1
|
Cheng H, Zhang H, Lu W, Zhang Q, Hu Z. An enhanced multimode phase imaging method based on the transport of intensity equation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400137. [PMID: 38894526 DOI: 10.1002/jbio.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Label-free biological cell imaging relies on rapid multimode phase imaging of biological samples in natural settings. To improve image contrast, phase is encoded into intensity information using the differential interference contrast (DIC) and Zernike phase contrast (ZPC) techniques. To enable multimode contrast-enhanced observation of unstained specimens, this paper proposes an improved multimode phase imaging method based on the transport of intensity equation (TIE), which combines conventional microscopy with computational imaging. The ZPC imaging module based on adaptive aperture adjustment is applied when the quantitative phase results of biological samples have been obtained by solving the TIE. Simultaneously, a rotationally symmetric shear-based technique is used that can yield isotropic DIC. In this paper, we describe numerical simulation and optical experiments carried out to validate the accuracy and viability of this technology. The calculated Michelson contrast of the ZPC image in the resolution plate experiment increased from 0.196 to 0.394.
Collapse
Affiliation(s)
- Hong Cheng
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - HongYi Zhang
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - Wei Lu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - QuanBing Zhang
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| | - Zijing Hu
- Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, Hefei, Anhui, China
| |
Collapse
|
2
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
3
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2023; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2022.1083467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. METHODS In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. RESULTS Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. DISCUSSION PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
4
|
Firdaus MER, Muh F, Park JH, Lee SK, Na SH, Park WS, Ha KS, Han JH, Han ET. In-depth biological analysis of alteration in Plasmodium knowlesi-infected red blood cells using a noninvasive optical imaging technique. Parasit Vectors 2022; 15:68. [PMID: 35236400 PMCID: PMC8889714 DOI: 10.1186/s13071-022-05182-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Imaging techniques are commonly used to understand disease mechanisms and their biological features in the microenvironment of the cell. Many studies have added to our understanding of the biology of the malaria parasite Plasmodium knowlesi from functional in vitro and imaging analysis using serial block-face scanning electron microscopy (SEM). However, sample fixation and metal coating during SEM analysis can alter the parasite membrane. Methods In this study, we used noninvasive diffraction optical tomography (DOT), also known as holotomography, to explore the morphological, biochemical, and mechanical alterations of each stage of P. knowlesi-infected red blood cells (RBCs). Each stage of the parasite was synchronized using Nycodenz and magnetic-activated cell sorting (MACS) for P. knowlesi and P. falciparum, respectively. Holotomography was applied to measure individual three-dimensional refractive index tomograms without metal coating, fixation, or additional dye agent. Results Distinct profiles were found on the surface area and hemoglobin content of the two parasites. The surface area of P. knowlesi-infected RBCs showed significant expansion, while P. falciparum-infected RBCs did not show any changes compared to uninfected RBCs. In terms of hemoglobin consumption, P. falciparum tended to consume hemoglobin more than P. knowlesi. The observed profile of P. knowlesi-infected RBCs generally showed similar results to other studies, proving that this technique is unbiased. Conclusions The observed profile of the surface area and hemoglobin content of malaria infected-RBCs can potentially be used as a diagnostic parameter to distinguish P. knowlesi and P. falciparum infection. In addition, we showed that holotomography could be used to study each Plasmodium species in greater depth, supporting strategies for the development of diagnostic and treatment strategies for malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05182-1.
Collapse
Affiliation(s)
- Moh Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | | | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
5
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2022; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2023.1083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. Methods In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. Results Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. Discussion PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
6
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
7
|
Lu CW, Belashov AV, Zhikhoreva AA, Semenova IV, Cheng CJ, Su LY, Wu CH. Application of digital holographic tomography in antitumor effect of cantharides complex on 4T1 breast cancer cells. APPLIED OPTICS 2021; 60:3365-3373. [PMID: 33983241 DOI: 10.1364/ao.416943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The study focuses on a methodology providing noninvasive monitoring and evaluation of the antitumor effect of traditional Chinese medicine, cantharides complex (canth), on 4T1 breast tumor cells. Digital holographic tomography (DHT) and developed data post-processing algorithms were used for quantitative estimation of changes in optical and morphological parameters of cells. We calculated and compared data on the refractive index, thickness, and projected area of 4T1 breast tumor cells in control untreated specimens and those treated with doxorubicin hydrochloride (DOX), canth, and their combinations. Post-treatment changes in cellular morphology recorded by DHT demonstrated that the two drugs led to noticeably different morphological changes in cells that can be presumably associated with different pathways of their death, apoptosis, or necrosis. The effect of combined treatment with these two drugs strongly depended on their relative concentrations and could lead to changes characteristic either for DOX or for canth; however, being more profound than those obtained when using each drug solely. The results obtained by DHT are in a good correspondence with commonly used cell viability analysis and immunofluorescent analysis of changes in cellular cytoskeleton.
Collapse
|
8
|
Balasubramani V, Kuś A, Tu HY, Cheng CJ, Baczewska M, Krauze W, Kujawińska M. Holographic tomography: techniques and biomedical applications [Invited]. APPLIED OPTICS 2021; 60:B65-B80. [PMID: 33798138 DOI: 10.1364/ao.416902] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 05/23/2023]
Abstract
Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.
Collapse
|
9
|
Kim D, Lee S, Lee M, Oh J, Yang SA, Park Y. Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:211-238. [PMID: 33834439 DOI: 10.1007/978-981-33-6064-8_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sangyun Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Moosung Lee
- Department of Physics, KAIST, Daejeon, South Korea
| | - Juntaek Oh
- Department of Physics, KAIST, Daejeon, South Korea
| | - Su-A Yang
- Department of Biological Sciences, KAIST, Daejeon, South Korea
| | - YongKeun Park
- Department of Physics, KAIST, Daejeon, South Korea. .,KAIST Institute Health Science and Technology, Daejeon, South Korea. .,Tomocube Inc., Daejeon, South Korea.
| |
Collapse
|
10
|
Kandel ME, He YR, Lee YJ, Chen THY, Sullivan KM, Aydin O, Saif MTA, Kong H, Sobh N, Popescu G. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat Commun 2020; 11:6256. [PMID: 33288761 PMCID: PMC7721808 DOI: 10.1038/s41467-020-20062-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its specificity, fluorescence microscopy has become a quintessential imaging tool in cell biology. However, photobleaching, phototoxicity, and related artifacts continue to limit fluorescence microscopy's utility. Recently, it has been shown that artificial intelligence (AI) can transform one form of contrast into another. We present phase imaging with computational specificity (PICS), a combination of quantitative phase imaging and AI, which provides information about unlabeled live cells with high specificity. Our imaging system allows for automatic training, while inference is built into the acquisition software and runs in real-time. Applying the computed fluorescence maps back to the quantitative phase imaging (QPI) data, we measured the growth of both nuclei and cytoplasm independently, over many days, without loss of viability. Using a QPI method that suppresses multiple scattering, we measured the dry mass content of individual cell nuclei within spheroids. In its current implementation, PICS offers a versatile quantitative technique for continuous simultaneous monitoring of individual cellular components in biological applications where long-term label-free imaging is desirable.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuchen R He
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young Jae Lee
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taylor Hsuan-Yu Chen
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Taher A Saif
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nahil Sobh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Gabriel Popescu
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Firdaus ER, Park JH, Lee SK, Park Y, Cha GH, Han ET. 3D morphological and biophysical changes in a single tachyzoite and its infected cells using three-dimensional quantitative phase imaging. JOURNAL OF BIOPHOTONICS 2020; 13:e202000055. [PMID: 32441392 DOI: 10.1002/jbio.202000055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Toxoplasma gondii is an apicomplexan parasite that causes toxoplasmosis in the human body and commonly infects warm-blooded organisms. Pathophysiology of its diseases is still an interesting issue to be studied since T gondii can infect nearly all nucleated cells. Imaging techniques are crucial for studying its pathophysiology. In T gondii-infected cells structural and biochemical alterations occurred. To study that modification, we use digital holotomography to investigate the structure and biochemical alteration of single tachyzoite and its infected cells in a label-free and quantitative manner. Quantification analysis was done by measuring the refractive index distribution, which provides information about the concentration and dry mass of individual cells. This study showed that holotomography could be effectively used to identify the structural and biochemical alteration in tremendously different cells in supporting pathophysiological research in particular for T gondii-caused diseases.
Collapse
Affiliation(s)
- Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
12
|
Oh J, Ryu JS, Lee M, Jung J, Han S, Chung HJ, Park Y. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:1257-1267. [PMID: 32206407 PMCID: PMC7075604 DOI: 10.1364/boe.377740] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Measuring alterations in bacteria upon antibiotic application is important for basic studies in microbiology, drug discovery, clinical diagnosis, and disease treatment. However, imaging and 3D time-lapse response analysis of individual bacteria upon antibiotic application remain largely unexplored mainly due to limitations in imaging techniques. Here, we present a method to systematically investigate the alterations in individual bacteria in 3D and quantitatively analyze the effects of antibiotics. Using optical diffraction tomography, in-situ responses of Escherichia coli and Bacillus subtilis to various concentrations of ampicillin were investigated in a label-free and quantitative manner. The presented method reconstructs the dynamic changes in the 3D refractive-index distributions of living bacteria in response to antibiotics at sub-micrometer spatial resolution.
Collapse
Affiliation(s)
- Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea
| | - Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Jaehwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
- Current Affiliation: Mechatronics R&D Center, Samsung Electronics, Hwasung 18448, South Korea
| | - SeungYun Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Yongkeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, South Korea
- Tomocube Inc., Daejeon 34051, South Korea
| |
Collapse
|
13
|
Three-Dimensional Shapes and Cell Deformability of Rat Red Blood Cells during and after Asphyxial Cardiac Arrest. Emerg Med Int 2019; 2019:6027236. [PMID: 31737367 PMCID: PMC6815595 DOI: 10.1155/2019/6027236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Changes in microcirculation are believed to perform an important role after cardiac arrest. In particular, rheological changes in red blood cells (RBCs) have been observed during and after ischemic-reperfusion injury. Employing three-dimensional laser interferometric microscopy, we investigated three-dimensional shapes and deformability of RBCs during and after asphyxial cardiac arrest in rats at the individual cell level. Rat cardiac arrest was induced by asphyxia. Five rats were maintained for 7 min of no-flow time, and then, cardiopulmonary resuscitation (CPR) was started. Blood samples were obtained before cardiac arrest, during CPR, and 60 min after return of spontaneous circulation (ROSC). Quantitative phase imaging (QPI) techniques based on laser interferometry were used to measure the three-dimensional refractive index (RI) tomograms of the RBC, from which structural and biochemical properties were retrieved. Dynamic membrane fluctuations in the cell membrane were also quantitatively and sensitively measured in order to investigate cell deformability. Mean corpuscular hemoglobin, mean cell volume, mean corpuscular hemoglobin concentration, and red blood cell distribution width remained unchanged during CPR and after ROSC compared with those before cardiac arrest. QPI results revealed that RBC membrane fluctuations, sphericity, and surface area did not change significantly during CPR or after ROSC compared with initial values. In conclusion, no three-dimensional shapes and cell deformability changes in RBCs were detected.
Collapse
|
14
|
Soto JM, Mas A, Rodrigo JA, Alieva T, Domínguez-Bernal G. Label-free bioanalysis of Leishmania infantum using refractive index tomography with partially coherent illumination. JOURNAL OF BIOPHOTONICS 2019; 12:e201900030. [PMID: 31081235 DOI: 10.1002/jbio.201900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, we report the use of refractive index (RI) tomography for quantitative analysis of unstained DH82 cell line infected with Leishmania infantum. The cell RI is reconstructed by using a modality of optical diffraction tomography technique that employs partially coherent illumination, thus enabling inherent compatibility with conventional wide-field microscopes. The experimental results demonstrate that the cell dry mass concentration (DMC) obtained from the RI allows for reliable detection and quantitative characterization of the infection and its temporal evolution. The RI provides important insight for studying morphological changes, particularly membrane blebbing linked to an apoptosis (cell death) process induced by the disease. Moreover, the results evidence that infected DH82 cells exhibit a higher DMC than healthy samples. These findings open up promising perspectives for clinical diagnosis of Leishmania.
Collapse
Affiliation(s)
- Juan M Soto
- Department of Optics, Faculty of Physical Sciences, Complutense University of Madrid, Madrid, Spain
| | - Alicia Mas
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| | - José A Rodrigo
- Department of Optics, Faculty of Physical Sciences, Complutense University of Madrid, Madrid, Spain
| | - Tatiana Alieva
- Department of Optics, Faculty of Physical Sciences, Complutense University of Madrid, Madrid, Spain
| | - Gustavo Domínguez-Bernal
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Amann S, Witzleben MV, Breuer S. 3D-printable portable open-source platform for low-cost lens-less holographic cellular imaging. Sci Rep 2019; 9:11260. [PMID: 31375772 PMCID: PMC6677730 DOI: 10.1038/s41598-019-47689-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Digital holographic microscopy is an emerging, potentially low-cost alternative to conventional light microscopy for micro-object imaging on earth, underwater and in space. Immediate access to micron-scale objects however requires a well-balanced system design and sophisticated reconstruction algorithms, that are commercially available, however not accessible cost-efficiently. Here, we present an open-source implementation of a lens-less digital inline holographic microscope platform, based on off-the-shelf optical, electronic and mechanical components, costing less than $190. It employs a Blu-Ray semiconductor-laser-pickup or a light-emitting-diode, a pinhole, a 3D-printed housing consisting of 3 parts and a single-board portable computer and camera with an open-source implementation of the Fresnel-Kirchhoff routine. We demonstrate 1.55 μm spatial resolution by laser-pickup and 3.91 μm by the light-emitting-diode source. The housing and mechanical components are 3D printed. Both printer and reconstruction software source codes are open. The light-weight microscope allows to image label-free micro-spheres of 6.5 μm diameter, human red-blood-cells of about 8 μm diameter as well as fast-growing plant Nicotiana-tabacum-BY-2 suspension cells with 50 μm sizes. The imaging capability is validated by imaging-contrast quantification involving a standardized test target. The presented 3D-printable portable open-source platform represents a fully-open design, low-cost modular and versatile imaging-solution for use in high- and low-resource areas of the world.
Collapse
Affiliation(s)
- Stephan Amann
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany
| | - Max von Witzleben
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany
| | - Stefan Breuer
- Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289, Darmstadt, Germany.
| |
Collapse
|
16
|
Choi G, Ryu D, Jo Y, Kim YS, Park W, Min HS, Park Y. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. OPTICS EXPRESS 2019; 27:4927-4943. [PMID: 30876102 DOI: 10.1364/oe.27.004927] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a deep neural network to reduce coherent noise in three-dimensional quantitative phase imaging. Inspired by the cycle generative adversarial network, the denoising network was trained to learn a transform between two image domains: clean and noisy refractive index tomograms. The unique feature of this network, distinct from previous machine learning approaches employed in the optical imaging problem, is that it uses unpaired images. The learned network quantitatively demonstrated its performance and generalization capability through denoising experiments of various samples. We concluded by applying our technique to reduce the temporally changing noise emerging from focal drift in time-lapse imaging of biological cells. This reduction cannot be performed using other optical methods for denoising.
Collapse
|
17
|
To kill a piroplasm: genetic technologies to advance drug discovery and target identification in Babesia. Int J Parasitol 2019; 49:153-163. [DOI: 10.1016/j.ijpara.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
|
18
|
Shin S, Kim J, Lee JR, Jeon EC, Je TJ, Lee W, Park Y. Enhancement of optical resolution in three-dimensional refractive-index tomograms of biological samples by employing micromirror-embedded coverslips. LAB ON A CHIP 2018; 18:3484-3491. [PMID: 30303499 DOI: 10.1039/c8lc00880a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical diffraction tomography (ODT) enables the reconstruction of the three-dimensional (3D) refractive-index (RI) distribution of a biological cell, which provides invaluable information for cellular and subcellular structures in a non-invasive manner. However, ODT suffers from an inferior axial resolution, due to the limited accessible angles imposed by the numerical aperture of the objective lens. In this study, we propose and experimentally demonstrate an approach to enhance the 3D reconstruction performance in ODT. By employing trapezoidal micromirrors, side scattered signals from the sample are measured for various side plane-wave-illumination angles. By combining the side scattered fields with the forward scattered fields, the axial resolution and 3D image quality of ODT are improved, without changing optical instruments. The feasibility and applicability of the proposed method are demonstrated by reconstructing the 3D RI distribution of a red blood cell and HeLa cells in hydrogel. We also present systematic analyses of the improved 3D imaging performance using numerical simulations and experimental measurements for the 3D transfer function, a point object, and a microsphere. The analyses demonstrate an improved axial resolution of 0.31 μm, 4.8 times smaller than that of the conventional method. The proposed method enables the non-invasive and accurate 3D imaging of 3D cultured cells, which is crucial for cell biology studies.
Collapse
Affiliation(s)
- Seungwoo Shin
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ahmad A, Dubey V, Singh VR, Tinguely JC, Øie CI, Wolfson DL, Mehta DS, So PTC, Ahluwalia BS. Quantitative phase microscopy of red blood cells during planar trapping and propulsion. LAB ON A CHIP 2018; 18:3025-3036. [PMID: 30132501 PMCID: PMC6161620 DOI: 10.1039/c8lc00356d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 05/12/2023]
Abstract
Red blood cells (RBCs) have the ability to undergo morphological deformations during microcirculation, such as changes in surface area, volume and sphericity. Optical waveguide trapping is suitable for trapping, propelling and deforming large cell populations along the length of the waveguide. Bright field microscopy employed with waveguide trapping does not provide quantitative information about structural changes. Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation. By using interference microscopy, time-lapsed interferometric images of trapped RBCs were recorded in real-time and subsequently utilized to reconstruct optical phase maps. Quantification of the phase differences before and after trapping enabled study of the mechanical effects during planar trapping. During planar trapping, a decrease in the maximum phase values, an increase in the surface area and a decrease in the volume and sphericity of RBCs were observed. QPM was used to analyze the phase values for two specific regions within RBCs: the annular rim and the central donut. The phase value of the annular rim decreases whereas it increases for the central donut during planar trapping. These changes correspond to a redistribution of cytosol inside the RBC during planar trapping and transportation.
Collapse
Affiliation(s)
- Azeem Ahmad
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vishesh Dubey
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Vijay Raj Singh
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Jean-Claude Tinguely
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Cristina Ionica Øie
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Deanna L. Wolfson
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| | - Dalip Singh Mehta
- Department of Physics
, Indian Institute of Technology Delhi
,
New Delhi 110016
, India
| | - Peter T. C. So
- Department of Mechanical & Biological Engineering
, Massachusetts Institute of Technology
,
Cambridge
, MA
02139
, USA
- BioSym IRG
, Singapore-Alliance for Science & Technology Center
,
Singapore
, Singapore
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology
, UiT The Arctic University of Norway
,
Tromsø N-9037
, Norway
.
;
| |
Collapse
|
20
|
Kim YS, Lee S, Jung J, Shin S, Choi HG, Cha GH, Park W, Lee S, Park Y. Combining Three-Dimensional Quantitative Phase Imaging and Fluorescence Microscopy for the Study of Cell Pathophysiology. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:267-277. [PMID: 30258314 PMCID: PMC6153632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Quantitative phase imaging (QPI) has emerged as one of the powerful imaging tools for the study of live cells in a non-invasive manner. In particular, multimodal approaches combining QPI and fluorescence microscopic techniques have been recently developed for superior spatiotemporal resolution as well as high molecular specificity. In this review, we briefly summarize recent advances in three-dimensional QPI combined with fluorescence techniques for the correlative study of cell pathophysiology. Through this review, biologists and clinicians can be provided with insights on this rapidly growing field of research and may find broader applications to investigate unrevealed nature in cell physiology and related diseases.
Collapse
Affiliation(s)
- Young Seo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea,Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - SangYun Lee
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - JaeHwang Jung
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Seungwoo Shin
- KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - He-Gwon Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Guang-Ho Cha
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
| | - Weisun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea
| | - Sumin Lee
- Tomocube Inc., Daejeon, Republic of Korea
| | - YongKeun Park
- Tomocube Inc., Daejeon, Republic of Korea,KAIST Institute of Health Science and Technology, KAIST, Daejeon, Republic of Korea,Department of Physics, KAIST, Daejeon, Republic of Korea,To whom all correspondence should be addressed: YongKeun Park, Department of Physics, KAIST, Daejeon, Republic of Korea;
| |
Collapse
|
21
|
Kim G, Lee M, Youn S, Lee E, Kwon D, Shin J, Lee S, Lee YS, Park Y. Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci Rep 2018; 8:9192. [PMID: 29907826 PMCID: PMC6003953 DOI: 10.1038/s41598-018-25886-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Unlike mammalian erythrocytes, amphibian erythrocytes have distinct morphological features including large cell sizes and the presence of nuclei. The sizes of the cytoplasm and nuclei of erythrocytes vary significantly over different species, their environments, or pathophysiology, which makes hematological studies important for investigating amphibian species. Here, we present a label-free three-dimensional optical quantification of individual amphibian erythrocytes from frogs Pelophylax nigromaculatus (Rana nigromaculata). Using optical diffraction tomography, we measured three-dimensional refractive index (RI) tomograms of the cells, which clearly distinguished the cytoplasm and nuclei of the erythrocytes. From the measured RI tomograms, we extracted the relevant biochemical parameters of the cells, including hemoglobin contents and hemoglobin concentrations. Furthermore, we measured dynamic membrane fluctuations and investigated the mechanical properties of the cell membrane. From the statistical and correlative analysis of these retrieved parameters, we investigated interspecific differences between frogs and previously studied mammals.
Collapse
Affiliation(s)
- Geon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Moosung Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - SeongYeon Youn
- Daejeon Science High School for the Gifted, Daejeon, 34142, Republic of Korea
| | - EuiTae Lee
- Daejeon Science High School for the Gifted, Daejeon, 34142, Republic of Korea
| | - Daeheon Kwon
- Daejeon Science High School for the Gifted, Daejeon, 34142, Republic of Korea
| | - Jonghun Shin
- Daejeon Science High School for the Gifted, Daejeon, 34142, Republic of Korea
| | - SangYun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Youn Sil Lee
- Daejeon Science High School for the Gifted, Daejeon, 34142, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
- KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea.
- Tomocube, Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
22
|
Shin S, Kim D, Kim K, Park Y. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci Rep 2018; 8:9183. [PMID: 29907828 PMCID: PMC6004010 DOI: 10.1038/s41598-018-27399-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 11/26/2022] Open
Abstract
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
Collapse
Affiliation(s)
- Seungwoo Shin
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Doyeon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
- Tomocube, Inc., 48, Yuseong-daero 1184beon-gil, Yuseong-Gu, Daejeon, 34051, Republic of Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
- Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea.
- Tomocube, Inc., 48, Yuseong-daero 1184beon-gil, Yuseong-Gu, Daejeon, 34051, Republic of Korea.
| |
Collapse
|
23
|
Li S, Goyal B, Cooper JD, Abdelbaki A, Gupta N, Kumar Y. Splenic rupture from babesiosis, an emerging concern? A systematic review of current literature. Ticks Tick Borne Dis 2018; 9:1377-1382. [PMID: 29954722 DOI: 10.1016/j.ttbdis.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/17/2023]
Abstract
Babesiosis is a relatively common tick-borne parasitic infection of erythrocytes primarily affecting the northeastern United States. Babesiosis' prevalence and presentation have earned it the monikers "malaria of the northeast" and "Nantucket fever". Clinical presentation ranges from asymptomatic infection to severe infection including acute respiratory distress syndrome (ARDS) and disseminated intravascular coagulopathy (DIC) or death. Since 2008, there have been a number of reports of splenic rupture in patients with the disease. We seek to provide a further understanding of this process, with the report of a case of splenic rupture followed by a systematic review of the current literature. We found that 87% of splenic rupture secondary to babesiosis occurred in male patients who are otherwise healthy, with an average of 56 years. Computed tomography is a reliable mode of diagnosis, and hemoperitoneum is the most common imaging finding. Patients with splenic rupture due to human babesiosis were successfully treated by various management strategies, such as conservative non-operative approach, splenic artery embolization, and splenectomy. The modality of treatment depends on patient's clinical course and hemodynamic stability, although spleen conserving strategy should be considered first whenever possible.
Collapse
Affiliation(s)
- Shuo Li
- Department of Radiology, Yale New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT, 06610, United States.
| | - Bobby Goyal
- St. George's University School of Medicine, Grenada, West Indies.
| | - Joseph D Cooper
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, The Bronx, NY, 10467, United States.
| | - Ahmed Abdelbaki
- Department of Radiology, Yale New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT, 06610, United States.
| | - Nishant Gupta
- Department of Radiology, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, United States.
| | - Yogesh Kumar
- Department of Radiology, Yale New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT, 06610, United States.
| |
Collapse
|
24
|
Merola F, Memmolo P, Miccio L, Mugnano M, Ferraro P. Phase contrast tomography at lab on chip scale by digital holography. Methods 2018; 136:108-115. [DOI: 10.1016/j.ymeth.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
|
25
|
Jin D, Zhou R, Yaqoob Z, So PTC. Tomographic phase microscopy: principles and applications in bioimaging [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. B, OPTICAL PHYSICS 2018; 34:B64-B77. [PMID: 29386746 PMCID: PMC5788179 DOI: 10.1364/josab.34.000b64] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research.
Collapse
Affiliation(s)
- Di Jin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Renjie Zhou
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
26
|
Kim K, Park WS, Na S, Kim S, Kim T, Heo WD, Park Y. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:5688-5697. [PMID: 29296497 PMCID: PMC5745112 DOI: 10.1364/boe.8.005688] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Optical diffraction tomography (ODT) provides label-free three-dimensional (3D) refractive index (RI) measurement of biological samples. However, due to the nature of the RI values of biological specimens, ODT has limited access to molecular specific information. Here, we present an optical setup combining ODT with three-channel 3D fluorescence microscopy, to enhance the molecular specificity of the 3D RI measurement. The 3D RI distribution and 3D deconvoluted fluorescence images of HeLa cells and NIH-3T3 cells are measured, and the cross-correlative analysis between RI and fluorescence of live cells are presented.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, South Korea
- Current address: Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wei Sun Park
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | | | | | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141, South Korea
- TomoCube Inc., Daejeon 34051, South Korea
| |
Collapse
|
27
|
Farthing NE, Findlay RC, Jikeli JF, Walrad PB, Bees MA, Wilson LG. Simultaneous two-color imaging in digital holographic microscopy. OPTICS EXPRESS 2017; 25:28489-28500. [PMID: 31956278 PMCID: PMC6968951 DOI: 10.1364/oe.25.028489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 05/24/2023]
Abstract
We demonstrate the use of two-color digital holographic microscopy (DHM) for imaging microbiological subjects. The use of two wavelengths significantly reduces artifacts present in the reconstructed data, allowing us to image weakly-scattering objects in close proximity to strongly-scattering objects. We demonstrate this by reconstructing the shape of the flagellum of a unicellular eukaryotic parasite Leishmania mexicana in close proximity to a more strongly-scattering cell body. Our approach also yields a reduction of approximately one third in the axial position uncertainty when tracking the motion of swimming cells at low magnification, which we demonstrate with a sample of Escherichia coli bacteria mixed with polystyrene beads. The two-wavelength system that we describe introduces minimal additional complexity into the optical system, and provides significant benefits.
Collapse
Affiliation(s)
- Nicola E. Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Rachel C. Findlay
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Jan F. Jikeli
- Biophysical Imaging, Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Pegine B. Walrad
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Martin A. Bees
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Laurence G. Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
28
|
Yoon J, Jo Y, Kim MH, Kim K, Lee S, Kang SJ, Park Y. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci Rep 2017; 7:6654. [PMID: 28751719 PMCID: PMC5532204 DOI: 10.1038/s41598-017-06311-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/05/2017] [Indexed: 01/31/2023] Open
Abstract
Identification of lymphocyte cell types are crucial for understanding their pathophysiological roles in human diseases. Current methods for discriminating lymphocyte cell types primarily rely on labelling techniques with magnetic beads or fluorescence agents, which take time and have costs for sample preparation and may also have a potential risk of altering cellular functions. Here, we present the identification of non-activated lymphocyte cell types at the single-cell level using refractive index (RI) tomography and machine learning. From the measurements of three-dimensional RI maps of individual lymphocytes, the morphological and biochemical properties of the cells are quantitatively retrieved. To construct cell type classification models, various statistical classification algorithms are compared, and the k-NN (k = 4) algorithm was selected. The algorithm combines multiple quantitative characteristics of the lymphocyte to construct the cell type classifiers. After optimizing the feature sets via cross-validation, the trained classifiers enable identification of three lymphocyte cell types (B, CD4+ T, and CD8+ T cells) with high sensitivity and specificity. The present method, which combines RI tomography and machine learning for the first time to our knowledge, could be a versatile tool for investigating the pathophysiological roles of lymphocytes in various diseases including cancers, autoimmune diseases, and virus infections.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - YoungJu Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Hyeok Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - SangYun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute Health Science and Technology, Daejeon, 34141, Republic of Korea.
- Tomocube, Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
29
|
Kandel ME, Sridharan S, Liang J, Luo Z, Han K, Macias V, Shah A, Patel R, Tangella K, Kajdacsy-Balla A, Guzman G, Popescu G. Label-free tissue scanner for colorectal cancer screening. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:66016. [PMID: 28655054 DOI: 10.1117/1.jbo.22.6.066016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 05/20/2023]
Abstract
The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of “unstained” biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on “quantitative phase imaging,” which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the “nanoscale” tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an “intrinsic marker” for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.
Collapse
Affiliation(s)
- Mikhail E Kandel
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatesbUniversity of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Shamira Sridharan
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatescUniversity of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United StatesdUniversity of California, Biomedical Engineering Department, Davis, California, United States
| | - Jon Liang
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Zelun Luo
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Kevin Han
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United States
| | - Virgilia Macias
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Anish Shah
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Roshan Patel
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | | | - Andre Kajdacsy-Balla
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Grace Guzman
- University of Illinois at Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Gabriel Popescu
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, Quantitative Light Imaging Laboratory, Urbana, Illinois, United StatesbUniversity of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United StatescUniversity of Illinois at Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| |
Collapse
|
30
|
Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep 2017; 7:1039. [PMID: 28432323 PMCID: PMC5430658 DOI: 10.1038/s41598-017-01036-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/22/2017] [Indexed: 02/05/2023] Open
Abstract
In this paper, we present the optical characterisations of diabetic red blood cells (RBCs) in a non-invasive manner employing three-dimensional (3-D) quantitative phase imaging. By measuring 3-D refractive index tomograms and 2-D time-series phase images, the morphological (volume, surface area and sphericity), biochemical (haemoglobin concentration and content) and mechanical (membrane fluctuation) parameters were quantitatively retrieved at the individual cell level. With simultaneous measurements of individual cell properties, systematic correlative analyses on retrieved RBC parameters were also performed. Our measurements show there exist no statistically significant alterations in morphological and biochemical parameters of diabetic RBCs, compared to those of healthy (non-diabetic) RBCs. In contrast, membrane deformability of diabetic RBCs is significantly lower than that of healthy, non-diabetic RBCs. Interestingly, non-diabetic RBCs exhibit strong correlations between the elevated glycated haemoglobin in RBC cytoplasm and decreased cell deformability, whereas diabetic RBCs do not show correlations. Our observations strongly support the idea that slow and irreversible glycation of haemoglobin and membrane proteins of RBCs by hyperglycaemia significantly compromises RBC deformability in diabetic patients.
Collapse
|
31
|
Lee K, Kim K, Kim G, Shin S, Park Y. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. OPTICS LETTERS 2017; 42:999-1002. [PMID: 28248352 DOI: 10.1364/ol.42.000999] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a time-multiplexing structured illumination control technique for optical diffraction tomography (ODT). Instead of tilting the angle of illumination, time-multiplexed sinusoidal illumination is exploited using a digital micromirror device (DMD). The present method effectively eliminates unwanted diffracted beams from binary DMD patterns, which deteriorates the image quality of the ODT in the previous binary Lee hologram method. We experimentally show the feasibility and advantage of the present method by reconstructing three-dimensional refractive index distributions of various samples and comparing with a conventional Lee hologram method.
Collapse
|
32
|
Majeed H, Sridharan S, Mir M, Ma L, Min E, Jung W, Popescu G. Quantitative phase imaging for medical diagnosis. JOURNAL OF BIOPHOTONICS 2017; 10:177-205. [PMID: 27539534 DOI: 10.1002/jbio.201600113] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 05/19/2023]
Abstract
Optical microscopy is an indispensable diagnostic tool in modern healthcare. As a prime example, pathologists rely exclusively on light microscopy to investigate tissue morphology in order to make a diagnosis. While advances in light microscopy and contrast markers allow pathologists to visualize cells and tissues in unprecedented detail, the interpretation of these images remains largely subjective, leading to inter- and intra-observer discrepancy. Furthermore, conventional microscopy images capture qualitative information which makes it difficult to automate the process, reducing the throughput achievable in the diagnostic workflow. Quantitative Phase Imaging (QPI) techniques have been advanced in recent years to address these two challenges. By quantifying physical parameters of cells and tissues, these systems remove subjectivity from the disease diagnosis process and allow for easier automation to increase throughput. In addition to providing quantitative information, QPI systems are also label-free and can be easily assimilated into the current diagnostic workflow in the clinic. In this paper we review the advances made in disease diagnosis by QPI techniques. We focus on the areas of hematological diagnosis and cancer pathology, which are the areas where most significant advances have been made to date. [Image adapted from Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, Proc. Natl. Acad. Sci. 105, 13730-13735 (2008).].
Collapse
Affiliation(s)
- Hassaan Majeed
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Shamira Sridharan
- Biomedical Engineering Department, University of California Davis, Genome and Biomedical Sciences Facility #2603B, 451 Health Science Dr., Davis, CA, 95616, USA
| | - Mustafa Mir
- Molecular and Cell Biology, University of California, Berkeley, 485 Li Ka Shing Center, 94720, Berkeley, CA, USA
| | - Lihong Ma
- Institute of Information Optics, Zhejiang Normal University, Jinhua, 321004, China
| | - Eunjung Min
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gabriel Popescu
- Quantitative Light Imaging Lab, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Kim K, Lee S, Yoon J, Heo J, Choi C, Park Y. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci Rep 2016; 6:36815. [PMID: 27874018 PMCID: PMC5118789 DOI: 10.1038/srep36815] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Lipid droplets (LDs) are subcellular organelles with important roles in lipid storage and metabolism and involved in various diseases including cancer, obesity, and diabetes. Conventional methods, however, have limited ability to provide quantitative information on individual LDs and have limited capability for three-dimensional (3-D) imaging of LDs in live cells especially for fast acquisition of 3-D dynamics. Here, we present an optical method based on 3-D quantitative phase imaging to measure the 3-D structural distribution and biochemical parameters (concentration and dry mass) of individual LDs in live cells without using exogenous labelling agents. The biochemical change of LDs under oleic acid treatment was quantitatively investigated, and 4-D tracking of the fast dynamics of LDs revealed the intracellular transport of LDs in live cells.
Collapse
Affiliation(s)
- Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - SeoEun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - JiHan Heo
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,TOMOCUBE, Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
34
|
Byeon H, Lee J, Doh J, Lee SJ. Hybrid bright-field and hologram imaging of cell dynamics. Sci Rep 2016; 6:33750. [PMID: 27640337 PMCID: PMC5027394 DOI: 10.1038/srep33750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022] Open
Abstract
Volumetric observation is essential for understanding the details of complex biological phenomena. In this study, a bright-field microscope, which provides information on a specific 2D plane, and a holographic microscope, which provides information spread over 3D volumes, are integrated to acquire two complementary images simultaneously. The developed system was successfully applied to capture distinct T-cell adhesion dynamics on inflamed endothelial layers, including capture, rolling, crawling, transendothelial migration, and subendothelial migration.
Collapse
Affiliation(s)
- Hyeokjun Byeon
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Jaehyun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Junsang Doh
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea.,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea.,School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
35
|
Ma L, Rajshekhar G, Wang R, Bhaduri B, Sridharan S, Mir M, Chakraborty A, Iyer R, Prasanth S, Millet L, Gillette MU, Popescu G. Phase correlation imaging of unlabeled cell dynamics. Sci Rep 2016; 6:32702. [PMID: 27615512 PMCID: PMC5018886 DOI: 10.1038/srep32702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function.
Collapse
Affiliation(s)
- Lihong Ma
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute of Information Optics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Gannavarpu Rajshekhar
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ru Wang
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Basanta Bhaduri
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shamira Sridharan
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mustafa Mir
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Arindam Chakraborty
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rajashekar Iyer
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Supriya Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Larry Millet
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign IL 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
36
|
Jung J, Matemba LE, Lee K, Kazyoba PE, Yoon J, Massaga JJ, Kim K, Kim DJ, Park Y. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging. Sci Rep 2016; 6:31698. [PMID: 27546097 PMCID: PMC4992839 DOI: 10.1038/srep31698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/22/2016] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is common across Sub-Saharan Africa. However, the investigation of SCD in this area has been significantly limited mainly due to the lack of research facilities and skilled personnel. Here, we present optical measurements of individual red blood cells from healthy individuals and individuals with SCD and sickle cell trait in Tanzania using the quantitative phase imaging technique. By employing a quantitative phase imaging unit, an existing microscope in a clinic is transformed into a powerful quantitative phase microscope providing measurements on the morphological, biochemical, and biomechanical properties of individual cells. The present approach will open up new opportunities for cost-effective investigation and diagnosis of several diseases in low resource environments.
Collapse
Affiliation(s)
- JaeHwang Jung
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Lucas E Matemba
- National Institute for Medical Research, P.O. Box 476, Morogoro, Tanzania
| | - KyeoReh Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Paul E Kazyoba
- National Institute for Medical Research, 3 Barack Obama Drive, P.O. Box 9653, 11101 Dar es Salaam, Tanzania
| | - Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Julius J Massaga
- National Institute for Medical Research, 3 Barack Obama Drive, P.O. Box 9653, 11101 Dar es Salaam, Tanzania
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dong-Jin Kim
- Nelson Mandela African Institution of Science and Technology, School of Life Science and Bioengineering, P.O. Box 447 Arusha, Tanzania
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,TomoCube, Inc., Daejeon 34051, Republic of Korea
| |
Collapse
|
37
|
Samant P, Chen J, Xiang L. Characterization of the temperature rise in a single cell during photoacoustic tomography at the nanoscale. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75009. [PMID: 27405264 DOI: 10.1117/1.jbo.21.7.075009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
We are developing a label-free nanoscale photoacoustic tomography (nPAT) for imaging a single living cell. nPAT uses a laser-induced acoustic pulse to generate a nanometer-scale image. The primary motivation behind this imaging technique is the imaging of biological cells in the context of diagnosis without fluorescent tagging. During this procedure, thermal damage due to the laser pulse is a potential risk that may damage the cells. A physical model is built to estimate the temperature rise and thermal relaxation during the imaging procedure. Through simulations using finite element methods, two lasers (532 nm at 5 ps pulse duration and 830 nm at 0.2 ps pulse duration) were simulated for imaging red blood cells (RBCs). We demonstrate that a single 5-ps pulse laser with a 400-Hz repetition rate will generate a steady state temperature rise of less than a Kelvin on the surface of the RBCs. All the simulation results show that there is no significant temperature rise in an RBC in either single pulse or multiple pulse illumination with a 532-nm laser with 219 W fluence. Therefore, our simulation results demonstrate the thermal safety of an nPAT system. The photoacoustic signal generated by this laser is on the order of 2.5 kPa, so it should still be large enough to generate high-resolution images with nPAT. Frequency analysis of this signal shows a peak at 1.47 GHz, with frequencies as high as 3.5 GHz still being present in the spectrum. We believe that nPAT will open an avenue for disease diagnosis and cell biology studies at the nanometer-level.
Collapse
|
38
|
Baek Y, Lee K, Yoon J, Kim K, Park Y. White-light quantitative phase imaging unit. OPTICS EXPRESS 2016; 24:9308-15. [PMID: 27137546 DOI: 10.1364/oe.24.009308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce the white-light quantitative phase imaging unit (WQPIU) as a practical realization of quantitative phase imaging (QPI) on standard microscope platforms. The WQPIU is a compact stand-alone unit which measures sample induced phase delay under white-light illumination. It does not require any modification of the microscope or additional accessories for its use. The principle of the WQPIU based on lateral shearing interferometry and phase shifting interferometry provides a cost-effective and user-friendly use of QPI. The validity and capacity of the presented method are demonstrated by measuring quantitative phase images of polystyrene beads, human red blood cells, HeLa cells and mouse white blood cells. With speckle-free imaging capability due to the use of white-light illumination, the WQPIU is expected to expand the scope of QPI in biological sciences as a powerful but simple imaging tool.
Collapse
|
39
|
Tian X, Yu W, Meng X, Sun A, Xue L, Liu C, Wang S. Real-time quantitative phase imaging based on transport of intensity equation with dual simultaneously recorded field of view. OPTICS LETTERS 2016; 41:1427-1430. [PMID: 27192253 DOI: 10.1364/ol.41.001427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Since quantitative phase distribution reflects both cellular shapes and conditions from another view, compared to traditional intensity observation, different quantitative phase microscopic methods are proposed for cellular detections. However, the transport of intensity equation-based approach not only presents phase, but also intensity, which attracts much attention. While classical transport of intensity equation needs multi-focal images which often cannot realize simultaneous phase measurement, in this Letter, to break through the limitation, a real-time quantitative phase imaging method using transport of intensity equation is proposed. Two identical CCD cameras are set at the binocular tubes to capture the same field of view but at different focal planes. With a double-frame algorithm assuming that the on-focal image is the average of over- and under-focal information, the proposed method is capable of calculating quantitative phase distributions of samples accurately and simultaneously indicating its potentialities in cellular real-time monitoring.
Collapse
|
40
|
Jung J, Kim K, Yoon J, Park Y. Hyperspectral optical diffraction tomography. OPTICS EXPRESS 2016; 24:2006-12. [PMID: 26906777 DOI: 10.1364/oe.24.002006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we present a novel microscopic technique for measuring wavelength-dependent three-dimensional (3-D) distributions of the refractive indices (RIs) of microscopic samples in the visible wavelengths. Employing 3-D quantitative phase microscopy techniques with a wavelength-swept source, 3-D RI tomograms were obtained in the range of 450 - 700 nm with a spectral resolution of a few nanometers. The capability of the technique was demonstrated by measuring the hyperspectral 3-D RI tomograms of polystyrene beads, human red blood cells, and hepatocytes. The results demonstrate the potential for label-free molecular specific 3-D tomography of biological samples.
Collapse
|
41
|
Lee SY, Park HJ, Best-Popescu C, Jang S, Park YK. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells. PLoS One 2015; 10:e0145327. [PMID: 26690915 PMCID: PMC4699194 DOI: 10.1371/journal.pone.0145327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023] Open
Abstract
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.
Collapse
Affiliation(s)
- Sang Yun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Joo Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Catherine Best-Popescu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan, College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Yong Keun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Yoon J, Kim K, Park H, Choi C, Jang S, Park Y. Label-free characterization of white blood cells by measuring 3D refractive index maps. BIOMEDICAL OPTICS EXPRESS 2015; 6:3865-75. [PMID: 26504637 PMCID: PMC4605046 DOI: 10.1364/boe.6.003865] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 05/02/2023]
Abstract
The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - HyunJoo Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan, College of Medicine and Asan Medical Center, Seoul 138-736, South Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| |
Collapse
|
43
|
Park H, Ahn T, Kim K, Lee S, Kook SY, Lee D, Suh IB, Na S, Park Y. Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:111208. [PMID: 26259511 DOI: 10.1117/1.jbo.20.11.111208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/08/2015] [Indexed: 05/23/2023]
Abstract
Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions in fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed on RBCs from the cord blood of newborn infants and from adult mothers or nonpregnant women using optical holographic microtomography. Optical measurements of the distributions of the three-dimensional refractive indices and the dynamic membrane fluctuations of individual RBCs were used to investigate the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significantly larger than those of the RBCs from nonpregnant women, and the cord RBCs had more flattened shapes than that of the RBCs in adults. In addition, the hemoglobin (Hb) content in the cord RBCs from newborns was significantly higher. The Hb concentration in the cord RBCs was higher than that in the nonpregnant women or maternal RBCs, but they were within the physiological range of adults. Interestingly, the amplitudes of the dynamic membrane fluctuations in cord RBCs were comparable to those in nonpregnant women and maternal RBCs, suggesting that the deformability of cord RBCs is similar to that of healthy RBCs in adults.
Collapse
Affiliation(s)
- HyunJoo Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Taegyu Ahn
- Kangwon National University, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Sangyun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Song-Yi Kook
- Kangwon National University, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Dongheon Lee
- Kangwon National University, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Chuncheon 200-701, Republic of Korea
| | - In Bum Suh
- Kangwon National University, Department of Laboratory Medicine, Kangwon National University Hospital, School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Sunghun Na
- Kangwon National University, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Chuncheon 200-701, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| |
Collapse
|