1
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2025; 72:58-74. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Tsartsalis S, Sleven H, Fancy N, Wessely F, Smith AM, Willumsen N, Cheung TKD, Rokicki MJ, Chau V, Ifie E, Khozoie C, Ansorge O, Yang X, Jenkyns MH, Davey K, McGarry A, Muirhead RCJ, Debette S, Jackson JS, Montagne A, Owen DR, Miners JS, Love S, Webber C, Cader MZ, Matthews PM. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer's disease. Nat Commun 2024; 15:2243. [PMID: 38472200 PMCID: PMC10933340 DOI: 10.1038/s41467-024-46630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased β-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Hannah Sleven
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Frank Wessely
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michal J Rokicki
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Vicky Chau
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Eseoghene Ifie
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Olaf Ansorge
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xin Yang
- Department of Brain Sciences, Imperial College London, London, UK
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, London, UK
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team ELEANOR, UMR 1219, 33000, Bordeaux, France
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Axel Montagne
- Centre for Clinical Brain Sciences, and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Caleb Webber
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
- St Edmund Hall, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Tang ZQ, Zhao DP, Dong AJ, Li HB. Blood purification for treatment of non-liquefied multiple liver abscesses and improvement of T-cell function: A case report. World J Clin Cases 2023; 11:6515-6522. [PMID: 37900233 PMCID: PMC10600992 DOI: 10.12998/wjcc.v11.i27.6515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Non-liquefied multiple liver abscesses (NMLA) can induce sepsis, septic shock, sepsis-associated kidney injury (SA-AKI), and multiple organ failure. The inability to perform ultrasound-guided puncture and drainage to eradicate the primary disease may allow for the persistence of bacterial endotoxins and endogenous cytokines, exacerbating organ damage, and potentially causing immunosuppression and T-cell exhaustion. Therefore, the search for additional effective treatments that complement antibiotic therapy is of great importance. CASE SUMMARY A 45-year-old critically ill female patient presented to our hospital's intensive care unit with intermittent vomiting, diarrhea, and decreased urine output. The patient exhibited a temperature of 37.8 °C. Based on the results of liver ultrasonography, laboratory tests, fever, and oliguria, the patient was diagnosed with NMLA, sepsis, SA-AKI, and immunosuppression. We administered antibiotic therapy, entire care, continuous renal replacement therapy (CRRT) with an M100 hemofilter, and hemoperfusion (HP) with an HA380 hemofilter. The aforementioned treatment resulted in a substantial reduction in disease severity scores and a decrease in the extent of infection and inflammatory factors. In addition, the treatment stimulated the expansion of the cluster of differentiation 8+ (CD8+) T-cells and led to the complete recovery of renal function. The patient was discharged from the hospital. During the follow-up period of 28 d, she recovered successfully. CONCLUSION Based on the entire therapeutic regimen, the early combination of CRRT and HP therapy may control sepsis caused by NMLA and help control infections, reduce inflammatory responses, and improve CD8+ T-cell immune function.
Collapse
Affiliation(s)
- Zhi-Qiang Tang
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dan-Ping Zhao
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - A-Jing Dong
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hai-Bo Li
- Intensive Care Unit, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
4
|
Materniak-Kornas M, Kubiś P, Sell B, Pougialis G, Löchelt M, Kuźmak J. An Outbred Calf Model for Determining Innate Immune Sensing and Evolutionary Trajectories of a Cell Culture-Adapted Bovine Foamy Virus Variant. Viruses 2023; 15:1772. [PMID: 37632114 PMCID: PMC10458543 DOI: 10.3390/v15081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine foamy virus (BFVbta) displays a very high degree of cell-associated replication which is unprecedented even among the other known foamy viruses. Interestingly, recent studies have shown that it can in fact adapt in vitro to high-titer (HT) cell-free transmission due to genetic changes acquired during repeated rounds of cell-free BFVbta passages in immortalized bovine MDBK cells. Molecular clones obtained from the HT BFVbta Riems cell-free variant (HT BFVbta Riems) have been thoroughly characterized in MDBK cell cultures However, during recent years, it has become increasingly clear that the source of the host cells used for virus growth and functional studies of virus replication and virus-cell interactions plays a paramount role. Established cell lines, mostly derived from tumors, but occasionally experimentally immortalized and transformed, frequently display aberrant features relating, for example. to growth, metabolism, and genetics. Even state-of-the-art organoid cultures of primary cells cannot replicate the conditions in an authentic host, especially those concerning cell diversity and the role of innate and adaptive immunity. Therefore, to determine the overall replication characteristics of the cloned wt and HT BFVbta Riems variant, we conducted a small-scale animal pilot study. The replication of the original wt BFVbta Riems isolate, as well as that of its HT variant, were analyzed. Both BFVbta variants established infection in calves, with proviruses in peripheral blood mononuclear cells and induced Gag-specific antibodies. In addition, a related pattern in the host innate immune reaction was detected in the peripheral blood leukocytes of the BFV-infected calves. Surprisingly, an analysis of the Gag sequence two weeks post-inoculation revealed that the HT BFVbta variant showed a very high level of genetic reversion to the wild type (parental BFVbta genotype).
Collapse
Affiliation(s)
- Magdalena Materniak-Kornas
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| | - Piotr Kubiś
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| | - Bartosz Sell
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| | - Georgios Pougialis
- Division of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; (G.P.); (M.L.)
| | - Martin Löchelt
- Division of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; (G.P.); (M.L.)
- Division of Virus-Associated Carcinogenesis, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland; (P.K.); (J.K.)
| |
Collapse
|
5
|
Rostami-Far Z, Rahmani K, Mansouri K, Khadem Erfan MB, Shaveisi-Zadeh F, Nikkhoo B. Genetic Regulation of Interleukin-6 and Interleukin-10 in COVID-19 Infection. Rep Biochem Mol Biol 2023; 12:284-293. [PMID: 38317818 PMCID: PMC10838592 DOI: 10.61186/rbmb.12.2.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2024]
Abstract
Background The role and regulation mechanisms of the interleukin-6 and 10 (IL6 and IL-10) serum levels and the interaction between CD4+ and CD8+ lymphocytes with SARS-COV-2 IgM and IgG in the context of COVID-19 infection are not fully understood. Methods This study was conducted on 45 COVID-19 patients and 45 healthy individuals. The IL-6 and IL-10 promoter methylation, IL-6 and IL-10 gene expression, SARS-COV-2 IgM, and IgG antibodies and CD4+ and CD8+ lymphocytes were studied by qMSP-PCR, Real-time PCR, ELISA, and flow cytometry techniques, respectively. Results The male ratio and mean age of critically ill patients' group were significantly higher in compared to controls (P< 0.05). IL-6 gene expression and serum levels were significantly increased in patients compared to controls (P=0.002, 0.001), but IL-6 promoter methylation was not significantly decreased in patients (P=0.835). The IL-10 promoter methylation and expression were not different between cases and controls (0.326, 0.455), but serum IL-10 levels were higher in patients (P< 0.001). The CD4+ and CD8+ lymphocytes decreased (P< 0.001) and mean SARS-COV-2 IgG increased (P=0.002) in the patients compared to controls. Conclusions The COVID-19 disease result in severe complications in men and elderly. The serum levels of interleukin-6 and 10 increases in COVID-19 infection, and the gene expression of these two interleukins underlying in this increase. The serum levels of IL-6, IL-10 and SARS-COV-2 IgG as well as CD4+ and CD8+ lymphocyte counts should be investigated to monitor patients and predict the course of disease.
Collapse
Affiliation(s)
- Zahra Rostami-Far
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan university of medical science, Sanandaj, Iran.
| | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Bagher Khadem Erfan
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Farhad Shaveisi-Zadeh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
6
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Exaggerated levels of some specific TLRs, cytokines and chemokines in Japanese encephalitis infected BV2 and neuro 2A cell lines associated with worst outcome. Virol J 2023; 20:16. [PMID: 36707891 PMCID: PMC9881527 DOI: 10.1186/s12985-023-01966-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023] Open
Abstract
Japanese encephalitis (JE) disease, a viral brain fever is caused by Japanese encephalitis virus (JEV). Despite the availability of effective vaccines against this deadly infection, JE is the leading cause of epidemic viral encephalitis in children in South-east Asia. There is no treatment available for the JE disease which might be due to incomplete understanding of the pathogenesis of JE virus. The JEV infections lead to permanent neurological deficits even in those who survive from the infection. Activated microglia may play a potentially detrimental role by eliciting the expression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) influencing the surrounding brain tissue. Microglial activation, proinflammatory cytokine release and leukocytes trafficking are associated following JEV infection in central nervous system (CNS). How the pattern recognition receptors sense the viral nucleic acid and how the microglial and neuronal cells behaves following JEV infection is still unelucidated. There is scarcity of data on the expression levels of toll like receptors (TLRs), cytokines and chemokines in JEV infection in invitro model. To explore the molecular mechanisms of JEV infection of microglial cells and neuronal cells, we studied the expression profile of TLRs, cytokines and chemokines in JEV infected microglial cell line BV2 and Neuronal cell line Neuro 2A. For the present study, we developed the mouse model of encephalitis by intracerebral (IC) injection of JE virus for virus propagation, disease progression and damage study. Our results demonstrate the exaggerated release of some specific TLRs, cytokines and chemokines in invitro cell culture of microglial and Neuro 2A cell line, which are associated with bad outcome in invivo study.
Collapse
|
8
|
Comparison of transcriptomic profiles in edge to center of plaque reveals chronological molecular events in psoriatic plaque formation. J Dermatol Sci 2022; 108:30-38. [DOI: 10.1016/j.jdermsci.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
9
|
Masiá M, Fernández-González M, García JA, Padilla S, García-Abellán J, Botella Á, Mascarell P, Agulló V, Gutiérrez F. Robust long-term immunity to SARS-CoV-2 in patients recovered from severe COVID-19 after interleukin-6 blockade. EBioMedicine 2022; 82:104153. [PMID: 35816896 PMCID: PMC9265168 DOI: 10.1016/j.ebiom.2022.104153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Whether interleukin-6 (IL-6) blockade in patients with COVID-19 will affect the protective immunity against SARS-CoV-2 has become an important concern for anti-IL-6 therapy. We aimed to investigate the effects of IL-6 blockade on long-term immunity to SARS-CoV-2. Methods Prospective, longitudinal cohort study conducted in patients hospitalized for severe or critical COVID-19 with laboratory confirmed SARS-CoV-2 infection. We assessed humoral (anti-S1 domain of the spike [S], anti-nucleocapsid [N], anti-trimeric spike [TrimericS] IgG, and neutralizing antibodies [Nab]) and T-cell (interferon-γ release assay [IGRA]) responses and evaluated the incidence of reinfections over one year after infection in patients undergoing IL-6 blockade with tocilizumab and compared them with untreated subjects. Findings From 150 adults admitted with confirmed SARS-CoV-2 infection, 78 were 1:1 propensity score-matched. Patients receiving anti-IL6 therapy showed a shorter time to S-IgG seropositivity and stronger S-IgG and N-IgG antibody responses. Among unvaccinated subjects one year after infection, median (Q1-Q3) levels of TrimericS-IgG (295 vs 121 BAU/mL; p = 0.011) and Nab (74.7 vs 41.0 %IH; p = 0.012) were higher in those undergoing anti-IL6 therapy, and a greater proportion of them had Nab (80.6% vs 57.7%; p = 0.028). T-cell immunity was also better in those treated with anti-IL6, with higher median (Q1-Q3) interferon-γ responses (1760 [702–3992] vs 542 [35–1716] mIU/mL; p = 0.013) and more patients showing positive T-cell responses in the IGRA one year after infection. Patients treated with anti-IL6 had fewer reinfections during follow-up and responded to vaccination with robust increase in both antibody and T-cell immunity. Interpretation IL-6 blockade in patients with severe COVID-19 does not have deleterious effects on long-term immunity to SARS-CoV-2. The magnitude of both antibody and T-cell responses was stronger than the observed in non-anti-cytokine-treated patients with no increase in the risk of reinfections. Funding Instituto de Salud Carlos-III (Spain).
Collapse
|
10
|
Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Ignacio-Cortés S, Gómez-García IA, Rodríguez-Reyna TS, Choreño-Parra JA, Zúñiga J. Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. J Interferon Cytokine Res 2022; 42:352-368. [PMID: 35647937 PMCID: PMC9422783 DOI: 10.1089/jir.2021.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-β) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.
Collapse
Affiliation(s)
- Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Tatiana Sofia Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
11
|
Proliferation of CD11b+ myeloid cells induced by TLR4 signaling promotes hepatitis B virus clearance. Cytokine 2022; 153:155867. [PMID: 35390759 DOI: 10.1016/j.cyto.2022.155867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUNDS AND AIMS Effective immune response plays a key role in the clearance of hepatitis B virus (HBV). However, the specific role of innate immune response in the clearance of virus is still unclear. Here we investigated the effect of TLR4 signaling on the proliferation and differentiation of CD11b+ myeloid cells, which contributes to virus clearance. METHODS C57BL/6 mice were pretreated with TLR4 ligand lipopolysaccharide by intraperitoneal injection. Hydrodynamic injection (HI) was performed to establish HBV-replicated mice. The viremia was monitored. The immune cells were isolated from liver and spleen of the mice. The proliferation and differentiation of CD11b+ myeloid cells were analyzed by flow cytometry. The changes of CD11b+ myeloid cells and its role in virus clearance during HBV infection after LPS stimulation were analyzed. RESULTS LPS stimulation induced the proliferation of CD11b+ myeloid cells which differentiated into neutrophils and inflammatory mononuclear macrophages. The expression of F4/80 protein on the surface of mononuclear macrophages in the liver of LPS-stimulated mice was significantly lower than that of control. It indicated that intrahepatic Kupffer cells were significantly decreased in the LPS-stimulated mice, which promoted the clearance of virus. CONCLUSION LPS stimulation induces the proliferation of CD11b+ myeloid cells that differentiate into inflammatory neutrophils and monocytes, which inhibits HBV replication. And the decrease of intrahepatic Kupffer cells also contributes to the clearance of HBV during HBV infection.
Collapse
|
12
|
Zhou W, Luo J, Xie X, Yang S, Zhu D, Huang H, Yang D, Liu J. Gut Microbiota Dysbiosis Strengthens Kupffer Cell-mediated Hepatitis B Virus Persistence through Inducing Endotoxemia in Mice. J Clin Transl Hepatol 2022; 10:17-25. [PMID: 35233369 PMCID: PMC8845161 DOI: 10.14218/jcth.2020.00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND AIMS Change of gut microbiota composition is associated with the outcome of hepatitis B virus (HBV) infection, yet the related mechanisms are not fully characterized. The objective of this study was to investigate the immune mechanism associated with HBV persistence induced by gut microbiota dysbiosis. METHODS C57BL/6 mice were sterilized for gut-microbiota by using an antibiotic (ABX) mixture protocol, and were monitored for their serum endotoxin (lipopolysaccharide [LPS]) levels. An HBV-replicating mouse model was established by performing HBV-expressing plasmid pAAV/HBV1.2 hydrodynamic injection (HDI) with or without LPS, and was monitored for serum hepatitis B surface antigen, hepatitis B e antigen, HBV DNA, and cytokine levels. Kupffer cells (KCs) were purified from antibiotic-treated mice and HBV-replicating mice and analyzed for IL-10 production and T cell suppression ability. RESULTS ABX treatment resulted in increased serum LPS levels in mice. The KCs separated from both ABX-treated and LPS-treated HBV-replicating mice showed significantly increased IL-10 production and enhanced ability to suppress IFN-γ production of TCR-activated T cells than the KCs separated from their counterpart controls. HDI of pAAV/HBV1.2 in combination with LPS in mice led to a delayed HBV clearance and early elevation of serum IL-10 levels compared to pAAV/HBV1.2 HDI alone. Moreover, IL-10 function blockade or KC depletion led to accelerated HBV clearance in LPS-treated HBV-replicating mice. CONCLUSIONS Our results suggest that dysbiosis of the gut microbiota in mice leads to endotoxemia, which induces KC IL-10 production and strengthens KC-mediated T cell suppression, and thus facilitates HBV persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia Liu
- Correspondence to: Jia Liu, Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China. https://orcid.org/0000-0002-8262-4997. Tel: +86-18696159826, E-mail:
| |
Collapse
|
13
|
Cortes-Ramirez J, Michael RN, Knibbs LD, Bambrick H, Haswell MR, Wraith D. The association of wildfire air pollution with COVID-19 incidence in New South Wales, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151158. [PMID: 34695471 PMCID: PMC8532327 DOI: 10.1016/j.scitotenv.2021.151158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/11/2023]
Abstract
The 2020 COVID-19 outbreak in New South Wales (NSW), Australia, followed an unprecedented wildfire season that exposed large populations to wildfire smoke. Wildfires release particulate matter (PM), toxic gases and organic and non-organic chemicals that may be associated with increased incidence of COVID-19. This study estimated the association of wildfire smoke exposure with the incidence of COVID-19 in NSW. A Bayesian mixed-effect regression was used to estimate the association of either the average PM10 level or the proportion of wildfire burned area as proxies of wildfire smoke exposure with COVID-19 incidence in NSW, adjusting for sociodemographic risk factors. The analysis followed an ecological design using the 129 NSW Local Government Areas (LGA) as the ecological units. A random effects model and a model including the LGA spatial distribution (spatial model) were compared. A higher proportional wildfire burned area was associated with higher COVID-19 incidence in both the random effects and spatial models after adjustment for sociodemographic factors (posterior mean = 1.32 (99% credible interval: 1.05-1.67) and 1.31 (99% credible interval: 1.03-1.65), respectively). No evidence of an association between the average PM10 level and the COVID-19 incidence was found. LGAs in the greater Sydney and Hunter regions had the highest increase in the risk of COVID-19. This study identified wildfire smoke exposures were associated with increased risk of COVID-19 in NSW. Research on individual responses to specific wildfire airborne particles and pollutants needs to be conducted to further identify the causal links between SARS-Cov-2 infection and wildfire smoke. The identification of LGAs with the highest risk of COVID-19 associated with wildfire smoke exposure can be useful for public health prevention and or mitigation strategies.
Collapse
Affiliation(s)
- J Cortes-Ramirez
- School of Public Health and Social Work, Queensland University of Technology, Australia; Centre for Data Science, Queensland University of Technology, Australia.
| | - R N Michael
- School of Engineering and Built Environment, Griffith University, Australia; Cities Research Institute, Griffith University, Australia
| | - L D Knibbs
- School of Public Health, The University of Sydney, Australia
| | - H Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Australia
| | - M R Haswell
- School of Public Health and Social Work, Queensland University of Technology, Australia; Office of the Deputy Vice Chancellor (Indigenous Strategy and Services), The University of Sydney, Australia; School of Geosciences, Faculty of Science, The University of Sydney, Australia
| | - D Wraith
- School of Public Health and Social Work, Queensland University of Technology, Australia
| |
Collapse
|
14
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
15
|
Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E. The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 2021; 19:21. [PMID: 34749737 PMCID: PMC8573303 DOI: 10.1186/s12948-021-00161-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hadis Karami
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Kaveh Goudarzi
- Nursing Department, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
16
|
Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm. Indian J Clin Biochem 2021; 36:440-450. [PMID: 34177139 PMCID: PMC8216093 DOI: 10.1007/s12291-021-00989-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 has emerged as a global pandemic. It is mainly manifested as pneumonia which may deteriorate into severe respiratory failure. The major hallmark of the disease is the systemic inflammatory immune response characterized by Cytokine Storm (CS). CS is marked by elevated levels of inflammatory cytokines, mainly interleukin-6 (IL-6), IL-8, IL-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Of these, IL-6 is found to be significantly associated with higher mortality. IL-6 is also a robust marker for predicting disease prognosis and deterioration of clinical profile. In this review, the pivotal role played by IL-6 in the immuno-pathology of COVID-19 has been illustrated. The role of IL-6 as a pleiotropic cytokine executing both pro and anti-inflammatory activities has been reviewed. ADAM 10, a metalloproteinase switches the anti-inflammatory pathway of IL-6 to pro inflammatory hence blocking the action of ADAM 10 could be a new therapeutic strategy to mitigate the proinflammatory action of IL-6. Furthermore, we explore the role of anti-IL6 agents, IL-6 receptor antibodies which were being used for autoimmune diseases but now are being repurposed for the therapy of COVID-19.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mahendra Garg
- Department of Endocrinology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|
17
|
Du Y, Yang X, Li J, Sokolova V, Zou S, Han M, Yan H, Wey K, Lu M, Dittmer U, Yang D, Epple M, Wu J. Delivery of toll-like receptor 3 ligand poly(I:C) to the liver by calcium phosphate nanoparticles conjugated with an F4/80 antibody exerts an anti-hepatitis B virus effect in a mouse model. Acta Biomater 2021; 133:297-307. [PMID: 33540061 DOI: 10.1016/j.actbio.2021.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Hepatitis B virus (HBV) is a global health issue, but currently available anti-HBV drugs have limited success. Previously, introduction of the Toll-like receptor (TLR)-3 ligand poly(I:C) to the liver via hydrodynamic injection (HI) was shown to effectively suppress HBV replication in a chronic HBV replication mouse model. However, this method cannot be applied in human beings. To improve the liver targeting of poly(I:C) via intravenous injection, calcium phosphate nanoparticles (CPNs) carrying poly(I:C) with or without antibodies were constructed, and their anti-HBV effects were investigated. We found that significantly more anti-F4/80-conjugated and IgG2α-conjugated nanoparticles were taken up in liver cells both in vivo and in vitro. In addition, these nanoparticles produced pronounced immunostimulatory effects in vitro in primary liver cells. Importantly, treatment with nanoparticles carrying poly(I:C) increased the production of intrahepatic cytokines and chemokines and enhanced T cell responses, significantly reducing HBsAg, HBeAg and HBV DNA levels in the mice. Compared to nonconjugated and isotype-antibody-conjugated nanoparticles, the anti-F4/80-conjugated nanoparticles demonstrated the strongest anti-HBV effects. In summary, nanoparticles carrying poly(I:C) conjugated with an F4/80 antibody promoted liver targeting, and they may represent a suitable alternative to HI for future anti-HBV treatment. STATEMENT OF SIGNIFICANCE: HBV chronically infects approximately 250 million individuals worldwide but current anti-HBV drugs have limited success. Introduction of toll-like receptor 3 ligand poly(I:C) into liver by hydrodynamic injection has been proven to promote HBV clearance in mouse model. However, this technique is not clinically suitable for human patients. We have constructed calcium phosphate nanoparticles carrying poly(I:C) with specific antibody targeting liver nonparenchymal cells. The uptake into relevant liver cells and the anti-HBV effects were studied. After intravenous injection into mice, the uptake rate of anti-F4/80-conjugated nanoparticels was enhanced in liver, and these nanoparticles exert effective anti-HBV effects in vivo. This may provide important insight into future HBV immunotherapy based on nanoparticle-mediated drug delivery.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China; Department of Gastroenterology and Hepatology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Xiaoli Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Jia Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Shi Zou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Meihong Han
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Hu Yan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, P. R. China.
| |
Collapse
|
18
|
She Q, Chen B, Liu W, Li M, Zhao W, Wu J. Frailty Pathogenesis, Assessment, and Management in Older Adults With COVID-19. Front Med (Lausanne) 2021; 8:694367. [PMID: 34295914 PMCID: PMC8290059 DOI: 10.3389/fmed.2021.694367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The 2019 coronavirus disease (COVID-19) is a highly contagious and deadly disease. The elderly people are often accompanied by chronic inflammation and immunodeficiency, showing a frail state. The strength, endurance, and physiological function of the elderly are significantly decreased, and the ability to deal with stress response is weakened. They are the high-risk group that suffering from COVID-19, and rapidly developing to critical illness. Several recent studies suggest that the incidence rate of COVID-19 in elderly patients with frailty is high. Early assessment, detection, and effective intervention of frailty in COVID-19 patients are conducive to significantly improve the quality of life and improve prognosis. However, there are insufficient understanding and standards for the current evaluation methods, pathogenesis and intervention measures for COVID-19 combined with frailty. This study reviews the progress of the research on the potential pathogenesis, evaluation methods and intervention measures of the elderly COVID-19 patients with frailty, which provides a reference for scientific and reasonable comprehensive diagnosis and treatment in clinical.
Collapse
Affiliation(s)
- Quan She
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Chen
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weihong Zhao
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianqing Wu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Venuti A, Donzelli S, Nisticò P, Blandino G, Ciliberto G. Does Interleukin-6 Bridge SARS-CoV-2 With Virus-Associated Cancers? JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:79-85. [PMID: 35663529 PMCID: PMC9153257 DOI: 10.36401/jipo-20-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 09/10/2021] [Indexed: 06/15/2023]
Abstract
To date SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a member of the Coronaviridae family, has infected more than 40 million people worldwide. A second wave of SARS-CoV-2 infection is aggressively surging. The clinical worsening of SARS-CoV-2 infection appears to be strictly associated with comorbidities, which can be used to establish an intrinsic patient network whose molecular profile is pivotal for identifying and successfully treating populations at risk. Herein, we focus on the direct interaction between SARS-CoV-2 and virus-associated cancers, exploring the critical role of interleukin-6 (IL-6) as a mediator of this complex cross talk. IL-6 production is enhanced in diverse viral infections ranging from human papilloma virus (HPV) to hepatitis B virus (HBV), human immunodeficiency virus (HIV), and SARS-CoV-2 infection. High systemic levels of IL-6 are associated with viral persistence and poor clinical outcomes in SARS-CoV-2-infected patients. Blockade of IL-6/IL-6R, using specific molecules, is under investigation in active clinical trials for the treatment of patients with SARS-CoV-2. Although the data are as yet inconclusive, they pave the way for selective targeting of crucial cytokine-activated aberrant signaling in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-Unit, UOSD (Simple Departmental Operational Unit) Tumor Immunology and Immunotherapy, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Regina Elena National Cancer Institute, Rome, Italy
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
20
|
Ge Y, Tian T, Huang S, Wan F, Li J, Li S, Wang X, Yang H, Hong L, Wu N, Yuan E, Luo Y, Cheng L, Hu C, Lei Y, Shu H, Feng X, Jiang Z, Wu Y, Chi Y, Guo X, Cui L, Xiao L, Li Z, Yang C, Miao Z, Chen L, Li H, Zeng H, Zhao D, Zhu F, Shen X, Zeng J. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther 2021; 6:165. [PMID: 33895786 PMCID: PMC8065335 DOI: 10.1038/s41392-021-00568-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yiyue Ge
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China ,grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Tingzhong Tian
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China ,grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Suling Huang
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangping Wan
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jingxin Li
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Shuya Li
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Wang
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Hui Yang
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Lixiang Hong
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Nian Wu
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Enming Yuan
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yunan Luo
- grid.35403.310000 0004 1936 9991Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, IL USA
| | - Lili Cheng
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Chengliang Hu
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yipin Lei
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Hantao Shu
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaolong Feng
- grid.33199.310000 0004 0368 7223School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei Province China ,grid.33199.310000 0004 0368 7223Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province China
| | - Ziyuan Jiang
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, China
| | - Yunfu Wu
- Inner Mongolia Alashan League Organization Establishment Committee Office Electronic Support Center, Alashan, Inner Mongolia China
| | - Ying Chi
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Xiling Guo
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Lunbiao Cui
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China
| | - Liang Xiao
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Zeng Li
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Chunhao Yang
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zehong Miao
- grid.9227.e0000000119573309Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligong Chen
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Tsinghua University, Beijing, China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haitao Li
- grid.12527.330000 0001 0662 3178Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hainian Zeng
- grid.508210.eSilexon AI Technology Co., Ltd., Nanjing, Jiangsu Province China
| | - Dan Zhao
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Fengcai Zhu
- grid.410734.5NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu Province China
| | - Xiaokun Shen
- grid.507918.2Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Jianyang Zeng
- grid.12527.330000 0001 0662 3178Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Ge Y, Tian T, Huang S, Wan F, Li J, Li S, Wang X, Yang H, Hong L, Wu N, Yuan E, Luo Y, Cheng L, Hu C, Lei Y, Shu H, Feng X, Jiang Z, Wu Y, Chi Y, Guo X, Cui L, Xiao L, Li Z, Yang C, Miao Z, Chen L, Li H, Zeng H, Zhao D, Zhu F, Shen X, Zeng J. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther 2021; 6:165. [PMID: 33895786 DOI: 10.1101/2020.03.11.986836] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 03/17/2021] [Indexed: 05/21/2023] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires an urgent need to find effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). In this study, we developed an integrative drug repositioning framework, which fully takes advantage of machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 can interact with the nucleocapsid (N) protein of SARS-CoV-2 and is able to suppress the LPS-induced production of several inflammatory cytokines that are highly relevant to the prevention of immunopathology induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yiyue Ge
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Tingzhong Tian
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Suling Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangping Wan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jingxin Li
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Shuya Li
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Wang
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Hui Yang
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Lixiang Hong
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Nian Wu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Enming Yuan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yunan Luo
- Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, IL, USA
| | - Lili Cheng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Chengliang Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yipin Lei
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Hantao Shu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Xiaolong Feng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ziyuan Jiang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yunfu Wu
- Inner Mongolia Alashan League Organization Establishment Committee Office Electronic Support Center, Alashan, Inner Mongolia, China
| | - Ying Chi
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xiling Guo
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Lunbiao Cui
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Liang Xiao
- Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Zeng Li
- Convalife (Shanghai) Co., Ltd., Shanghai, China
| | - Chunhao Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zehong Miao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hainian Zeng
- Silexon AI Technology Co., Ltd., Nanjing, Jiangsu Province, China
| | - Dan Zhao
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
| | - Fengcai Zhu
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, Jiangsu Province, China.
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xiaokun Shen
- Convalife (Shanghai) Co., Ltd., Shanghai, China.
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
23
|
Rupp J, Dreo B, Gütl K, Fessler J, Moser A, Haditsch B, Schilcher G, Matzkies LM, Steinmetz I, Greinix H, Stradner MH. T Cell Phenotyping in Individuals Hospitalized with COVID-19. THE JOURNAL OF IMMUNOLOGY 2021; 206:1478-1482. [PMID: 33558375 DOI: 10.4049/jimmunol.2001034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/12/2021] [Indexed: 01/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become pandemic. Cytokine release syndrome occurring in a minority of SARS-CoV-2 infections is associated with severe disease and high mortality. We profiled the composition, activation, and proliferation of T cells in 20 patients with severe or critical COVID-19 and 40 matched healthy controls by flow cytometry. Unsupervised hierarchical cluster analysis based on 18 T cell subsets resulted in separation of healthy controls and COVID-19 patients. Compared to healthy controls, patients suffering from severe and critical COVID-19 had increased frequencies of activated and proliferating CD38+Ki67+ CD4+ and CD8+ T cells, suggesting active antiviral T cell defense. Frequencies of CD38+Ki67+ Th1 and CD4+ cells correlated negatively with plasma IL-6. Thus, our data suggest that patients suffering from COVID-19 have a distinct T cell composition that is potentially modulated by IL-6.
Collapse
Affiliation(s)
- Janine Rupp
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Dreo
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Gütl
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Johannes Fessler
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Adrian Moser
- Österreichische Gesundheitskasse, Gesundheitszentrum Graz, 8010 Graz, Austria
| | - Bernd Haditsch
- Österreichische Gesundheitskasse, Gesundheitszentrum Graz, 8010 Graz, Austria
| | - Gernot Schilcher
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Lucie-Marie Matzkies
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8036 Graz, Austria; and
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8036 Graz, Austria; and
| | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin H Stradner
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| |
Collapse
|
24
|
Dos Reis Ururahy R, Park M. Cheap and simple, could it get even cooler? Mild hypothermia and COVID-19. J Crit Care 2021; 63:264-268. [PMID: 33622611 PMCID: PMC7847287 DOI: 10.1016/j.jcrc.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/20/2023]
Abstract
Purpose The pathophysiology theories of COVID-19 attach the injury of target organs to faulty immune responses and occasionally hyper-inflammation. The damage frequently extends beyond the respiratory system, accompanying cardiovascular, renal, central nervous system, and/or coagulation derangements. Tumor necrosis factor-α (TNF-α) and interleukins (IL)-1 and − 6 suppression may improve outcomes, as experimentally shown. Targeted therapies have been proposed, but mild therapeutic hypothermia—a more multifaceted approach—could be suitable. Findings According to evidence derived from previous applications, therapeutic hypothermia diminishes the release of IL-1, IL-6, and TNF-α in serum and at the tissue level. PaCO2 is reduced and the PaO2/FiO2 ratio is increased, possibly lasting after rewarming. Cooling might mitigate both ventilator and infectious-induced lung injury, and suppress microthrombi development, enhancing V/Q mismatch. Improvements in microhemodynamics and tissue O2 diffusion, along with the ischemia-tolerance heightening of tissues, could be reached. Arrhythmia incidence diminishes. Moreover, hypothermia may address the coagulopathy, promoting normalization of both hypo- and hyper-coagulability patterns, which are apparently sustained after a return to normothermia. Conclusions As per prior therapeutic hypothermia literature, the benefits regarding inflammatory response and organic damage might be seen. Following the safety-cornerstones of the technique, the overall infection rate and infection-related mortality are not expected to rise, and increased viral replication does not seem to be a concern. Therefore, the possibility of a low cost and widely available therapy being capable of improving COVID-19 outcomes deserves further study.
Collapse
Affiliation(s)
- Raul Dos Reis Ururahy
- Universidade de São Paulo (USP) Medical School, Internal Medicine Department, Dr. Enéas Carvalho de Aguiar Ave. 255, CEP 05403-000 São Paulo, SP, Brazil.
| | - Marcelo Park
- Universidade de São Paulo (USP) Medical School, Emergency Department, Intensive Care Unit, Dr. Enéas Carvalho de Aguiar Ave. 255, CEP 05403-000 São Paulo, SP, Brazil
| |
Collapse
|
25
|
Liu Y, Tan W, Chen H, Zhu Y, Wan L, Jiang K, Guo Y, Tang K, Xie C, Yi H, Kuang Y, Luo Y. Dynamic changes in lymphocyte subsets and parallel cytokine levels in patients with severe and critical COVID-19. BMC Infect Dis 2021; 21:79. [PMID: 33461503 PMCID: PMC7812569 DOI: 10.1186/s12879-021-05792-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background The lack of knowledge regarding the pathogenesis and host immune response during SARS-CoV-2 infection has limited the development of effective treatments. Thus, we longitudinally investigated the dynamic changes in peripheral blood lymphocyte subsets and parallel changes in cytokine levels in COVID-19 patients with different disease severities to further address disease pathogenesis. Methods A total of 67 patients (10 moderate, 38 severe and 19 critical cases) with COVID-19 admitted to a tertiary care hospital in Wuhan from February 8th to April 6th, 2020 were retrospectively studied. Dynamic data of lymphocyte subsets and inflammatory cytokines were collected. Results On admission, compared with moderate cases, severe and critical cases showed significantly decreased levels of total lymphocytes, T lymphocytes, CD4+ T cells, CD8+ T cells, B cells and NK cells. IL-6 and IL-10 were significantly higher in the critical group. During the following hospitalization period, most of the lymphocyte subsets in the critical group began to recover to levels comparable to those in the severe group from the fourth week after illness onset, except for NK cells, which recovered after the sixth week. A sustained decrease in the lymphocyte subsets and an increase in IL-6 and IL-10 were observed in the nonsurvivors until death. There was a strong negative correlation between IL-6 and IL-10 and total lymphocytes, T lymphocytes, CD4+ T cells, CD8+ T cells and NK cells. Conclusions A sustained decrease in lymphocyte subsets, especially CD4+ T cells and NK cells, interacting with proinflammatory cytokine storms was associated with severe disease and poor prognosis in COVID-19.
Collapse
Affiliation(s)
- Yangli Liu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Weiping Tan
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Haihong Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Li Wan
- Thoracic surgery department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Province Hubei, People's Republic of China
| | - Ke Jiang
- Thoracic surgery department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Province Hubei, People's Republic of China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Kejing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Canmao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Hui Yi
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| | - Yukun Kuang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| | - Yifeng Luo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Lack of tocilizumab effect on mortality in COVID19 patients. Sci Rep 2020; 10:17100. [PMID: 33051534 PMCID: PMC7555891 DOI: 10.1038/s41598-020-74328-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
Off-label tocilizumab use in COVID-19 patients reflects concern for cytokine release syndrome. Comparison of matched COVID-19 pneumonia patients found elevated IL-6 levels correlated with mortality that did not change with tocilizumab administration. Correlating mortality with increased IL-6 doesn’t imply causality however lack of improvement by tocilizumab requires further clinical trial alterations.
Collapse
|
27
|
Guillén L, Padilla S, Fernández M, Agulló V, García JA, Telenti G, García-Abellán J, Botella Á, Gutiérrez F, Masiá M. Preemptive interleukin-6 blockade in patients with COVID-19. Sci Rep 2020; 10:16826. [PMID: 33033405 PMCID: PMC7545205 DOI: 10.1038/s41598-020-74001-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Excessive interleukin-6 signaling is a key factor contributing to the cytokine release syndrome implicated in clinical manifestations of COVID-19. Preliminary results suggest that tocilizumab, a humanized monoclonal anti-interleukin-6 receptor antibody, may be beneficial in severely ill patients, but no data are available on earlier stages of disease. An anticipated blockade of interleukin-6 might hypothetically prevent the catastrophic consequences of the overt cytokine storm. We evaluated early-given tocilizumab in patients hospitalized with COVID-19, and identified outcome predictors. Consecutive patients with initial Sequential-Organ-Failure-Assessment (SOFA) score < 3 fulfilling pre-defined criteria were treated with tocilizumab. Serial plasma biomarkers and nasopharyngeal swabs were collected. Of 193 patients admitted with COVID-19, 64 met the inclusion criteria. After tocilizumab, 49 (76.6%) had an early favorable response. Adjusted predictors of response were gender, SOFA score, neutrophil/lymphocyte ratio, Charlson comorbidity index and systolic blood pressure. At week-4, 56.1% of responders and 30% of non-responders had cleared the SARS-CoV-2 from nasopharynx. Temporal profiles of interleukin-6, C-reactive protein, neutrophil/lymphocyte ratio, NT-ProBNP, D-dimer, and cardiac-troponin-I differed according to tocilizumab response and discriminated final in-hospital outcome. No deaths or disease recurrences were observed. Preemptive therapy with tocilizumab was safe and associated with favorable outcomes in most patients. Biological and clinical markers predicted outcomes.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Betacoronavirus
- Biomarkers/blood
- C-Reactive Protein/analysis
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Female
- Follow-Up Studies
- Humans
- Interleukin-6/blood
- Lymphocyte Count
- Lymphocytes
- Male
- Middle Aged
- Neutrophils
- Organ Dysfunction Scores
- Pandemics
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Receptors, Interleukin-6/antagonists & inhibitors
- SARS-CoV-2
- Spain/epidemiology
- Treatment Outcome
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Lucía Guillén
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Sergio Padilla
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Marta Fernández
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Vanesa Agulló
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - José Alberto García
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Guillermo Telenti
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Javier García-Abellán
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Ángela Botella
- Infectious Diseases Unit, Hospital General Universitario de Elche, Camí de la Almazara S/N, Elche, 03203, Alicante, Spain
| | - Félix Gutiérrez
- Clinical Medicine Department, Universidad Miguel Hernández, Ctra. de Valencia (N-322), Km 87, 03550, San Juan de Alicante, Spain.
- Universidad Miguel Hernández, Avda de la Universidad S/N, Elche, 03202, Alicante, Spain.
| | - Mar Masiá
- Clinical Medicine Department, Universidad Miguel Hernández, Ctra. de Valencia (N-322), Km 87, 03550, San Juan de Alicante, Spain.
- Universidad Miguel Hernández, Avda de la Universidad S/N, Elche, 03202, Alicante, Spain.
| |
Collapse
|
28
|
Liao K, Niu F, Hu G, Yang L, Dallon B, Villarreal D, Buch S. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. J Extracell Vesicles 2020; 10:e12027. [PMID: 33304479 PMCID: PMC7710131 DOI: 10.1002/jev2.12027] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/20/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Opioids, such as morphine, are the mainstay for the management of postsurgical pain. Over the last decade there has been a dramatic increase in deaths related to opioid overdose. While opioid abuse has been shown to result in increased neuroinflammation, mechanism(s) underlying this process, remain less understood. In recent years, microRNAs have emerged as key mediators of gene expression regulating both paracrine signaling and cellular crosstalk. MiRNAs constitute the extracellular vesicle (EV) cargo and can shuttle from the donor to the recipient cells. Exposure of human primary astrocytes to morphine resulted in induction and release of miR-138 in the EVs isolated from conditioned media of cultured astrocytes. Released EVs were, in turn, taken up by the microglia, leading to activation of these latter cells. Interestingly, activation of microglia involved binding of the GUUGUGU motif of miR138 to the endosomal toll like receptor (TLR)7, leading, in turn, to cellular activation. These findings were further corroborated in vivo in wildtype mice wherein morphine administration resulted in increased microglial activation in the thalamus. In TLR7-/- mice on the other hand, morphine failed to induce microglial activation. These findings have ramifications for the development of EV-loaded anti-miRNAs as therapeutics for alleviating neuroinflammation in opioids abusers.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Fang Niu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Guoku Hu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Lu Yang
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Blake Dallon
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Delaney Villarreal
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shilpa Buch
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
29
|
Abbasifard M, Khorramdelazad H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: A brief look at potential therapeutic tactics. Life Sci 2020; 257:118097. [PMID: 32679148 PMCID: PMC7361088 DOI: 10.1016/j.lfs.2020.118097] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
Interleukin-6 (IL-6), known as an inflammatory cytokine, can be involved in many innate and adaptive immune responses. The role of IL-6 in the pathogenesis of the novel coronavirus disease 2019 (COVID-19) has recently received much more attention due to the spread of the virus and its pandemic potential. Cytokine storm is among the most critical pathological events in patients affected with coronaviruses (CoVs), i.e., severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and COVID-19, causing inflammation-induced lung injury and also occurring as a result of dysregulation of immune responses to the mentioned viruses. IL-6, along with some other inflammatory cytokines, including IL-1 beta (β), IL-8, and tumor necrosis factor-alpha (TNF-α), as well as inflammatory chemokines, can significantly contribute to, fever, lymphopenia, coagulation, lung injury, and multi-organ failure (MOF). Therefore, researchers are to explore novel approaches to treat the disease through targeting of IL-6 and its receptors based on prior experience of other disorders. In this review article, the latest findings on the role of IL-6 in the pathogenesis of COVID-19, as well as therapeutic perspectives, were summarized and discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn-Abi-talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Qun S, Wang Y, Chen J, Huang X, Guo H, Lu Z, Wang J, Zheng C, Ma Y, Zhu Y, Xia D, Wang Y, He H, Wang Y, Fei M, Yin Y, Zheng M, Xu Y, Ge W, Hu F, Zhou J. Neutrophil-to-Lymphocyte Ratios Are Closely Associated With the Severity and Course of Non-mild COVID-19. Front Immunol 2020; 11:2160. [PMID: 32983180 PMCID: PMC7493648 DOI: 10.3389/fimmu.2020.02160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is spreading worldwide. Measuring the prevention and control of the disease has become a matter requiring urgent focus. Objective Based on coronavirus disease 2019 (COVID-19) clinical data from Wuhan, we conducted an in-depth analysis to clarify some of the pathological mechanisms of the disease and identify simple measures to predict its severity early on. Methods A total of 230 patients with non-mild COVID-19 were recruited, and information on their clinical characteristics, inflammatory cytokines, and T lymphocyte subsets was collected. Risk factors for severity were analyzed by binary logistic regression, and the associations of neutrophil-to-lymphocyte ratios (N/LRs) with illness severity, disease course, CT grading, inflammatory cytokines, and T lymphocyte subsets were evaluated. Results Our results showed that the N/LRs were closely related to interleukin (IL)-6 and IL-10 (P < 0.001, P = 0.024) and to CD3+ and CD8+ T lymphocytes (P < 0.001, P = 0.046). In particular, the N/LRs were positively correlated with the severity and course of the disease (P = 0.021, P < 0.001). Compared to the values at the first test after admission, IL-6 and IL-10 were significantly decreased and increased, respectively, as of the last test before discharge (P = 0.006, P < 0.001). More importantly, through binary logistic regression, we found that male sex, underlying diseases (such as cardiovascular disease), pulse, and N/LRs were all closely related to the severity of the disease (P = 0.004, P = 0.012, P = 0.013, P = 0.028). Conclusions As a quick and convenient marker of inflammation, N/LRs may predict the disease course and severity level of non-mild COVID-19; male sex, cardiovascular disease, and pulse are also risk factors for the severity of non-mild COVID-19.
Collapse
Affiliation(s)
- Sen Qun
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yulan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Guo
- Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Lu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinquan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changcheng Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuyou Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daqing Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yinzhong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Fei
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mao Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yehong Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ge
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fuyong Hu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jian Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
32
|
Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J 2020; 96:550-555. [PMID: 32295814 DOI: 10.1136/postgradmedj-2020-137785] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Hydroxychloroquine and chloroquine are medications that have been used for a long time. Their most common use is for the treatment and prophylaxis of malaria. However, these antimalarial drugs are known to also have anti-inflammatory and antiviral effects and are used for several chronic diseases such as systemic lupus erythematosus with low adverse effects. The antiviral action of hydroxychloroquine and chloroquine has been a point of interest to different researchers due to its mechanism of action. Several in vitro studies have proven their effectiveness on severe acute respiratory syndrome virus and currently both in vitro and in vivo studies have been conducted on 2019 novel coronavirus (covid-19). The purpose of this article is to review the history and mechanism of actions of these drugs and the potential use they can have on the current covid-19 pandemic.
Collapse
Affiliation(s)
- Neeraj Sinha
- Pulmonary Transplant, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Galit Balayla
- General Medicine, Central University of Venezuela, Caracas, Venezuela
| |
Collapse
|
33
|
Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, Hock AK, Walton JB, Morton JP, Gronroos E, Mason S, Yang M, McNeish I, Swanton C, Blyth K, Vousden KH. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep 2020; 30:481-496.e6. [PMID: 31940491 PMCID: PMC6963783 DOI: 10.1016/j.celrep.2019.12.028] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/19/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Loss of p53 function contributes to the development of many cancers. While cell-autonomous consequences of p53 mutation have been studied extensively, the role of p53 in regulating the anti-tumor immune response is still poorly understood. Here, we show that loss of p53 in cancer cells modulates the tumor-immune landscape to circumvent immune destruction. Deletion of p53 promotes the recruitment and instruction of suppressive myeloid CD11b+ cells, in part through increased expression of CXCR3/CCR2-associated chemokines and macrophage colony-stimulating factor (M-CSF), and attenuates the CD4+ T helper 1 (Th1) and CD8+ T cell responses in vivo. p53-null tumors also show an accumulation of suppressive regulatory T (Treg) cells. Finally, we show that two key drivers of tumorigenesis, activation of KRAS and deletion of p53, cooperate to promote immune tolerance.
Collapse
Affiliation(s)
- Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Fabio Zani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Andreas K Hock
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josephine B Walton
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Eva Gronroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ming Yang
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain McNeish
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK; Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
34
|
Chen YQ, Li PC, Pan N, Gao R, Wen ZF, Zhang TY, Huang F, Wu FY, Ou XL, Zhang JP, Zhu XJ, Hu HM, Chen K, Cai YL, Wang LX. Tumor-released autophagosomes induces CD4 + T cell-mediated immunosuppression via a TLR2-IL-6 cascade. J Immunother Cancer 2019; 7:178. [PMID: 31300052 PMCID: PMC6625067 DOI: 10.1186/s40425-019-0646-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND CD4+ T cells are critical effectors of anti-tumor immunity, but how tumor cells influence CD4+ T cell effector function is not fully understood. Tumor cell-released autophagosomes (TRAPs) are being recognized as critical modulators of host anti-tumor immunity during tumor progression. Here, we explored the mechanistic aspects of TRAPs in the modulation of CD4+ T cells in the tumor microenvironment. METHODS TRAPs isolated from tumor cell lines and pleural effusions or ascites of cancer patients were incubated with CD4+ T cells to examine the function and mechanism of TRAPs in CD4+ T cell differentiation and function. TRAPs-elicited CD4+ T cells were tested for their suppression of effector T cell function, induction of regulatory B cells, and promotion of tumorigenesis and metastasis in a mouse model. RESULTS Heat shock protein 90α (HSP90α) on the surface of TRAPs from malignant effusions of cancer patients and tumor cell lines stimulated CD4+ T cell production of IL-6 via a TLR2-MyD88-NF-κB signal cascade. TRAPs-induced autocrine IL-6 further promoted CD4+ T cells secretion of IL-10 and IL-21 via STAT3. Notably, TRAPs-elicited CD4+ T cells inhibited CD4+ and CD8+ effector T cell function in an IL-6- and IL-10-dependent manner and induced IL-10-producing regulatory B cells (Bregs) via IL-6, IL-10 and IL-21, thereby promoting tumor growth and metastasis. Consistently, inhibition of tumor autophagosome formation or IL-6 secretion by CD4+ T cells markedly retarded tumor growth. Furthermore, B cell or CD4+ T cell depletion impeded tumor growth by increasing effector T cell function. CONCLUSIONS HSP90α on the surface of TRAPs programs the immunosuppressive functions of CD4+ T cells to promote tumor growth and metastasis. TRAPs or their membrane-bound HSP90α represent important therapeutic targets to reverse cancer-associated immunosuppression and improve immunotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Peng-Cheng Li
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Rong Gao
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Fa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Tian-Yu Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Fang-Yuan Wu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Xi-Long Ou
- Department of Gastroenterology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jin-Ping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xue-Jun Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.,Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.,Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Detroit, MI, 48201, USA.,Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun-Lang Cai
- Department of Obstetrics and Gynecology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
35
|
Chen YQ, Li PC, Pan N, Gao R, Wen ZF, Zhang TY, Huang F, Wu FY, Ou XL, Zhang JP, Zhu XJ, Hu HM, Chen K, Cai YL, Wang LX. Tumor-released autophagosomes induces CD4 + T cell-mediated immunosuppression via a TLR2-IL-6 cascade. J Immunother Cancer 2019. [PMID: 31300052 DOI: 10.1186/s40425-019-0646-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD4+ T cells are critical effectors of anti-tumor immunity, but how tumor cells influence CD4+ T cell effector function is not fully understood. Tumor cell-released autophagosomes (TRAPs) are being recognized as critical modulators of host anti-tumor immunity during tumor progression. Here, we explored the mechanistic aspects of TRAPs in the modulation of CD4+ T cells in the tumor microenvironment. METHODS TRAPs isolated from tumor cell lines and pleural effusions or ascites of cancer patients were incubated with CD4+ T cells to examine the function and mechanism of TRAPs in CD4+ T cell differentiation and function. TRAPs-elicited CD4+ T cells were tested for their suppression of effector T cell function, induction of regulatory B cells, and promotion of tumorigenesis and metastasis in a mouse model. RESULTS Heat shock protein 90α (HSP90α) on the surface of TRAPs from malignant effusions of cancer patients and tumor cell lines stimulated CD4+ T cell production of IL-6 via a TLR2-MyD88-NF-κB signal cascade. TRAPs-induced autocrine IL-6 further promoted CD4+ T cells secretion of IL-10 and IL-21 via STAT3. Notably, TRAPs-elicited CD4+ T cells inhibited CD4+ and CD8+ effector T cell function in an IL-6- and IL-10-dependent manner and induced IL-10-producing regulatory B cells (Bregs) via IL-6, IL-10 and IL-21, thereby promoting tumor growth and metastasis. Consistently, inhibition of tumor autophagosome formation or IL-6 secretion by CD4+ T cells markedly retarded tumor growth. Furthermore, B cell or CD4+ T cell depletion impeded tumor growth by increasing effector T cell function. CONCLUSIONS HSP90α on the surface of TRAPs programs the immunosuppressive functions of CD4+ T cells to promote tumor growth and metastasis. TRAPs or their membrane-bound HSP90α represent important therapeutic targets to reverse cancer-associated immunosuppression and improve immunotherapy.
Collapse
Affiliation(s)
- Yong-Qiang Chen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Peng-Cheng Li
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Rong Gao
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Fa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Tian-Yu Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Fang-Yuan Wu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Xi-Long Ou
- Department of Gastroenterology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jin-Ping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xue-Jun Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.,Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hong-Ming Hu
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.,Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Detroit, MI, 48201, USA.,Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun-Lang Cai
- Department of Obstetrics and Gynecology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
36
|
Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Front Microbiol 2019; 10:1057. [PMID: 31134045 PMCID: PMC6524401 DOI: 10.3389/fmicb.2019.01057] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States.,College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico
| | - Antonio Verdugo-Rodriguez
- College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Manuel V Borca
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
37
|
Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Significance and Role of Pattern Recognition Receptors in Malignancy. Arch Immunol Ther Exp (Warsz) 2019; 67:133-141. [PMID: 30976817 PMCID: PMC6509067 DOI: 10.1007/s00005-019-00540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors (PRRs) are members of innate immunity, playing pivotal role in several immunological reactions. They are known to act as a bridge between innate and adaptive immunity. They are expressed on several normal cell types but have been shown with increasing frequency on/in tumor cells. Significance of this phenomenon is largely unknown, but it has been shown by several authors that they, predominantly Toll-like receptors (TLRs), act in the interest of tumor, by promotion of its growth and spreading. Preparation of artificial of TLRs ligands (agonists) paved the way to use them as a therapeutic agents for cancer, so far in a limited scale. Agonists may be combined with conventional anti-cancer modalities with apparently promising results. PRRs recognizing nucleic acids such as RIG-1 like receptors (sensing RNA) and STING (sensing DNA) constitute a novel promising approach for cancer immunotherapy.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- DNA/immunology
- DNA/metabolism
- Disease Models, Animal
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Ligands
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- RNA/immunology
- RNA/metabolism
- Receptors, Pattern Recognition/agonists
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Jan Żeromski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Agata Kierepa
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| |
Collapse
|
38
|
Duperret EK, Perales-Puchalt A, Stoltz R, Hiranjith GH, Mandloi N, Barlow J, Chaudhuri A, Sardesai NY, Weiner DB. A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8 + T-cell Responses, Impacting Tumor Challenge. Cancer Immunol Res 2019; 7:174-182. [PMID: 30679156 PMCID: PMC6622455 DOI: 10.1158/2326-6066.cir-18-0283] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
T-cell recognition of cancer neoantigens is important for effective immune-checkpoint blockade therapy, and an increasing interest exists in developing personalized tumor neoantigen vaccines. Previous studies utilizing RNA and long-peptide neoantigen vaccines in preclinical and early-phase clinical studies have shown immune responses predominantly driven by MHC class II CD4+ T cells. Here, we report on a preclinical study utilizing a DNA vaccine platform to target tumor neoantigens. We showed that optimized strings of tumor neoantigens, when delivered by potent electroporation-mediated DNA delivery, were immunogenic and generated predominantly MHC class I-restricted, CD8+ T-cell responses. High MHC class I affinity was associated specifically with immunogenic CD8+ T-cell epitopes. These DNA neoantigen vaccines induced a therapeutic antitumor response in vivo, and neoantigen-specific T cells expanded from immunized mice directly killed tumor cells ex vivo These data illustrate a unique advantage of this DNA platform to drive CD8+ T-cell immunity for neoantigen immunotherapy.
Collapse
Affiliation(s)
| | | | - Regina Stoltz
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA
| | | | | | - James Barlow
- Inovio Pharmaceuticals, Plymouth Meeting, PA,Geneos Therapeutics, Plymouth Meeting, PA
| | | | - Niranjan Y. Sardesai
- Inovio Pharmaceuticals, Plymouth Meeting, PA,Geneos Therapeutics, Plymouth Meeting, PA
| | - David B. Weiner
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA,Corresponding author: David B. Weiner, Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104,
| |
Collapse
|
39
|
Mahmud-Al-Rafat A, Majumder A, Taufiqur Rahman KM, Mahedi Hasan AM, Didarul Islam KM, Taylor-Robinson AW, Billah MM. Decoding the enigma of antiviral crisis: Does one target molecule regulate all? Cytokine 2019; 115:13-23. [PMID: 30616034 PMCID: PMC7129598 DOI: 10.1016/j.cyto.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
IL-6 class switching provides regulation over pro- and anti-inflammatory responses. Unregulated IL-6 trans-signaling promotes uncontrolled pro-inflammatory responses. ADAM-17 regulates class switching between IL-6 trans- and classical-signaling. Selective ADAM-17 blocking restricts overexpression of pro-inflammatory cytokines. ADAM-17 may be an antiviral drug target to reduce immunopathology disease severity.
Disease fatality associated with Ebola, SARS-CoV and dengue infections in humans is attributed to a cytokine storm that is triggered by excessive pro-inflammatory responses. Interleukin (IL)-6 acts as a mediator between pro- and anti-inflammatory reactivity by initiating trans- and classical-signaling, respectively. Hence, IL-6 is assumed to provide a target for a broad range of antiviral agents. Available immunosuppressive antivirals are directed to control an often exaggerated pro-inflammatory response that gives rise to complex clinical conditions such as lymphocytopenia. It is known that IL-6, via its soluble receptor (sIL-6R), initiates a pro-inflammatory response while an anti-inflammatory response is triggered by the membrane-bound IL-6 receptor (IL-6R). Future antivirals should thus aim to target the mechanism that regulates switching between IL-6 trans- and classical-signaling. In this review, we propose that the tumour necrosis factor-α converting enzyme ADAM-17 could be the master molecule involved in regulating IL-6 class switching and through this in controlling pro- and anti-inflammatory responses to viral antigenic stimuli. Therefore, ADAM-17 should be considered as a potential target molecule for novel antiviral drug discovery that would regulate host reactivity to infection and thereby limit or prevent fatal outcomes.
Collapse
Affiliation(s)
- Abdullah Mahmud-Al-Rafat
- Research & Development Division, Incepta Vaccine Ltd., Zirabo, Savar, Dhaka 1341, Bangladesh; Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh.
| | - Apurba Majumder
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - K M Taufiqur Rahman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada.
| | - A M Mahedi Hasan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - K M Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Health, Medical & Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
40
|
Rohani MG, Dimitrova E, Beppu A, Wang Y, Jefferies CA, Parks WC. Macrophage MMP10 Regulates TLR7-Mediated Tolerance. Front Immunol 2018; 9:2817. [PMID: 30564235 PMCID: PMC6288447 DOI: 10.3389/fimmu.2018.02817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023] Open
Abstract
Using an in vivo model of tolerance to TLR7-induced skin inflammation, we found a critical role for macrophage-derived MMP10 in mediating immune hypo-responsiveness. Cutaneous exposure to Imiquimod (IMQ), a TLR7 agonist, induced acute expression of pro-inflammatory factors (IL1β, IL6, CXCL1) and neutrophil influx equally in both wildtype and Mmp10 -/- mice. However, whereas subsequent exposure (11 and 12 days later) to IMQ led to marked abrogation of pro-inflammatory factor expression in wildtype mice, Mmp10 -/- mice responded similarly as they did to the first application. In addition, the second exposure led to increased expression of negative regulators of TLR signaling (TNFAIP3, IRAK3) and immunosuppressive cytokines (IL10, TGFβ1) in wildtype mice but not in Mmp10 -/- mice. In vitro studies demonstrated that prior exposure of IMQ to bone marrow-derived macrophages (BMDM) made wildtype cells refractory to subsequent stimulation but did not for Mmp10 -/- macrophages. These findings expand the critical roles MMP10 plays in controlling macrophage activation to indicate that the development of immune tolerance to TLR7 ligand is dependent on this macrophage-derived proteinase.
Collapse
Affiliation(s)
- Maryam G Rohani
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Elizabeth Dimitrova
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Andrew Beppu
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ying Wang
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline A Jefferies
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
41
|
Yu Z, Zhou P, Pan W, Li N, Tang B. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat Commun 2018; 9:5044. [PMID: 30487569 PMCID: PMC6262009 DOI: 10.1038/s41467-018-07197-8] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) is ineffective against deeply seated metastatic tumors due to poor penetration of the excitation light. Herein, we developed a biomimetic nanoreactor (bio-NR) to achieve synergistic chemiexcited photodynamic-starvation therapy against tumor metastasis. Photosensitizers on the hollow mesoporous silica nanoparticles (HMSNs) are excited by chemical energy in situ of the deep metastatic tumor to generate singlet oxygen (1O2) for PDT, and glucose oxidase (GOx) catalyzes glucose into hydrogen peroxide (H2O2). Remarkably, this process not only blocks the nutrient supply for starvation therapy but also provides H2O2 to synergistically enhance PDT. Cancer cell membrane coating endows the nanoparticle with biological properties of homologous adhesion and immune escape. Thus, bio-NRs can effectively convert the glucose into 1O2 in metastatic tumors. The excellent therapeutic effects of bio-NRs in vitro and in vivo indicate their great potential for cancer metastasis therapy. Photodynamic therapy is usually ineffective against deeply seated metastatic tumors due to poor penetration of the excitation light. Here, the authors design a biomimetic nanoreactor which can convert nutriment glucose into toxic singlet oxygen via chemiluminescence resonance energy transfer with no light excitation and demonstrate its high efficacy in a mouse lung metastatic model.
Collapse
Affiliation(s)
- Zhengze Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
42
|
Wang Q, Pan W, Liu Y, Luo J, Zhu D, Lu Y, Feng X, Yang X, Dittmer U, Lu M, Yang D, Liu J. Hepatitis B Virus-Specific CD8+ T Cells Maintain Functional Exhaustion after Antigen Reexposure in an Acute Activation Immune Environment. Front Immunol 2018; 9:219. [PMID: 29483916 PMCID: PMC5816053 DOI: 10.3389/fimmu.2018.00219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is characterized by the presence of functionally exhausted HBV-specific CD8+ T cells. To characterize the possible residual effector ability of these cells, we reexposed CD8+ T cells from chronically HBV replicating mice to HBV antigens in an acute activation immune environment. We found that after transfer into naive mice, exhausted CD8+ T cells reexpanded in a comparable magnitude as naive CD8+ T cells in response to acute HBV infection; however, their proliferation intensity was significantly lower than that of CD8+ T cells from acute-resolving HBV replicating mice (AR mice). The differentiation phenotypes driven by acute HBV replication of donor exhausted and naive CD8+ T cells were similar, but were different from those of their counterparts from AR mice. Nevertheless, exhausted CD8+ T cells maintained less activated phenotype, an absence of effector cytokine production and poor antiviral function after HBV reexposure in an acute activation immune environment. We thus conclude that exhausted CD8+ T cells undergo a stable form of dysfunctional differentiation during chronic HBV replication and switching immune environment alone is not sufficient for the antiviral functional reconstitution of these cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Pan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Xu C, Lu Y, Zheng X, Feng X, Yang X, Timm J, Wu J, Wang B, Lu M, Yang D, Liu J. TLR2 Expression in Peripheral CD4+ T Cells Promotes Th17 Response and Is Associated with Disease Aggravation of Hepatitis B Virus-Related Acute-On-Chronic Liver Failure. Front Immunol 2017; 8:1609. [PMID: 29218046 PMCID: PMC5703711 DOI: 10.3389/fimmu.2017.01609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Th17 responses have been shown to play crucial roles in the pathogenesis of hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF). The mechanism underlying the enhanced Th17 responses in these patients remains largely unclear. Here we investigated toll-like receptors (TLRs) expression in peripheral T cells and their roles in Th17 cell differentiation and disease aggravation in ACLF patients. 18 healthy subjects (HS), 20 chronic HBV-infected (CHB) patients, and 26 ACLF patients were enrolled and examined for TLRs expression in peripheral blood mononuclear cells (PBMCs). The correlations of T cell TLR2 expression with the antigen non-specific Th17 responses and disease aggravation, as well as the Th17 response to TLR2 ligand stimulation were evaluated in ACLF patients. Compared to HS and CHB patients, ACLF patients showed a distinct TLRs expression pattern in PBMCs. Significantly increased TLR2 expression in T cells was observed in ACLF patients. The TLR2 expression in CD4+ T cells was correlated with the Th17 responses and the clinical markers for disease aggravation in ACLF patients. Moreover, TLR2 ligands stimulation promoted Th17 cell differentiation and response in PBMCs of ACLF patients. These findings implicate that TLR2 signaling plays critical roles in Th17 cell differentiation and disease aggravation of HBV-related ACLF.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Joerg Timm
- Institute for Virology, University Hospital, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Liu K, He K, Xue T, Liu P, Xu LX. The cryo-thermal therapy-induced IL-6-rich acute pro-inflammatory response promoted DCs phenotypic maturation as the prerequisite to CD4 + T cell differentiation. Int J Hyperthermia 2017; 34:261-272. [PMID: 28540834 DOI: 10.1080/02656736.2017.1332394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In our previous studies, a novel tumour therapeutic modality of the cryo-thermal therapy has been developed leading to long-term survival in 4T1 murine mammary carcinoma model. The cryo-thermal therapy induced the strong acute inflammatory response and IL-6 was identified in an acute profile. In this study, we found that the cryo-thermal therapy triggered robust acute inflammatory response with high expression of IL-6 locally and systemically. The phenotypic maturation of dendritic cells (DCs) was induced by acute IL-6 following the treatment. The mature DCs promoted CD4+ T cell differentiation. Moreover, the production of interferon γ (IFN γ) in the serum and CD4+ T cells were both abrogated by IL-6 neutralisation following the treatment. Our findings revealed that the cryo-thermal therapy-induced acute IL-6 played an important role in initiating the cascading innate and adaptive anti-tumour immune responses, resulting in CD4+ T cell differentiation. It would be interesting to investigate acute IL-6 as an early indicator in predicating tumour therapeutic effect.
Collapse
Affiliation(s)
- Kun Liu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Kun He
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Ting Xue
- b Shanghai Key Laboratory of Psychotic Disorders , Shanghai Mental Health Center , Shanghai , People's Republic of China
| | - Ping Liu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,c School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Lisa X Xu
- a School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,c School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
45
|
Zeolite-Containing Mixture Supplementation Ameliorated Dextran Sodium Sulfate-Induced Colitis in Mice by Suppressing the Inflammatory Bowel Disease Pathway and Improving Apoptosis in Colon Mucosa. Nutrients 2017; 9:nu9050467. [PMID: 28481231 PMCID: PMC5452197 DOI: 10.3390/nu9050467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is induced by multiple environmental factors, and there is still no known treatment capable of curing the disease completely. We propose a zeolite-containing mixture (Hydryeast®, HY)-a multi-component nutraceutical of which the main ingredients are Azumaceramics (mixture of zeolite and oyster shell burned under high temperature), citric acid, red rice yeast (monascus) and calcium stearate-as a nutraceutical intervention in IBD to ameliorate dextran sodium sulfate (DSS)-induced colitis. We show the mechanism through integrated omics using transcriptomics and proteomics. C57BL6 mice were given an AIN-93G basal diet or a 0.8% HY containing diet and sterilized tap water for 11 days. Colitis was then induced by 1.5% (w/v) DSS-containing water for 9 days. HY fed mice showed significantly improved disease activity index and colon length compared to DSS mice. Colonic mucosa microarray analysis plus RT-PCR results indicate HY supplementation may ameliorate inflammation by inhibiting the intestinal inflammatory pathway and suppress apoptosis by curbing the expression of genes like tumor protein 53 and epidermal growth factor receptor and by upregulating epithelial protection-related proteins such as epithelial cell adhesion molecule and tenascin C, thus maintaining mucosal immune homeostasis and epithelial integrity, mirroring the proteome analysis results. HY appears to have a suppressive effect on colitis.
Collapse
|
46
|
Hassanzadeh-Kiabi N, Yáñez A, Dang I, Martins GA, Underhill DM, Goodridge HS. Autocrine Type I IFN Signaling in Dendritic Cells Stimulated with Fungal β-Glucans or Lipopolysaccharide Promotes CD8 T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 198:375-382. [PMID: 27872213 DOI: 10.4049/jimmunol.1601143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022]
Abstract
Type I IFNs are key mediators of immune defense against viruses and bacteria. Type I IFNs were also previously implicated in protection against fungal infection, but their roles in antifungal immunity have not been thoroughly investigated. A recent study demonstrated that bacterial and fungal β-glucans stimulate IFN-β production by dendritic cells (DCs) following detection by the Dectin-1 receptor, but the effects of β-glucan-induced type I IFNs have not been defined. We investigated whether type I IFNs regulate CD8 T cell activation by fungal β-glucan particle-stimulated DCs. We demonstrate that β-glucan-stimulated DCs induce CD8 T cell proliferation, activation marker (CD44 and CD69) expression, and production of IFN-γ, IL-2, and granzyme B. Moreover, we show that type I IFNs support robust CD8 T cell activation (proliferation and IFN-γ and granzyme B production) by β-glucan-stimulated DCs in vitro and in vivo due to autocrine effects on the DCs. Specifically, type I IFNs promote Ag presentation on MHC I molecules, CD86 and CD40 expression, and the production of IL-12 p70, IL-2, IL-6, and TNF-α by β-glucan-stimulated DCs. We also demonstrate a role for autocrine type I IFN signaling in bacterial LPS-induced DC maturation, although, in the context of LPS stimulation, this mechanism is not so critical for CD8 T cell activation (promotes IFN-γ production but not proliferation or granzyme B production). This study provides insight into the mechanisms underlying CD8 T cell activation during infection, which may be useful in the rational design of vaccines directed against pathogens and tumors.
Collapse
Affiliation(s)
- Nargess Hassanzadeh-Kiabi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Alberto Yáñez
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ivy Dang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Gislâine A Martins
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - David M Underhill
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Helen S Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; .,Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|