1
|
Pesta M, Travnicek I, Kulda V, Ostasov P, Windrichova J, Houfkova K, Knizkova T, Bendova B, Hes O, Hora M, Topolcan O, Polivka J. Prognostic Value of Tumor Tissue Up-regulated microRNAs in Clear Cell Renal Cell Carcinoma (ccRCC). In Vivo 2024; 38:1799-1805. [PMID: 38936941 PMCID: PMC11215600 DOI: 10.21873/invivo.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The management of patients with clear cell renal cell carcinoma (ccRCC) includes prognosis assessment based on TNM classification and biochemical markers. This approach stratifies patients with advanced ccRCC into groups of favorable, intermediate, and poor prognosis. The aim of the study was to improve prognosis estimation using microRNAs involved in the pathogenesis of ccRCC. PATIENTS AND METHODS The study was based on a histologically-verified set of matched ccRCC FFPE tissue samples (normal renal tissue, primary tumor, metastasis, n=20+20+20). The expression of 2,549 microRNAs was analyzed using the SurePrint G3 Human miRNA microarray kit (Agilent Technologies). Prognostic value of significantly deregulated microRNAs was further evaluated on microRNA expression and clinical data of 475 patients obtained from TCGA Kidney Clear Cell Carcinoma (KIRC) database. RESULTS There were 13 up-regulated and 6 down-regulated microRNAs in tumor tissues compared to control tissues. Among them, survival analysis revealed those with prognostic significance. Patients with high expression of miR-21, miR-27a, miR-34a, miR-106b, miR-210, and miR-342 showed significantly unfavorable outcome. The opposite was observed for miR-30e, patients with low expression had significantly shorter survival. CONCLUSION The inclusion of these microRNAs in a prognostic panel holds the potential to enhance stratification scoring systems, on which the treatment of ccRCC patients is based.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ivan Travnicek
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic;
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jindra Windrichova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbora Bendova
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Jiri Polivka
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
2
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
3
|
Grammatikaki S, Katifelis H, Farooqi AA, Stravodimos K, Karamouzis MV, Souliotis K, Varvaras D, Gazouli M. An Overview of Epigenetics in Clear Cell Renal Cell Carcinoma. In Vivo 2023; 37:1-10. [PMID: 36593023 PMCID: PMC9843790 DOI: 10.21873/invivo.13049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma (RCC) represents a heterogenous group of cancers with complex genetic background and histological varieties, which require various clinical therapies. Clear cell RCC represents the most common form of RCC that accounts for 3 out of 4 RCC cases. Screening methods for RCC lack sensitivity and specificity, and thus biomarkers that will allow early diagnosis are crucial. The impact of epigenetics in the development and progression of cancer, including RCC, is significant. Noncoding RNAs, histone modifications and DNA methylation represent fundamental epigenetic mechanisms and have been proved to be promising biomarkers. MicroRNAs have advantageous properties that facilitate early diagnosis of RCC, while their expression profiles have been assessed in renal cancer samples (tissue, blood, and urine). Current literature reports the up-regulation of mir122, mir1271 and mir15b in RCC specimens, which induces cell proliferation via FOXP-1 and PTEN genes. However, it should be noted that conflicting results are found in urine and serum patient samples. Moreover, promoters of at least 200 genes are methylated in renal cancers leading to epigenetic dysregulation. In this review, we analyze the vast plethora of studies that have evaluated the role of epigenetic mechanisms in RCC patients and their clinical importance.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Konstantinos Stravodimos
- 1 Department of Urology, National & Kapodistrian University of Athens, Laiko Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Souliotis
- School of Social and Education Policy, University of Peloponnese, Corinth, Greece
- Health Policy Institute, Athens, Greece
| | - Dimitrios Varvaras
- Health Policy Institute, Athens, Greece
- Tiberia Hospital-GMV Care & Research, Rome, Italy
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
4
|
Larrue R, Fellah S, Van der Hauwaert C, Hennino MF, Perrais M, Lionet A, Glowacki F, Pottier N, Cauffiez C. The Versatile Role of miR-21 in Renal Homeostasis and Diseases. Cells 2022; 11:cells11213525. [PMID: 36359921 PMCID: PMC9657972 DOI: 10.3390/cells11213525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression and confer robustness to biological processes. Over the last two decades, their important roles during kidney development, homeostasis and the treatment of diseases have been established, in particular during the onset and progression of various forms of acute and chronic renal disorders. In recent years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. This review summarizes the current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the potential of miR-21 as a biomarker and therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | | | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Lionet
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
5
|
miRNA Pattern in Hypoxic Microenvironment of Kidney Cancer—Role of PTEN. Biomolecules 2022; 12:biom12050686. [PMID: 35625614 PMCID: PMC9138332 DOI: 10.3390/biom12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, and disturbances of their expression are the basis of many pathological states, including cancers. The miRNA pattern in the context of tumor microenvironment explains mechanisms related to cancer progression and provides a potential target of modern therapies. Here we show the miRNA pattern in renal cancer focusing on hypoxia as a characteristic feature of the tumor microenvironment and dysregulation of PTEN, being a major tumor suppressor. Methods comprised the CRSPR/Cas9 mediated PTEN knockout in the Renca kidney cancer cell line and global miRNA expression analysis in both in vivo and in vitro (in normoxic and hypoxic conditions). The results were validated on human cancer models with distinct PTEN status. The increase in miR-210-3p in hypoxia was universal; however, the hypoxia-induced decrease in PTEN was associated with an increase in miR-221-3p, the loss of PTEN affected the response to hypoxia differently by decreasing miR-10b-5p and increasing miR-206-3p. In turn, the complete loss of PTEN induces miR-155-5p, miR-100-5p. Upregulation of miR-342-3p in knockout PTEN occurred in the context of the whole tumor microenvironment. Thus, effective identification of miRNA patterns in cancers must consider the specificity of the tumor microenvironment together with the mutations of key suppressors.
Collapse
|
6
|
Khaleel S, Katims A, Cumarasamy S, Rosenzweig S, Attalla K, Hakimi AA, Mehrazin R. Radiogenomics in Clear Cell Renal Cell Carcinoma: A Review of the Current Status and Future Directions. Cancers (Basel) 2022; 14:2085. [PMID: 35565216 PMCID: PMC9100795 DOI: 10.3390/cancers14092085] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022] Open
Abstract
Radiogenomics is a field of translational radiology that aims to associate a disease's radiologic phenotype with its underlying genotype, thus offering a novel class of non-invasive biomarkers with diagnostic, prognostic, and therapeutic potential. We herein review current radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the most common renal malignancy. A literature review was performed by querying PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases, identifying all relevant articles using the following search terms: "radiogenomics", "renal cell carcinoma", and "clear cell renal cell carcinoma". Articles included were limited to the English language and published between 2009-2021. Of 141 retrieved articles, 16 fit our inclusion criteria. Most studies used computed tomography (CT) images from open-source and institutional databases to extract radiomic features that were then modeled against common genomic mutations in ccRCC using a variety of machine learning algorithms. In more recent studies, we noted a shift towards the prediction of transcriptomic and/or epigenetic disease profiles, as well as downstream clinical outcomes. Radiogenomics offers a platform for the development of non-invasive biomarkers for ccRCC, with promising results in small-scale retrospective studies. However, more research is needed to identify and validate robust radiogenomic biomarkers before integration into clinical practice.
Collapse
Affiliation(s)
- Sari Khaleel
- Memorial Sloan Kettering Cancer Center, Department of Urology, New York, NY 10065, USA; (S.K.); (A.A.H.)
| | - Andrew Katims
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Shivaram Cumarasamy
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Shoshana Rosenzweig
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - Kyrollis Attalla
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| | - A Ari Hakimi
- Memorial Sloan Kettering Cancer Center, Department of Urology, New York, NY 10065, USA; (S.K.); (A.A.H.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.K.); (S.C.); (S.R.); (K.A.)
| |
Collapse
|
7
|
The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics—Definition, Current Advances, and Future Directions. Cancers (Basel) 2022; 14:cancers14030793. [PMID: 35159060 PMCID: PMC8833879 DOI: 10.3390/cancers14030793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
With improved molecular characterization of clear cell renal cancer and advances in texture analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine with radiogenomics: the identification of relationships between tumor image features and underlying genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival; metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians to have a basic understanding of this nascent field, which can be difficult due to the technical complexity of many of the studies. We conducted a review of the existing literature for radiogenomics in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic description of radiogenomics in diagnostic radiology; summarize existing literature on relationships between image features and gene expression patterns, either computationally or by radiologists; and propose future directions to facilitate integration of this field into the clinical setting.
Collapse
|
8
|
Giubellino A, Ricketts CJ, Moreno V, Linehan WM, Merino MJ. MicroRNA Profiling of Morphologically Heterogeneous Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:5375-5384. [PMID: 34405000 PMCID: PMC8364632 DOI: 10.7150/jca.52310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023] Open
Abstract
Intratumoral heterogeneity (IH) has been recently described as an important contributor to tumor growth through a branched rather than a linear pattern of tumor evolution for renal cell carcinoma. As to whether the miRNA profiling of the different and heterogeneous areas is the same or not, it is not known. This study analyzed the differences and similarities of the miRNA profiles in histologically distinct regions within several RCC tumors. The observed differences may have great implications for the development of predictive biomarkers and the identification of druggable targets with improvement of combinatorial therapeutic approaches for the effective treatment of kidney cancer, as well as for the identification of circulating malignant cells that can be useful to detect tumor recurrences.
Collapse
Affiliation(s)
- Alessio Giubellino
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch National Cancer Institute, National Institutes of health, Bethesda, MD
| | - Vanessa Moreno
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| | - W Marston Linehan
- Urologic Oncology Branch National Cancer Institute, National Institutes of health, Bethesda, MD
| | - Maria J Merino
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| |
Collapse
|
9
|
Yuan C, Su Z, Liao S, Li D, Zhou Z, Wang Y, Quan M, Zeng L, Lv C, Shen C, Gong W, Wu J, Chen X, Hu W, Lv X, Si W, Yu X. miR-198 inhibits the progression of renal cell carcinoma by targeting BIRC5. Cancer Cell Int 2021; 21:390. [PMID: 34289837 PMCID: PMC8296723 DOI: 10.1186/s12935-021-02092-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND miR-198 is involved in the formation, migration, invasion, and metastasis of various malignant cancers. However, the function and mechanism of action of miR-198 in the tumorigenesis of renal cell carcinoma (RCC) remain elusive. Here, we aimed to explore the role of miR198 in RCC. METHODS Immunohistochemistry was performed to estimate the level of survivin in RCC sections. Quantitative real-time polymerase chain reaction was performed to determine the expression level of miR-198 in fresh RCC tissues. Furthermore, the target relationship between miR-198 and BIRC5 was predicted using the TargetScanHuman 7.2 database and verified via dual-luciferase reporter assay and western blotting. The effects of miR-198 on the viability, apoptosis, invasion, and migration of A498 and ACHN cells were studied using Cell Counting Kit-8, flow cytometry, transwell migration assay, and wound healing assay, respectively. Additionally, a xenograft nude mouse model was established to evaluate the effect of miR-198 on RCC tumorigenesis. RESULTS The expression levels of BIRC5 and miR-198 were respectively higher and lower in RCC tissues than those in normal adjacent tissues. Furthermore, miR-198 could inhibit luciferase activity and reduce the protein level of survivin without affecting the BIRC5 mRNA levels. miR-198 inhibited cell viability, migration, and invasion and promoted cell apoptosis; co-transfection with BIRC5 could rescue these effects. Moreover, miR-198 could repress tumor growth in the xenograft nude mouse model of RCC. CONCLUSIONS Our study demonstrates that miR-198 suppresses RCC progression by targeting BIRC5.
Collapse
Affiliation(s)
- Chao Yuan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Zhenhong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Shengjie Liao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Duanzhuo Li
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Zhiwen Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Yawen Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Mingchun Quan
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Lingling Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China
| | - Cai Lv
- Department of Urology, Haikou Municipal Hospital, Haikou, 570208, Hainan, China
| | - Chenyi Shen
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Weida Gong
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Jianfeng Wu
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China
| | - Xiaogang Chen
- Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Wenbing Hu
- Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, Hubei, China
| | - Xu Lv
- Yixing Cancer Hospital, Dongshan Dong Lu No. 45, Yixing, 214200, Jiangsu, China.
| | - Wenxia Si
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China.
| | - Xin Yu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District guilin north, road no. 16, Huangshi, 435003, Hubei, China.
- Zhaoqing Medical College, Zhaoqing, 526020, Guangdong, China.
| |
Collapse
|
10
|
Cinque A, Vago R, Trevisani F. Circulating RNA in Kidney Cancer: What We Know and What We Still Suppose. Genes (Basel) 2021; 12:835. [PMID: 34071652 PMCID: PMC8227397 DOI: 10.3390/genes12060835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cancer represents the 7th most common tumor worldwide, affecting 400,000 people annually. This malignancy, which is the third most frequent cancer among urological diseases, displays a completely different prognosis if the tumor is detected in the early stages or advance phases. Unfortunately, more than 50% of renal cancers are discovered incidentally, with a consistent percentage of cases where the tumor remains clinically silent till the metastatic process is established. In day-to-day clinical practice, no available predictive biomarkers exist, and the existent imaging diagnostic techniques harbor several gaps in terms of diagnosis and prognosis. In the last decade, many efforts have been reported to detect new predictive molecular biomarkers using liquid biopsies, which are less invasive in comparison to renal biopsy. However, until now, there has been no clear evidence that a liquid biopsy biomarker could be relevant to the creation of a precise and tailored medical management in these oncological patients, even though circulating RNA biomarkers remain among the most promising. Given the idea that liquid biopsies will play a future key role in the management of these patients, in the present review, we summarize the current state of circulating RNA (miRNA, lncRNAs, and circRNAs) as possible biomarkers of renal cancer presence and aggressiveness in patients.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/urine
- Carcinoma, Renal Cell/blood
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/urine
- Circulating MicroRNA/blood
- Circulating MicroRNA/genetics
- Circulating MicroRNA/urine
- Extracellular Vesicles/genetics
- Extracellular Vesicles/metabolism
- Humans
- Kidney Neoplasms/blood
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/urine
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/urine
Collapse
Affiliation(s)
- Alessandra Cinque
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
| | - Riccardo Vago
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
- Department of Urology, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Trevisani
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milano, Italy; (A.C.); (R.V.)
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
11
|
Petitprez F, Ayadi M, de Reyniès A, Fridman WH, Sautès-Fridman C, Job S. Review of Prognostic Expression Markers for Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:643065. [PMID: 33996558 PMCID: PMC8113694 DOI: 10.3389/fonc.2021.643065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Context: The number of prognostic markers for clear cell renal cell carcinoma (ccRCC) has been increasing regularly over the last 15 years, without being integrated and compared. Objective: Our goal was to perform a review of prognostic markers for ccRCC to lay the ground for their use in the clinics. Evidence Acquisition: PubMed database was searched to identify RNA and protein markers whose expression level was reported as associated with survival of ccRCC patients. Relevant studies were selected through cross-reading by two readers. Evidence Synthesis: We selected 249 studies reporting an association with prognostic of either single markers or multiple-marker models. Altogether, these studies were based on a total of 341 distinct markers and 13 multiple-marker models. Twenty percent of these markers were involved in four biological pathways altered in ccRCC: cell cycle, angiogenesis, hypoxia, and immune response. The main genes (VHL, PBRM1, BAP1, and SETD2) involved in ccRCC carcinogenesis are not the most relevant for assessing survival. Conclusion: Among single markers, the most validated markers were KI67, BIRC5, TP53, CXCR4, and CA9. Of the multiple-marker models, the most famous model, ClearCode34, has been highly validated on several independent datasets, but its clinical utility has not yet been investigated. Patient Summary: Over the years, the prognosis studies have evolved from single markers to multiple-marker models. Our review highlights the highly validated prognostic markers and multiple-marker models and discusses their clinical utility for better therapeutic care.
Collapse
Affiliation(s)
- Florent Petitprez
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Mira Ayadi
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Wolf H. Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Inflammation, Complément et Cancer, Paris, France
| | - Sylvie Job
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
12
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
|
14
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
15
|
Liu H, Ye T, Yang X, Lv P, Wu X, Zhou H, Zeng J, Tang K, Ye Z. A Panel of Four-lncRNA Signature as a Potential Biomarker for Predicting Survival in Clear Cell Renal Cell Carcinoma. J Cancer 2020; 11:4274-4283. [PMID: 32368310 PMCID: PMC7196268 DOI: 10.7150/jca.40421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been considered as biomarkers for the carcinogenesis and development of various cancers. However, the prognostic significance of lncRNAs in renal cell carcinoma (RCC) remains unclear. This study aimed to determine the predictive ability of lncRNAs in clear cell RCC (ccRCC). Among the cohort of kidney renal clear cell carcinoma (KIRC) of the The Cancer Genome Atlas (TCGA), 525 patients were enrolled in our study. Expression of lncRNAs based on RNAseq was obtained from TCGA. Kaplan-Meier prognostic analysis and a Cox proportional hazards regression model were used to assess related factors. The lncRNA signature was then validated in an independent cohort of an additional 60 ccRCC patients. Hierarchical clustering of the KIRC TCGA dataset identified 26 differentially expressed lncRNAs (11 down-regulated and 15 up-regulated) using average linkage clustering. Kaplan-Meier survival analysis identified 30 statistically significant lncRNAs that strongly predicted prognosis, with 4 ccRCC-specific lncRNAs (TCL6, PVT1, MIR155HG, and HAR1B) being differentially expressed and correlating significantly with OS. Patients assigned to the high-risk group were associated with poor OS compared with patients in the low-risk group (HR = 2.57; 95%CI, 1.89-3.50; p < 0.001). This finding was validated in the Tongji Hospital cohort, and the four-lncRNA signature was shown to be significantly predictive of ccRCC prognosis (p < 0.001). In this study, we constructed an applicable four-lncRNA-based classifier as a reliable prognostic and predictive tool for OS in patients with ccRCC.
Collapse
Affiliation(s)
- Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Hubei Institute of Urology, Wuhan 430030, China
| |
Collapse
|
16
|
Marigliano C, Badia S, Bellini D, Rengo M, Caruso D, Tito C, Miglietta S, Palleschi G, Pastore AL, Carbone A, Fazi F, Petrozza V, Laghi A. Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression. Technol Cancer Res Treat 2020; 18:1533033819878458. [PMID: 31564221 PMCID: PMC6767738 DOI: 10.1177/1533033819878458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE A relevant challenge for the improvement of clear cell renal cell carcinoma management could derive from the identification of novel molecular biomarkers that could greatly improve the diagnosis, prognosis, and treatment choice of these neoplasms. In this study, we investigate whether quantitative parameters obtained from computed tomography texture analysis may correlate with the expression of selected oncogenic microRNAs. METHODS In a retrospective single-center study, multiphasic computed tomography examination (with arterial, portal, and urographic phases) was performed on 20 patients with clear cell renal cell carcinoma and computed tomography texture analysis parameters such as entropy, kurtosis, skewness, mean, and standard deviation of pixel distribution were measured using multiple filter settings. These quantitative data were correlated with the expression of selected microRNAs (miR-21-5p, miR-210-3p, miR-185-5p, miR-221-3p, miR-145-5p). Both the evaluations (microRNAs and computed tomography texture analysis) were performed on matched tumor and normal corticomedullar tissues of the same patients cohort. RESULTS In this pilot study, we evidenced that computed tomography texture analysis has robust parameters (eg, entropy, mean, standard deviation) to distinguish normal from pathological tissues. Moreover, a higher coefficient of determination between entropy and miR-21-5p expression was evidenced in tumor versus normal tissue. Interestingly, entropy and miR-21-5p show promising correlation in clear cell renal cell carcinoma opening to a radiogenomic strategy to improve clear cell renal cell carcinoma management. CONCLUSION In this pilot study, a promising correlation between microRNAs and computed tomography texture analysis has been found in clear cell renal cell carcinoma. A clear cell renal cell carcinoma can benefit from noninvasive evaluation of texture parameters in adjunction to biopsy results. In particular, a promising correlation between entropy and miR-21-5p was found.
Collapse
Affiliation(s)
- Chiara Marigliano
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Stefano Badia
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Davide Bellini
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Marco Rengo
- Department of Radiological, Oncological and Pathological Sciences, University of Rome "Sapienza"-Polo Pontino, ICOT Hospital, Latina, Italy
| | - Damiano Caruso
- Department of Radiological, Oncology and Pathology Sciences, "Sapienza" University of Rome, Italy Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, "Sapienza" University of Rome, Laboratory Affiliated With Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Anatomy, Electron Microscopy Unit, Laboratory "Pietro M. Motta," "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Palleschi
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Antonio Luigi Pastore
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Antonio Carbone
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, "Sapienza" University of Rome, Laboratory Affiliated With Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Urology Unit ICOT, Latina, Italy
| | - Andrea Laghi
- Department of Radiological, Oncology and Pathology Sciences, "Sapienza" University of Rome, Italy Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
17
|
Fan B, Jin Y, Zhang H, Zhao R, Sun M, Sun M, Yuan X, Wang W, Wang X, Chen Z, Liu W, Yu N, Wang Q, Liu T, Li X. MicroRNA‑21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c‑Jun (AP‑1) signalling pathway. Int J Oncol 2019; 56:178-192. [PMID: 31789394 DOI: 10.3892/ijo.2019.4928] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has demonstrated that microRNAs are associated with malignant biological behaviour, including tumorigenesis, cancer progression and metastasis via the regulation of target gene expression. Our previous study demonstrated that programmed cell death protein 4 (PDCD4), which is a tumour suppressor gene, is a target of microRNA‑21 (miR‑21), which affects the proliferation and transformation capabilities of renal cell carcinoma (RCC) cells. However, the role of miR‑21 in the molecular mechanism underlying the migration, invasion and angiogenesis of RCC remains poorly understood. The effects of miR‑21 on the invasion, migration and angiogenesis of RCC cells was determined through meta‑analysis and regulation of miR‑21 expression in vitro. After searching several databases, 6 articles including a total of 473 patients met the eligibility criteria for this analysis. The combined results of the meta‑analysis revealed that increased miR‑21 expression was significantly associated with adverse prognosis in patients with RCC, with a pooled hazard ratio estimate of 1.740. In in vitro experiments, we demonstrated that a miR‑21 inhibitor decreased the number of migrating and invading A498 and 786‑O RCC cells, along with a decrease in PDCD4, c‑Jun, matrix metalloproteinase (MMP)2 and MMP9 expression. Additionally, inhibition of miR‑21 was revealed to reduce tube formation and tube junctions in the endothelial cell line HMEC‑1 by affecting the expression of angiotensin‑1 and vascular endothelial growth factor A, whereas PDCD4 small interfering RNA exerted opposite effects on the same cells. Overall, these findings, along with evidence‑based molecular biology, demonstrated that miR‑21 expression promoted the migration, invasion and angiogenic abilities of RCC cells by directly targeting the PDCD4/c‑Jun signalling pathway. The results may help elucidate the molecular mechanism underlying the development and progression of RCC and provide a promising target for microRNA‑based therapy.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yiying Jin
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hongshuo Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Rui Zhao
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Man Sun
- Department of Clinical Medicine, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mengfan Sun
- Department of Pharmacy, Zhongshan College of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoying Yuan
- Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaogang Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqi Chen
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wankai Liu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Na Yu
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Qun Wang
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Tingjiao Liu
- Department of Oral Pathology, College of Stomatology of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiancheng Li
- Department of Urology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
18
|
Marin DE, Braicu C, Dumitrescu G, Pistol GC, Cojocneanu R, Neagoe IB, Taranu I. MicroRNA profiling in kidney in pigs fed ochratoxin A contaminated diet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109637. [PMID: 31499447 DOI: 10.1016/j.ecoenv.2019.109637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
OTA is a toxic metabolite produced by fungus belonging to Aspergillus and Penicillium genera. Kidney is the main target of this toxin; OTA is considered as one of the etiological factors at the origin of the human Balkan endemic nephropathy. microRNA are short non-coding transcrips (18-22 nucleotides in length) regulating key cellular processes. Various miRNAs have been established to play important roles in development of renal carcinoma and urothelial cancer. The objective of this study is to analyse the miRNA profiling in the kidney of piglets experimentally intoxicated with feed contaminated with OTA. Fifteen piglets (five pigs/group) were randomly distributed into 3 groups, fed normal diet (Group 1: control), or diets contaminated with OTA in two concentrations: 50 μg OTA/kg feed (Group 2: 50 μg OTA/kg feed) or 200 μg OTA/kg feed (Group 3: 200 μg OTA/kg feed) for 28 days. At the end of the experiment blood samples were taken for serological analyses. Animals from control group and 200 μg OTA/kg feed were sacrificed and kidney samples were taken for histological and molecular analyses. As resulted from molecular profiling study there are 8 miRNA differentially expressed in OTA kidney vs control kidney, in which five miRNA were overexpressed in the kidney of OTA intoxicated animals: miR-497 (FC = 6.34), miR-133a-3p (FC = 5.75), miR-423-3p (FC = 5.48), miR-34a (FC = 1.68), miR-542-3p (1.65) while three miRNA were downregulated: miR-421-3p (FC = -3.96); miR-490 (FC = -3.87); miR-9840-3p (FC = -2.13). The altered miRNAs as effect of OTA are strongly connected to the engine of cancer, disturbing nodal points in different pathways, as TP53 signalling. This proof-of-concept study proves the actual utility of miRNAs as biomarkers of mycotoxin exposure, including OTA.
Collapse
Affiliation(s)
- Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400012, Cluj-Napoca, Romania
| | - Gabi Dumitrescu
- University of Agricultural Sciences and Veterinary Medicine of Banat, King Mihai I of Romania, Calea Aradului nr. 119, Timisoara, Romania
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400012, Cluj-Napoca, Romania
| | - Ioana Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400012, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" Universty of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Republicii 34 Street, Cluj Napoca, Romania
| | - Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
19
|
Saleeb R, Kim SS, Ding Q, Scorilas A, Lin S, Khella HW, Boulos C, Ibrahim G, Yousef GM. The miR-200 family as prognostic markers in clear cell renal cell carcinoma. Urol Oncol 2019; 37:955-963. [PMID: 31635993 DOI: 10.1016/j.urolonc.2019.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by mRNA cleavage or translational repression. The miR-200 family is involved in the regulation of various tumor biologic processes including apoptosis, proliferation, invasion, and metastasis. They function mainly as tumor suppressors. In this study, we aim to validate the prognostic significance of miR-200 family using large cohort of primary clear cell renal cell carcinoma (ccRCC) and matched normal tissue and to explore the role of miR-200 family in RCC pathogenesis and progression. MATERIALS AND METHODS We analyzed the expression of 3 members of the miR-200 family; miR-141, miR-200b, and miR-200c, between primary ccRCC, matched normal renal tissues, and nonmatched metastatic RCC. We compared clinicopathologic parameter including disease-free survival to miR-200 family expression. Additionally, we validated our results using The Cancer Genome Atlas dataset. We explored functional role of these miRNAs by bioinformatics analyses. RESULTS AND CONCLUSIONS Expression of miR-200 family significantly decreased in cancer compared to non-neoplastic tissues. miR-141 and miR-200b were significantly down-regulated in metastatic than primary tumors. There was statistically significant negative association between all 3 miRNAs and tumor size and stage. As binary variables, univariate analyses revealed that miR-141, miR-200b, and miR-200c-positive ccRCC patients have a statistically significant lower chance of disease-recurrence or relapse and multivariate analyses showed miR-200b and miR-200c-positive patients have longer disease-free survival. We could predict disease-free survival better when 2 or more miRNAs were used as a combination. Overall survival analysis using The Cancer Genome Atlas data revealed that miR-200b-positive patients have significantly better survival. These results suggest that miR-141, miR-200b, and miR-200c are independent prognostic markers for ccRCC. Targets of these miRNAs are associated with pathways related to cancer invasion and metastasis, including TRAIL pathway, VEGF and VEGFR signaling network, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sung Sun Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada; Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Qiang Ding
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | - Sicheng Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Heba Wz Khella
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Carl Boulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Gena Ibrahim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
20
|
Iacobas S, Ede N, Iacobas DA. The Gene Master Regulators (GMR) Approach Provides Legitimate Targets for Personalized, Time-Sensitive Cancer Gene Therapy. Genes (Basel) 2019; 10:genes10080560. [PMID: 31349573 PMCID: PMC6723146 DOI: 10.3390/genes10080560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
The dynamic and never exactly repeatable tumor transcriptomic profile of people affected by the same form of cancer requires a personalized and time-sensitive approach of the gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled expression by the homeostatic mechanisms commands the cell phenotype by modulating major functional pathways through expression correlation with their genes. The Gene Commanding Height (GCH), a measure that combines the expression control and expression correlation with all other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the experimental protocol, the mathematical algorithm and the computer software to identify the GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer patients. The GMR approach is illustrated with applications to our microarray data on human kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and surrounding normal tissue are governed by different GMRs, and that manipulating the expression has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that silencing the GMR may selectively kill the cancer cells from a tissue.
Collapse
Affiliation(s)
- Sanda Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Nneka Ede
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
21
|
Shiomi E, Sugai T, Ishida K, Osakabe M, Tsuyukubo T, Kato Y, Takata R, Obara W. Analysis of Expression Patterns of MicroRNAs That Are Closely Associated With Renal Carcinogenesis. Front Oncol 2019; 9:431. [PMID: 31214494 PMCID: PMC6555129 DOI: 10.3389/fonc.2019.00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background: MicroRNAs (miRNA) are frequently dysregulated in clear cell renal cell carcinoma (ccRCC). Objective: This study aimed to elucidate the role of miRNA expression patterns in renal carcinogenesis and to identify the specific miRNAs that exhibit expression patterns closely associated with patient outcomes. Methods: We examined the expression patterns of selected miRNAs, including miRNA-155-5p, miRNA-122-5p, miRNA-21-5p, miRNA-185-5p, miRNA-106a-5p, miRNA-106b-3p, miRNA-34b-3p, miRNA-210-3p, miRNA-141-3p, miRNA-200c-3p, miRNA-135a-5p, miRNA-30a-5p, miRNA-218-5p, miRNA-429, miRNA-200a-3p and miRNA-200b-3p, in 96 samples of ccRCCs using the TaqMan real-time PCR method. In addition, cluster analysis was performed to stratify expression patterns of multiple miRNAs. Results: In the present study, three distinct subgroups could be clearly stratified in ccRCCs. Subgroup 1 was characterized by upregulation of miRNA-155-5p, miRNA-122-5p, miRNA-21-5p, miRNA-185-5p, miRNA-106a-5p, miRNA-106b-3p, miRNA-34b-3p and miRNA-210-3p. Subgroup 2 was closely associated with downregulation of miRNA-141-3p, miRNA200c-3p, miRNA-30a-5p, miRNA-218-5p, miRNA-429, miRNA-200a-3p and miRNA-200b-3p. Moreover, significant lower expression of miRNA-135a-5p was a distinctive feature of subgroup 3, which was correlated with metachronous metastasis. Among the individual markers in subgroup 3, miRNA-135a-5p was retained in multivariate analysis. The cutoff value of miRNA-135a-5p expression to identify the association of an altered level of miRNA-135a-5p with metachronous metastasis in ccRCCs was determined and showed excellent specificity. Conclusion: We suggest that the expression pattern of the chosen miRNAs is useful to identify renal carcinogenesis and to help identify the association of such expression patterns with metachronous metastasis in ccRCCs. In addition, miRNA-135a-5p was an excellent marker for prediction of metachronous metastasis.
Collapse
Affiliation(s)
- Ei Shiomi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Takashi Tsuyukubo
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
22
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
23
|
Regulatory Network of Two Tumor-Suppressive Noncoding RNAs Interferes with the Growth and Metastasis of Renal Cell Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:554-565. [PMID: 31071531 PMCID: PMC6506628 DOI: 10.1016/j.omtn.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/04/2019] [Indexed: 12/01/2022]
Abstract
Noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long ncRNAs (lncRNAs) have been shown to function as pivotal regulators in the carcinogenesis of renal cell carcinoma (RCC). However, the functions and underlying mechanisms of most ncRNAs in RCC are still elusive, and the crosstalks of different layers of ncRNAs are seldom reported. Here we showed that miR-124 and maternally expressed gene 3 (MEG3) were both significantly reduced in RCC, and combined expression of miR-124 and MEG3 emerged as an independent prognostic factor in our RCC cohort. Overexpression of miR-124 or MEG3 inhibited cell proliferation, migration, and invasion in vitro, and restrained tumor growth in vivo. EZH2 knockdown induced the epigenetic silencing of miR-124 and MEG3 expression by H3K27me3. Besides, miR-124 directly targeted the TET1 transcript, and then the interaction resulted in the upregulation of MEG3. Furthermore, we demonstrated that MEG3 induced p53 protein accumulation, whereas p53 was a positive transcriptional regulator of the miR-124. In addition, tumor-suppressive PTPN11 was identified as a direct target of miR-124, as well as the MEG3- and p53-regulated gene. Our study identifies three crosstalks between miR-124 and MEG3, which provide a plausible link for these two ncRNAs in RCC. Both ncRNAs exert important antitumor effects in RCC pathogenesis and might serve as prognostic biomarkers and molecular therapeutic targets.
Collapse
|
24
|
Tian S, Meng G, Zhang W. A six-mRNA prognostic model to predict survival in head and neck squamous cell carcinoma. Cancer Manag Res 2018; 11:131-142. [PMID: 30588115 PMCID: PMC6305138 DOI: 10.2147/cmar.s185875] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transcriptional dysregulation is one of the most important features of cancer genesis and progression. Applying gene expression dysregulation information to predict the development of cancers is useful for cancer diagnosis. However, previous studies mainly focused on the relationship between a single gene and cancer. Prognostic prediction using combined gene models remains limited. MATERIALS AND METHODS Gene expression profiles were downloaded from The Cancer Genome Atlas and the data sets were randomly divided into training data sets and test data sets. A six-gene signature associated with head and neck squamous cell carcinoma (HNSCC) and overall survival (OS) was identified according to a training cohort by using weighted gene correlation network analysis and least absolute shrinkage and selection operator Cox regression. The test data set and gene expression omnibus (GEO) data set were used to validate this signature. RESULTS We identified six candidate genes, namely, FOXL2NB, PCOLCE2, SPINK6, ULBP2, KCNJ18, and RFPL1, and, using a six-gene model, predicted the risk of death of head and neck squamous cell carcinoma in The Cancer Genome Atlas. At a selected cutoff, patients were clustered into low- and high-risk groups. The OS curves of the two groups of patients had significant differences, and the time-dependent receiver operating characteristics of OS, disease-specific survival (DSS), and progression-free survival (PFS) were as high as 0.766, 0.731, and 0.623, respectively. Then, the test data set and the GEO data set were used to evaluate our model, and we found that the OS time in the high-risk group was significantly shorter than in the low-risk group in both data sets, and the receiver operating characteristics of test data set were 0.669, 0.675, and 0.614, respectively. Furthermore, univariate and multivariate Cox regression analyses showed that the risk score was independent of clinicopathological features. CONCLUSION The six-gene model could predict the OS of HNSCC patients and improve therapeutic decision-making.
Collapse
Affiliation(s)
- Saisai Tian
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China,
| | - Weidong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China,
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China,
| |
Collapse
|
25
|
Current Landscape and the Potential Role of Hypoxia-Inducible Factors and Selenium in Clear Cell Renal Cell Carcinoma Treatment. Int J Mol Sci 2018; 19:ijms19123834. [PMID: 30513765 PMCID: PMC6321165 DOI: 10.3390/ijms19123834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, the discovery of various pathways involved in renal cell carcinoma (RCC) has led to the development of biologically-driven targeted therapies. Hypoxia-inducible factors (HIFs), angiogenic growth factors, von Hippel–Lindau (VHL) gene mutations, and oncogenic microRNAs (miRNAs) play essential roles in the pathogenesis and drug resistance of clear cell renal cell carcinoma. These insights have led to the development of vascular endothelial growth factor (VEGF) inhibitors, Mechanistic target of rapamycin (mTOR) inhibitors, and immunotherapeutic agents, which have significantly improved the outcomes of patients with advanced RCC. HIF inhibitors will be a valuable asset in the growing therapeutic armamentarium of RCC. Various histone deacetylase (HDAC) inhibitors, selenium, and agents like PT2385 and PT2977 are being explored in various clinical trials as potential HIF inhibitors, to ameliorate the outcomes of RCC patients. In this article, we will review the current treatment options and highlight the potential role of selenium in the modulation of drug resistance biomarkers expressed in clear cell RCC (ccRCC) tumors.
Collapse
|
26
|
Chang P, Bing Z, Tian J, Zhang J, Li X, Ge L, Ling J, Yang K, Li Y. Comprehensive assessment gene signatures for clear cell renal cell carcinoma prognosis. Medicine (Baltimore) 2018; 97:e12679. [PMID: 30383629 PMCID: PMC6221654 DOI: 10.1097/md.0000000000012679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are many prognostic gene signature models in clear cell renal cell carcinoma (ccRCC). However, different results from various methods and samples are hard to contribute to clinical practice. It is necessary to develop a robust gene signature for improving clinical practice in ccRCC.A method was proposed to integrate least absolute shrinkage and selection operator and multiple Cox regression to obtain mRNA and microRNA signature from the cancer genomic atlas database for predicting prognosis of ccRCC. The gene signature model consisted by 5 mRNAs and 1 microRNA was identified. Prognosis index (PI) model was constructed from RNA expression and median value of PI is used to classified patients into high- and low-risk groups.The results showed that high-risk patients showed significantly decrease survival comparison with low-risk groups [hazard ratio (HR) =7.13, 95% confidence interval = 3.71-13.70, P < .001]. As the gene signature was mainly consisted by mRNA, the validation data can use transcriptomic data to verify. For comparison of the performance with previous works, other gene signature models and 4 datasets of ccRCC were retrieved from publications and public database. For estimating PI in each model, 3 indicators including HR, concordance index , and the area under the curve of receiver operating characteristic for 3 years were calculated across 4 independent datasets.The comparison results showed that the integrative model from our study was more robust than other models via comprehensive analysis. These findings provide some genes for further study their functions and mechanisms in ccRCC tumorigenesis and malignance, and may be useful for effective clinical decision making of ccRCC patients.
Collapse
Affiliation(s)
- Peng Chang
- School of Life Sciences, Lanzhou University
- Lanzhou University Second Hospital
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Jingyun Zhang
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Xiuxia Li
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Long Ge
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Juan Ling
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Kehu Yang
- School of Life Sciences, Lanzhou University
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province
| | - Yumin Li
- School of Life Sciences, Lanzhou University
- Lanzhou University Second Hospital
| |
Collapse
|
27
|
Non-Coding Micro RNAs and Hypoxia-Inducible Factors Are Selenium Targets for Development of a Mechanism-Based Combination Strategy in Clear-Cell Renal Cell Carcinoma-Bench-to-Bedside Therapy. Int J Mol Sci 2018; 19:ijms19113378. [PMID: 30380599 PMCID: PMC6275006 DOI: 10.3390/ijms19113378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Durable response, inherent or acquired resistance, and dose-limiting toxicities continue to represent major barriers in the treatment of patients with advanced clear-cell renal cell carcinoma (ccRCC). The majority of ccRCC tumors are characterized by the loss of Von Hippel⁻Lindau tumor suppressor gene function, a stable expression of hypoxia-inducible factors 1α and 2α (HIFs), an altered expression of tumor-specific oncogenic microRNAs (miRNAs), a clear cytoplasm with dense lipid content, and overexpression of thymidine phosphorylase. The aim of this manuscript was to confirm that the downregulation of specific drug-resistant biomarkers deregulated in tumor cells by a defined dose and schedule of methylselenocysteine (MSC) or seleno-l-methionine (SLM) sensitizes tumor cells to mechanism-based drug combination. The inhibition of HIFs by selenium was necessary for optimal therapeutic benefit. Durable responses were achieved only when MSC was combined with sunitinib (a vascular endothelial growth factor receptor (VEGFR)-targeted biologic), topotecan (a topoisomerase 1 poison and HIF synthesis inhibitor), and S-1 (a 5-fluorouracil prodrug). The documented synergy was selenium dose- and schedule-dependent and associated with enhanced prolyl hydroxylase-dependent HIF degradation, stabilization of tumor vasculature, downregulation of 28 oncogenic miRNAs, as well as the upregulation of 12 tumor suppressor miRNAs. The preclinical results generated provided the rationale for the development of phase 1/2 clinical trials of SLM in sequential combination with axitinib in ccRCC patients refractory to standard therapies.
Collapse
|
28
|
Tsiakanikas P, Giaginis C, Kontos CK, Scorilas A. Clinical utility of microRNAs in renal cell carcinoma: current evidence and future perspectives. Expert Rev Mol Diagn 2018; 18:981-991. [DOI: 10.1080/14737159.2018.1539668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nustrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Chen B, Wang C, Zhang J, Zhou Y, Hu W, Guo T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int 2018; 18:157. [PMID: 30337839 PMCID: PMC6180637 DOI: 10.1186/s12935-018-0652-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increasing evidence suggests a critical role for long noncoding RNAs (LncRNAs) and pseudogenes in cancer. Renal cell carcinoma (RCC), the most common primary renal neoplasm, is highly aggressive and difficult to treat because of its resistance to chemotherapy and radiotherapy. Despite many identified LncRNAs and pseudogenes, few have been clearly elucidated. Methods This study provides new insights into LncRNAs and pseudogenes in the prognosis of RCC. We searched an online database to interrogate alterations and clinical data on cBioPortal. We analysed LncRNA and pseudogene signatures to predict the prognosis of RCC based on a Cox model. We also found potential serum biomarkers of RCC and validated them in 32 RCC patients, as well as healthy controls. Results Alterations were found in 2553 LncRNAs and 8901 pseudogenes and occurred in up to 23% of all cases. Among these, 27 LncRNAs and 45 pseudogenes were closely related to prognosis. We also identified signatures of LncRNAs and pseudogenes that can predict overall survival and recurrence of RCC. We then validated the relative levels of these LncRNAs and pseudogenes in the serum of 32 patients. Six of these, including LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P, could be non-invasive biomarkers of RCC. Finally, we selected PIK3CD-AS1 to determine its role in RCC and found that upregulation of PIK3CD-AS1 was closely associated with higher tumour stage and metastasis. Conclusions These signatures of LncRNAs and pseudogenes can predict overall survival and recurrence of RCC. LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P could be non-invasive biomarkers of RCC. These data suggest the important roles of LncRNAs and pseudogenes in RCC, and therefore provides us new insights into the prognosis of RCC. Electronic supplementary material The online version of this article (10.1186/s12935-018-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Chengyue Wang
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Jin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Yang Zhou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Wei Hu
- 3Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Tao Guo
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| |
Collapse
|
30
|
Ying G, Wu R, Xia M, Fei X, He QE, Zha C, Wu F. Identification of eight key miRNAs associated with renal cell carcinoma: A meta-analysis. Oncol Lett 2018; 16:5847-5855. [PMID: 30344735 PMCID: PMC6176358 DOI: 10.3892/ol.2018.9384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/20/2018] [Indexed: 11/22/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common renal carcinoma in the human kidney. To date, to the best of our knowledge, there are no biomarkers for the early monitoring and diagnosis of RCC patients. The present study aimed to develop deeper insight into the molecular mechanisms of microRNAs (miRNAs/miRs) in the regulation of RCC development and to reveal candidate miRNA biomarkers in human RCC. A meta-analysis was used to integrate the published and independent RCC miRNA expression profiling investigations that compared the miRNA expression profiles in RCC samples with control samples. The meta-signature miRNA target genes were then predicted in TargetScan. The predicted targets were further analyzed using Gene Ontology and pathway enrichment analysis with the Database for Annotation, Visualization and Integrated Discovery online tool, and then the transcription factors of meta-signature miRNA target genes were identified in Tfacts. A total of 7 publicly available and independent RCC miRNA expression profiling datasets were collected, and 2 upregulated (hsa-miR-155-5p and hsa-miR-210-5p) and 6 downregulated (hsa-miR-138-5p, hsa-miR-141-5p, hsa-miR-200c-5p, hsa-miR-362-5p, hsa-miR-363-5p and hsa-miR-429) meta-signature miRNAs in renal carcinoma were identified. The targeted gene enrichment analysis indicated that the meta-signature miRNAs may influence several pathways that participate in cancerogenesis, including the ‘rap1 signaling pathway’, ‘renal cell carcinoma’ and ‘microRNAs in cancer’. Overall, the present meta-analysis identified 2 upregulated and 6 downregulated meta-signature miRNAs from 7 renal carcinoma datasets, the dysregulated miRNAs that may contribute to kidney carcinoma development. This research may reveal candidate miRNA biomarkers in human RCC.
Collapse
Affiliation(s)
- Guanghui Ying
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Ruilan Wu
- Postanesthetic Care Unit, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Min Xia
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Xiapei Fei
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Qi En He
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Chenqin Zha
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| | - Fuquan Wu
- Department of Nephrology, Beilun District People's Hospital of Zhejiang Province, Ningbo, Zhejiang 315800, P.R. China
| |
Collapse
|
31
|
Thuan Duc L, Phuong Kim T, Thuy Ai HL. miRNA-141 as the Biomarker for Human Cancers. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2018. [DOI: 10.18311/ajprhc/2018/21486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Chen Z, Zhan Y, Chi J, Guo S, Zhong X, He A, Zheng J, Gong Y, Li X, Zhou L. Using microRNAs as Novel Predictors of Urologic Cancer Survival: An Integrated Analysis. EBioMedicine 2018; 34:94-107. [PMID: 30037718 PMCID: PMC6116416 DOI: 10.1016/j.ebiom.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND MicroRNAs(miRNAs) are involved in the formation, maintenance, and metastasis of urologic cancer. Here, we aim to gather and evaluate all of the evidence regarding the potential role of miRNAs as novel predictors of urologic cancer survival. METHODS A systematic review was performed to identify and score all of the published studies that evaluated the prognostic effects of miRNAs in kidney (KCa), bladder (BCa) or prostate cancer (PCa). Where appropriate, the summary effects of miRNAs on urologic cancer were meta-analysed. The reliability of those results was then further validated by an integrated analysis of the TCGA cohort and miRNA panel. RESULTS Of 151 datasets, 80 miRNAs were enrolled in this systematic review. A meta-analysis of the prognostic qualities of each miRNA identified an objective association between miRNA and prognosis. miR-21 was identified as an unfavourable miRNA with the overall survival (HR:2.699, 1.76-4.14, P < 0.001) across various prognostic events. Our further meta-analyses, integrating a parallel TCGA analysis, confirmed these partial previous results and further revealed different summary effects, such as the moderate effect of miR-21 in BCa. The refined miRNA panel (KCa-6: miR-27b, -942, -497, -144, -141 and -27a) was more capable of predicting the overall survival than was any single miRNAs included in it (HR: 3.214, 1.971-5.240, P < 0.01). CONCLUSIONS A miRNA panel may be able to determine the prognosis of urologic tumour more effectively and compensate for the unreliability of individual miRNA in estimating prognosis. More large-scale studies are therefore required to evaluate the unbiased prognostic value of miRNAs in urologic cancer effectively.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China
| | - Jieshan Chi
- Shantou University Medical College, Shantou 515041, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shuyuan Guo
- Shantou University Medical College, Shantou 515041, China
| | - Xinliang Zhong
- Shantou University Medical College, Shantou 515041, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China
| | - Jianrong Zheng
- Shantou University Medical College, Shantou 515041, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing 100034, China.
| |
Collapse
|
33
|
Mytsyk Y, Dosenko V, Skrzypczyk MA, Borys Y, Diychuk Y, Kucher A, Kowalskyy V, Pasichnyk S, Mytsyk O, Manyuk L. Potential clinical applications of microRNAs as biomarkers for renal cell carcinoma. Cent European J Urol 2018; 71:295-303. [PMID: 30386650 PMCID: PMC6202627 DOI: 10.5173/ceju.2018.1618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction Renal cell carcinoma (RCC) accounts for 3% of adult malignancies and more than 90% of kidney neoplasms. High rates of undiagnostic percutaneous kidney biopsies and difficulties in reliable pre-operative differentiation between malignant and benign renal tumors using contemporary imaging techniques result in large numbers of redundant surgeries. Absence of specific biomarkers for early detection and monitoring complicates on-time diagnosis of the disease and relapse. For the patients followed up after having a nephrectomy, a noninvasive and sensitive biomarker enabling early detection of disease relapse would be extremely useful. Material and methods The study is a review of recent knowledge regarding potential clinical applications of microRNAs (miRNAs) as biomarkers of RCC. Results MicroRNAs are essential regulators of various processes such as cell proliferation, differentiation, development and death; they have been implicated in diverse biological and pathological processes in RCC. There is a class of miRNAs that promote RCC development (oncomirs) and a class of miRNAs that negatively regulate oncogenes, suppress tumor growth and invasion, and thus could be considered treatment agents (anti-oncomirs). Separate miRNAs and specific miRNAs expression profiles have been identified, enabling early detection of the disease, prediction of response to systemic therapy, or prognostication of biological behavior of the disease. Conclusions The miRNA network analysis and gene profiling may help to identify the most sensible molecular signatures of RCC that can be used for diagnostic purposes, as well as poor prognosis signatures and poor therapeutic response signatures in patients who undergo systemic therapy.
Collapse
Affiliation(s)
- Yulian Mytsyk
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Victor Dosenko
- General and Molecular Pathophysiology Department, Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | - Yuriy Borys
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Yuriy Diychuk
- Department of Urology, Lviv State Regional Oncology Treatment and Diagnostic Center, Lviv, Ukraine
| | - Askold Kucher
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Vasyl Kowalskyy
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Serhyi Pasichnyk
- Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oleh Mytsyk
- Lviv Regional Bureau of Forensic Services, Lviv, Ukraine
| | - Lubov Manyuk
- Department of Foreign Languages, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
34
|
|
35
|
Jin H, Li DY, Chernogubova E, Sun C, Busch A, Eken SM, Saliba-Gustafsson P, Winter H, Winski G, Raaz U, Schellinger IN, Simon N, Hegenloh R, Matic LP, Jagodic M, Ehrenborg E, Pelisek J, Eckstein HH, Hedin U, Backlund A, Maegdefessel L. Local Delivery of miR-21 Stabilizes Fibrous Caps in Vulnerable Atherosclerotic Lesions. Mol Ther 2018; 26:1040-1055. [PMID: 29503197 PMCID: PMC6080193 DOI: 10.1016/j.ymthe.2018.01.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.
Collapse
Affiliation(s)
- Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daniel Y Li
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | | | - Changyan Sun
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Suzanne M Eken
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Hanna Winter
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Uwe Raaz
- University Heart Center, Göttingen, Germany
| | | | - Nancy Simon
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Renate Hegenloh
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ljubica Perisic Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ewa Ehrenborg
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | | | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Munich, Germany.
| |
Collapse
|
36
|
Strauss P, Marti HP, Beisland C, Scherer A, Lysne V, Leh S, Flatberg A, Koch E, Beisvag V, Landolt L, Skogstrand T, Eikrem Ø. Expanding the Utilization of Formalin-Fixed, Paraffin-Embedded Archives: Feasibility of miR-Seq for Disease Exploration and Biomarker Development from Biopsies with Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2018. [PMID: 29534467 PMCID: PMC5877664 DOI: 10.3390/ijms19030803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel predictive tools for clear cell renal cell carcinoma (ccRCC) are urgently needed. MicroRNAs (miRNAs) have been increasingly investigated for their predictive value, and formalin-fixed paraffin-embedded biopsy archives may potentially be a valuable source of miRNA sequencing material, as they remain an underused resource. Core biopsies of both cancerous and adjacent normal tissues were obtained from patients (n = 12) undergoing nephrectomy. After small RNA-seq, several analyses were performed, including classifier evaluation, obesity-related inquiries, survival analysis using publicly available datasets, comparisons to the current literature and ingenuity pathway analyses. In a comparison of tumour vs. normal, 182 miRNAs were found with significant differential expression; miR-155 was of particular interest as it classified all ccRCC samples correctly and correlated well with tumour size (R² = 0.83); miR-155 also predicted poor survival with hazard ratios of 2.58 and 1.81 in two different TCGA (The Cancer Genome Atlas) datasets in a univariate model. However, in a multivariate Cox regression analysis including age, sex, cancer stage and histological grade, miR-155 was not a statistically significant survival predictor. In conclusion, formalin-fixed paraffin-embedded biopsy tissues are a viable source of miRNA-sequencing material. Our results further support a role for miR-155 as a promising cancer classifier and potentially as a therapeutic target in ccRCC that merits further investigation.
Collapse
Affiliation(s)
- Philipp Strauss
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andreas Scherer
- Spheromics, 81100 Kontiolahti, Finland;
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00100 Helsinki, Finland
| | - Vegard Lysne
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Even Koch
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Vidar Beisvag
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Trude Skogstrand
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Biomedicine, University of Bergen, 5021 Bergen, Norway;
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: ; Tel.: +47-4544-6008
| |
Collapse
|
37
|
Nogueira I, Dias F, Teixeira AL, Medeiros R. miRNAs as potential regulators of mTOR pathway in renal cell carcinoma. Pharmacogenomics 2018; 19:249-261. [PMID: 29334302 DOI: 10.2217/pgs-2017-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most commonly occurring solid cancer of the adult kidney with the majority of RCC cases being detected accidentally. The most aggressive subtype is clear cell RCC (ccRCC). miRNAs, a family of small noncoding RNAs regulating gene expression have been identified as key biological modulators. The von Hippel-Lindau pathway is one of the signaling pathways involved in the pathophysiology of ccRCC. Another oncogenic mechanism involves the activation of PI3K/AKT/mTOR signaling and serves as a central regulator of cell metabolism, proliferation and survival. Several studies have described the involvement of miRNA dysregulation in the pathogenesis and progression of ccRCC. These molecules can be considered as potential diagnostic and prognostic biomarkers, allowing response to therapy to be monitored.
Collapse
Affiliation(s)
- Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.,Research Department, LPCC-Portuguese League, Against Cancer (NRNorte), 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
| |
Collapse
|
38
|
He T, Chen P, Jin L, Hu J, Li Y, Zhou L, Yang S, Mao X, Gui Y, Chen Y, Lai Y. miR‑660‑5p is associated with cell migration, invasion, proliferation and apoptosis in renal cell carcinoma. Mol Med Rep 2018; 17:2051-2060. [PMID: 29138826 DOI: 10.3892/mmr.2017.8052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/07/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system with poor prognosis. microRNAs (miRNAs) are a class of small, non‑coding RNA molecules that serve important roles in biological and pathological processes in several types of human tumors. miRNA (miR)‑660‑5p is dysregulated in many human cancers; however, its role in renal cell carcinoma is currently unclear. In the present study, reverse transcription‑quantitative polymerase chain reaction was performed to examine the expression levels of miR‑660‑5p in RCC tissues and paired normal adjacent tissues (NATs). To determine the function of miR‑660‑5p in RCC cells, wound‑healing and Matrigel assays were performed to determine the effects of miR‑660‑5p on cell migration and invasion, respectively. MTT and Cell Counting kit‑8 assays were performed to determine the effects of miR‑660‑5p on RCC cell proliferation. In addition, flow cytometric analysis was performed to validate the effects of miR‑660‑5p on apoptosis. The results indicated that miR‑660‑5p expression was downregulated in RCC tissues compared with NATs. Restoration of miR‑660‑5p expression using synthetic mimics may suppress cell migration, invasion and proliferation, and induce cell apoptosis, while using synthetic inhibitors may promote cell migration, invasion and proliferation, and suppress cell apoptosis. These results suggested that miR‑660‑5p may serve a tumor suppressive role in RCC tumorigenesis.
Collapse
Affiliation(s)
- Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Liang Zhou
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
39
|
TGF-β1 targets a microRNA network that regulates cellular adhesion and migration in renal cancer. Cancer Lett 2018; 412:155-169. [DOI: 10.1016/j.canlet.2017.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023]
|
40
|
Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M, Stiegelbauer V. MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18112495. [PMID: 29165391 PMCID: PMC5713461 DOI: 10.3390/ijms18112495] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) are the most common renal neoplasia and can be divided into three main histologic subtypes, among which clear cell RCC is by far the most common form of kidney cancer. Despite substantial advances over the last decade in the understanding of RCC biology, surgical treatments, and targeted and immuno-therapies in the metastatic setting, the prognosis for advanced RCC patients remains poor. One of the major problems with RCC treatment strategies is inherent or acquired resistance towards therapeutic agents over time. The discovery of microRNAs (miRNAs), a class of small, non-coding, single-stranded RNAs that play a crucial role in post-transcriptional regulation, has added new dimensions to the development of novel diagnostic and treatment tools. Because of an association between Von Hippel–Lindau (VHL) genes with chromosomal loss in 3p25-26 and clear cell RCC, miRNAs have attracted considerable scientific interest over the last years. The loss of VHL function leads to constitutional activation of the hypoxia inducible factor (HIF) pathway and to consequent expression of numerous angiogenic and carcinogenic factors. Since miRNAs represent key players of carcinogenesis, tumor cell invasion, angiogenesis, as well as in development of metastases in RCC, they might serve as potential therapeutic targets. Several miRNAs are already known to be dysregulated in RCC and have been linked to biological processes involved in tumor angiogenesis and response to anti-cancer therapies. This review summarizes the role of different miRNAs in RCC angiogenesis and their association with the VHL gene, highlighting their potential role as novel drug targets.
Collapse
Affiliation(s)
- Lisa-Maria Schanza
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Johannes Fosselteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Verena Stiegelbauer
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| |
Collapse
|
41
|
Jin L, Li Y, Zhang Z, He T, Hu J, Liu J, Chen M, Gui Y, Yang S, Mao X, Chen Y, Lai Y. miR-514a-3p functions as a tumor suppressor in renal cell carcinoma. Oncol Lett 2017; 14:5624-5630. [PMID: 29113192 PMCID: PMC5661369 DOI: 10.3892/ol.2017.6855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer, and the prognosis of metastatic RCC remains poor with a high rate of recurrence and mortality. A previous study has revealed that microRNA (miRNA), which negatively regulates protein expression, serves a role of oncogene or tumor suppressor. The aim of the present study was to investigate the expression and function of miR-514a-3p in RCC. To detect the expression of miR-514a-3p in 32 paired RCC tissues, quantitative polymerase chain reaction (qPCR) was performed. The function of miR-514a-3p in the proliferation, mobility and apoptosis of RCC cells (786-O and ACHN) was assessed by MTT, CCK-8, cell scratch, Transwell, Hoechst 33342 staining and flow cytometry assay. The results of qPCR revealed that miR-514a-3p was significantly downregulated in RCC tissues compared with adjacent normal tissues. Upregulation of miR-514a-3p by transfection of mimics suppressed RCC cell proliferation, migration and invasion, and induced cell apoptosis. The results revealed that miR-514a-3p was significantly downregulated in RCC and may serve a role as tumor suppressor in RCC. Further studies are required, focusing on the possibility of using miR-514a-3p as a biomarker for RCC as well as the pathway of miR-514a-3p in RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Yun Chen, Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
42
|
Chanudet E, Wozniak MB, Bouaoun L, Byrnes G, Mukeriya A, Zaridze D, Brennan P, Muller DC, Scelo G. Large-scale genome-wide screening of circulating microRNAs in clear cell renal cell carcinoma reveals specific signatures in late-stage disease. Int J Cancer 2017; 141:1730-1740. [PMID: 28639257 DOI: 10.1002/ijc.30845] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Circulating miRNAs have shown great promises as noninvasive diagnostic and predictive biomarkers in several solid tumors. While the miRNA profiles of renal tumors have been extensively explored, knowledge of their circulating counterparts is limited. Our study aimed to provide a large-scale genome-wide profiling of plasma circulating miRNA in clear-cell renal cell carcinoma (ccRCC). Plasma samples from 94 ccRCC cases and 100 controls were screened for 754 circulating micro-RNAs (miRNA) by TaqMan arrays. Analyses including known risk factors for renal cancer-namely, age, sex, hypertension, obesity, diabetes, tobacco smoking and alcohol consumption-highlighted that circulating miRNA profiles were tightly correlated with the stage of the disease. Advanced tumors, characterized as stage III and IV, were associated with specific miRNA signatures that significantly differ from both controls and earlier stage ccRCC cases. Molecular pathway enrichment analyses of their gene targets showed high similarities with alterations observed in renal tumors. Plasma circulating levels of miR-150 were significantly associated with RCC-specific survival and could marginally improve the predictive accuracy of clinical parameters in our series, including age at diagnosis, sex and conventional staging. In summary, our results suggest that circulating miRNAs may provide insights into renal cell carcinoma progression.
Collapse
Affiliation(s)
- Estelle Chanudet
- International Agency for Research on Cancer (WHO-IARC), Lyon, France
| | | | - Liacine Bouaoun
- International Agency for Research on Cancer (WHO-IARC), Lyon, France
| | - Graham Byrnes
- International Agency for Research on Cancer (WHO-IARC), Lyon, France
| | - Anush Mukeriya
- Institute of Carcinogenesis, N. N. Blokhin Cancer Research Centre, Moscow, Russia
| | - David Zaridze
- Institute of Carcinogenesis, N. N. Blokhin Cancer Research Centre, Moscow, Russia
| | - Paul Brennan
- International Agency for Research on Cancer (WHO-IARC), Lyon, France
| | | | - Ghislaine Scelo
- International Agency for Research on Cancer (WHO-IARC), Lyon, France
| |
Collapse
|
43
|
MiR-411 Functions as a Tumor Suppressor in Renal Cell Cancer. Int J Biol Markers 2017; 32:e454-e460. [PMID: 28708205 DOI: 10.5301/ijbm.5000261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 01/17/2023]
Abstract
Background Recent studies have revealed that microRNAs (miRNAs) play important roles as oncogenes or tumor suppressors in tumorigenesis and tumor development, by negatively regulating protein expression. A previous study of microarrays identified that miR-411 was down-regulated in renal cell carcinoma (RCC), while few studies investigating the role of miR-411 in the pathogenesis of RCC have been performed. Methods We assessed the miR-411 expression in RCC and paired adjacent normal tissues, as well as in RCC cell lines and a normal renal cell line, by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Furthermore, the effects of miR-411 on RCC and normal renal cell proliferation, apoptosis and migration were determined using MTT assay, CCK-8 assay, flow cytometry and scratch wound assay following restoration of miR-411 with synthetic mimics. Results Results of qRT-PCR indicated that the expression of miR-411 was down-regulated in RCC tissues and cell lines when compared with adjacent normal tissues and a normal renal cell line. Further, results of CCK-8, MTT, cell scratch and transwell assay showed that over-expression of miR-411 suppressed RCC cell (786-0 and ACHN) proliferation and migration. Flow cytometry assay revealed that miR-411 could induce RCC cell apoptosis. However, overexpression of miR-411 had no obvious effect on normal renal cell line 293T Conclusions To sum up, miR-411 is significantly down-regulated and plays a role as a tumor suppressor in RCC. Further studies are warranted to determine the mechanisms of miR-411 in RCC pathogenesis and define the target genes of miR-411 in RCC.
Collapse
|
44
|
Dias F, Teixeira AL, Ferreira M, Adem B, Bastos N, Vieira J, Fernandes M, Sequeira MI, Maurício J, Lobo F, Morais A, Oliveira J, Kok K, Medeiros R. Plasmatic miR-210, miR-221 and miR-1233 profile: potential liquid biopsies candidates for renal cell carcinoma. Oncotarget 2017; 8:103315-103326. [PMID: 29262564 PMCID: PMC5732730 DOI: 10.18632/oncotarget.21733] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma (RCC) represents a challenge for clinicians since the nonexistence of screening and monitoring tests contributes to the fact that one-third of patients are diagnosed with metastatic disease and 20–40% of the remaining patients will also develop metastasis. Modern medicine is now trying to establish circulating biomolecules as the gold standard of biomarkers. Among the molecules that can be released from tumor cells we can find microRNAs. The aim of this study was to evaluate the applicability of cancer-related miR-210, miR-218, miR-221 and miR-1233 as prognostic biomarkers for RCC. Patients with higher levels of miR-210, miR-221 and miR-1233 presented a higher risk of specific death by RCC and a lower cancer-specific survival. The addition of miR-210, miR-221 and miR-1233 plasma levels information improved the capacity to predict death by cancer in 8, 4% when compared to the current variables used by clinicians. We also verified that hypoxia stimulates the release of miR-210 and miR-1233 from HKC-8, RCC-FG2 and 786-O cell lines. These results support the addition of circulating microRNAs as prognostic biomarkers for RCC.
Collapse
Affiliation(s)
- Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Marta Ferreira
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Bárbara Adem
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nuno Bastos
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Vieira
- Genetics Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Mara Fernandes
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Inês Sequeira
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joaquina Maurício
- Medical Oncology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Francisco Lobo
- Urology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - António Morais
- Urology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Jorge Oliveira
- Urology Department of the Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Klaas Kok
- Department of Genetics, University Medical Center, Groningen, The Netherlands
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department, LPCC- Portuguese League Against Cancer (NRNorte), Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
45
|
MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3269379. [PMID: 29104726 PMCID: PMC5632457 DOI: 10.1155/2017/3269379] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/07/2017] [Accepted: 08/20/2017] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854), MET (AUC = 0.765), and E2F3 (AUC = 0.761). The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression.
Collapse
|
46
|
Peng Z, Pan L, Niu Z, Li W, Dang X, Wan L, Zhang R, Yang S. Identification of microRNAs as potential biomarkers for lung adenocarcinoma using integrating genomics analysis. Oncotarget 2017; 8:64143-64156. [PMID: 28969058 PMCID: PMC5609990 DOI: 10.18632/oncotarget.19358] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Extensive effort has been exerted to identify miRNA biomarkers in LUAD. Unfortunately, high inter-lab variability and small sample sizes have produced inconsistent conclusions in this field. To resolve the above-mentioned limitations, we performed a comprehensive analysis based on LUAD miRNome profiling studies using the robust rank aggregation (RRA) method. Moreover, miRNA-gene interaction network, pathway enrichment analysis and Kaplan-Meier survival curves were used to investigate the clinical values and biological functions of the identified miRNAs. A total of six common differentially expressed miRNAs (DEMs) were identified in LUAD. An independent cohort further confirmed that four miRNAs (miR-21-5p, miR-210-3p, miR-182-5p and miR-183-5p) were up-regulated and two miRNAs (miR-126-3p and miR-218-5p) were down-regulated in LUAD tissues. Pathway enrichment analysis also suggested that the above-listed six DEMs may affect LUAD progression via the estrogen signaling pathway. Survival analysis based on the TCGA dataset revealed the potential prognostic values of six DEMs in patients with LUAD (P-value<0.01). In conclusion, we identified a panel of six miRNAs from LUAD using miRNome profiling studies. Our results provide evidence for the use of these six DEMs as novel diagnostic and prognostic biomarkers for LUAD patients.
Collapse
Affiliation(s)
- Zhuo Peng
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Zequn Niu
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Wei Li
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiaoyan Dang
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lin Wan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rui Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuanying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
47
|
Jin L, Fu H, Quan J, Pan X, He T, Hu J, Li Y, Li H, Yang Y, Ye J, Zhang F, Ni L, Yang S, Lai Y. Overexpression of long non-coding RNA differentiation antagonizing non-protein coding RNA inhibits the proliferation, migration and invasion and promotes apoptosis of renal cell carcinoma. Mol Med Rep 2017; 16:4463-4468. [PMID: 28765964 DOI: 10.3892/mmr.2017.7135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is the third most common cancer in the urological system; however, the pathogenesis remains unknown. Accumulating evidence has demonstrated that long non‑coding RNAs are dysregulated in various tumors and serves an important role in tumorigenesis and development. In the present study, expression of lncRNA differentiation antagonizing non‑protein coding RNA (DANCR) in 24 paired RCC and adjacent normal tissues was detected by reverse transcription‑quantitative polymerase chain reaction. The results revealed that DANCR is downregulated in RCC tissues compared with adjacent normal tissues. Subsequent study revealed that overexpression of lncRNA DANCR by transfection of pcDNA3.1‑DANCR could suppress 786‑O and ACHN (RCC cell) proliferation, migration and invasion, and induce apoptosis compared with cells transfected with the pcDNA3.1 vector. The results revealed that DANCR functions as a tumor suppressor in RCC. In conclusion, the present study, to the best of our knowledge, was the first to reveal DANCR as a tumor suppressor. The results implicate DANCR as a potential biomarker of RCC, and further study will be focused on the clinical significance and signaling pathways of DANCR.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Huifang Fu
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yu Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Ye
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Fangting Zhang
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Liangchao Ni
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
48
|
Gaudelot K, Gibier JB, Pottier N, Hémon B, Van Seuningen I, Glowacki F, Leroy X, Cauffiez C, Gnemmi V, Aubert S, Perrais M. Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma. Tumour Biol 2017; 39:1010428317707372. [PMID: 28714373 DOI: 10.1177/1010428317707372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma, the most common neoplasm of adult kidney, accounts for about 3% of adult malignancies and is usually highly resistant to conventional therapy. MicroRNAs are a class of small non-coding RNAs, which have been previously shown to promote malignant initiation and progression. In this study, we focused our attention on miR-21, a well described oncomiR commonly upregulated in cancer. Using a cohort of 99 primary renal cell carcinoma samples, we showed that miR-21 expression in cancer tissues was higher than in adjacent non-tumor tissues whereas no significant difference was observed with stages, grades, and metastatic outcome. In vitro, miR-21 was also overexpressed in renal carcinoma cell lines compared to HK-2 human proximal tubule epithelial cell line. Moreover, using Boyden chambers and western blot techniques, we also showed that miR-21 overexpression increased migratory, invasive, proliferative, and anti-apoptotic signaling pathways whereas opposite results were observed using an anti-miR-21-based silencing strategy. Finally, we assessed the role of miR-21 in mediating renal cell carcinoma chemoresistance and further showed that miR-21 silencing significantly (1) increased chemosensitivity of paclitaxel, 5-fluorouracil, oxaliplatin, and dovitinib; (2) decreased expression of multi-drug resistance genes; and (4) increased SLC22A1/OCT1, SLC22A2/OCT2, and SLC31A1/CTR1 platinum influx transporter expression. In conclusion, our results showed that miR-21 is a key actor of renal cancer progression and plays an important role in the resistance to chemotherapeutic drugs. In renal cell carcinoma, targeting miR-21 is a potential new therapeutic strategy to improve chemotherapy efficacy and consequently patient outcome.
Collapse
Affiliation(s)
- Kelly Gaudelot
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - Jean-Baptiste Gibier
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Nicolas Pottier
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France.,4 CHU Lille, Department of Biochemistry and Molecular Biology, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Brigitte Hémon
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - Isabelle Van Seuningen
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - François Glowacki
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France.,5 CHU Lille, Department of Nephrology, Hôpital Huriez, Rue Michel Polonovski, Lille, France
| | - Xavier Leroy
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Christelle Cauffiez
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France
| | - Viviane Gnemmi
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Sébastien Aubert
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Michaël Perrais
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| |
Collapse
|
49
|
Jingushi K, Kashiwagi Y, Ueda Y, Kitae K, Hase H, Nakata W, Fujita K, Uemura M, Nonomura N, Tsujikawa K. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int J Oncol 2017; 51:289-297. [PMID: 28534944 DOI: 10.3892/ijo.2017.4016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 11/06/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, and clear cell RCC (ccRCC) represents its most common histological subtype. Although several studies have reported high expression of miR-122 in ccRCC, its physiological role remains unclear. To clarify the role of miR-122 in ccRCC, we compared miR-122 expression levels in non-cancerous tissue and ccRCC. Significant upregulation of miR-122 was observed in ccRCC specimens. Moreover, ccRCC patients with high miR-122 expression showed poor progression-free survival compared to those with low miR-122 expression. Overexpression of miR-122 using an miRNA mimic promoted proliferation, migration, and invasion activities of ccRCC cells. miR-122 directly targets occludin, a known component of tight junctions. Occludin knockdown promoted the cell migration activity but not proliferation or invasion activities of ccRCC cells. In human clinical specimens, miR-122 expression inversely correlated with occludin protein expression. These findings show that miR-122 is an oncomiR in ccRCC.
Collapse
Affiliation(s)
- Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuri Kashiwagi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wataru Nakata
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Qu K, Zhang X, Lin T, Liu T, Wang Z, Liu S, Zhou L, Wei J, Chang H, Li K, Wang Z, Liu C, Wu Z. Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci Rep 2017; 7:1692. [PMID: 28490741 PMCID: PMC5431820 DOI: 10.1038/s41598-017-01904-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/03/2017] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer (PC) is a highly fatal disease worldwide and is often misdiagnosed in its early stages. The exploration of novel non-invasive biomarkers will definitely benefit PC patients. Recently, circulating miRNAs in body fluids are emerging as non-invasive biomarkers for PC diagnosis. In this study, we first conducted comprehensive robust rank aggregation (RRA) analysis based on 21 published miRome profiling studies. We statistically identified and clinically validated a miRNA expression pattern in PC patients. These miRNAs consisted of four up-regulated (hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-210-3p and hsa-miR-155-5p) and three down-regulated miRNAs (hsa-miR-217, hsa-miR-148a-3p and hsa-miR-375). Among them, hsa-miR-21-5p was one of the most highly expressed miRNAs in the serum of PC patients. Our validation test further suggested a relatively high accuracy of serum hsa-miR-21-5p levels in the diagnosis of PC, with a sensitivity of 0.77 and a specificity of 0.80. Finally, a diagnostic meta-analysis based on 9 studies also revealed favorable sensitivity and specificity of circulating hsa-miR-21-5p for the diagnosis of PC (pooled sensitivity and specificity were 0.76 and 0.74, respectively), which was consistent with our findings. Taken together, as one of the most aberrantly expressed miRNAs in PC, circulating hsa-miR-21-5p might be a promising serum biomarker in patients with PC.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ting Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhixin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Sushun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Jichao Wei
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|