1
|
Belinda A, Humardani FM, Dwi Putra SE, Widyadhana B. The potential of circulating free DNA of methylated IGFBP as a biomarker for type 2 diabetes Mellitus: A Comprehensive review. Clin Chim Acta 2025; 567:120104. [PMID: 39706247 DOI: 10.1016/j.cca.2024.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection. However, no study has explored its use for this purpose. Our review focuses on the potential of IGFBP methylation levels in cfDNA as biomarkers for NIPT of T2DM. Placental global hypomethylation in GDM may predict T2DM during the prenatal period, and a similar pattern potentially be detected in cfDNA. Targeted genes reliable for NIPT, such as IGFBPs are needed because their significant role in T2DM and GDM. Among these, IGFBP-1 and IGFBP-2 have shown potential as predictive genes, exhibiting hypermethylation in placental tissue from GDM cases. This hypermethylation reduces their expression and the formation of the IGF-1-IGFBP complex, leading to increased levels of free IGF-1, which is associated with T2DM in the fetus. Hypermethylation regions have longer fragment sizes in cfDNA, thus in T2DM cases, hypermethylation of IGFBP-1 and IGFBP-2 from fetus results in longer cfDNA fragments. Therefore, analyzing the methylation levels and fragment sizes of IGFBP-1 or IGFBP-2 cfDNA could be a promising biomarker for identifying fetal T2DM risk non-invasively.
Collapse
Affiliation(s)
- Audrey Belinda
- Faculty of Biotechnology, University of Surabaya, Surabaya 60292, Indonesia.
| | | | | | - Bhanu Widyadhana
- Faculty of Biotechnology, University of Surabaya, Surabaya 60292, Indonesia.
| |
Collapse
|
2
|
Geng W, Guo Y, Chen B, Cheng X, Li S, Challioui MK, Tian W, Li H, Zhang Y, Li Z, Jiang R, Tian Y, Kang X, Liu X. IGFBP7 promotes the proliferation and differentiation of primary myoblasts and intramuscular preadipocytes in chicken. Poult Sci 2024; 103:104258. [PMID: 39293261 PMCID: PMC11426050 DOI: 10.1016/j.psj.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Though it is well known that insulin-like growth factor (IGF) binding protein 7 (IGFBP7) plays an important role in myogenesis and adipogenesis in mammals, its impact on the proliferation, differentiation, and lipid deposition in chicken primary myoblasts (CPM) and intramuscular preadipocytes remains unexplored. In the present study, we firstly examined the correlation between SNPs within the genomic sequence of the IGFBP7 gene and carcass and blood chemical traits in a F2 resource population by genetic association analysis, and found that a significant correlation between the SNP (4_49499525) located in the intron region of IGFBP7 and serum high-density lipoproteins (HDL). We then examined the expression patterns of IGFBP7 across different stages of proliferation and differentiation in CPMs and intramuscular preadipocytes via qPCR, and explored the biological functions of IGFBP7 through gain- and loss-of-function experiments and a range of techniques including qPCR, CCK-8, EdU, flow cytometry, Western blot, immunofluorescence, and Oil Red O staining to detect the proliferation, differentiation, and lipid deposition in CPMs and intramuscular preadipocytes. We ascertained that the expression levels of the IGFBP7 gene increased as cell differentiation progresses in CPMs and intramuscular preadipocytes, and that IGFBP7 promotes the proliferation and differentiation of these cells, as well as facilitates intracellular lipid deposition. Furthermore, we investigated the regulatory mechanism of IGFBP7 expression by using co-transfection strategy and dual-luciferase reporter assay, and discovered that the myogenic transcription factors (MRF), myoblast determination factor (MyoD) and myogenin (MyoG), along with the adipocyte-specific transcription factor (TF) CCAAT/enhancer-binding protein α (C/EBPα), can bind to the core transcription activation region of the IGFBP7 promoter located 500 bp upstream from the transcription start site, thereby promoting IGFBP7 transcription and expression. Taken together, our study underscores the role of IGFBP7 as a positive regulator for myogenesis and adipogenesis, while also elucidating the functional and transcriptional regulatory mechanisms of IGFBP7 in chicken skeletal muscle development and intramuscular adipogenesis.
Collapse
Affiliation(s)
- Wanzhuo Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xi Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuohan Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mohammed Kamal Challioui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Animal Production and Biotechnology Department, Institut Agronomique et Vétérinaire Hassan II, Rabat P.O. Box 6202, Rabat, Morocco
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Fejzo M, Wang X, Zöllner J, Pujol-Gualdo N, Laisk T, Finer S, van Heel DA, Brumpton B, Bhatta L, Hveem K, Jasper EA, Velez Edwards DR, Hellwege JN, Edwards T, Jarvik GP, Luo Y, Khan A, MacGibbon K, Gao Y, Ge G, Averbukh I, Soon E, Angelo M, Magnus P, Johansson S, Njølstad PR, Vaudel M, Shu C, Mancuso N. Multi-ancestry GWAS of severe pregnancy nausea and vomiting identifies risk loci associated with appetite, insulin signaling, and brain plasticity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.19.24317559. [PMID: 39606329 PMCID: PMC11601681 DOI: 10.1101/2024.11.19.24317559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
While most pregnancies are affected by nausea and vomiting, hyperemesis gravidarum (HG) is at the severe end of the clinical spectrum and is associated with dehydration, undernutrition, and adverse maternal, fetal, and child outcomes. Herein we performed a multi-ancestry genome-wide association study (GWAS) of severe nausea and vomiting of pregnancy of 10,974 cases and 461,461 controls across European, Asian, African, and Latino ancestries. We identified ten significantly associated loci, of which six were novel (SLITRK1, SYN3, IGSF11, FSHB, TCF7L2, and CDH9), and confirmed previous genome-wide significant associations with risk genes GDF15, IGFBP7, PGR, and GFRAL. In a spatiotemporal analysis of placental development, GDF15 and TCF7L2 were expressed primarily in extra villous trophoblast, and using a weighted linear model of maternal, paternal, and fetal effects, we confirmed opposing effects for GDF15 between maternal and fetal genotype. Conversely, IGFBP7 and PGR were primarily expressed in developing maternal spiral arteries during placentation, with effects limited to the maternal genome. Risk loci were found to be under significant evolutionary selection, with the strongest effects on nausea and vomiting mid-pregnancy. Selected loci were associated with abnormal pregnancy weight gain, pregnancy duration, birth weight, head circumference, and pre-eclampsia. Potential roles for candidate genes in appetite, insulin signaling, and brain plasticity provide new pathways to explore etiological mechanisms and novel therapeutic avenues.
Collapse
Affiliation(s)
- Marlena Fejzo
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Xinran Wang
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Julia Zöllner
- UCL EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Natàlia Pujol-Gualdo
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Sarah Finer
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - David A van Heel
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Ben Brumpton
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim 7030, Norway
| | - Laxmi Bhatta
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- Division of Mental Health Care, St Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim 7030, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger 7600, Norway
- Department of Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elizabeth A Jasper
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Digna R Velez Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Jacklyn N Hellwege
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Todd Edwards
- Vanderbilt University Medical Center, Nashville, TN. 37221. My affiliation specifically is Department of Obstetrics and Gynecology, Division of Quantitative and Clinical Sciences
| | - Gail P Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Atlas Khan
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Kimber MacGibbon
- Hyperemesis Education and Research Foundation, Clackamas, OR 97089 USA
| | - Yuan Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Gaoxiang Ge
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031
| | - Inna Averbukh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Erin Soon
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Chang Shu
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| | - Nicholas Mancuso
- Department of Population and Public Health Science, Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033 United States
| |
Collapse
|
4
|
Ianoș RD, Cozma A, Lucaciu RL, Hangan AC, Negrean V, Mercea DC, Ciulei G, Pop C, Procopciuc LM. Role of Circulating Biomarkers in Diabetic Cardiomyopathy. Biomedicines 2024; 12:2153. [PMID: 39335666 PMCID: PMC11428922 DOI: 10.3390/biomedicines12092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that has alarmingly increased in incidence in recent decades. One of the most serious complications of T2DM is diabetic cardiomyopathy (DCM), an often underrecognized yet severe condition that is a leading cause of mortality among diabetic patients. In the early stages of DCM, patients typically show no symptoms and maintain normal systolic and diastolic left ventricle function, making early detection challenging. Currently available clinical markers are often not specific enough to detect the early stage of DCM. Conventional biomarkers of cardiac mechanical stress and injury, such as natriuretic peptides (NPs) and cardiac troponin I (cTnI), have shown limited predictive value for patients with T2DM. NPs have proven efficacy in detecting diastolic dysfunction in diabetic patients when used alongside 2D echocardiography, but their utility as biomarkers is limited to symptomatic individuals. While cTnI is a reliable indicator of general cardiac damage, it is not specific to cardiac injury caused by high glucose levels or T2DM. This underscores the need for research into biomarkers that can enable early diagnosis and management of DCM to reduce mortality rates. Promising novel biomarkers that showed good performance in detecting diastolic dysfunction or heart failure in diabetic patients include galectin-3, ST2, FGF-21, IGFBP-7, GDF-15, and TGF-β. This review summarizes the current understanding of DCM biomarkers, aiming to generate new ideas for the early recognition and treatment of DCM by exploring related pathophysiological mechanisms.
Collapse
Affiliation(s)
- Raluca Diana Ianoș
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| | - Angela Cozma
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Vasile Negrean
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Delia Corina Mercea
- Department of Cardiology, Emergency County Hospital, 430031 Baia Mare, Romania; (D.C.M.); (C.P.)
| | - George Ciulei
- 4th Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (V.N.); (G.C.)
| | - Călin Pop
- Department of Cardiology, Emergency County Hospital, 430031 Baia Mare, Romania; (D.C.M.); (C.P.)
- Faculty of Medicine Arad, “Vasile Goldis” Western University, 310045 Arad, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
5
|
Katoh M, Nomura S, Yamada S, Ito M, Hayashi H, Katagiri M, Heryed T, Fujiwara T, Takeda N, Nishida M, Sugaya M, Kato M, Osawa T, Abe H, Sakurai Y, Ko T, Fujita K, Zhang B, Hatsuse S, Yamada T, Inoue S, Dai Z, Kubota M, Sawami K, Ono M, Morita H, Kubota Y, Mizuno S, Takahashi S, Nakanishi M, Ushiku T, Nakagami H, Aburatani H, Komuro I. Vaccine Therapy for Heart Failure Targeting the Inflammatory Cytokine Igfbp7. Circulation 2024; 150:374-389. [PMID: 38991046 DOI: 10.1161/circulationaha.123.064719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The heart comprises many types of cells such as cardiomyocytes, endothelial cells (ECs), fibroblasts, smooth muscle cells, pericytes, and blood cells. Every cell type responds to various stressors (eg, hemodynamic overload and ischemia) and changes its properties and interrelationships among cells. To date, heart failure research has focused mainly on cardiomyocytes; however, other types of cells and their cell-to-cell interactions might also be important in the pathogenesis of heart failure. METHODS Pressure overload was imposed on mice by transverse aortic constriction and the vascular structure of the heart was examined using a tissue transparency technique. Functional and molecular analyses including single-cell RNA sequencing were performed on the hearts of wild-type mice and EC-specific gene knockout mice. Metabolites in heart tissue were measured by capillary electrophoresis-time of flight-mass spectrometry system. The vaccine was prepared by conjugating the synthesized epitope peptides with keyhole limpet hemocyanin and administered to mice with aluminum hydroxide as an adjuvant. Tissue samples from heart failure patients were used for single-nucleus RNA sequencing to examine gene expression in ECs and perform pathway analysis in cardiomyocytes. RESULTS Pressure overload induced the development of intricately entwined blood vessels in murine hearts, leading to the accumulation of replication stress and DNA damage in cardiac ECs. Inhibition of cell proliferation by a cyclin-dependent kinase inhibitor reduced DNA damage in ECs and ameliorated transverse aortic constriction-induced cardiac dysfunction. Single-cell RNA sequencing analysis revealed upregulation of Igfbp7 (insulin-like growth factor-binding protein 7) expression in the senescent ECs and downregulation of insulin signaling and oxidative phosphorylation in cardiomyocytes of murine and human failing hearts. Overexpression of Igfbp7 in the murine heart using AAV9 (adeno-associated virus serotype 9) exacerbated cardiac dysfunction, while EC-specific deletion of Igfbp7 and the vaccine targeting Igfbp7 ameliorated cardiac dysfunction with increased oxidative phosphorylation in cardiomyocytes under pressure overload. CONCLUSIONS Igfbp7 produced by senescent ECs causes cardiac dysfunction and vaccine therapy targeting Igfbp7 may be useful to prevent the development of heart failure.
Collapse
Affiliation(s)
- Manami Katoh
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Seitaro Nomura
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Shintaro Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masamichi Ito
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan (H.H., H.N.)
| | - Mikako Katagiri
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Tuolisi Heryed
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takayuki Fujiwara
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Norifumi Takeda
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Maki Sugaya
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Miki Kato
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, Research Center for Advanced Science and Technology (M. Nishida, M.S., M.K., T.O.), The University of Tokyo, Japan
| | - Hiroyuki Abe
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Yoshitaka Sakurai
- Diabetes and Metabolic Diseases, Graduate School of Medicine (Y.S.), The University of Tokyo, Japan
| | - Toshiyuki Ko
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Kanna Fujita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Bo Zhang
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Satoshi Hatsuse
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Takanobu Yamada
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Shunsuke Inoue
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
| | - Zhehao Dai
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Masayuki Kubota
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Kousuke Sawami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Minoru Ono
- Cardiothoracic Surgery (M.O.), The University of Tokyo, Japan
| | - Hiroyuki Morita
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan (Y.K.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science (M. Nakanishi), The University of Tokyo, Japan
| | - Tetsuo Ushiku
- Pathology (H. Abe, T.U.), The University of Tokyo, Japan
| | - Hironori Nakagami
- Departments of Cardiovascular Medicine (M.Katoh, S.N., S.Y., M.I., M.Katagiri, T.H., T.F., N.T., T.K., K.F., B.Z., S.H., T.Y., S.I., Z.D., M.Kubota, K.S., H.M., I.K.), The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division (M.Katoh, S.N., H. Aburatani), The University of Tokyo, Japan
| | - Issei Komuro
- Frontier Cardiovascular Science (M.Katoh, T.K., S.I., S.N., I.K.), The University of Tokyo, Japan
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, Japan (S.M., S.T.)
| |
Collapse
|
6
|
He R, Feng B, Zhang Y, Li Y, Wang D, Yu L. IGFBP7 promotes endothelial cell repair in the recovery phase of acute lung injury. Clin Sci (Lond) 2024; 138:797-815. [PMID: 38840498 PMCID: PMC11196208 DOI: 10.1042/cs20240179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.
Collapse
Affiliation(s)
- Rui He
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Feng
- Department of Respiratory Medicine, People’s Hospital of Tongnan District, Chongqing, China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxing Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| | - Linchao Yu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| |
Collapse
|
7
|
Chen Y, Gong Y, Zou J, Li G, Zhang F, Yang Y, Liang Y, Dai W, He L, Lu H. Single-cell transcriptomic analysis reveals transcript enrichment in oxidative phosphorylation, fluid sheer stress, and inflammatory pathways in obesity-related glomerulopathy. Genes Dis 2024; 11:101101. [PMID: 38560497 PMCID: PMC10978546 DOI: 10.1016/j.gendis.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 04/04/2024] Open
Abstract
Obesity-related glomerulopathy (ORG) is an independent risk factor for chronic kidney disease and even progression to end-stage renal disease. Efforts have been undertaken to elucidate the mechanisms underlying the development of ORG and substantial advances have been made in the treatment of ORG, but relatively little is known about cell-specific changes in gene expression. To define the transcriptomic landscape at single-cell resolution, we analyzed kidney samples from four patients with ORG and three obese control subjects without kidney disease using single-cell RNA sequencing. We report for the first time that immune cells, including T cells and B cells, are decreased in ORG patients. Further analysis indicated that SPP1 was significantly up-regulated in T cells and B cells. This gene is related to inflammation and cell proliferation. Analysis of differential gene expression in glomerular cells (endothelial cells, mesangial cells, and podocytes) showed that these cell types were mainly enriched in genes related to oxidative phosphorylation, cell adhesion, thermogenesis, and inflammatory pathways (PI3K-Akt signaling, MAPK signaling). Furthermore, we found that the podocytes of ORG patients were enriched in genes related to the fluid shear stress pathway. Moreover, an evaluation of cell-cell communications revealed that there were interactions between glomerular parietal epithelial cells and other cells in ORG patients, with major interactions between parietal epithelial cells and podocytes. Altogether, our identification of molecular events, cell types, and differentially expressed genes may facilitate the development of new preventive or therapeutic approaches for ORG.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yushun Gong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Jia Zou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Guoli Li
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Fan Zhang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yiya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Yumei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, Hunan 410000, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
- Cardiovascular Research Institute of Jiangxi Province, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
8
|
Wang H, Du Y, Huang S, Sun X, Ye Y, Sun H, Chu X, Shan X, Yuan Y, Shen L, Bi Y. Single-cell analysis reveals a subpopulation of adipose progenitor cells that impairs glucose homeostasis. Nat Commun 2024; 15:4827. [PMID: 38844451 PMCID: PMC11156882 DOI: 10.1038/s41467-024-48914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose progenitor cells (APCs) are heterogeneous stromal cells and help to maintain metabolic homeostasis. However, the influence of obesity on human APC heterogeneity and the role of APC subpopulations on regulating glucose homeostasis remain unknown. Here, we find that APCs in human visceral adipose tissue contain four subsets. The composition and functionality of APCs are altered in patients with type 2 diabetes (T2D). CD9+CD55low APCs are the subset which is significantly increased in T2D patients. Transplantation of these cells from T2D patients into adipose tissue causes glycemic disturbance. Mechanistically, CD9+CD55low APCs promote T2D development through producing bioactive proteins to form a detrimental niche, leading to upregulation of adipocyte lipolysis. Depletion of pathogenic APCs by inducing intracellular diphtheria toxin A expression or using a hunter-killer peptide improves obesity-related glycemic disturbance. Collectively, our data provide deeper insights in human APC functionality and highlights APCs as a potential therapeutic target to combat T2D. All mice utilized in this study are male.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yanhua Du
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Huang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xitai Sun
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixiang Sun
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Xiaodong Shan
- Department of General Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
9
|
Szyszkowska A, Olesiewicz T, Płońska-Korabiewska I, Tarasiuk E, Olesiewicz B, Knapp M, Śledziewski R, Sobkowicz B, Lisowska A. The Importance of Lung Ultrasound and IGFBP7 (Insulin-like Growth Factor Binding Protein 7) Assessment in Diagnosing Patients with Heart Failure. J Clin Med 2024; 13:2220. [PMID: 38673493 PMCID: PMC11051327 DOI: 10.3390/jcm13082220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background: In daily practice, there are problems with adequately diagnosing the cause of dyspnea in patients with heart failure with preserved and mildly reduced ejection fractions (HFpEF and HFmrEF). This study aimed to assess the usefulness of lung ultrasound in diagnosing HFpEF and HFmrEF and determine its correlation with IGFBP7 (insulin-like growth factor binding protein 7), NTproBNP (N-terminal pro-B-type natriuretic peptide), and echocardiographic markers. Methods: The research was conducted on 143 patients hospitalized between 2018 and 2020, admitted due to dyspnea, and diagnosed with HFpEF and HFmrEF. Venous blood was collected from all participants to obtain basic biochemical parameters, NTproBNP, and IGFBP7. Moreover, all participants underwent echocardiography and transthoracic lung ultrasound. Two years after hospitalization a follow-up telephone visit was performed. Results: The number of B-lines in the LUS ≥ 16 was determined with a sensitivity of-73% and specificity of-62%, indicating exacerbation of heart failure symptoms on admission. The number of B-lines ≥ 14 on admission was determined as a cut-off point, indicating an increased risk of death during the 2-year follow-up period. The factors that significantly impacted mortality in the study patient population were age and the difference between the number of B-lines on ultrasound at admission and at hospital discharge. IGFBP7 levels had no significant effect on the duration of hospitalization, risk of rehospitalization, or mortality during follow-up. Conclusions: Lung ultrasonography provides additional diagnostic value in patients with HFpEF or HFmrEF and exacerbation of heart failure symptoms. The number of B-lines ≥ 14 may indicate an increased risk of death.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Tomasz Olesiewicz
- Department of Cardiology, Hospital in Ostrów Mazowiecka, 07-300 Ostrów Mazowiecka, Poland; (T.O.); (B.O.)
| | - Izabela Płońska-Korabiewska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Barbara Olesiewicz
- Department of Cardiology, Hospital in Ostrów Mazowiecka, 07-300 Ostrów Mazowiecka, Poland; (T.O.); (B.O.)
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Rafał Śledziewski
- Department of Radiology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Bożena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (I.P.-K.); (E.T.); (M.K.); (B.S.)
| |
Collapse
|
10
|
Zhu X, Liang F, Yin J, Li X, Jiang L, Gao Y, Lu Y, Hu Y, Dai N, Su J, Yang Z, Yao M, Xiao Y, Ge W, Zhang Y, Zhong Y, Zhang J, Wu M. Duration-specific association between plasma IGFBP7 levels and diabetic complications in patients with type 2 diabetes mellitus. Growth Horm IGF Res 2024; 75:101574. [PMID: 38503080 DOI: 10.1016/j.ghir.2024.101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE Insulin-like growth factor binding protein 7 (IGFBP7) has a strong affinity to insulin. This study aimed to evaluate the relationship between IGFBP7 and complications among type 2 diabetes mellitus (T2DM) patients. DESIGN A total of 1449 T2DM patients were selected from a cross-sectional study for disease management registered in the National Basic Public Health Service in Changshu, China, and further tested for their plasma IGFBP7 levels. Logistic regressions and Spearman's rank correlation analyses were used to explore the associations of IGFBP7 with diabetic complications and clinical characteristics, respectively. RESULTS Among the 1449 included T2DM patients, 403 (27.81%) had complications. In patients with shorter duration (less than five years), the base 10 logarithms of IGFBP7 concentration were associated with T2DM complications, with an adjusted odds ratio (OR) of 2.41 [95% confidence interval (95%CI) = 1.06-5.48]; while in patients with longer duration (more than five years), plasma IGFBP7 levels were not associated with T2DM complications. Furthermore, in T2DM patients with shorter duration, those with two or more types of complications were more likely to have higher levels of IGFBP7. CONCLUSION IGFBP7 is positively associated with the risk of complication in T2DM patients with shorter duration.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Fei Liang
- Huzhou First People's Hospital, Huzhou, Zhejiang 313000, China; Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoliang Li
- Zhuhai Center for Chronic Disease Control and Prevention, Zhuhai, Guangdong 519060, China
| | - Lai Jiang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Yan Gao
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Yan Lu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Yihe Hu
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Ningbin Dai
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China
| | - Jian Su
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Zhuoqiao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenxin Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Zhang
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu 215004, China.
| | - Ming Wu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
11
|
Wang Y, Chen J, Ni Y, Liu Y, Gao X, Tse MA, Panagiotou G, Xu A. Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. Gut Microbes 2024; 16:2416928. [PMID: 39473051 PMCID: PMC11533799 DOI: 10.1080/19490976.2024.2416928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The importance of gut microbes in mediating the benefits of lifestyle intervention is increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal fungi in exercise remains elusive. With our established randomized controlled trial of exercise intervention in Chinese males with prediabetes (n = 39, ClinicalTrials.gov:NCT03240978), we investigated the dynamics of human gut mycobiome and further interrogated their associations with exercise-elicited outcomes using multi-omics approaches. METHODS Clinical variations and biological samples were collected before and after training. Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequencing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink proteomics. RESULTS Twelve weeks of exercise training profoundly promoted fungal ecological diversity and intrakingdom connection. We further identified exercise-responsive genera with potential metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics approaches, we elucidated comprehensive associations between changes in gut mycobiome and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolomics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline microbial signatures and clinical characteristics predicted exercise responsiveness in improvements of insulin sensitivity, with an area under the receiver operating characteristic (AUROC) of 0.91 (95% CI: 0.85-0.97) in the discovery cohort and of 0.79 (95% CI: 0.74-0.86) in the independent validation cohort (n = 30). CONCLUSIONS Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Gianni Panagiotou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Torres G, Lancaster AC, Yang J, Griffiths M, Brandal S, Damico R, Vaidya D, Simpson CE, Martin LJ, Pauciulo MW, Nichols WC, Ivy DD, Austin ED, Hassoun PM, Everett AD. Low-affinity insulin-like growth factor binding protein 7 and its association with pulmonary arterial hypertension severity and survival. Pulm Circ 2023; 13:e12284. [PMID: 37674873 PMCID: PMC10477418 DOI: 10.1002/pul2.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Insulin-like growth factor (IGF) binding proteins (IGFBPs) are a family of growth factor modifiers, some of which are known to be independently associated with pulmonary arterial hypertension (PAH) survival. IGF factor binding protein 7 (IGFBP7) is a unique low-affinity IGFBP that, independent of IGF, stimulates prostacyclin production. This study proposed to establish associations between IGFBP7 and PAH severity and survival, using enrollment and longitudinal samples. Serum IGFBP7 levels were significantly elevated in patients with PAH compared to controls. After adjusting for age and sex, logarithmic increases in IGFBP7 were associated with a 20 m shorter six-minute walk distance (6MWD; p < 0.001), a 2-3 mmHg higher mean right atrial pressure (p < 0.001 and 0.02), and a higher likelihood of a greater REVEAL 2.0 risk category placement (p < 0.001). Kaplan-Meier analysis demonstrated significantly decreased survival with IGFBP7 above the median and Cox multivariable analysis adjusted for age and sex, demonstrated higher serum IGFBP7 was an independent predictor of survival. Though the exact mechanism is still unknown, given IGFBP7's role as a prostacyclin stimulant, it has potential use as a therapeutic target for disease modulation.
Collapse
Affiliation(s)
- Guillermo Torres
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jun Yang
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Department of Pediatrics, Division of Pediatric CardiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stephanie Brandal
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaidya
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of General Internal MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Catherine E. Simpson
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Lisa J. Martin
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Michael W. Pauciulo
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - William C. Nichols
- Department of Pediatrics, Division of Human Genetics, Cincinnati Children's Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - David D. Ivy
- Department of Pediatric CardiologyChildren's Hospital ColoradoDenverColoradoUSA
| | - Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Paul M. Hassoun
- Department of Medicine, Division of Pulmonary and Critical Care MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric CardiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
13
|
Zhang L, Smyth D, Al-Khalaf M, Blet A, Du Q, Bernick J, Gong M, Chi X, Oh Y, Roba-Oshin M, Coletta E, Feletou M, Gramolini AO, Kim KH, Coutinho T, Januzzi JL, Tyl B, Ziegler A, Liu PP. Insulin-like growth factor-binding protein-7 (IGFBP7) links senescence to heart failure. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1195-1214. [PMID: 39196168 PMCID: PMC11358005 DOI: 10.1038/s44161-022-00181-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.
Collapse
Affiliation(s)
- Liyong Zhang
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Smyth
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | - Alice Blet
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Qiujiang Du
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jordan Bernick
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Michael Gong
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Xu Chi
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Michel Feletou
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Anthony O Gramolini
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thais Coutinho
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Benoit Tyl
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Andre Ziegler
- Roche Diagnostics International, Ltd., Rotkreuz, Switzerland
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
14
|
Wu Q, Li J, Zhu J, Sun X, He D, Li J, Cheng Z, Zhang X, Xu Y, Chen Q, Zhu Y, Lai M. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr 2022; 9:936220. [PMID: 36505257 PMCID: PMC9729530 DOI: 10.3389/fnut.2022.936220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Gamma-glutamyl dipeptides are bioactive peptides involved in inflammation, oxidative stress, and glucose regulation. Gamma-glutamyl-leucine (Gamma-Glu-Leu) has been extensively reported to be associated with the risk of cardio-metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. However, the causality remains to be uncovered. The aim of this study was to explore the causal-effect relationships between Gamma-Glu-Leu and metabolic risk. Materials and methods In this study, 1,289 subjects were included from a cross-sectional survey on metabolic syndrome (MetS) in eastern China. Serum Gamma-Glu-Leu levels were measured by untargeted metabolomics. Using linear regressions, a two-stage genome-wide association study (GWAS) for Gamma-Glu-Leu was conducted to seek its instrumental single nucleotide polymorphisms (SNPs). One-sample Mendelian randomization (MR) analyses were performed to evaluate the causality between Gamma-Glu-Leu and the metabolic risk. Results Four SNPs are associated with serum Gamma-Glu-Leu levels, including rs12476238, rs56146133, rs2479714, and rs12229654. Out of them, rs12476238 exhibits the strongest association (Beta = -0.38, S.E. = 0.07 in discovery stage, Beta = -0.29, S.E. = 0.14 in validation stage, combined P-value = 1.04 × 10-8). Each of the four SNPs has a nominal association with at least one metabolic risk factor. Both rs12229654 and rs56146133 are associated with body mass index, waist circumference (WC), the ratio of WC to hip circumference, blood pressure, and triglyceride (5 × 10-5 < P < 0.05). rs56146133 also has nominal associations with fasting insulin, glucose, and insulin resistance index (5 × 10-5 < P < 0.05). Using the four SNPs serving as the instrumental SNPs of Gamma-Glu-Leu, the MR analyses revealed that higher Gamma-Glu-Leu levels are causally associated with elevated risks of multiple cardio-metabolic factors except for high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (P > 0.05). Conclusion Four SNPs (rs12476238, rs56146133, rs2479714, and rs12229654) may regulate the levels of serum Gamma-Glu-Leu. Higher Gamma-Glu-Leu levels are causally linked to cardio-metabolic risks. Future prospective studies on Gamma-Glu-Leu are required to explain its role in metabolic disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jiankang Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Jinghan Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di He
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China,Affiliated Hangzhou Center of Disease Control and Prevention, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuying Xu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Chen
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China,*Correspondence: Qing Chen,
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, China,Yimin Zhu,
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Maode Lai,
| |
Collapse
|
15
|
Sheng X, Wang S, Huang M, Fan K, Wang J, Lu Q. Bioinformatics Analysis of the Key Genes and Pathways in Multiple Myeloma. Int J Gen Med 2022; 15:6999-7016. [PMID: 36090706 PMCID: PMC9462443 DOI: 10.2147/ijgm.s377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To study the differentially expressed genes between multiple myeloma and healthy whole blood samples by bioinformatics analysis, find out the key genes involved in the occurrence, development and prognosis of multiple myeloma, and analyze and predict their functions. Methods The gene chip data GSE146649 was downloaded from the GEO expression database. The gene chip data GSE146649 was analyzed by R language to obtain the genes with different expression in multiple myeloma and healthy samples, and the cluster analysis heat map was constructed. At the same time, the protein-protein interaction (PPI) networks of these DEGs were established by STRING and Cytoscape software. The gene co-expression module was constructed by weighted correlation network analysis (WGCNA). The hub genes were identified from key gene and central gene. TCGA database was used to analyze the expression of differentially expressed genes in patients with multiple myeloma. Finally, the expression level of TNFSF11 in whole blood samples from patients with multiple myeloma was analyzed by RT qPCR. Results We identified four genes (TNFSF11, FGF2, SGMS2, IGFBP7) as hub genes of multiple myeloma. Then, TCGA database was used to analyze the survival of TNFSF11, FGF2, SGMS2 and IGFBP7 in patients with multiple myeloma. Finally, the expression level of TNFSF11 in whole blood samples from patients with multiple myeloma was analyzed by RT qPCR. Conclusion The study suggests that TNFSF11, FGF2, SGMS2 and IGFBP7 are important research targets to explore the pathogenesis, diagnosis and treatment of multiple myeloma.
Collapse
Affiliation(s)
- Xinge Sheng
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Shuo Wang
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Meijiao Huang
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
| | - Kaiwen Fan
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Jiaqi Wang
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital Xiamen University, Xiamen, People’s Republic of China
- Clinical Medicine Department, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Correspondence: Quanyi Lu, Tel +86 13600959425, Email
| |
Collapse
|
16
|
Insulin-like Growth Factor 2 (IGF-2) and Insulin-like Growth Factor Binding Protein 7 (IGFBP-7) Are Upregulated after Atypical Antipsychotics in Spanish Schizophrenia Patients. Int J Mol Sci 2022; 23:ijms23179591. [PMID: 36076984 PMCID: PMC9455262 DOI: 10.3390/ijms23179591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin-like growth factor 2 (IGF-2) and IGF binding protein 7 (IGFBP-7) have been related to schizophrenia (SZ) due to their implication in neurodevelopment. The purpose of this study was to assess whether the alterations in IGF-2 and IGFBP-7 in SZ patients are intrinsically related to the psychiatric disorder itself or are a secondary phenomenon due to antipsychotic treatment. In order to test this hypothesis, we measured plasma IGF-2 and IGFBP-7 in drug-naïve first episode (FE) and multiple episodes or chronic (ME) SZ Caucasian patients who have been following treatment for years. A total of 55 SZ patients (FE = 15, ME = 40) and 45 healthy controls were recruited. The Positive and Negative Syndrome Scale (PANSS) and the Self-Assessment Anhedonia Scale (SAAS) were employed to check schizophrenic symptomatology and anhedonia, respectively. Plasma IGF-2 and IGFBP-7 levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA). The FE SZ patients had much lower IGF-2, but not IGFBP-7, than controls. Moreover, both IGF-2 and IGFBP-7 significantly increased after atypical antipsychotic treatment (aripiprazole, olanzapine, or risperidone) in these patients. On the other hand, chronic patients showed higher levels of both proteins when compared to controls. Our study suggests that circulatory IGF-2 and IGFBP-7 increase after antipsychotic treatment, regardless of long-term conditions and being lower in drug-naïve FE patients.
Collapse
|
17
|
Szyszkowska A, Barańska S, Sawicki R, Tarasiuk E, Dubatówka M, Kondraciuk M, Sawicka-Śmiarowska E, Knapp M, Głowiński J, Kamiński K, Lisowska A. Insulin-Like Growth Factor-Binding Protein 7 (IGFBP-7)-New Diagnostic and Prognostic Marker in Symptomatic Peripheral Arterial Disease?-Pilot Study. Biomolecules 2022; 12:712. [PMID: 35625639 PMCID: PMC9138972 DOI: 10.3390/biom12050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of our study was to evaluate the importance of insulin-like growth-factor-binding protein 7 (IGFBP-7) as a potential marker of symptomatic peripheral artery disease (PAD) occurrence. The study group consisted of 145 patients with diagnosed PAD, who qualified for the invasive treatment. The control group consisted of 67 individuals representing the local population and an ischemic heart disease (IHD) group of 88 patients after myocardial infarction or percutaneous coronary intervention. Patients with PAD had significantly higher IGFBP-7 concentrations than control group (1.80 ± 1.62 vs. 1.41 ± 0.45 ng/mL, p = 0.04). No significant differences between PAD patients and IHD patients were found (1.80 ± 1.62 vs. 1.76 ± 1.04 ng/mL, p = 0.783). Patients with multilevel PAD presented significantly higher IGFBP-7 concentrations than patients with aortoiliac PAD-median 1.18 (IQR 0.48-2.23) vs. 1.42 ng/mL (0.71-2.63), p = 0.035. In the group of patients who died or had a major adverse cardiovascular event (MACE) during six months of follow-up, a statistically significant higher IGFBP-7 concentration was found (median 2.66 (IQR 1.80-4.93) vs. 1.36 ng/mL (IQR 0.65-2.34), p = 0.004). It seems that IGFBP-7 is elevated in patients with atherosclerotic lesions-regardless of their locations. Further research should be conducted to verify IGFBP-7 usefulness as a predictor of MACE or death.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Sylwia Barańska
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, 15-276 Bialystok, Poland; (S.B.); (J.G.)
| | - Robert Sawicki
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Marlena Dubatówka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Emilia Sawicka-Śmiarowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| | - Jerzy Głowiński
- Department of Vascular Surgery and Transplantation, Medical University of Bialystok, 15-276 Bialystok, Poland; (S.B.); (J.G.)
| | - Karol Kamiński
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.K.)
| | - Anna Lisowska
- Department of Cardiology, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.S.); (R.S.); (E.T.); (E.S.-Ś.); (M.K.); (K.K.)
| |
Collapse
|
18
|
IGFBP7 Concentration May Reflect Subclinical Myocardial Damage and Kidney Function in Patients with Stable Ischemic Heart Disease. Biomolecules 2022; 12:biom12020274. [PMID: 35204773 PMCID: PMC8961623 DOI: 10.3390/biom12020274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine the associations between insulin-like growth-factor-binding protein 7(IGFBP7) concentrations and concentrations of troponin T(TnT), N-terminal pro-B-type natriuretic peptide(NT-proBNP) and the parameters of kidney function in patients with stable ischemic heart disease(IHD). The IHD group consisted of 88 patients, and the population group comprised 66 subjects without a history of IHD. IGFBP7, TnT and NTproBNP concentrations were measured. The IGFBP7 value was considerably higher in the IHD group (1.76 ± 1 ng/mL vs. 1.43 ± 0.44 ng/mL, respectively, p = 0.019). Additionally, IHD subjects had a significantly higher concentration of TnT and NTproBNP. In both groups there was a significant correlation between IGFBP7 and serum parameters of kidney function (creatinine concentration: population gr. r = 0.45, p < 0.001, IHD gr. r = 0.86, p < 0.0001; urea concentration: population gr. r = 0.51, p < 0.0001, IHD gr. r = 0.71, p < 0.00001). No correlation between IGFBP7 and microalbuminuria or the albumin to creatinine ratio in urine was found. Moreover, there was a significant correlation between IGFBP7 concentration and markers of heart injury/overload-TnT and NT-BNP(r = 0.76, p < 0.001 and r = 0.72, p < 0.001, respectively). Multivariate regression analysis in joint both revealed that the IGFBP7 concentration is independently associated with urea, creatinine and TnT concentrations (R2 for the model 0.76). IHD patients presented significantly higher IGFBP7 concentrations than the population group. Elevated IGFBP7 levels are associated predominantly with markers of kidney function and myocardial damage or overload.
Collapse
|
19
|
Bauer S, Strack C, Ücer E, Wallner S, Hubauer U, Luchner A, Maier LS, Jungbauer C. Evaluation of a multimarker panel in chronic heart failure: a 10-year follow-up. Biomark Med 2021; 15:1709-1719. [PMID: 34783584 DOI: 10.2217/bmm-2020-0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We assessed the 10-year prognostic role of 11 biomarkers with different pathophysiological backgrounds. Materials & methods/results: Blood samples from 144 patients with heart failure were analyzed. After 10 years of follow-up (median follow-up was 104 months), data regarding all-cause mortality were acquired. Regarding Kaplan-Meier analysis, all markers, except TIMP-1 and GDF-15, were significant predictors for all-cause mortality. We created a multimarker model with nt-proBNP, hs-TnT and IGF-BP7 and found that patients in whom all three markers were elevated had a significantly worse long-time prognosis than patients without elevated markers. Conclusion: In a 10-year follow-up, a combination of three biomarkers (NT-proBNP, hs-TnT, IGF-BP7) identified patients with a high risk of mortality.
Collapse
Affiliation(s)
- Susanne Bauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Christina Strack
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Ekrem Ücer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Stefan Wallner
- University Hospital Regensburg, Department for Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Ute Hubauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Andreas Luchner
- Hospital Barmherzige Brüder, Department for Cardiology, Prüfeninger Straße 86, Regensburg, 93049, Germany
| | - Lars Siegfried Maier
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| | - Carsten Jungbauer
- University Hospital Regensburg, Department for Cardiology, Franz-Josef-Strauss Allee 11, Regensburg, 93053, Germany
| |
Collapse
|
20
|
Godina C, Khazaei S, Tryggvadottir H, Visse E, Nodin B, Jirström K, Borgquist S, Bosch A, Isaksson K, Jernström H. Prognostic impact of tumor-specific insulin-like growth factor binding protein 7 (IGFBP7) levels in breast cancer: a prospective cohort study. Carcinogenesis 2021; 42:1314-1325. [PMID: 34606580 PMCID: PMC8598394 DOI: 10.1093/carcin/bgab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
The prognostic impact of insulin-like growth factor binding protein 7 (IGFBP7) in breast cancer is unclear. Host factors, including lifestyle, anthropometry and metabolic profile, might influence tumor-specific IGFBP7. This study aimed to investigate whether IGFBP7 levels and messenger ribonucleic acid (mRNA) expression are associated with the patient and tumor characteristics and prognosis in breast cancer. Patients with primary breast cancer in Lund, Sweden, were included preoperatively in the study between 2002 and 2012 (n = 1018). Tumor-specific IGFBP7 protein levels were evaluated with immunohistochemistry using tissue microarrays in tumors from 878 patients. IGFBP7 mRNA expression and its corresponding clinical data were obtained from The Cancer Genome Atlas and analyzed for 809 patients. Tumor-specific IGFBP7 protein levels were categorized based on Histo 300 scores into IGFBP7low (6.2%), IGFBP7intermediate (75.7%) and IGFBP7high (18.1%). Both low IGFBP7 protein levels and mRNA expression were associated with less aggressive tumor characteristics. Overall, IGFBP7low conferred low recurrence risk. The prognostic impact of IGFBP7high varied according to any alcohol consumption and tamoxifen treatment. IGFBP7high was associated with low recurrence risk in alcohol consumers but high recurrence risk in alcohol abstainers (Pinteraction= 0.039). Moreover, the combination of IGFBP7high and estrogen receptor-positive tumors was associated with low recurrence risk only in tamoxifen-treated patients (Pinteraction= 0.029). To conclude, IGFBP7low might be a good, independent prognosticator in breast cancer. The prognostic impact of IGFBP7high depends on host factors and treatment. IGFBP7 merits further investigation to confirm whether it could be a suitable biomarker for treatment selection.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| | - Somayeh Khazaei
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Edward Visse
- Division of Neurosurgery, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.,Kristianstad Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Barngatan 4, SE 221 85 Lund, Sweden
| |
Collapse
|
21
|
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12:685-705. [PMID: 34168722 PMCID: PMC8192249 DOI: 10.4239/wjd.v12.i6.685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension. As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate, various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM, with little success so far. Hence, we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM. Among the array of biomarkers we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection, as their plasma/serum levels accurately correlate with the early stages of DCM. The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients. The purpose of the screening test would be to direct affected patients to more specific confirmation tests. This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Emergency Medicine, Institute of Emergency Medicine of Split-Dalmatia County, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
22
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
23
|
Rahman A, Hammad MM, Al Khairi I, Cherian P, Al-Sabah R, Al-Mulla F, Abu-Farha M, Abubaker J. Profiling of Insulin-Like Growth Factor Binding Proteins (IGFBPs) in Obesity and Their Association With Ox-LDL and Hs-CRP in Adolescents. Front Endocrinol (Lausanne) 2021; 12:727004. [PMID: 34394011 PMCID: PMC8355984 DOI: 10.3389/fendo.2021.727004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are critical modulators of metabolism. In adults, IGFBPs are associated with obesity and insulin resistance. However, the association of IGFBPs with metabolic homeostasis in children and adolescents is not yet fully characterized. In this study we investigated the association of plasma IGFBPs (IGFBP-1, 3 and 7) with weight, central adiposity and cardiovascular disease markers Hs-CRP and Ox-LDL. A total of 420 adolescents (age 11-14 years) were recruited from public middle schools in Kuwait. IGFBPs were measured using bead-based multiplexing while Hs-CRP and Ox-LDL were measured using ELISA. Results showed that levels of IGFBP-1 were significantly lower in obese and overweight children when compared to normal weight children. Correlation analysis showed negative association between the level of IGFBP-1 and waist circumference to height (WC/Ht) ratio. IGFBP-1 level was also negatively associated with Hs-CRP. It was also observed that the levels of IGFBP-3 and IGFBP-7 were negatively correlated with Ox-LDL. Our data demonstrate a strong negative association of IGFBP-1 with overweight/obesity, and the inflammatory marker Hs-CRP. This was not seen with the levels of IGFBP-3 and 7. The association of IGFBP-1 with central adiposity (WC/Ht ratio) was stronger than its association with BMI-for-age z-score. Therefore we suggest that IGFBP-1 could potentially be used as a sensitive biomarker for obesity and its subsequent effects in screening and monitoring of obesity-related metabolic complications in adolescents.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Maha M. Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Special Services Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Jehad Abubaker, ; Mohamed Abu-Farha, ;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Jehad Abubaker, ; Mohamed Abu-Farha, ;
| |
Collapse
|
24
|
Januzzi JL, Butler J, Sattar N, Xu J, Shaw W, Rosenthal N, Pfeifer M, Mahaffey KW, Neal B, Hansen MK. Insulin-Like Growth Factor Binding Protein 7 Predicts Renal and Cardiovascular Outcomes in the Canagliflozin Cardiovascular Assessment Study. Diabetes Care 2021; 44:210-216. [PMID: 33158949 DOI: 10.2337/dc20-1889] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To analyze the association between concentrations of plasma insulin-like growth factor binding protein 7 (IGFBP7) with renal and cardiac outcomes among participants with type 2 diabetes and high cardiovascular risk. RESEARCH DESIGN AND METHODS Associations between IGFBP7 levels and clinical outcomes were assessed among participants in the Canagliflozin Cardiovascular Assessment Study (CANVAS) with type 2 diabetes and high cardiovascular risk. RESULTS Among CANVAS participants, 3,577 and 2,898 had IGFBP7 measured at baseline and 1 year, respectively. Per log-unit higher concentration, baseline IGFBP7 was significantly associated with the composite renal end point of sustained 40% reduction in estimated glomerular filtration rate, need for renal replacement therapy, or renal death (hazard ratio [HR] 3.51; P < 0.001) and the composite renal end point plus cardiovascular death (HR 4.90; P < 0.001). Other outcomes, including development or progression of albuminuria, were also predicted by baseline IGFBP7. Most outcomes were improved by canagliflozin regardless of baseline IGFBP7; however, those with baseline concentrations ≥96.5 ng/mL appeared to benefit more from canagliflozin relative to the first progression of albuminuria compared with those with lower baseline IGFBP7 (HR 0.64 vs. 0.95; P interaction = 0.003). Canagliflozin did not lower IGFBP7 concentrations by 1 year; however, at 1 year, higher IGFBP7 concentrations more strongly predicted the composite renal end point (HR 15.7; P < 0.001). Patients with rising IGFBP7 between baseline and 1 year had the highest number of composite renal events. CONCLUSIONS Plasma IGFBP7 concentrations predicted renal and cardiac events among participants with type 2 diabetes and high cardiovascular risk. More data are needed regarding circulating IGFBP7 and progression of diabetic kidney disease and its complications.
Collapse
Affiliation(s)
- James L Januzzi
- Cardiology Division, Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA
| | | | | | - Jialin Xu
- Janssen Research & Development, LLC, Spring House, PA
| | - Wayne Shaw
- Janssen Research & Development, LLC, Raritan, NJ
| | | | | | - Kenneth W Mahaffey
- Stanford Center for Clinical Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Bruce Neal
- The George Institute for Global Health and Charles Perkins Centre, University of Sydney, Sydney, Australia.,Imperial College London, London, U.K
| | | |
Collapse
|
25
|
Liu CT, Xu YW, Guo H, Hong CQ, Huang XY, Luo YH, Yang SH, Chu LY, Li EM, Peng YH. Serum Insulin-Like Growth Factor Binding Protein 7 as a Potential Biomarker in the Diagnosis and Prognosis of Esophagogastric Junction Adenocarcinoma. Gut Liver 2020; 14:727-734. [PMID: 31822054 PMCID: PMC7667930 DOI: 10.5009/gnl19135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Esophagogastric junction adenocarcinoma (EJA) is a malignant tumor associated with high morbidity and has attracted increasing attention due to a rising incidence and low survival rate. Pathological biopsy is the gold standard for diagnosis, but noninvasive and effective tests are lacking, resulting in diagnoses at advanced stages. This study explored the diagnostic value of insulin-like growth factor binding protein 7 (IGFBP7) in EJA. METHODS A total of 120 EJA patients and 88 normal controls were recruited, and their serum levels of IGFBP7 were measured by enzymelinked immunosorbent assay. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value, and Pearson chi-square analysis was used to evaluate the correlation between IGFBP7 and clinical parameters. Kaplan- Meier survival analysis was carried out to assess the effect of IGFBP7 on overall survival (OS). RESULTS The levels of IGFBP7 were higher in both early- and late-stage EJA patients than in normal controls (p<0.001). The area under the ROC curve for EJA patients was 0.794 (95% confidence interval [CI], 0.733 to 0.854), with a cutoff value of 2.716 ng/mL, a sensitivity of 63.3% (95% CI, 54.0% to 71.8%) and a specificity of 90.9% (95% CI, 82.4% to 95.7%). For the diagnosis of early-stage EJA, the same cutoff value and specificity were obtained, but the sensitivity of IGFBP7 was 54.3% (95% CI, 36.9% to 70.8%). Patients with low IGFBP7 protein expression had lower OS than those with high expression (p=0.034). The multivariate analysis showed that IGFBP7 is an independent prognostic factor for EJA (p=0.011). CONCLUSIONS Serum IGFBP7 acts as a potential diagnostic and prognostic marker for EJA.
Collapse
Affiliation(s)
- Can-Tong Liu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
| | - Hong Guo
- Departments of Radiation Oncology, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chao-Qun Hong
- Departments of Oncological Laboratory Research, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xin-Yi Huang
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - Yu-Hao Luo
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Shi-Han Yang
- Department of Dermatology and Venereology, Shantou Central Hospital, Shantou, China
| | - Ling-Yu Chu
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
| | - En-Min Li
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, the Cancer Hospital of Shantou University Medical College, Shantou, China
- Precision Medicine Research Center, Shantou University Medical College, Shantou, China
- Guangdong Esophageal Cancer Research Institute, Shantou University Medical College, Shantou, China
| |
Collapse
|
26
|
Kalayci A, Peacock WF, Nagurney JT, Hollander JE, Levy PD, Singer AJ, Shapiro NI, Cheng RK, Cannon CM, Blomkalns AL, Walters EL, Christenson RH, Chen-Tournoux A, Nowak RM, Lurie MD, Pang PS, Kastner P, Masson S, Gibson CM, Gaggin HK, Januzzi JL. Echocardiographic assessment of insulin-like growth factor binding protein-7 and early identification of acute heart failure. ESC Heart Fail 2020; 7:1664-1675. [PMID: 32406612 PMCID: PMC7373911 DOI: 10.1002/ehf2.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Aims Concentrations of insulin‐like growth factor binding protein‐7 (IGFBP7) have been linked to abnormal cardiac structure and function in patients with chronic heart failure (HF), but cardiovascular correlates of the biomarker in patients with more acute presentations are lacking. We aimed to determine the relationship between IGFBP7 concentrations and cardiac structure and to evaluate the impact of IGFBP7 on the diagnosis of acute HF among patients with acute dyspnoea. Methods and results In this pre‐specified subgroup analysis of the International Collaborative of N‐terminal pro‐B‐type Natriuretic Peptide Re‐evaluation of Acute Diagnostic Cut‐Offs in the Emergency Department (ICON‐RELOADED) study, we included 271 patients with and without acute HF. All patients presented to an emergency department with acute dyspnoea, had blood samples for IGFBP7 measurement, and detailed echocardiographic evaluation. Higher IGFBP7 concentrations were associated with numerous cardiac abnormalities, including increased left atrial volume index (LAVi; r = 0.49, P < 0.001), lower left ventricular ejection fraction (r = −0.27, P < 0.001), lower right ventricular fractional area change (r = −0.31, P < 0.001), and higher tissue Doppler E/e′ ratio (r = 0.44, P < 0.001). In multivariable linear regression analyses, increased LAVi (P = 0.01), lower estimated glomerular filtration rate (P = 0.008), higher body mass index (P = 0.001), diabetes (P = 0.009), and higher concentrations of amino‐terminal pro‐B‐type natriuretic peptide (NT‐proBNP, P = 0.02) were independently associated with higher IGFBP7 concentrations regardless of other variables. Furthermore, IGFBP7 (odds ratio = 12.08, 95% confidence interval 2.42–60.15, P = 0.02) was found to be independently associated with the diagnosis of acute HF in the multivariable logistic regression analysis. Conclusions Among acute dyspnoeic patients with and without acute HF, increased IGFBP7 concentrations are associated with a range of cardiac structure and function abnormalities. Independent association with increased LAVi suggests elevated left ventricular filling pressure is an important trigger for IGFBP7 expression and release. IGFBP7 may enhance the diagnosis of acute HF.
Collapse
Affiliation(s)
- Arzu Kalayci
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | - John T Nagurney
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Judd E Hollander
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Phillip D Levy
- Department of Emergency Medicine and Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Adam J Singer
- Department of Emergency Medicine, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Chad M Cannon
- Department of Emergency Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth L Walters
- Department of Emergency Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annabel Chen-Tournoux
- Division of Cardiology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Richard M Nowak
- Department of Emergency Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Mark D Lurie
- Division of Cardiology, Torrance Memorial Medical Center, Torrance, CA, USA
| | - Peter S Pang
- Department of Emergency Medicine, Indiana University School of Medicine & Indianapolis EMS, Indianapolis, Indiana, USA
| | | | - Serge Masson
- Roche Diagnostics International, Rotkreuz, Switzerland
| | - C Michael Gibson
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hanna K Gaggin
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Yawkey 5984, 55 Fruit Street, Boston, MA, 02114, USA
| | - James L Januzzi
- Baim Institute for Clinical Research, Boston, MA, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Yawkey 5984, 55 Fruit Street, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, Maier AG, Dorin-Semblat D, Biswas S, Gamain B, Lau YL, Malleret B, Chu C, Nosten F, Renia L. Plasmodium-infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. eLife 2020; 9:e51546. [PMID: 32066522 PMCID: PMC7048393 DOI: 10.7554/elife.51546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
In malaria, rosetting is described as a phenomenon where an infected erythrocyte (IRBC) is attached to uninfected erythrocytes (URBC). In some studies, rosetting has been associated with malaria pathogenesis. Here, we have identified a new type of rosetting. Using a step-by-step approach, we identified IGFBP7, a protein secreted by monocytes in response to parasite stimulation, as a rosette-stimulator for Plasmodium falciparum- and P. vivax-IRBC. IGFBP7-mediated rosette-stimulation was rapid yet reversible. Unlike type I rosetting that involves direct interaction of rosetting ligands on IRBC and receptors on URBC, the IGFBP7-mediated, type II rosetting requires two additional serum factors, namely von Willebrand factor and thrombospondin-1. These two factors interact with IGFBP7 to mediate rosette formation by the IRBC. Importantly, the IGFBP7-induced type II rosetting hampers phagocytosis of IRBC by host phagocytes.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Bruce Russell
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Radoslaw Mikolaj Sobota
- Systems Structural Biology Group, Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Institute of Medical Biology (IMB) Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Khairunnisa Ghaffar
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zi Xin Wong
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Alexander G Maier
- Biomedical Sciences and Biochemistry, Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Subhra Biswas
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERMParisFrance
- Institut National de la Transfusion SanguineParisFrance
| | - Yee-Ling Lau
- Department of ParasitologyFaculty of Medicine, University of MalayaKuala LumpurMalaysia
| | - Benoit Malleret
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cindy Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Laurent Renia
- Singapore Immunology Network (SIgN)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
28
|
Arima N, Sasaki Y, Lee LH, Zhang H, Figueiredo JL, Mlynarchik AK, Qiao J, Yamada I, Higashi H, Ha AH, Halu A, Mizuno K, Singh SA, Yamazaki Y, Aikawa M. Multiorgan Systems Study Reveals Igfbp7 as a Suppressor of Gluconeogenesis after Gastric Bypass Surgery. J Proteome Res 2020; 19:129-143. [PMID: 31661273 DOI: 10.1021/acs.jproteome.9b00441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Roux-en-Y gastric bypass (RYGB) surgery reduces weight in obese patients. A marked decrease in blood glucose levels occurs before weight loss; however, key molecules that improve the glycemic profile remain largely unknown. Using a murine RYGB surgery model, we performed multiorgan proteomics and bioinformatics to monitor the proteins and molecular pathways that change in this early glycemic response. Multiplexed proteomic kinetics data analysis revealed that the Roux limb, biliopancreatic limb, liver, and pancreas each exhibited unique temporal and molecular responses to the RYGB surgery. In addition, protein-protein network analysis indicated that the changes to the microbial environment in the intestine may play a crucial role in the beneficial effects of RYGB surgery. Furthermore, insulin-like growth factor binding protein 7 (Igfbp7) was identified as an early induced protein in the Roux limb. Known secretory properties of Igfbp7 prompted us to further investigate its role as a remote organ regulator of glucose metabolism. Igfbp7 overexpression decreased blood glucose levels in diet-induced obese mice and attenuated gluconeogenic gene expression in the liver. Secreted Igfbp7 appeared to mediate these beneficial effects. These results demonstrate that organs responded differentially to RYGB surgery and indicate that Igfbp7 may play an important role in improving blood glucose levels.
Collapse
Affiliation(s)
- Naoaki Arima
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | - Yusuke Sasaki
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | | | | | | | | | | | - Iwao Yamada
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | - Hideyuki Higashi
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | | | | | - Ken Mizuno
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | | | - Yukiyoshi Yamazaki
- Tokyo New Drug Research Laboratories , Kowa Company, Ltd. , Tokyo 189-0022 , Japan
| | - Masanori Aikawa
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health , Moscow , Russian Federation , 119146
| |
Collapse
|
29
|
Ye C, Hou W, Chen M, Lu J, Chen E, Tang L, Hang K, Ding Q, Li Y, Zhang W, He R. IGFBP7 acts as a negative regulator of RANKL-induced osteoclastogenesis and oestrogen deficiency-induced bone loss. Cell Prolif 2019; 53:e12752. [PMID: 31889368 PMCID: PMC7046308 DOI: 10.1111/cpr.12752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Insulin-like growth factor-binding protein 7 (IGFBP7) is a low-affinity insulin growth factor (IGF) binder that may play an important role in bone metabolism. We previously reported that IGFBP7 enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signalling pathway. In this study, we tried to reveal its function in osteoclast differentiation and osteoporosis. METHODS We used both in vitro and in vivo studies to investigate the effects of IGFBP7 on RANKL-induced osteoclastogenesis and osteoporosis, together with the underlying molecular mechanisms of these processes. RESULTS We show that IGFBP7 inhibited receptor activation of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis, F-actin ring formation and bone resorption, which was confirmed by using recombinant IGFBP7 protein, lentivirus and siRNA. The NF-κB signalling pathway was inhibited during this process. Moreover, in a mouse ovariectomy-induced osteoporosis model, IGFBP7 treatment attenuated osteoporotic bone loss by inhibiting osteoclast activity. CONCLUSIONS Taken together, these findings show that IGFBP7 suppressed osteoclastogenesis in vitro and in vivo and suggest that IGFBP7 is a negative regulator of osteoclastogenesis and plays a protective role in osteoporosis. These novel insights into IGFBP7 may facilitate the development of potential treatment strategies for oestrogen deficiency-induced osteoporosis and other osteoclast-related disorders.
Collapse
Affiliation(s)
- Chenyi Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwei Lu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Qianhai Ding
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yan Li
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Szyszkowska A, Knapp M, Kamiński K, Lisowska A. Insulin-like growth factor-binding protein 7 (IGFBP7): Novel, independent marker of cardiometabolic diseases? POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7) is a 30kDa modular secreted protein involved in many physiologic processes, including cell proliferation, adhesion, senescence and angiogenesis. It is expressed in many organs and specific cells. It can interact with insulin-like growth factor 1(IGF-1), as well as with insulin. By binding to IGF-1, it limits IGF-1 access to IGF- receptor (IGF-R) and consequently neutralizes IGF-1 activity. Moreover, due to its high affinity to insulin, it may interfere with biological response of insulin and, therefore, it may be involved in the development of diabetes and cardiovascular diseases. According to research, it could be a good biomarker of heart failure. Its elevated serum concentrations were found in patients with heart failure, both with reduced ejection fraction and preserved ejection fraction. Moreover, IGFBP7 could be useful in predicting the presence of atherosclerotic lesions in coronary vessels, although its concentration does not reflect a degree of coronary artery disease (CAD) advancement and it cannot be used as a marker of acute ischemia. Its concentration is also associated with insulin resistance and the risk of metabolic syndrome. What is more, together with tissue inhibitor of metalloproteinases-2, it is a novel marker of tubular damage and it can be used for an early detection of acute kidney injury (AKI) endangered patients, which could allow for subsequent adjustments in medical therapy and the prevention of AKI. IGFBP7 is also regarded as a potential tumor suppressor in various cancers. Its low expression is potentially correlated with increased cancer cell proliferation.
Collapse
Affiliation(s)
- Anna Szyszkowska
- Department of Cardiology, Medical University of Białystok, Poland
| | - Małgorzata Knapp
- Department of Cardiology, Medical University of Białystok, Poland
| | - Karol Kamiński
- Department of Cardiology, Medical University of Białystok, Poland
| | - Anna Lisowska
- Department of Cardiology, Medical University of Białystok, Poland
| |
Collapse
|
31
|
Nieuwenhuis S, Okkersen K, Widomska J, Blom P, 't Hoen PAC, van Engelen B, Glennon JC. Insulin Signaling as a Key Moderator in Myotonic Dystrophy Type 1. Front Neurol 2019; 10:1229. [PMID: 31849810 PMCID: PMC6901991 DOI: 10.3389/fneur.2019.01229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul Blom
- VDL Enabling Technologies Group B.V., Eindhoven, Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
32
|
Yan H, Li T, Wang Y, Li H, Xu J, Lu X. Insulin-like growth factor binding protein 7 accelerates hepatic steatosis and insulin resistance in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol 2019; 46:1101-1110. [PMID: 31397492 DOI: 10.1111/1440-1681.13159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
An association between increased insulin-like growth factor binding protein-7 (IGFBP7) expression and insulin resistance in metabolic diseases has been reported. However, the role and molecular mechanism of IGFBP-7 in non-alcoholic fatty liver disease (NAFLD) remains largely unknown. Therefore, the potential function of IGFBP7 in the pathological progression of NAFLD was explored in this investigation. For in vivo experiments, an animal model of NAFLD was established in C57BL/6 mice by feeding a high-fat diet (HFD), and IGFBP7 was knocked down by injecting adeno-associated adenovirus (AAV)-mediated short-hairpin (sh)-IGFBP7 into the liver. We found that AAV-sh-IGFBP7 treatment significantly alleviated hepatocyte injury and inhibited hepatic lipid accumulation by reducing lipogenesis-associated gene expression. Furthermore, downregulation of IGFBP7 markedly ameliorated IR and restored impaired insulin signalling by elevating the phosphorylation levels of IRS-1, Akt and GSK3β in HFD-treated mice. Similar results were also confirmed by an in vitro study in a palmitic acid (PA)-stimulated HepG2 cell model. In conclusion, our study demonstrates that IGFBP7 contributes to hepatic steatosis and insulin resistance in NAFLD development, which might serve as a novel therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hua Yan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Gerontology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yatao Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaolan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Gastaldi G, Gomes D, Schneiter P, Montet X, Tappy L, Clément S, Negro F. Treatment with direct-acting antivirals improves peripheral insulin sensitivity in non-diabetic, lean chronic hepatitis C patients. PLoS One 2019; 14:e0217751. [PMID: 31170218 PMCID: PMC6553748 DOI: 10.1371/journal.pone.0217751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Hepatitis C virus (HCV) infection is associated with insulin resistance, which may lead to type 2 diabetes and its complications. Although HCV infects mainly hepatocytes, it may impair insulin sensitivity at the level of uninfected extrahepatic tissues (muscles and adipose tissue). The aim of this study was to assess whether an interferon-free, antiviral therapy may improve HCV-associated hepatic vs. peripheral insulin sensitivity. METHODS In a single-arm exploratory trial, 17 non-diabetic, lean chronic hepatitis C patients without significant fibrosis were enrolled, and 12 completed the study. Patients were treated with a combination of sofosbuvir/ledipasvir and ribavirin for 12 weeks, and were submitted to a 2-step euglycemic hyperinsulinemic clamp with tracers, together with indirect calorimetry measurement, to measure insulin sensitivity before and after 6 weeks of antivirals. A panel of 27 metabolically active cytokines was analyzed at baseline and after therapy-induced viral suppression. RESULTS Clamp analysis performed in 12 patients who achieved complete viral suppression after 6 weeks of therapy showed a significant improvement of the peripheral insulin sensitivity (13.1% [4.6-36.7], p = 0.003), whereas no difference was observed neither in the endogenous glucose production, in lipolysis suppression nor in substrate oxidation. A distinct subset of hepatokines, potentially involved in liver-to-periphery crosstalk, was modified by the antiviral therapy. CONCLUSION Pharmacological inhibition of HCV improves peripheral (but not hepatic) insulin sensitivity in non-diabetic, lean individuals with chronic hepatitis C without significant fibrosis.
Collapse
Affiliation(s)
- Giacomo Gastaldi
- Division of Endocrinology, diabetology, hypertension and nutrition, Geneva University Hospitals, Geneva, Switzerland
| | - Diana Gomes
- Department of Pathology and immunology, University of Geneva, Geneva, Switzerland
| | - Philippe Schneiter
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xavier Montet
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland
- Division of Gastroenterology and hepatology, Geneva University Hospitals, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
34
|
Haywood NJ, Slater TA, Matthews CJ, Wheatcroft SB. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol Metab 2018; 19:86-96. [PMID: 30392760 PMCID: PMC6323188 DOI: 10.1016/j.molmet.2018.10.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Recent changes in nutrition and lifestyle have provoked an unprecedented increase in the prevalence of obesity and metabolic disorders. Recognition of the adverse effects on health has prompted intense efforts to understand the molecular determinants of insulin sensitivity and dysglycemia. In many respects, actions of insulin-like growth factors (IGFs) mirror those of insulin in metabolic regulation. Unlike insulin, however, the bioactivity of IGFs is regulated by a family of seven high-affinity binding proteins (IGFBPs) which confer temporospatial modulation with implications for metabolic homeostasis. In addition, evidence is accumulating that IGF-independent actions of certain of the IGFBPs can directly modulate insulin sensitivity. Scope of review In this review, we discuss the experimental data indicating a critical role for IGF/IGFBP axis in metabolic regulation. We highlight key discoveries through which IGFBPs have emerged as biomarkers or putative therapeutic targets in obesity and diabetes. Major conclusions Growing evidence suggests that several components of the IGF-IGFBP system could be explored for therapeutic potential in metabolic disorders. Both IGFBP-1 and IGFBP-2 have been favorably linked with insulin sensitivity in humans and preclinical data implicate direct involvement in the molecular regulation of insulin signaling and adiposity respectively. Further studies are warranted to evaluate clinical translation of these findings.
Collapse
Affiliation(s)
- Natalie J Haywood
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Thomas A Slater
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Connor J Matthews
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Division of Cardiovascular and Diabetes Research, Leeds Multidisciplinary Cardiovascular Research Centre, Faculty of Medicine and Health, University of Leeds, United Kingdom.
| |
Collapse
|
35
|
Hage C, Bjerre M, Frystyk J, Gu HF, Brismar K, Donal E, Daubert JC, Linde C, Lund LH. Comparison of Prognostic Usefulness of Serum Insulin-Like Growth Factor-Binding Protein 7 in Patients With Heart Failure and Preserved Versus Reduced Left Ventricular Ejection Fraction. Am J Cardiol 2018; 121:1558-1566. [PMID: 29622288 DOI: 10.1016/j.amjcard.2018.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
We aimed to characterize of the role of insulin-like growth factor-binding protein 7 (IGFBP-7) in heart failure (HF) pathophysiology. IGFBP-7 has been associated with cardiac hypertrophy and diastolic dysfunction in HF. In 86 patients with HF with a preserved ejection fraction (HFpEF) (ejection fraction [EF] ≥45%) and 79 with HF with a reduced ejection fraction (HFrEF), we assessed concentrations of serum IGFBP-7, correlations between serum IGFBP-7 and clinical data, diastolic function, and associations with outcome. IGFBP-7 was lower in HFpEF than HFrEF (102 vs 152 µg/L, p <0.001) and correlated with New York Heart Association class (HFpEF: r = 0.25, p = 0.020; HFrEF: r = 0.26, p = 0.022), N-terminal pro-brain natriuretic peptide (NT-proBNP) (HFpEF: r = 0.53, p <0.001; HFrEF: r = 0.50, p <0.001), and estimated glomerular filtration rate (eGFR) (HFpEF: r = -0.47, p <0.001; HFrEF: r = -0.45, p <0.001). In HFpEF, IGFBP-7 correlated with E/e' (r = 0.31, p = 0.012) and E/A ratio (r = 0.31, p = 0.011). In HFrEF, but not HFpEF, IGFBP-7 correlated with age (r = 0.29, p = 0.009) and atrial fibrillation (r = 0.34, p = 0.002). IGFBP-7 predicted the outcome in HFpEF (hazard ratio 4.19 [1.01 to 17.35], p = 0.048]) but not in HFrEF (0.72 [0.24 to 2.14], p = 0.554). In conclusion in HFrEF, IGFBP-7 was elevated and associated with HF severity but not prognostic, suggesting a marker of risk. In HFpEF, IGFBP-7 was less elevated but associated with markers of diastolic dysfunction, HF severity, and prognosis. IGFBP-7 may contribute to the progression of HFpEF possibly through inflammation and oxidative stress.
Collapse
Affiliation(s)
- Camilla Hage
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden.
| | - Mette Bjerre
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University, Aarhus, Denmark
| | - Harvest F Gu
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Donal
- Département de Cardiologie & CICIT1414, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Claude Daubert
- Département de Cardiologie & CICIT1414, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Cecilia Linde
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden
| | - Lars H Lund
- Department of Medicine, Cardiology unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Bai Z, Fang F, Xu Z, Lu C, Wang X, Chen J, Pan J, Wang J, Li Y. Serum and urine FGF23 and IGFBP-7 for the prediction of acute kidney injury in critically ill children. BMC Pediatr 2018; 18:192. [PMID: 29907141 PMCID: PMC6004091 DOI: 10.1186/s12887-018-1175-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) and insulin-like growth factor binding protein 7 (IGFBP-7) are suggested to be biomarkers for predicting acute kidney injury (AKI). We compared them with proposed AKI biomarker of cystatin C (CysC), and aimed (1) to examine whether concentrations of these biomarkers vary with age, body weight, illness severity assessed by pediatric risk of mortality III score, and kidney function assessed by estimated glomerular filtration rate (eGFR), (2) to determine the association between these biomarkers and AKI, and (3) to evaluate whether these biomarkers could serve as early independent predictors of AKI in critically ill children. METHODS This prospective single center study included 144 critically ill patients admitted to the pediatric intensive care unit (PICU) regardless of diagnosis. Serum and spot urine samples were collected during the first 24 h after PICU admission. AKI was diagnosed based on the AKI network (AKIN) criteria. RESULTS Twenty-one patients developed AKI within 120 h of sample collection, including 11 with severe AKI defined as AKIN stages 2 and 3. Serum FGF23 levels were independently associated with eGFR after adjustment in a multivariate linear analysis (P < 0.001). Urinary IGFBP-7 (Adjusted OR = 2.94 per 1000 ng/mg increase, P = 0.035), serum CysC (Adjusted OR = 5.28, P = 0.005), and urinary CysC (Adjusted OR = 1.13 per 1000 ng/mg increase, P = 0.022) remained significantly associated with severe AKI after adjustment for body weight and illness severity, respectively. Urinary IGFBP-7 level was predictive of severe AKI and achieved the AUC of 0.79 (P = 0.001), but was not better than serum (AUC = 0.89, P < 0.001) and urinary (AUC = 0.88, P < 0.001) CysC in predicting severe AKI. CONCLUSIONS Serum FGF23 levels were inversely related to measures of eGFR. In contrast to serum and urinary FGF23 which are not associated with AKI in a general and heterogeneous PICU population, an increased urinary IGFBP-7 level was independently associated with the increased risk of severe AKI diagnosed within the next 5 days after sampling, but not superior to serum or urinary CysC in predicting severe AKI in critically ill children.
Collapse
Affiliation(s)
- Zhenjiang Bai
- Pediatric Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Fang Fang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Zhong Xu
- Pediatric Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Chunjiu Lu
- Department of nephrology, Institute of pediatric research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Xueqin Wang
- Department of nephrology, Institute of pediatric research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Jiao Chen
- Pediatric Intensive Care Unit, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Jian Pan
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Jian Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| | - Yanhong Li
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
- Department of nephrology, Institute of pediatric research, Children’s Hospital of Soochow University, Suzhou, JiangSu province China
| |
Collapse
|
37
|
Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci 2018; 55:246-263. [PMID: 29663841 DOI: 10.1080/10408363.2018.1460576] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.
Collapse
Affiliation(s)
- Arnold Piek
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Weijie Du
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands.,b Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , China
| | - Rudolf A de Boer
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Herman H W Silljé
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
38
|
Zhang W, Chen E, Chen M, Ye C, Qi Y, Ding Q, Li H, Xue D, Gao X, Pan Z. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway. FASEB J 2018; 32:2280-2291. [PMID: 29242275 DOI: 10.1096/fj.201700998rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor-binding protein 7 (IGFBP7), a low-affinity IGF binder, may play an important role in bone metabolism. However, its function in osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs) remains unclear. Therefore, we investigated its effects on osteogenic differentiation. Overexpression of IGFBP7 enhanced the expression of osteo-specific genes and proteins, and IGFBP7 knockdown decreased osteogenesis-specific markers. More mineral deposits and higher alkaline phosphatase activity were observed after the up-regulation of IGFBP7. Moreover, β-catenin levels were up-regulated by the overexpression of IGFBP7 or the addition of extracellular IGFBP7 protein and were reduced by the depletion of IGFBP7. The increase in osteogenic differentiation due to the overexpression of IGFBP7 was partially decreased by specific Wnt/β-catenin signaling inhibitors. Using a rat tibial osteotomy model, a sheet of IGFBP7-overexpressing BMSCs improved bone healing, as demonstrated by imaging, biomechanical, and histologic analyses. Taken together, these findings indicate that IGFBP7 regulates the osteogenic differentiation of BMSCs partly via the Wnt/β-catenin signaling pathway.-Zhang, W., Chen, E., Chen, M., Ye, C., Qi, Y., Ding, Q., Li, H., Xue, D., Gao, X., Pan, Z. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Yiying Qi
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Qianhai Ding
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Hang Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Xiang Gao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Research Institute of Orthopaedics, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Ruan W, Wu M, Shi L, Li F, Dong L, Qiu Y, Wu X, Ying K. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients. Int J Chron Obstruct Pulmon Dis 2017; 12:1775-1780. [PMID: 28684903 PMCID: PMC5485893 DOI: 10.2147/copd.s132652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective The purpose of this study was to explore the insulin-like growth factor binding protein 7 (IGFBP7) level in the serum of chronic obstructive pulmonary disease (COPD) patients during acute exacerbation (AE). Methods The study population consisted of 47 AECOPD patients, including 25 patients enrolled between January 2011 and February 2011 (the first group) and 22 patients enrolled from December 2011 to August 2012 (the second group) and 29 healthy controls. Chemiluminescence–linked immunoassay was used to detect serum IGFBP7 levels. For the second group patients, IGFBP7 and C-reactive protein (CRP) levels were measured both on the admission day and on the discharge day. Results Among the first group AECOPD patients, serum IGFBP7 levels were significantly elevated in AECOPD patients in the intensive care unit (ICU; 52.92±16.32 ng/mL), and in hospitalized AECOPD patients not in ICU (40.66±13.9), compared to healthy subjects (30.3±7.09 ng/mL; P<0.01). For the second group AECOPD patients, the increased IGFBP7 levels reduced after the patients had recovered (34.42±11.88 vs 27.24±7.2 ng/mL; P<0.01). During AE, the correlation coefficient between IGFBP7 and CRP was 0.357. In receiver operating characteristic analysis, the area under the curve was 0.799 for CRP, and 0.663 for IGFBP7 in distinguishing patients with AECOPD on the admission day from the discharge day. Conclusion Serum IGFBP7 levels were raised during AECOPD. Similar to the expression pattern of CRP, the IGFBP7 levels reduced after convalescence, suggesting that IGFBP7 might have a candidate role as a biomarker of AECOPD. No significant linear correlation was detected between IGFBP7 and CRP, indicating the probable different role for the two molecules in assessing AECOPD. Further study is needed to explore the value of IGFBP7 in differentiating phenotypes of AECOPD.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Minliang Wu
- Department of Laboratory, The Second Affiliated Hospital of Zhejiang University, School of Medicine
| | - Liuhong Shi
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Fengying Li
- Department of Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Hangzhou, China
| | - Liangliang Dong
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Yuanhua Qiu
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Xiaohong Wu
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| | - Kejing Ying
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University
| |
Collapse
|
40
|
Alfa RW, Kim SK. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis Model Mech 2016; 9:365-76. [PMID: 27053133 PMCID: PMC4852505 DOI: 10.1242/dmm.023887] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanisms of glucose homeostasis are remarkably well conserved between the fruit flyDrosophila melanogasterand mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positionedDrosophilaas an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.
Collapse
Affiliation(s)
- Ronald W Alfa
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Neuroscience Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Barroso MC, Kramer F, Greene SJ, Scheyer D, Köhler T, Karoff M, Seyfarth M, Gheorghiade M, Dinh W. Serum insulin-like growth factor-1 and its binding protein-7: potential novel biomarkers for heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2016; 16:199. [PMID: 27769173 PMCID: PMC5073807 DOI: 10.1186/s12872-016-0376-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Insulin-like growth factor binding protein-7 (IGFBP-7) modulates the biological activities of insulin-like growth factor-1 (IGF-1). Previous studies demonstrated the prognostic value of IGFBP-7 and IGF-1 among patients with systolic heart failure (HF). This study aimed to evaluate the IGF1/IGFBP-7 axis in HF patients with preserved ejection fraction (HFpEF). Methods Serum IGF-1 and IGFBP-7 levels were measured in 300 eligible consecutive patients who underwent comprehensive cardiac assessment. Patients were categorized into 3 groups including controls with normal diastolic function (n = 55), asymptomatic left ventricular diastolic dysfunction (LVDD, n = 168) and HFpEF (n = 77). Results IGFBP-7 serum levels showed a significant graded increase from controls to LVDD to HFpEF (median 50.30 [43.1-55.3] vs. 54.40 [48.15-63.40] vs. 61.9 [51.6-69.7], respectively, P < 0.001), whereas IGF-1 levels showed a graded decline from controls to LVDD to HFpEF (120.0 [100.8-144.0] vs. 112.3 [88.8-137.1] vs. 99.5 [72.2-124.4], p < 0.001). The IGFBP-7/IGF-1 ratio increased from controls to LVDD to HFpEF (0.43 [0.33-0.56] vs. 0.48 [0.38-0.66] vs. 0.68 [0.55-0.88], p < 0.001). Patents with IGFB-7/IGF1 ratios above the median demonstrated significantly higher left atrial volume index, E/E’ ratio, and NT-proBNP levels (all P ≤ 0.02). Conclusion In conclusion, this hypothesis-generating pilot study suggests the IGFBP-7/IGF-1 axis correlates with diastolic function and may serve as a novel biomarker in patients with HFpEF. A rise in IGFBP-7 or the IGFBP-7/IGF-1 ratio may reflect worsening diastolic function, adverse cardiac remodeling, and metabolic derangement.
Collapse
Affiliation(s)
- Michael Coll Barroso
- Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW), University Hospital, Witten/Herdecke, Germany
| | - Frank Kramer
- Drug Discovery, Clinical Sciences - Experimental Medicine, Bayer Pharma AG, Leverkusen, Germany
| | - Stephen J Greene
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel Scheyer
- Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Till Köhler
- Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Martin Karoff
- Klinik Königsfeld der Deutschen Rentenversicherung Westfalen in Ennepetal (NRW), University Hospital, Witten/Herdecke, Germany
| | - Melchior Seyfarth
- Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Mihai Gheorghiade
- Center for Cardiovascular Innovation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Wilfried Dinh
- Drug Discovery, Clinical Sciences - Experimental Medicine, Bayer Pharma AG, Leverkusen, Germany. .,Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany.
| |
Collapse
|