Rep 2022; 12:17332. [PMID: 36243757 PMCID: PMC9568944 DOI: 10.1038/s41598-022-22370-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Healthcare associated infections cause millions of hospitalizations and cost billions of dollars every year. A potential solution to address this problem is to develop antimicrobial textile for healthcare fabrics (hospital bedding, gowns, lab coats, etc.). Metal nanoparticle-coated textile has been proven to possess antimicrobial properties but have not been adopted by healthcare facilities due to risks of leaching and subsequent loss of function, toxicity, and environmental pollution. This work presents the development and testing of antimicrobial zinc nanocomposite textiles, fabricated using a novel Crescoating process. In this process, zinc nanoparticles are grown in situ within the bulk of different natural and synthetic fabrics to form safe and durable nanocomposites. The zinc nanocomposite textiles show unprecedented microbial reduction of 99.99% (4 log10) to 99.9999% (6 log10) within 24 h on the most common Gram-positive and Gram-negative bacteria, and fungal pathogens. Furthermore, the antimicrobial activity remains intact even after 100 laundry cycles, demonstrating the high longevity and durability of the textile. Independent dermatological evaluation confirmed that the novel textile is non-irritating and hypoallergenic.
Collapse
Affiliation(s)
- Vinni Thekkudan Novi
- grid.17635.360000000419368657Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, St. Paul, MN 55108 USA
| | - Andrew Gonzalez
- Claros Technologies Inc., 1600 Broadway St NE, Suite 100, Minneapolis, MN 55413 USA
| | - John Brockgreitens
- Claros Technologies Inc., 1600 Broadway St NE, Suite 100, Minneapolis, MN 55413 USA
| | - Abdennour Abbas
- grid.17635.360000000419368657Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, 2004 Folwell Ave, St. Paul, MN 55108 USA ,Claros Technologies Inc., 1600 Broadway St NE, Suite 100, Minneapolis, MN 55413 USA
| |
Collapse
|
8
|
Mehravani B, Ribeiro AI, Cvelbar U, Padrão J, Zille A. In Situ Synthesis of Copper Nanoparticles on Dielectric Barrier Discharge Plasma-Treated Polyester Fabrics at Different Reaction pHs. ACS APPLIED POLYMER MATERIALS 2022; 4:3908-3918. [PMID: 36568575 PMCID: PMC9778008 DOI: 10.1021/acsapm.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polyester (PET) fabrics are widely applied in functional textiles due to their outstanding properties such as high strength, dimensional stability, high melting point, low cost, recyclability, and flexibility. Nevertheless, the lack of polar groups in the PET structure makes its coloration and functionalization difficult. The present work reports the one-step in situ synthesis of copper nanoparticles (CuNPs) onto the PET fabric employing sodium hypophosphate and ascorbic acid as reducing and stabilizing agents, at acidic (pH 2) and alkaline pH (pH 11). This synthesis (i) used safer reagents when compared with traditional chemicals for CuNP production, (ii) was performed at a moderate temperature (85 °C), and (iii) used no protective inert gas. The dielectric barrier discharge (DBD) plasma was used as an environmentally friendly method for the surface functionalization of PET to enhance the adhesion of CuNPs. The size of the CuNPs in an alkaline reaction (76-156 nm for not treated and 93.4-123 nm for DBD plasma-treated samples) was found to be smaller than their size in acidic media (118-310 nm for not treated and 249-500 nm for DBD plasma-treated samples), where the DBD plasma treatment promoted some agglomeration. In acidic medium, metallic copper was obtained, and a reddish color became noticeable in the textile. In alkaline medium, copper(I) oxide (Cu2O) was detected, and the PET samples exhibited a yellow color. The PET samples with CuNPs presented improved ultraviolet protection factor values. Finally, a minimal concentration of copper salt was studied to obtain the optimized antibacterial effect against Staphylococcus aureus and Escherichia coli. The functionalized samples showed strong antibacterial efficacy using low-concentration solutions in the in situ synthesis (2.0 mM of copper salt) and even after five washing cycles. The DBD plasma treatment improved the antibacterial action of the samples prepared in the alkaline medium.
Collapse
Affiliation(s)
- Behnaz Mehravani
- 2C2T—Centre
for Textile Science and Technology, Department of Textile Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal
| | - Ana Isabel Ribeiro
- 2C2T—Centre
for Textile Science and Technology, Department of Textile Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal
| | - Uros Cvelbar
- Department
of Gaseous Electronics (F6), Jožef
Stefan Institute, Ljubljana SI-1000, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Ljubljana SI-1000, Slovenia
| | - Jorge Padrão
- 2C2T—Centre
for Textile Science and Technology, Department of Textile Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal
| | - Andrea Zille
- 2C2T—Centre
for Textile Science and Technology, Department of Textile Engineering, University of Minho, Campus de Azurém, Guimarães 4800-058, Portugal
| |
Collapse
|
9
|
Galaly AR, Dawood N. Non-Thermal Plasma Treatment Coupled with a Photocatalyst for Antimicrobial Performance of Ihram Cotton Fabric. NANOMATERIALS 2022; 12:nano12061004. [PMID: 35335816 PMCID: PMC8956055 DOI: 10.3390/nano12061004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/18/2022]
Abstract
All Muslim pilgrims must wear Ihram clothes during the Hajj and Umrah seasons, which presents a great challenge regarding how to eliminate the spread of microbes attached to the cotton fabric of Ihram from the surrounding environment. Targeted fashion research of the recent past presents a new industrial treatment, which has led us to study the impact of heat directed from an atmospheric pressure plasma jet (APPJ), coupled with photocatalytic nanomaterials, for the antibacterial treatment of Escherichia coli (E. coli) attached to cotton fabric samples, to improve pollutant remediation. The average rates of heat transfer to the bacterial colonies attached to cotton fabric samples, as a function of the laminar mode, were 230 and 77 mW for dry and wet argon discharges, respectively. The jet temperatures (TJ) and heat transfer (QH) decreased more for wet argon discharge than for dry argon discharge. This is because, due to the wettability by TiO2 photocatalyst concentration dosage increases from 0 to 0.5 g L−1, a proportion of the energy from the APPJ photons is expended in overcoming the bandgap of TiO2 and is used in the creation of electron−hole pairs. In the Weibull deactivation function used for the investigation of the antibacterial treatment of E. coli microbes attached to cotton fabric samples, the deactivation kinetic rate of E. coli increased from 0.0065 to 0.0152 min−1 as the TiO2 precursor concentration increased. This means that the sterilization rate increased despite (TJ) and (QH) decreasing as the wettability by TiO2 photocatalyst increases. This may be due to photocatalytic disinfection and the generation of active substances, in addition to the effect of the incident plume of the non-thermal jet.
Collapse
Affiliation(s)
- Ahmed Rida Galaly
- Department of Engineering Science, Applied College, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Correspondence:
| | - Nagia Dawood
- Physics Department, Faculty of Science, Taibah University, Al Madina Al Monawara 42363, Saudi Arabia;
| |
Collapse
|
10
|
Hage M, Khelissa S, Akoum H, Chihib NE, Jama C. Cold plasma surface treatments to prevent biofilm formation in food industries and medical sectors. Appl Microbiol Biotechnol 2022; 106:81-100. [PMID: 34889984 PMCID: PMC8661349 DOI: 10.1007/s00253-021-11715-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 10/28/2022]
Abstract
Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development. This strategy is an interesting path in the inhibition of biofilm formation since it targets the first step of biofilm development. Those pathogenic structures are responsible for several foodborne diseases and nosocomial infections. Therefore, to face this public health threat, researchers employed cold plasma technologies in coating development. In this review, the different factors influencing the bacterial adhesion to a substrate are outlined. The goal is to present the passive coating strategies aiming to prevent biofilm formation via cold plasma treatments, highlighting antiadhesive elaborated surfaces. General aspects of surface treatment, including physico-chemical modification and application of cold plasma technologies, were also presented. KEY POINTS: • Factors surrounding pathogenic bacteria influence biofilm development. • Controlling bacterial adhesion prevents biofilm formation. • Materials can be coated via cold plasma to inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Mayssane Hage
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Simon Khelissa
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Hikmat Akoum
- Laboratoire d'analyses Chimiques Et Microbiologiques, Faculté de Santé Publique - Université Libanaise, Saida, Lebanon
| | - Nour-Eddine Chihib
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France
| | - Charafeddine Jama
- UMR 8207 - UMET - Unité Matériaux Et Transformations, Univ. Lille, CNRS, INRAE, Centrale Lille, 59000, Lille, France.
| |
Collapse
|
11
|
Low-Temperature Atmospheric Pressure Plasma Processes for the Deposition of Nanocomposite Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9112069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for the deposition of this intriguing class of coatings by using both direct and remote AP plasma sources. Interestingly, considerable progress has been made in the development of aerosol-assisted deposition processes in which the use of either precursor solutions or nanoparticle dispersions in aerosol form allows greatly widening the range of constituents that can be combined in the plasma-deposited NC films. This review summarizes the research published on this topic so far and, specifically, aims to present a concise survey of the developed plasma processes, with particular focus on their optimization as well as on the structural and functional properties of the NC coatings to which they provide access. Current challenges and opportunities are also briefly discussed to give an outlook on possible future research directions.
Collapse
|
12
|
Kumar A, Nath K, Parekh Y, Enayathullah MG, Bokara KK, Sinhamahapatra A. Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100542. [PMID: 34729365 PMCID: PMC8554045 DOI: 10.1016/j.colcom.2021.100542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/14/2023]
Abstract
Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Kalpita Nath
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Yash Parekh
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
| | - M Ghalib Enayathullah
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
| | - Kiran Kumar Bokara
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana 500007, India
| | - Apruba Sinhamahapatra
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| |
Collapse
|
13
|
Kiel S, Klein M, Kroupitski Y, Peiper UM, Sela Saldinger S, Poverenov E. Air-ozonolysis activation of polyolefins versus use of laden finishing to form contact-active nonwoven materials. Sci Rep 2021; 11:10798. [PMID: 34031478 PMCID: PMC8144365 DOI: 10.1038/s41598-021-90218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Two synthetic approaches were explored for modification of the polyolefins polyethylene/polypropylene (PE/PP) to form contact-active nonwoven materials. In the first approach, polymer surfaces were activated by O2-free air-ozonolysis, and then the active agent (trimethoxysilyl) propyl-octadecyl-dimethyl-ammonium chloride (C18-TSA) was covalently bound. In the second approach, the active agent was directly conjugated to the commercial 'finishing' that was then applied to the polymer. The chemical, physical and microscopic properties of the modified polymers were comprehensively studied, and their active site density was quantified by fluorescein sodium salt-cetyltrimethylammonium chloride reaction. The antimicrobial activity of the prepared nonwovens against Bacillus subtilis (Gram-positive) and Salmonella enterica (Gram-negative), and their stability at various pHs and temperatures were examined. The two approaches conferred antimicrobial properties to the modified polymers and demonstrated stable linkage of C18-TSA. However, the performance of the nonwovens formed by the first approach was superior. The study suggests two feasible and safe pathways for the modification of polyolefins to form contact-active nonwoven materials that can be further applied in various fields, such as hygiene products, medical fabrics, sanitizing wipes, and more.
Collapse
Affiliation(s)
- Stella Kiel
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Miri Klein
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Uri M Peiper
- Department of Agricultural Engineering, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Elena Poverenov
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel.
| |
Collapse
|
14
|
Asghar AH, Ahmed OB, Galaly AR. Inactivation of E. coli Using Atmospheric Pressure Plasma Jet with Dry and Wet Argon Discharges. MEMBRANES 2021; 11:membranes11010046. [PMID: 33435510 PMCID: PMC7826812 DOI: 10.3390/membranes11010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/17/2022]
Abstract
The acceleration of inactivating viable cells of Escherichia coli (E. coli), by using new direct and indirect innovative methods, is the targeted method of using an atmospheric pressure plasma jet (APPJ) operated by an AC high-voltage power source with variable frequency up to 60 kHz and voltage ranging from 2.5 to 25 kV. Discharges using dry argon (0% O2) discharges and different wet argon discharges using admixtures with O2/Ar ratios ranging from 0.25% to 1.5% were studied. The combined effects of dry and wet argon discharges, direct and indirect exposure using a mesh controller, and hollow magnets were studied to reach a complete bacterial inactivation in short application times. Survival curves showed that the inactivation rate increased as the wettability increased. The application of magnetized non-thermal plasma discharge with a 1.5% wetness ratio causes a fast inactivation rate of microbes on surfaces, and a dramatic decrease of the residual survival of the bacterial ratio due to an increase in the jet width and the enhanced ability of fast transport of the charges to viable cells, especially at the edge of the Petri dish. The membrane damage of E. coli mechanism factors in the activation process by APPJ is discussed.
Collapse
Affiliation(s)
- Atif H. Asghar
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (A.H.A.); (O.B.A.)
| | - Omar B. Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (A.H.A.); (O.B.A.)
| | - Ahmed Rida Galaly
- Department of Engineering Science, Faculty of Community, Umm Al-Qura University, Makkah 24381, Saudi Arabia
- Department of Physics, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Correspondence:
| |
Collapse
|
15
|
Alpha-amylase conjugated biogenic silver nanoparticles as innovative strategy against biofilm-forming multidrug resistant bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Vidakis N, Petousis M, Velidakis E, Liebscher M, Tzounis L. Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process. Biomimetics (Basel) 2020; 5:biomimetics5030042. [PMID: 32887263 PMCID: PMC7559372 DOI: 10.3390/biomimetics5030042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, an industrially scalable method is reported for the fabrication of polylactic acid (PLA)/silver nanoparticle (AgNP) nanocomposite filaments by an in-situ reduction reactive melt mixing method. The PLA/AgNP nanocomposite filaments have been produced initially reducing silver ions (Ag+) arising from silver nitrate (AgNO3) precursor mixed in the polymer melt to elemental silver (Ag0) nanoparticles, utilizing polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), respectively, as macromolecular blend compound reducing agents. PEG and PVP were added at various concentrations, to the PLA matrix. The PLA/AgNP filaments have been used to manufacture 3D printed antimicrobial (AM) parts by Fused Filament Fabrication (FFF). The 3D printed PLA/AgNP parts exhibited significant AM properties examined by the reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60, and 120 min duration of contact (p < 0.05; p-value (p): probability). It could be envisaged that the 3D printed parts manufactured and tested herein mimic nature’s mechanism against bacteria and in terms of antimicrobial properties, contact angle for their anti-adhesive behavior and mechanical properties could create new avenues for the next generation of low-cost and on-demand additive manufacturing produced personal protective equipment (PPE) as well as healthcare and nosocomial antimicrobial equipment.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece; (N.V.); (E.V.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece; (N.V.); (E.V.)
- Correspondence: ; Tel.: +30-2810-37-9227
| | - Emmanouel Velidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece; (N.V.); (E.V.)
| | - Marco Liebscher
- Institute of Construction Materials, Technische Universität Dresden, DE-01062 Dresden, Germany;
| | - Lazaros Tzounis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
17
|
Naeem M, Felipe MBMC, Medeiros SRB, Costa T, Libório MS, Alves C, Nascimento RM, Nascimento IO, Sousa RRM, Feitor MC. Novel antibacterial silver coating on
PET fabric assisted
with
hollow‐cathode
glow discharge. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Naeem
- Department of Physics Women University of Azad Jammu and Kashmir Rawalpindi Pakistan
| | - M. B. M. C. Felipe
- Laboratório de Mutagênese Ambiental, Bioscience Center Federal University of Rio Grande do Norte Natal Brazil
| | - S. R. B. Medeiros
- Department of Cellular Biology and Genetics, Bioscience Center Federal University of Rio Grande do Norte Natal Brazil
| | - T.H.C. Costa
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - M. S. Libório
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - C. Alves
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - R. M. Nascimento
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - I. O. Nascimento
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| | - R. R. M. Sousa
- Postgraduate Materias Science and Engineering–Federal University of Piauí, UFPI Teresina Brazil
| | - M. C. Feitor
- Postgraduate Mechanical Engineering–Federal University of Rio Grande do Norte Natal Brazil
| |
Collapse
|
18
|
Antibacterial efficiency assessment of polymer-nanoparticle composites using a high-throughput microfluidic platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110754. [DOI: 10.1016/j.msec.2020.110754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022]
|
19
|
Thukkaram M, Vaidulych M, Kylián O, Hanuš J, Rigole P, Aliakbarshirazi S, Asadian M, Nikiforov A, Van Tongel A, Biederman H, Coenye T, Du Laing G, Morent R, De Wilde L, Verbeken K, De Geyter N. Investigation of Ag/a-C:H Nanocomposite Coatings on Titanium for Orthopedic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23655-23666. [PMID: 32374146 DOI: 10.1021/acsami.9b23237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
One of the leading causes of failure for any bone implant is implant-associated infections. The implant-bone interface is in fact the crucial site of infection where both the microorganisms and cells compete to populate the newly introduced implant surface. Most of the work dealing with this issue has focused on the design of implant coatings capable of preventing infection while ignoring cell proliferation or vice versa. The present study is therefore focused on investigating the antibacterial and biological properties of nanocomposite coatings based on an amorphous hydrocarbon (a-C:H) matrix containing silver nanoparticles (AgNPs). a-C:H coatings with varying silver concentrations were generated directly on medical grade titanium substrates using a combination of a gas aggregation source (GAS) and a plasma-enhanced chemical vapor deposition (PE-CVD) process. The obtained results revealed that the surface silver content increased from 1.3 at % to 5.3 at % by increasing the used DC magnetron current in the GAS from 200 to 500 mA. The in vitro antibacterial assays revealed that the nanocomposites with the highest number of silver content exhibited excellent antibacterial activities resulting in a 6-log reduction of Escherichia coli and a 4-log reduction of Staphylococcus aureus after 24 h of incubation. An MTT assay, fluorescence live/dead staining, and SEM microscopy observations of MC3T3 cells seeded on the uncoated and coated Ti substrates also showed that increasing the amount of AgNPs in the nanocomposites had no notable impact on their cytocompatibility, while improved cell proliferation was especially observed for the nanocomposites possessing a low amount of AgNPs. These controllable Ag/a-C:H nanocomposites on Ti substrates, which simultaneously provide an excellent antibacterial performance and good biocompatibility, could thus have promising applications in orthopedics and other biomedical implants.
Collapse
Affiliation(s)
- Monica Thukkaram
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Mykhailo Vaidulych
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague 116 36, Czech Republic
| | - Ondřej Kylián
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague 116 36, Czech Republic
| | - Jan Hanuš
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague 116 36, Czech Republic
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Alexander Van Tongel
- Orthopaedic Surgery and Traumatology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Hynek Biederman
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague 116 36, Czech Republic
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent 9000, Belgium
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Lieven De Wilde
- Orthopaedic Surgery and Traumatology, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Kim Verbeken
- Department of Materials, Textiles, and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering & Architecture, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
20
|
Tzounis L, Bangeas PI, Exadaktylos A, Petousis M, Vidakis N. Three-Dimensional Printed Polylactic Acid (PLA) Surgical Retractors with Sonochemically Immobilized Silver Nanoparticles: The Next Generation of Low-Cost Antimicrobial Surgery Equipment. NANOMATERIALS 2020; 10:nano10050985. [PMID: 32455641 PMCID: PMC7279541 DOI: 10.3390/nano10050985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 01/17/2023]
Abstract
A versatile method is reported for the manufacturing of antimicrobial (AM) surgery equipment utilising fused deposition modelling (FDM), three-dimensional (3D) printing and sonochemistry thin-film deposition technology. A surgical retractor was replicated from a commercial polylactic acid (PLA) thermoplastic filament, while a thin layer of silver (Ag) nanoparticles (NPs) was developed via a simple and scalable sonochemical deposition method. The PLA retractor covered with Ag NPs (PLA@Ag) exhibited vigorous AM properties examined by a reduction in Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60 and 120 min duration of contact (p < 0.05). Scanning electron microscopy (SEM) showed the surface morphology of bare PLA and PLA@Ag retractor, revealing a homogeneous and full surface coverage of Ag NPs. X-Ray diffraction (XRD) analysis indicated the crystallinity of Ag nanocoating. Ultraviolent-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM) highlighted the AgNP plasmonic optical responses and average particle size of 31.08 ± 6.68 nm. TEM images of the PLA@Ag crossection demonstrated the thickness of the deposited Ag nanolayer, as well as an observed tendency of AgNPs to penetrate though the outer surface of PLA. The combination of 3D printing and sonochemistry technology could open new avenues in the manufacturing of low-cost and on-demand antimicrobial surgery equipment.
Collapse
Affiliation(s)
- Lazaros Tzounis
- Composite and Smart Materials Laboratory (CSML), Department of Materials Science & Engineering, University of Ioannina, GR-45110 Ioannina, Greece
- Correspondence: (L.T.); (N.V.); Tel.: +30-26510-09024 (L.T.); +30-2810-379833 (N.V.)
| | - Petros I. Bangeas
- Department of emergency medicine, INSELSPITAL, Universitätsspital Bern, 18, 3010 Bern, Switzerland; (P.I.B.); (A.E.)
| | - Aristomenis Exadaktylos
- Department of emergency medicine, INSELSPITAL, Universitätsspital Bern, 18, 3010 Bern, Switzerland; (P.I.B.); (A.E.)
| | - Markos Petousis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
| | - Nectarios Vidakis
- Mechanical Engineering Department, Hellenic Mediterranean University, Estavromenos, 71004 Heraklion, Crete, Greece;
- Correspondence: (L.T.); (N.V.); Tel.: +30-26510-09024 (L.T.); +30-2810-379833 (N.V.)
| |
Collapse
|
21
|
Syafiuddin A, Fulazzaky MA, Salmiati S, Roestamy M, Fulazzaky M, Sumeru K, Yusop Z. Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2534-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
Kuchakova I, Ionita MD, Ionita ER, Lazea-Stoyanova A, Brajnicov S, Mitu B, Dinescu G, De Vrieze M, Cvelbar U, Zille A, Leys C, Yu Nikiforov A. Atmospheric Pressure Plasma Deposition of Organosilicon Thin Films by Direct Current and Radio-frequency Plasma Jets. MATERIALS 2020; 13:ma13061296. [PMID: 32183006 PMCID: PMC7143598 DOI: 10.3390/ma13061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/16/2022]
Abstract
Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.
Collapse
Affiliation(s)
- Iryna Kuchakova
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent, Belgium; (C.L.); (A.Y.N.)
- Correspondence: (I.K.); (E.-R.I.)
| | - Maria Daniela Ionita
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
| | - Eusebiu-Rosini Ionita
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
- Correspondence: (I.K.); (E.-R.I.)
| | - Andrada Lazea-Stoyanova
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
| | - Simona Brajnicov
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
| | - Bogdana Mitu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
| | - Gheorghe Dinescu
- National Institute for Lasers, Plasma and Radiation Physics, Magurele-Bucharest, MG-36, RO 077125 Ilfov, Romania; (M.D.I.); (A.L.-S.); (S.B.); (B.M.); (G.D.)
| | - Mike De Vrieze
- Centexbel, Technologiepark-Zwijnaarde 70, 9052 Gent, Belgium;
| | - Uroš Cvelbar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia;
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal;
| | - Christophe Leys
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent, Belgium; (C.L.); (A.Y.N.)
| | - Anton Yu Nikiforov
- Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent, Belgium; (C.L.); (A.Y.N.)
| |
Collapse
|
23
|
Hopta OV, Mishyna MM, Syrova AO, Makarov VO, Avramenko VL, Мishurov DO. Evaluation of antimicrobial properties of polymer nanocomposites for medical application. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The paper is devoted to the investigation of antimicrobial activity of polymer nanocomposites of both low-density polyethylene and nonwoven polymeric material (a mixture of woven and polyester fibers) that had been impregnated by Cu nanoparticles. The microorganisms were grown according to generally accepted microbiological rules and on media recommended for each bacteria family. Formation of biofilms of microorganisms was studied on the surface of microtiter plates for enzyme-linked immunosorbent assay. After incubation of microtiter plates, the culture medium was removed from the wells. The wells were rinsed five times with sterile distilled water. The plates were air dried for 45 minutes and each well was stained with 1% crystal violet solution in water for 45 min. After staining, the plates were washed with sterile distilled water five times. The quantitative analysis of biofilm production was done by adding 95% ethanol for discoloration of the wells. The research shows the antibacterial activity of Cu nanoparticles on planktonic forms of the investigated microorganisms, which prevented the formation of dense biofilms. With the use of low-density polyethylene impregnated by Cu the ability to form biofilms by planktonic cells of the referent strains of microorganisms was detected to decrease by 1.7 (Escherichia coli), 12.3 (Klebsiella pneumonia) times in the studied strains and with the use of nonwoven polymeric material treated by Cu nanoparticles, the ability to form biofilms decreased by 1.8 (Escherichia coli) – 21.8 (Klebsiella pneumonia) times in the studied strains. In subjecting the formed daily biofilms of referent strains of microorganisms to Cu nanoparticles, the destruction of biofilms of the studied strains of microorganism was observed as well as violation of the integrity of the biofilm monolayer and decrease of density index in comparison with control values. As a result, the obtained polymer nanocomposites can be recommended for preventive use in the fight against nosocomial infections. The practical relevance of this study lies in the possibility of reducing the incidence of purulent-inflammatory diseases and mycoses and, accordingly, reduction of the costs of treating these diseases.
Collapse
|
24
|
Montoya-Villegas KA, Ramírez-Jiménez A, Licea-Claverie Á, Pérez-Sicairos S, Bucio E, Bernáldez-Sarabia J, Licea-Navarro AF. Surface Modification of Polyester-Fabric with Hydrogels and Silver Nanoparticles: Photochemical Versus Gamma Irradiation Methods. MATERIALS 2019; 12:ma12203284. [PMID: 31658585 PMCID: PMC6829902 DOI: 10.3390/ma12203284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
Abstract
A Gamma irradiation and photochemical crosslinking/grafting of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methacrylate) (poly(HEMA-co-PEGMA)) hydrogels onto polyethyleneterephtalate fabric (PET) surfaces were evaluated, in order to obtain a hydrophilic homogeneous coating onto PET fabrics. The materials were characterized by FTIR-ATR, SEM, EDS, and thermal analysis. Furthermore, silver nanoparticles (AgNPs) were loaded by in situ reduction of AgNO3, and its antibacterial activity against Staphylococcus aureus and Escherichia coli was determined. Results showed a ticker coating of hydrogel using gamma radiation and stronger in deep modification of the fibers; however, by the photochemical method, a thin coating with good coverage of PET surface was obtained. The differences in hydrophilicity, thermal properties, and antibacterial activity of the coated fabrics by using both methods were rather small.
Collapse
Affiliation(s)
- Kathleen A Montoya-Villegas
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana 22000, Mexico.
| | - Alejandro Ramírez-Jiménez
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana 22000, Mexico.
- CONACyT-Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana 22000, Mexico.
| | - Ángel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana 22000, Mexico.
| | - Sergio Pérez-Sicairos
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana 22000, Mexico.
| | - Emilio Bucio
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, Mexico.
| | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, Mexico.
| |
Collapse
|
25
|
Cao W, Wei D, Zheng A, Guan Y. Surface enrichment and nonleaching antimicrobial performance of polypropylene grafted poly(hexamethylene guanidine) (PP-g-PHMG) in poly(ethylene terephthalate)/PP-g-PHMG. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Múgica-Vidal R, Sainz-García E, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M, López M, Rojo-Bezares B, Sáenz Y, Alba-Elías F. Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02293-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci 2019; 20:E449. [PMID: 30669621 PMCID: PMC6359645 DOI: 10.3390/ijms20020449] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) can be synthesized from a variety of techniques including physical, chemical and biological routes. They have been widely used as nanomaterials for manufacturing cosmetic and healthcare products, antimicrobial textiles, wound dressings, antitumor drug carriers, etc. due to their excellent antimicrobial properties. Accordingly, AgNPs have gained access into our daily life, and the inevitable human exposure to these nanoparticles has raised concerns about their potential hazards to the environment, health, and safety in recent years. From in vitro cell cultivation tests, AgNPs have been reported to be toxic to several human cell lines including human bronchial epithelial cells, human umbilical vein endothelial cells, red blood cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver cells, etc. AgNPs induce a dose-, size- and time-dependent cytotoxicity, particularly for those with sizes ≤10 nm. Furthermore, AgNPs can cross the brain blood barrier of mice through the circulation system on the basis of in vivo animal tests. AgNPs tend to accumulate in mice organs such as liver, spleen, kidney and brain following intravenous, intraperitoneal, and intratracheal routes of administration. In this respect, AgNPs are considered a double-edged sword that can eliminate microorganisms but induce cytotoxicity in mammalian cells. This article provides a state-of-the-art review on the synthesis of AgNPs, and their applications in antimicrobial textile fabrics, food packaging films, and wound dressings. Particular attention is paid to the bactericidal activity and cytotoxic effect in mammalian cells.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
Perspectives on antibacterial performance of silver nanoparticle-loaded three-dimensional polymeric constructs. Biointerphases 2018; 13:06E404. [PMID: 30261733 DOI: 10.1116/1.5042426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticle (AgNP)-loaded polymeric constructs are widely investigated for potential applications as drug delivery systems, wound dressings, and antibiofouling biomaterials. Herein, the authors present several methods for fabricating such materials and evaluate their efficacy against Escherichia coli. H2O(v) plasma surface modification is employed to enhance material surface wettability (explored by water contact angle goniometry) and nanoparticle incorporation. Compositional analyses reveal that incorporation of AgNPs on the surface and bulk of the materials strongly depends on the fabrication methodology. More importantly, the nature of AgNP incorporation into the polymer has direct implications on the biocidal performance resulting from the release of Ag+. The materials fabricated herein fell significantly short of healthcare standards with respect to antimicrobial behavior, and, in comparing their results to numerous literature studies, the authors identified a glaring disparity in the way such results are often described. Thus, this work also contains a critical evaluation of the literature, highlighting select poor-performing materials to demonstrate several shortcomings in the quantitative analysis and reporting of the antibacterial efficacy of AgNP-loaded materials. Ultimately, recommendations for best practices for better evaluation of these constructs toward improved antibacterial efficacy in medical settings are provided.
Collapse
|
29
|
Kratochvíl J, Kuzminova A, Kylián O. State-of-the-Art, and Perspectives of, Silver/Plasma Polymer Antibacterial Nanocomposites. Antibiotics (Basel) 2018; 7:antibiotics7030078. [PMID: 30126109 PMCID: PMC6164522 DOI: 10.3390/antibiotics7030078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
Urgent need for innovative and effective antibacterial coatings in different fields seems to have triggered the development of numerous strategies for the production of such materials. As shown in this short overview, plasma based techniques arouse considerable attention that is connected with the possibility to use these techniques for the production of advanced antibacterial Ag/plasma polymer coatings with tailor-made functional properties. In addition, the plasma-based deposition is believed to be well-suited for the production of novel multi-functional or stimuli-responsive antibacterial films.
Collapse
Affiliation(s)
- Jiří Kratochvíl
- Department of Macromolecular, Faculty of Mathematics and Physics, Physics Charles University, Prague 18000, Czech Republic.
| | - Anna Kuzminova
- Department of Macromolecular, Faculty of Mathematics and Physics, Physics Charles University, Prague 18000, Czech Republic.
| | - Ondřej Kylián
- Department of Macromolecular, Faculty of Mathematics and Physics, Physics Charles University, Prague 18000, Czech Republic.
| |
Collapse
|
30
|
Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C, Coenye T, Dubruel P. Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym 2018; 191:127-135. [DOI: 10.1016/j.carbpol.2018.02.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/13/2023]
|
31
|
Zepon KM, Marques MS, da Silva Paula MM, Morisso FDP, Kanis LA. Facile, green and scalable method to produce carrageenan-based hydrogel containing in situ synthesized AgNPs for application as wound dressing. Int J Biol Macromol 2018; 113:51-58. [DOI: 10.1016/j.ijbiomac.2018.02.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
|
32
|
In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids Surf B Biointerfaces 2018; 165:219-228. [DOI: 10.1016/j.colsurfb.2018.02.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/21/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
|
33
|
Wu H, Liu Y, Huang J, Mao L, Chen J, Li M. Preparation and characterization of antifouling and antibacterial polysulfone ultrafiltration membranes incorporated with a silver-polydopamine nanohybrid. J Appl Polym Sci 2018. [DOI: 10.1002/app.46430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huiqing Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
- State Key Laboratory of Molecular Engineering of Polymers; Fudan University; Shanghai 200433 China
| | - Yuejun Liu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Jing Huang
- Department of Chemical Engineering; University of Washington; Seattle Washington 98105
| | - Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Jianhong Chen
- Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and Engineering; Xiamen University of Technology; Xiamen 361024 China
| | - Meng Li
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Ministry of Education of China), School of Power Engineering; Chongqing University; Chongqing 400044 China
| |
Collapse
|
34
|
Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J Control Release 2017; 266:57-74. [DOI: 10.1016/j.jconrel.2017.09.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
|
35
|
Chen Y, Yu P, Ren G, Zhang Q, Han Q, Teng H. Interpenetration of Polyethylene Terephthalate with Biocidal Quaternary Ammonium/N-Chloramine Polysiloxane in Supercritical CO2. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Chen
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Panwei Yu
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Guoyuan Ren
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Qiang Zhang
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Qiuxia Han
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| | - Hongni Teng
- Department
of Applied Chemistry, College of Chemical and Environmental
Engineering, ‡Analytical and Testing Center, School of Materials Science and Engineering, and §Department of
Biological Engineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, People’s Republic of China
| |
Collapse
|
36
|
Choi HJ, Thambi T, Yang YH, Bang SI, Kim BS, Pyun DG, Lee DS. AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds. RSC Adv 2017. [DOI: 10.1039/c6ra27322j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synergistic polyurethane foams comprised of AgNPs and rhEGF (AgNP/rhEGF-PUFs) were developed to treat diabetic wounds, which exhibited complete wound closure.
Collapse
Affiliation(s)
- Hyun Jun Choi
- Biomedical Polymer R&D Institute
- T&L Co., Ltd
- Anseong 456-812
- Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Yool Hee Yang
- Department of Plastic Surgery
- Samsung Medical Center
- Sungkyunkwan University
- School of Medicine
- Seoul 135-710
| | - Sa Ik Bang
- Department of Plastic Surgery
- Samsung Medical Center
- Sungkyunkwan University
- School of Medicine
- Seoul 135-710
| | - Bong Sup Kim
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Do Gi Pyun
- Biomedical Polymer R&D Institute
- T&L Co., Ltd
- Anseong 456-812
- Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
37
|
Anjum S, Gupta A, Sharma D, Kumari S, Sahariah P, Bora J, Bhan S, Gupta B. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516668665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study deals with the development of bioactive poly(ethylene terephthalate) surgical suture by adopting the immobilization route with bioactive nanogels and chlorhexidine. Carbon dioxide plasma was used for the generation of carboxyl functionality on poly(ethylene terephthalate) surface for the immobilization of the bioactive components. The nanosilver nanogel was prepared using polyethylene glycol which helps in the reduction of silver ions into nanosilver as well as the stabilization of nanoparticles. The particle size of the nanogels, as evaluated by high-resolution transmission electron microscopy, was observed to be in the range of 10–50 nm. Surface functionalization of poly(ethylene terephthalate) filament was observed by attenuated total reflectance measurements and mechanical studies were investigated by Instron. Elemental analysis and surface topography were carried out by energy dispersive X-ray and atomic force microscopy. The cumulative release of silver from the dressing was found to be 68% of the total loading after 72 h. Coated sutures have excellent antimicrobial activity against both Escherichia coli and Staphylococcus aureus. In vivo wound healing and histopathology studies were carried out over a period of 72 h for skin wounds created on Swiss albino mice. Fast healing was observed in nanogel-treated wounds without any inflammatory effects on the newly generated skin. These sutures offer improved healing along with excellent antimicrobial properties and appear to be promising material against surgical infection.
Collapse
Affiliation(s)
- Sadiya Anjum
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| | - Deepika Sharma
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| | - Shanti Kumari
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Plabita Sahariah
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Jutishna Bora
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Surya Bhan
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
38
|
Sardella E, Palumbo F, Camporeale G, Favia P. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E515. [PMID: 28773637 PMCID: PMC5456949 DOI: 10.3390/ma9070515] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/12/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors.
Collapse
Affiliation(s)
- Eloisa Sardella
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
| | - Fabio Palumbo
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
| | - Giuseppe Camporeale
- Dipartimento di Chimica Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| | - Pietro Favia
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche, Via Orabona 4, 70126 Bari, Italy.
- Dipartimento di Chimica Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
39
|
Feng J, Hontañón E, Blanes M, Meyer J, Guo X, Santos L, Paltrinieri L, Ramlawi N, Smet LCPMD, Nirschl H, Kruis FE, Schmidt-Ott A, Biskos G. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14756-65. [PMID: 27196424 DOI: 10.1021/acsami.6b03632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm of functional textiles can be nanofinished by aerosol NP deposition, our results demonstrate that the proposed approach, which is universal and sustainable, can potentially lead to a wide number of applications.
Collapse
Affiliation(s)
- Jicheng Feng
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Esther Hontañón
- Institute for Technology of Nanostructures and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Bismarckstrasse 81, 47057 Duisburg, Germany
| | - Maria Blanes
- Department of Technical Finishing and Comfort, AITEX , Plaza Emilio Sala 1, 03801 Alcoy, Spain
| | - Jörg Meyer
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT) , Strasse am Forum 8, 76131 Karlsruhe, Germany
| | - Xiaoai Guo
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT) , Strasse am Forum 8, 76131 Karlsruhe, Germany
| | - Laura Santos
- Foundation for the Promotion of the Textile Industry (FOMENTEX) , Els Telers 20, 46870 Ontinyent, Spain
| | - Laura Paltrinieri
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Nabil Ramlawi
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Louis C P M de Smet
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Hermann Nirschl
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT) , Strasse am Forum 8, 76131 Karlsruhe, Germany
| | - Frank Einar Kruis
- Institute for Technology of Nanostructures and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen , Bismarckstrasse 81, 47057 Duisburg, Germany
| | - Andreas Schmidt-Ott
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - George Biskos
- Faculty of Applied Science, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
- Faculty of Civil Engineering and Geosciences, Delft University of Technology , 2628 CN Delft, The Netherlands
- Energy Environment and Water Research Center, The Cyprus Institute , Nicosia 2121, Cyprus
| |
Collapse
|