1
|
Ghosh A, Chénier I, Leung YH, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Adipocyte Angptl8 deletion improves glucose and energy metabolism and obesity associated inflammation in mice. iScience 2024; 27:111292. [PMID: 39640567 PMCID: PMC11617963 DOI: 10.1016/j.isci.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/28/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Angiopoietin-like protein 8 (Angptl8), expressed in the liver and adipocytes, forms a complex with Angptl3 or Angptl4, which regulates lipoprotein lipase and triglyceride metabolism. However, the precise functions of adipocyte Angptl8 remain elusive. Here we report that adipocyte-specific inducible Angptl8-knockout (AT-A8-KO) male mice on normal diet showed minor phenotypic changes, but after a high-fat high fructose (HFHF) diet, exhibited decreased body weight gain and glycemia, elevated rectal temperature and early dark phase energy expenditure compared to the Cre controls. AT-A8-KO mice also displayed improved glucose tolerance, a trend for better insulin sensitivity, improved insulin-stimulated glucose uptake in adipose tissues, and reduced visceral adipose tissue crown-like structures, plasma MCP-1 and leptin levels. The results indicate the importance of adipose Angptl8 in the context of nutri-stress and obesity, as its deletion in mice promotes a metabolically healthy obese phenotype by slightly ameliorating obesity, improving glucose and energy homeostasis, and mitigating inflammation.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K. Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche Du Centre Hospitalier de L’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
2
|
Chen SM, Huang TY, Lee WJ, Chuang LM, Chang TJ. Positive correlation of ANGPTL8 expression in human visceral adipose tissue with body mass index. J Formos Med Assoc 2024; 123:860-865. [PMID: 38191275 DOI: 10.1016/j.jfma.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 8 (ANGPTL8) is an important regulator of lipid metabolism. We aimed to investigate the difference of ANGPTL8 expression in different depots of adipose tissues between individuals with and without obesity, and its correlation with various metabolic parameters. METHODS Subcutaneous (SAT) and visceral adipose tissue (VAT) samples were collected from patients who underwent bariatric or intra-abdominal surgery. Expression levels of ANGPTL8, monoglyceride lipase (MGL), monocyte chemoattractant protein-1 (MCP-1), leptin and adiponectin (APM1) were determined using real-time quantitative polymerase chain reaction. The correlation of ANGPTL8 expression with various metabolic parameters and other gene expression levels was analyzed using Person's correlation analysis. Logistic regression was used to establish a prediction model of obesity. RESULTS Totally 330 subjects (obese: 281, non-obese: 49) were recruited. ANGPTL8 expression in VAT was significantly higher in the obesity group than in the non-obesity group (P = 0.0096). ANGPTL8 expression in VAT was positively correlated with body mass index (BMI) (r = 0.1169, P < 0.05) and was independently associated with obesity (O.R., 1.246; 95 % C.I. 1.013-21.533, P = 0.038). We also found the gene expression of ANGPTL8 in SAT and VAT was negatively correlated with APM1 expression in respective SAT and VAT. CONCLUSION ANGPTL8 expression levels in VAT were higher in subjects with obesity, and positively correlated with BMI. This suggests a role of ANGPTL8 in the pathophysiology of obesity and may pave the way for novel treatment target of obesity.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Ying Huang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Taoyuan Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Bilgin AG, Ekici B, Ozuynuk-Ertugrul AS, Erkan AF, Coban N. The minor allele of ANGPTL8 rs2278426 has a protective effect against CAD in T2DM patients. Gene 2024; 914:148418. [PMID: 38552749 DOI: 10.1016/j.gene.2024.148418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide despite advanced treatment and diagnosis strategies. Angiopoietin-like protein 8 (ANGPTL8) mainly functions in the lipid mechanism, which is a dysregulated mechanism during CAD pathogenesis. In this study, we aimed to determine the associations between an ANGPTL8 polymorphism rs2278426 and the severity, presence, and risk factors of CAD. METHODS A total of 1367 unrelated Turkish individuals who underwent coronary angiography were recruited for the study and grouped as CAD (n = 736, ≥50 stenosis) and non-CAD (n = 549, ≤30 stenosis). Also, subjects were further divided into groups regarding type 2 diabetes mellitus (T2DM) status. Subjects were genotyped for rs2278426 (C/T) by quantitative real-time PCR. Secondary structure analyses of protein interactions were revealed using I-TASSER and PyMOL. RESULTS Among CAD patients, T allele carriage frequency was lower in the T2DM group (p = 0.046). Moreover, in male non-CAD group, T allele carriage was more prevalent among T2DM patients than non-T2DM (p = 0.033). In logistic regression analysis adjusted for obesity, T allele carrier males had an increased risk for T2DM in non-CAD group (OR = 2.244, 95 % CI: 1.057-4.761, p = 0.035). Also, in T2DM group, stenosis (p = 0.002) and SYNTAX score (p = 0.040) were lower in T allele carrier males than in non-carriers. Analyzes of secondary structure showed that ANGPTL8 could not directly form complexes with ANGPTL3 or ANGPTL4. CONCLUSION In conclusion, T allele carriage of ANGPTL8 rs2278426 has a protective effect on CAD in T2DM patients. Further research should be conducted to explore the association between ANGPTL8 polymorphism (rs2778426) and CAD.
Collapse
Affiliation(s)
- Aslihan Gizem Bilgin
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Berkay Ekici
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Aybike Sena Ozuynuk-Ertugrul
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey
| | - Aycan Fahri Erkan
- Department of Cardiology, Ufuk University Faculty of Medicine, Ankara, Turkey
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istanbul University Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
| |
Collapse
|
4
|
Lőrincz H, Csiha S, Ratku B, Somodi S, Sztanek F, Paragh G, Harangi M. Associations between Serum Kallistatin Levels and Markers of Glucose Homeostasis, Inflammation, and Lipoprotein Metabolism in Patients with Type 2 Diabetes and Nondiabetic Obesity. Int J Mol Sci 2024; 25:6264. [PMID: 38892451 PMCID: PMC11173135 DOI: 10.3390/ijms25116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Kallistatin is an endogenous serine proteinase inhibitor with various functions, including antioxidative, anti-inflammatory, and anti-atherosclerotic properties. To date, associations between kallistatin and lipoprotein subfractions are poorly investigated. In this study, we enrolled 62 obese patients with type 2 diabetes (T2D), 106 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index, as well as 49 gender- and age-matched healthy, normal-weight controls. Serum kallistatin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint® (Quantimetrix Corp., Redondo Beach, CA, USA) gel electrophoresis. Kallistatin concentrations were significantly higher in T2D patients compared to NDO and control groups. We found significant positive correlations between very-low-density lipoprotein (VLDL), small high-density lipoprotein (HDL) subfractions, glucose, hemoglobin A1c (HbA1c), betatrophin, and kallistatin, while negative correlations were detected between mean low-density lipoprotein (LDL) size, large and intermediate HDL subfractions, and kallistatin in the whole study population. The best predictor of kallistatin was HbA1c in T2D patients, high-sensitivity C-reactive protein (hsCRP) and betatrophin in NDO patients, and hsCRP in controls. Our results indicate that kallistatin expression might be induced by persistent hyperglycemia in T2D, while in nondiabetic subjects, its production might be associated with systemic inflammation. The correlation of kallistatin with lipid subfractions may suggest its putative role in atherogenesis.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sára Csiha
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
5
|
Alshawaf E, Abu-Farha M, Mohammad A, Devarajan S, Al-Khairi I, Cherian P, Ali H, Al-Matrouk H, Al-Mulla F, Al Attar A, Abubaker J. Angiopoietin-2 and Angiopoietin-like Proteins with a Prospective Role in Predicting Diabetic Nephropathy. Biomedicines 2024; 12:949. [PMID: 38790911 PMCID: PMC11118931 DOI: 10.3390/biomedicines12050949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Angiopoietins are crucial growth factors for maintaining a healthy, functional endothelium. Patients with type 2 diabetes (T2D) exhibit significant levels of angiogenic markers, particularly Angiopoietin-2, which compromises endothelial integrity and is connected to symptoms of endothelial injury and failure. This report examines the levels of circulating angiopoietins in people with T2D and diabetic nephropathy (DN) and explores its link with ANGPTL proteins. We quantified circulating ANGPTL3, ANGPTL4, ANGPTL8, Ang1, and Ang2 in the fasting plasma of 117 Kuwaiti participants, of which 50 had T2D and 67 participants had DN. The Ang2 levels increased with DN (4.34 ± 0.32 ng/mL) compared with T2D (3.42 ± 0.29 ng/mL). This increase correlated with clinical parameters including the albumin-to-creatinine ratio (ACR) (r = 0.244, p = 0.047), eGFR (r = -0.282, p = 0.021), and SBP (r = -0.28, p = 0.024). Furthermore, Ang2 correlated positively to both ANGPTL4 (r = 0.541, p < 0.001) and ANGPTL8 (r = 0.41, p = 0.001). Multiple regression analysis presented elevated ANGPTL8 and ACRs as predictors for Ang2's increase in people with DN. In people with T2D, ANGPTL4 positively predicted an Ang2 increase. The area under the curve (AUC) in receiver operating characteristic (ROC) analysis of the combination of Ang2 and ANGPTL8 was 0.77 with 80.7% specificity. In conclusion, significantly elevated Ang2 in people with DN correlated with clinical markers such as the ACR, eGFR, and SBP, ANGPTL4, and ANGPTL8 levels. Collectively, this study highlights a close association between Ang2 and ANGPTL8 in a population with DN, suggesting them as DN risk predictors.
Collapse
Affiliation(s)
- Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (M.A.-F.); (A.M.); (I.A.-K.); (P.C.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (M.A.-F.); (A.M.); (I.A.-K.); (P.C.)
- Diabetology Unit, Amiri Hospital, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (M.A.-F.); (A.M.); (I.A.-K.); (P.C.)
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (M.A.-F.); (A.M.); (I.A.-K.); (P.C.)
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (M.A.-F.); (A.M.); (I.A.-K.); (P.C.)
| | - Hamad Ali
- Functional Genomic Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait 15462, Kuwait
| | - Hawra Al-Matrouk
- Medical Department, Amiri Hospital, Ministry of Health, Kuwait 15462, Kuwait;
| | - Fahd Al-Mulla
- Functional Genomic Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.A.-M.)
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Abdulnabi Al Attar
- Diabetology Unit, Amiri Hospital, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| |
Collapse
|
6
|
Alramah T, Cherian P, Al-Khairi I, Abu-Farha M, Thanaraj TA, Albatineh AN, Safadi F, Ali H, Abdul-Ghani M, Tuomilehto J, Koistinen HA, Al-Mulla F, Abubaker J. Evaluating the correlation of sclerostin levels with obesity and type 2 diabetes in a multiethnic population living in Kuwait. Front Endocrinol (Lausanne) 2024; 15:1392675. [PMID: 38711986 PMCID: PMC11070556 DOI: 10.3389/fendo.2024.1392675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.
Collapse
Affiliation(s)
- Tahani Alramah
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | | | | | - Fayez Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, OH, United States
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Muhammad Abdul-Ghani
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
- Division of Diabetes, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heikki A. Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Internal Medicine and Endocrinology, Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
7
|
Ghosh A, Leung YH, Yu J, Sladek R, Chénier I, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Thanaraj TA, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Silencing ANGPTL8 reduces mouse preadipocyte differentiation and insulin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159461. [PMID: 38272177 DOI: 10.1016/j.bbalip.2024.159461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jeffrey Yu
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Robert Sladek
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | | | | | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | | |
Collapse
|
8
|
Lőrincz H, Csiha S, Ratku B, Somodi S, Sztanek F, Seres I, Paragh G, Harangi M. Gender-Dependent Associations between Serum Betatrophin Levels and Lipoprotein Subfractions in Diabetic and Nondiabetic Obese Patients. Int J Mol Sci 2023; 24:16504. [PMID: 38003693 PMCID: PMC10671489 DOI: 10.3390/ijms242216504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Betatrophin, also known as angiopoietin-like protein 8 (ANGPTL8), mainly plays a role in lipid metabolism. To date, associations between betatrophin and lipoprotein subfractions are poorly investigated. For this study, 50 obese patients with type 2 diabetes (T2D) and 70 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index (BMI) as well as 49 gender- and age-matched healthy, normal-weight controls were enrolled. Serum betatrophin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint gel electrophoresis. Betatrophin concentrations were found to be significantly higher in the T2D and NDO groups compared to the controls in all subjects and in females, but not in males. We found significant positive correlations between triglyceride, very low density lipoprotein (VLDL), large LDL (low density lipoprotein), small LDL, high density lipoprotein (HDL) -6-10 subfractions, and betatrophin, while negative correlations were detected between betatrophin and IDL, mean LDL size, and HDL-1-5. Proportion of small HDL was the best predictor of betatrophin in all subjects. Small LDL and large HDL subfractions were found to be the best predictors in females, while in males, VLDL was found to be the best predictor of betatrophin. Our results underline the significance of serum betatrophin measurement in the cardiovascular risk assessment of obese patients with and without T2D, but gender differences might be taken into consideration.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sára Csiha
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Ratku
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ildikó Seres
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
AlMajed HT, Abu-Farha M, Alshawaf E, Devarajan S, Alsairafi Z, Elhelaly A, Cherian P, Al-Khairi I, Ali H, Jose RM, Thanaraj TA, Al-Ozairi E, Al-Mulla F, Al Attar A, Abubaker J. Increased Levels of Circulating IGFBP4 and ANGPTL8 with a Prospective Role in Diabetic Nephropathy. Int J Mol Sci 2023; 24:14244. [PMID: 37762544 PMCID: PMC10531667 DOI: 10.3390/ijms241814244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic nephropathy (DN) is a complicated condition related to type 2 diabetes mellitus (T2D). ANGPTL8 is a hepatic protein highlighted as a risk factor for DN in patients with T2D; additionally, recent evidence from DN studies supports the involvement of growth hormone/IGF/IGF-binding protein axis constituents. The potential link between ANGPTL8 and IGFBPs in DN has not been explored before. Here, we assessed changes in the circulating ANGPTL8 levels in patients with DN and its association with IGFBP-1, -3, and -4. Our data revealed a significant rise in circulating ANGPTL8 in people with DN, 4443.35 ± 396 ng/mL compared to 2059.73 ± 216 ng/mL in people with T2D (p < 0.001). Similarly, levels of IGFBP-3 and -4 were significantly higher in people with DN compared to the T2D group. Interestingly, the rise in ANGPTL8 levels correlated positively with IGFBP-4 levels in T2DM patients with DN (p < 0.001) and this significant correlation disappeared in T2DM patients without DN. It also correlated positively with serum creatinine and negatively with the estimated glomerular filtration rate (eGFR, All < 0.05). The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and IGFBP4 was 0.76 (0.69-0.84), p < 0.001, and the specificity was 85.9%. In conclusion, our results showed a significant increase in ANGPTL8 in patients with DN that correlated exclusively with IGFBP-4, implicating a potential role of both proteins in the pathophysiology of DN. Our findings highlight the significance of these biomarkers, suggesting them as promising diagnostic molecules for the detection of diabetic nephropathy.
Collapse
Affiliation(s)
- Hana Th. AlMajed
- Applied Health Science Department, College of Health Sciences, Kuwait 15462, Kuwait;
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Eman Alshawaf
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (S.D.); (R.M.J.)
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Kuwait 15462, Kuwait;
| | - Ashraf Elhelaly
- Clinical Laboratory, Amiri Hospital Kuwait, Kuwait 15462, Kuwait;
| | - Preethi Cherian
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Hamad Ali
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (H.A.); (T.A.T.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait 15462, Kuwait
| | - Rose Mol Jose
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (S.D.); (R.M.J.)
| | | | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Kuwait 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (H.A.); (T.A.T.); (F.A.-M.)
| | - Abdulnabi Al Attar
- Diabetology Unit, Amiri Hospital, Dasman Diabetes Institute, Kuwait 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| |
Collapse
|
10
|
Abu-Farha M, Alatrach M, Abubaker J, Al-Khairi I, Cherian P, Agyin K, Abdelgani S, Norton L, Adams J, Al-Saeed D, Al-Ozairi E, DeFronzo RA, Al-Mulla F, Abdul-Ghani M. Plasma insulin is required for the increase in plasma angiopoietin-like protein 8 in response to nutrient ingestion. Diabetes Metab Res Rev 2023; 39:e3643. [PMID: 36988137 DOI: 10.1002/dmrr.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Plasma levels of angiopoietin-like protein 8 (ANGPTL8) are regulated by feeding and they increase following glucose ingestion. Because both plasma glucose and insulin increase following food ingestion, we aimed to determine whether the increase in plasma insulin and glucose or both are responsible for the increase in ANGPTL8 levels. METHODS ANGPTL8 levels were measured in 30 subjects, 14 with impaired fasting glucose (IFG), and 16 with normal fasting glucose (NFG); the subjects received 75g glucose oral Glucose tolerance test (OGTT), multistep euglycaemic hyperinsulinemic clamp and hyperglycaemic clamp with pancreatic clamp. RESULTS Subjects with IFG had significantly higher ANGPTL8 than NGT subjects during the fasting state (p < 0.05). During the OGTT, plasma ANGPTL8 concentration increased by 62% above the fasting level (p < 0.0001), and the increase above fasting in ANGPTL8 levels was similar in NFG and IFG individuals. During the multistep insulin clamp, there was a dose-dependent increase in plasma ANGPTL8 concentration. During the 2-step hyperglycaemic clamp, the rise in plasma glucose concentration failed to cause any change in the plasma ANGPTL8 concentration from baseline. CONCLUSIONS In response to nutrient ingestion, ANGPTL8 level increased due to increased plasma insulin concentration, not to the rise in plasma glucose. The incremental increase above baseline in plasma ANGLPTL8 during OGTT was comparable between people with normal glucose tolerance and IFG.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mariam Alatrach
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Krisitn Agyin
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Siham Abdelgani
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Luke Norton
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | - John Adams
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | - Ralph A DeFronzo
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
11
|
Abu-Farha M, Joseph S, Mohammad A, Channanath A, Taher I, Al-Mulla F, Mujammami M, Thanaraj TA, Abubaker J, Abdel Rahman AM. Targeted Metabolomics Analysis of Individuals Carrying the ANGPTL8 R59W Variant. Metabolites 2023; 13:972. [PMID: 37755252 PMCID: PMC10536441 DOI: 10.3390/metabo13090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Shibu Joseph
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Ibrahim Taher
- Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11421, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11421, Saudi Arabia
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Centre for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, College of Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
12
|
Mohammedsaeed W, Ahmed A, Alharbi N, Aljohani A, Alruwaithi R, Alharbi R, Alahmadi S. Evaluation of Adiponectin and ANGPTL8 in Women With Metabolic Syndrome in the Madinah Region of Saudi Arabia. Cureus 2023; 15:e44219. [PMID: 37767256 PMCID: PMC10522362 DOI: 10.7759/cureus.44219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE "Metabolic syndrome" (MetS) is a set of abnormalities that may be risk factors for cardiovascular disease (CVD) and diabetes. The current study sought to (1) determine MetS prevalence and (2) examine Adiponectin and ANGPTL8 levels in connection to MetS components and CVDs and diabetes risk in females with MetS. METHODS A total of 350, 20-35-year-old Saudi females were studied. Waist circumference (WC), body mass index (BMI), glucose, HbA1c, insulin, lipid profiles, and blood pressure (BP) were examined for MetS. ANGPTL8 and Adiponectin were also measured. RESULTS The patients were classified into two groups, namely MetS and non-MetS, according to the criteria established by the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII). We examined biomarker and anthropometric results between these groups. One hundred forty-four of 350 female participants (41.2%) had MetS, with a mean age of 30.5 years. Fasting blood glucose (FBG), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), ANGPTL8, adiponectin, and insulin resistance (IR) were statistically significant differences observed between the two groups. BP, BMI, WC, and Atherogenic Index of Plasma (AIP) all changed significantly (P ≤0.05). Correlation studies linked MetS components to higher ANGPTL-8 and reduced adiponectin. The levels of ANGPTL8 were shown to be influenced by the increase in FBG, TG, BP, IR, and AIP (P < 0.05). Factors such as FBG, BMI, WC, and IR have been found to have an inverse relationship with adiponectin levels. CONCLUSION 41.2% out of 350 Saudi females at Taibah University in the Madinah region had MetS, medium CVD risk, and slightly elevated BMI, TG, WC, and BP. To lower their risk of CVD and diabetes later in life, overweight young women should be evaluated for MetS. FBG and TG were substantially associated with ANGPTL8 while reducing adiponectin was associated with elevated TG and BP. Our findings may lead to ANGPTL8 and adiponectin's possible predictive function for CVD in early MetS in females.
Collapse
Affiliation(s)
- Walaa Mohammedsaeed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Ahmed Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Nada Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Amjaad Aljohani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Razan Alruwaithi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Reem Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| | - Shatha Alahmadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Taibah University, Madinah, SAU
| |
Collapse
|
13
|
Xu F, Shen L, Yang Y, Kong L, Zu W, Tian D, Cao X, Huang G. Association Between Plasma Levels of ANGPTL3, 4, 8 and the Most Common Additional Cardiovascular Risk Factors in Patients with Hypertension. Diabetes Metab Syndr Obes 2023; 16:1647-1655. [PMID: 37309506 PMCID: PMC10257919 DOI: 10.2147/dmso.s411483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Background ANGPTL3, 4 and 8 have been reported to be involved in the regulation of lipid and glucose metabolism. The aim of this study was to investigate the expression of ANGPTL3, 4, 8 in hypertensive patients with or without overweight/obesity, T2D, and hyperlipidemia, and the possible association between their expression and the status of the aforementioned comorbidities. Methods Plasma levels of ANGPTL3, 4, and 8 in 87 hospitalized patients with hypertension were measured using ELISA kits. Associations between circulating ANGPTLs levels and the most common additional cardiovascular risk factors were assessed using multivariate linear regression analyses. Pearson's correlation analysis was used to examine the association between ANGPTLs and clinical parameters. Results In the context of hypertension, (1) although not statistically significant, circulating ANGPTL3 levels were higher in the overweight/obese group than in the normal weight group; (2) circulating levels of ANGPTL3 and ANGPTL8 were significantly lower in patients with T2D than in non-diabetic patients; (3) circulating ANGPTL3 levels were significantly higher in the hyperlipidemic group than in the non-hyperlipidemic group. ANGPTL3 was associated with T2D and hyperlipidemia status, whereas ANGPTL8 was independently associated with T2D status. In addition, circulating ANGPTL3 levels were positively correlated with TC, TG, LDL-C, HCY, and ANGPTL8, and circulating ANGPTL4 levels were positively correlated with UACR and BNP. Conclusion Changes in circulating ANGPTL3 and ANGPTL8 levels have been observed in hypertensive patients with the most common additional cardiovascular risk factors, suggesting a role in the common comorbidities of hypertension and cardiovascular disease. Hypertensive patients with overweight/obesity or hyperlipidemia may benefit from therapies targeting ANGPTL3.
Collapse
Affiliation(s)
- Fangfang Xu
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Lijun Shen
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yongguang Yang
- Department of Clinical Medical Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Limin Kong
- Department of General Medicine, Xinxiang Medical University, the Sixth People’s Hospital of Zhengzhou, Zhengzhou, People’s Republic of China
| | - Wufan Zu
- Department of Immunology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xuanchao Cao
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Gairong Huang
- Key Laboratory of Geriatrics, Institute of Geriatrics, Department of Geriatric Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
14
|
Rashvand F, Irandoust K, Taheri M, Gholamzadeh Khoei S, Gheibi N. The Effect of Four Weeks of Long-Term Endurance Training with and Without Propolis Supplementation on Serum Levels of Betatrophin/ANGPTL8 in Male Athletes. Asian J Sports Med 2022; 13. [DOI: 10.5812/asjsm-120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2023] Open
Abstract
Background: Betatrophin/angiopoietin-like protein (ANGPTL8) is defined as an adipokine that regulates blood glucose and triglyceride levels. Objectives: This study aimed to evaluate the effect of propolis supplementation for the first time on serum levels of the hormone betatrophin, as a drug target in the treatment of dyslipidemia, in male endurance athletes for four weeks. Methods: 44 male athletes with an average age of 22 ± 3 years, a height of 177.5 ± 6.5 cm, and a weight of 76 ± 6 kg were selected in Qazvin. They were randomly divided into four groups: Supplementation, placebo, physical activity, and control. The supplementation and placebo groups received two 500 mg tablets of propolis and cellulose (in terms of shape and color, are similar to the original supplement and have no properties, flavor, and aroma) once after lunch and once after dinner, respectively. The drug treatment lasted for four weeks. The athletes' weight and serum levels of betatrophin were measured at the beginning and the end of 4 weeks of treatment. The ELISA method was used to assess the serum concentration of betatrophin. Analyzes were performed by the ANCOVA method. Results: The results showed that the long-term endurance training plus propolis supplementation would result in significant changes in the betatrophin serum levels and weight in participants (P = 0.001), but in the athletes without supplementation, these changes were not significant (P > 0.05). Conclusions: The results indicated that betatrophin serum levels in endurance athletes are increased by propolis supplementation, and their weight is decreased.
Collapse
|
15
|
Betatrophin and Insulin Resistance. Metabolites 2022; 12:metabo12100925. [PMID: 36295827 PMCID: PMC9610572 DOI: 10.3390/metabo12100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022] Open
Abstract
Betatrophin (angiopoietin-like protein 8 (ANGPTL8)) is a hormone that was recently discovered in the human liver. Multiple homologous sequences have been detected in mammalian liver, white adipose, and brown adipose tissues. Betatrophin is crucial for the development of type 2 diabetes (T2D), insulin resistance, and lipid metabolism. Similar to the intake of insulin, thyroid hormones, irisin, and calories, betatrophin expression in the organism is usually attributed to energy consumption or heat generation. It can mediate the activity of lipoprotein lipase (LPL), which is the key enzyme of lipoprotein lipolysis. Due to its association with metabolic markers and the roles of glucose and lipid, the physiological function of betatrophin in glucose homeostasis and lipid metabolism can be more comprehensively understood. Betatrophin was also shown to facilitate pancreatic β-cell proliferation in a mouse model of insulin resistance. There are also reports that demonstrate that betatrophin regulates triglycerides (TGs) in the liver. Therefore, the process of regulating the physiological function by betatrophin is complicated, and its exact biological significance remains elusive. This study provides a comprehensive review of the current research, and it discusses the possible physiological functions of betatrophin, and specifically the mechanism of betatrophin in regulating blood glucose and blood lipids.
Collapse
|
16
|
Adiponectin Intervention to Regulate Betatrophin Expression, Attenuate Insulin Resistance and Enhance Glucose Metabolism in Mice and Its Response to Exercise. Int J Mol Sci 2022; 23:ijms231810630. [PMID: 36142528 PMCID: PMC9505482 DOI: 10.3390/ijms231810630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Aims: Adiponectin stimulates mitochondrial biogenesis through peroxisome proliferator-activated receptor-coactivator1α (PGC-1α), a major regulator of mitochondrial biogenesis, and its effect on the genesis of insulin resistance is organ-specific. Expressed predominantly in fat and liver tissues, betatrophin is primarily involved in lipid metabolism, and could be a putative therapeutic target in metabolic syndrome and T2D. We hypothesized that the adiponectin pathway may regulate the production and/or secretion of betatrophin in liver. We aimed to determine whether exercise and adiponectin affect betatrophin to improve insulin resistance in mice. Methods: To investigate this hypothesis, we used wild-type C57BL/6 mice subjected to a high-fat diet, an exercise regimen, and i.p. injection of recombinant mouse adiponectin (Acrp30), and adiponectin knockout (Adipoq−/−) mice (C57BL/6 background) subjected to i.p. injection of Acrp30. Results: In Adipoq–/– mice, betatrophin levels in the plasma and liver were upregulated. In mice, plasma and liver betatrophin levels were significantly upregulated following a high-fat diet. Exercise and i.p. Acrp30 downregulated betatrophin levels and increased adiponectin mRNA and protein expression in the plasma and liver. The trend of change in PGC-1α and betatrophin levels in the liver was consistent. Conclusions/interpretation: Exercise reverses pathogenic changes in adiponectin and betatrophin levels in insulin-resistant mice. Exercise increased adiponectin levels and reduced betatrophin levels. Furthermore, exercise reduced betatrophin levels via adiponectin, which modulated the LKB1/AMPK/PGC-1α signaling axis but was not solely dependent on it for exerting its effects.
Collapse
|
17
|
Alhammad R, Abu-Farha M, Hammad MM, Thanaraj TA, Channanath A, Alam-Eldin N, Al-Sabah R, Shaban L, Alduraywish A, Al-Mulla F, Rahman A, Abubaker J. Increased LRG1 Levels in Overweight and Obese Adolescents and Its Association with Obesity Markers, Including Leptin, Chemerin, and High Sensitivity C-Reactive Protein. Int J Mol Sci 2022; 23:ijms23158564. [PMID: 35955698 PMCID: PMC9369195 DOI: 10.3390/ijms23158564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Leucine-rich α-2 glycoprotein1 (LRG1) is a member of the leucine-rich repeat (LRR) family that is implicated in multiple diseases, including cancer, aging, and heart failure, as well as diabetes and obesity. LRG1 plays a key role in diet-induced hepatosteatosis and insulin resistance by mediating the crosstalk between adipocytes and hepatocytes. LRG1 also promotes hepatosteatosis by upregulating de novo lipogenesis in the liver and suppressing fatty acid β-oxidation. In this study, we investigated the association of LRG1 with obesity markers, including leptin and other adipokines in adolescents (11−14 years; n = 425). BMI-for-age classification based on WHO growth charts was used to define obesity. Plasma LRG1 was measured by ELISA, while other markers were measured by multiplexing assay. Median (IQR) of LRG1 levels was higher in obese (30 (25, 38) µg/mL) and overweight (30 (24, 39) µg/mL) adolescents, compared to normal-weight participants (27 (22, 35) µg/mL). The highest tertile of LRG1 had an OR [95% CI] of 2.55 [1.44, 4.53] for obesity. LRG1 was positively correlated to plasma levels of high sensitivity c-reactive protein (HsCRP) (ρ = 0.2), leptin (ρ = 0.2), and chemerin (ρ = 0.24) with p < 0.001. Additionally, it was positively associated with plasma level of IL6 (ρ = 0.17) and IL10 (ρ = 0.14) but not TNF-α. In conclusion, LRG1 levels are increased in obese adolescents and are associated with increased levels of adipogenic markers. These results suggest the usefulness of LRG1 as an early biomarker for obesity and its related pathologies in adolescents.
Collapse
Affiliation(s)
- Rashed Alhammad
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Maha M. Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Arshad Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat 13060, Kuwait;
| | - Abdulrahman Alduraywish
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat 13060, Kuwait;
- Correspondence: (A.R.); (J.A.); Tel.: +965-2463-3321 (A.R.); +965-2224-2999 (ext. 3563) (J.A.)
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
- Correspondence: (A.R.); (J.A.); Tel.: +965-2463-3321 (A.R.); +965-2224-2999 (ext. 3563) (J.A.)
| |
Collapse
|
18
|
ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell Death Dis 2022; 13:621. [PMID: 35851270 PMCID: PMC9293964 DOI: 10.1038/s41419-022-05029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the role of angiopoietin-like protein 8 (ANGPTL8) in pathological cardiac hypertrophy. We found that serum ANGPTL8 levels were significantly increased in hypertensive patients with cardiac hypertrophy and in mice with cardiac hypertrophy induced by Ang II or TAC. Furthermore, the secretion of ANGPTL8 from the liver was increased during hypertrophic processes, which were triggered by Ang II. In the Ang II- and transverse aortic constriction (TAC)-induced mouse cardiac hypertrophy model, ANGPTL8 deficiency remarkably accelerated cardiac hypertrophy and fibrosis with deteriorating cardiac dysfunction. Accordingly, both recombinant human full-length ANGPTL8 (rANGPTL8) protein and ANGPTL8 overexpression significantly mitigated Ang II-induced cell enlargement in primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Mechanistically, the antihypertrophic effects of ANGPTL8 depended on inhibiting Akt and GSK-3β activation, and the Akt activator SC-79 abolished the antihypertrophic effects of rANGPTL8 in vitro. Moreover, we demonstrated that ANGPTL8 directly bound to the paired Ig-like receptor PIRB (LILRB3) by RNA-seq and immunoprecipitation-mass screening. Remarkably, the antihypertrophic effects of ANGPTL8 were largely blocked by anti-LILRB3 and siRNA-LILRB3. Our study indicated that ANGPTL8 served as a novel negative regulator of pathological cardiac hypertrophy by binding to LILRB3 (PIRB) and inhibiting Akt/GSK3β activation, suggesting that ANGPTL8 may provide synergistic effects in combination with AT1 blockers and become a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
|
19
|
Oguoma VM, Abu-Farha M, Coffee NT, Alsharrah S, Al-Refaei FH, Abubaker J, Daniel M, Al-Mulla F. Metabolically Healthy and Unhealthy Obese Phenotypes among Arabs and South Asians: Prevalence and Relationship with Cardiometabolic Indicators. Nutrients 2022; 14:915. [PMID: 35267891 PMCID: PMC8912281 DOI: 10.3390/nu14050915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
Obesity is a public health crisis in Kuwait. However, not all obese individuals are metabolically unhealthy (MuHO) given the link between obesity and future cardiovascular events. We assessed the prevalence of the metabolically healthy obese (MHO) phenotype and its relationship with high sensitivity C-reactive protein (hs-CRP), serum alanine aminotransferase (ALT), and insulin resistance (HOMA-IR) in Arab and South Asian ethnic groups in Kuwait. The national cross-sectional survey of diabetes and obesity in Kuwait adults aged 18-60 years were analysed. The harmonised definition of metabolic syndrome was used to classify metabolic health. Multinomial logistic regression analysis was used to model the relationship between the MHO and MuHO phenotypes and hs-CRP, ALT and HOMA-IR levels. Overall, the prevalence of MHO for body mass index (BMI)- and waist circumference (WC)-defined obesity was 30.8% and 56.0%, respectively; it was greater in women (60.4% and 61.8%, respectively) than men (39.6% and 38.2%, respectively). Prevalence rates were also lower for South Asians than for Arabs. The MHO phenotype had hs-CRP values above 3 µg/mL for each age group category. Men compared to women, and South Asians compared to Arabs had a lower relative risk for the MHO group relative to the MuHO group. This study shows there is high prevalence of MHO in Kuwait.
Collapse
Affiliation(s)
- Victor M. Oguoma
- Faculty of Health, Health Research Institute, University of Canberra, Canberra 2617, Australia; (N.T.C.); (S.A.); (M.D.)
- Geohealth Laboratory, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (J.A.)
| | - Neil T. Coffee
- Faculty of Health, Health Research Institute, University of Canberra, Canberra 2617, Australia; (N.T.C.); (S.A.); (M.D.)
| | - Saad Alsharrah
- Faculty of Health, Health Research Institute, University of Canberra, Canberra 2617, Australia; (N.T.C.); (S.A.); (M.D.)
- Geohealth Laboratory, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (J.A.)
| | - Mark Daniel
- Faculty of Health, Health Research Institute, University of Canberra, Canberra 2617, Australia; (N.T.C.); (S.A.); (M.D.)
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne 3010, Australia
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait;
| |
Collapse
|
20
|
Li M, Fan R, Peng X, Huang J, Zou H, Yu X, Yang Y, Shi X, Ma D. Association of ANGPTL8 and Resistin With Diabetic Nephropathy in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:695750. [PMID: 34603198 PMCID: PMC8479106 DOI: 10.3389/fendo.2021.695750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies showed altered angiopoietin-like protein-8 (ANGPTL-8) and resistin circulating levels in type 2 diabetes mellitus (T2DM). Whether or not the alteration in ANGPTL-8 and resistin level can be a predictive maker for increased diabetic nephropathy risk remains unclear. Aim To Investigate the possible association of ANGPTL-8 and resistin with DN, and whether this association is affected by NAFLD status. Methods A total of 278 T2DM patients were enrolled. Serum levels of ANGPTL8, resistin, BMI, blood pressure, duration of diabetes, glycosylated hemoglobin (HbA1c), fasting blood glucose (FPG), hypersensitive C-reactive protein (hs-CRP), lipid profile, liver, and kidney function tests were assessed. The relationship between DN with ANGPTL8 and resistin was analyzed in the unadjusted and multiple-adjusted regression models. Results Serum levels of ANGPTL8 and resistin were significantly higher in DN compared with T2DM subjects without DN (respectively; P <0.001), especially in non-NAFLD populations. ANGPTL8 and resistin showed positive correlation with hs-CRP (respectively; P<0.01), and negative correlation with estimated GFR (eGFR) (respectively; P=<0.001) but no significant correlation to HOMA-IR(respectively; P>0.05). Analysis showed ANGPTL8 levels were positively associated with resistin but only in T2DM patients with DN(r=0.1867; P<0.05), and this significant correlation disappeared in T2DM patients without DN. After adjusting for confounding factors, both ANGPTL8(OR=2.095, 95%CI 1.253-3.502 P=0.005) and resistin (OR=2.499, 95%CI 1.484-4.208 P=0.001) were risk factors for DN. Data in non-NAFLD population increased the relationship between ANGPTL8 (OR=2.713, 95% CI 1.494-4.926 P=0.001), resistin (OR=4.248, 95% CI 2.260-7.987 P<0.001)and DN. The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and resistin was 0.703, and the specificity was 70.4%. These data were also increased in non-NAFLD population, as the AUC (95%CI) was 0.756, and the specificity was 91.2%. Conclusion This study highlights a close association between ANGPTL8, resistin and DN, especially in non-NAFLD populations. These results suggest that ANGPTL-8 and resistin may be risk predictors of DN.
Collapse
Affiliation(s)
- Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huajie Zou
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - DeLin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
21
|
Hao Q, Zheng A, Zhang H, Cao H. Down-regulation of betatrophin enhances insulin sensitivity in type 2 diabetes mellitus through activation of the GSK-3β/PGC-1α signaling pathway. J Endocrinol Invest 2021; 44:1857-1868. [PMID: 33464548 DOI: 10.1007/s40618-020-01493-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The incidence of type 2 diabetes mellitus (T2DM) among children and adolescents has been rising. Accumulating evidences have noted the significant role of betatrophin in the regulation of lipid metabolism and glucose homeostasis. In our study, we tried to figure out the underlying mechanism of betatrophin in insulin resistance (IR) in type 2 diabetes mellitus (T2DM). METHODS First, fasting serum betatrophin, fasting blood glucose (FBG), insulin, total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were detected in T2DM children. The homeostasis model assessment of insulin resistance (HOMA-IR), Gutt insulin sensitivity index (ISIG) and Matsuda insulin sensitivity index (ISIM) were calculated. A T2DM-IR mouse model was induced by high-fat diet, with the expression of GSK-3β and PGC-1α detected. Besides, HepG2 cells were induced by a high concentration of insulin to establish an IR cell model (HepG2-IR). The cell viability, glucose consumption, liver glycogen content, inflammation, and fluorescence level of GSK-3β and PGC-1α were analyzed. RESULTS Betatrophin was highly expressed in serum of T2DM children and was positively correlated with FBG, insulin, TC, TG, LDL-C and HOMA-IR, while negatively correlated with ISIG and ISIM. Betatrophin and GSK-3β in the liver tissues of T2DM-IR mice were increased, while the PGC-1α expression was decreased. Betatrophin expression was negatively correlated with PGC-1α and positively correlated with GSK-3β. Silencing of betatrophin enhanced insulin sensitivity through the activation of GSK-3β/PGC-1α signaling pathway. In vitro experiments also found that silencing of betatrophin promoted glucose consumption and glycogen synthesis while inhibited inflammation. CONCLUSION Our findings concluded that silencing of betatrophin could enhance insulin sensitivity and improve histopathological morphology through the activation of GSK-3β/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Q Hao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - A Zheng
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, People's Republic of China
| | - H Zhang
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - H Cao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China.
| |
Collapse
|
22
|
A New Clinical Utility For Tubular Markers To Identify Kidney Responders To Saxagliptin Treatment In Patients With Diabetic Nephropathy. Can J Diabetes 2021; 46:134-141.e2. [DOI: 10.1016/j.jcjd.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
|
23
|
Harada M, Yamakawa T, Kashiwagi R, Ohira A, Sugiyama M, Sugiura Y, Kondo Y, Terauchi Y. Association between ANGPTL3, 4, and 8 and lipid and glucose metabolism markers in patients with diabetes. PLoS One 2021; 16:e0255147. [PMID: 34293055 PMCID: PMC8297858 DOI: 10.1371/journal.pone.0255147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Lipid management, especially with respect to triglyceride (TG) metabolism, in patients with diabetes is not sufficient with current therapeutic agents, and new approaches for improvement are needed. Members of the angiopoietin-like protein (ANGPTL) family, specifically ANGPTL3, 4, and 8, have been reported as factors that inhibit lipoprotein lipase (LPL) activity and affect TGs. The present study investigated the association between lipid and glucose metabolism markers and the mechanism by which these proteins affect lipid metabolism. A total of 84 patients hospitalized for diabetes treatment were evaluated. Lipid and glucose metabolism markers in blood samples collected before breakfast, on the day after hospitalization, were analyzed. ANGPTL8 showed a significant positive correlation with TG values. HDL-C values displayed a significant positive correlation with ANGPTL3 but a negative correlation with ANGPTL4 and ANGPTL8. The results did not indicate a significant correlation among ANGPTL3, 4, and 8 levels. Thus, it is possible that the distribution of these proteins differs among patients. When patients were divided into groups according to the levels of ANGPTL3 and ANGPTL8, those with high levels of both ANGPTL3 and ANGPTL8 also had high levels of TG and small dense LDL-C/LDL-C (%). Multiple regression analysis indicated that low LPL, high ApoC2, high ApoC3, high ApoE, and high ANGPTL8 levels were the determinants of fasting hypertriglyceridemia. By contrast, no clear association was observed between any of the ANGPTLs and glucose metabolism markers, but ANGPTL8 levels were positively correlated with the levels of HOMA2-IR and BMI. Patients with high levels of both ANGPTL3 and ANGPTL8 had the worst lipid profiles. Among ANGPTL3, 4, and 8, ANGPTL8 is more important as a factor determining plasma TG levels. We anticipate that the results of this research will facilitate potential treatments targeting ANGPTL8 in patients with diabetes.
Collapse
Affiliation(s)
- Marina Harada
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Tadashi Yamakawa
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
- * E-mail:
| | - Rie Kashiwagi
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Akeo Ohira
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Mai Sugiyama
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuyuki Sugiura
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoshinobu Kondo
- Department of Endocrinology and Diabetes, Yokohama City University Medical Center, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Mele C, Crinò A, Fintini D, Mai S, Convertino A, Bocchini S, Di Paolo P, Grugni G, Aimaretti G, Scacchi M, Marzullo P. Angiopoietin-like 8 (ANGPTL8) as a potential predictor of NAFLD in paediatric patients with Prader-Willi Syndrome. J Endocrinol Invest 2021; 44:1447-1456. [PMID: 33067796 PMCID: PMC8195791 DOI: 10.1007/s40618-020-01444-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE Angiopoietin-like 8 (ANGPTL8) is a liver- and adipose tissue-produced protein that predicts non-alcoholic fatty liver disease (NAFLD) and altered metabolic homeostasis in the general population as well as in persons with common and genetic obesity, including the Prader-Willi syndrome (PWS). However, its metabolic correlate in paediatric patients with respect to PWS is unknown. METHODS This cross-sectional study investigated circulating ANGPTL8 and adipocytokines levels in 28 PWS and 28 age-, sex- and BMI-matched children and adolescents (age, 7.0-17.8y) in relation to NAFLD and metabolic homeostasis assessed by OGTT, paediatric metabolic index (PMI) and fatty liver index (FLI), liver ultrasonography (US), as well as dual-energy X-ray absorptiometry (DEXA) for analysis of fat (FM) and fat-free mass (FFM). RESULTS At the set level of significance, PWS children showed lower values of FFM (p < 0.01) but healthier insulin profiles (p < 0.01) and PMI values (p < 0.05) than matched controls. By US, the prevalence of NAFLD was similar between groups but less severe in PWS than controls. Analysis of ANGPTL8 levels showed no difference between groups, yet only in PWS ANGPTL8 levels were associated with ALT levels, FLI values and NAFLD. In stepwise multivariable regression analysis on merged data, ANGPTL8 levels were independently predicted by BMI SDS, leptin levels and NAFLD. CONCLUSION ANGPTL8 levels are similar in PWS and controls and, overall, they are directly associated with the presence and severity of NAFLD in patients with PWS.
Collapse
Affiliation(s)
- C Mele
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - A Crinò
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - D Fintini
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - S Mai
- Laboratory of Metabolic Research, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - A Convertino
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - S Bocchini
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - P Di Paolo
- Radiology Unit, Bambino Gesù Children's Hospital, Research Institute, Palidoro (Rome), Italy
| | - G Grugni
- Division of Auxology and Metabolic Diseases, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - G Aimaretti
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - M Scacchi
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - P Marzullo
- Division of Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
- Division of General Medicine, Istituto Auxologico Italiano, IRCCS, San Giuseppe Hospital, Piancavallo, Verbania, Italy.
| |
Collapse
|
25
|
ANGPTL8 in cardio-metabolic diseases. Clin Chim Acta 2021; 519:260-266. [PMID: 34023284 DOI: 10.1016/j.cca.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia has been identified as an important factor in obesity, diabetes mellitus, and cardiovascular diseases (CVD), grouped as cardio-metabolic disorder diseases. Accordingly, dyslipidemia has become a major determinant in health worldwide. Both genome-wide association studies (GWAS) and research studies have focused on the elucidation of potential genetic mechanisms of dyslipidemia and the identification of new gene loci which contribute to the development of cardio-metabolic disorder diseases. Recent results indicate that both the ANGPTL8 gene and ANGPTL8 protein perform vital roles in modulating serum glucose and lipid metabolism. In this review, we examine the modulatory effects of ANGPTL8 and explore the potential mechanisms whereby ANGPTL8 affects serum glucose and lipid metabolism in cardio-metabolic disorder diseases.
Collapse
|
26
|
Oldoni F, Bass K, Kozlitina J, Hudson H, Shihanian LM, Gusarova V, Cohen JC, Hobbs HH. Genetic and Metabolic Determinants of Plasma Levels of ANGPTL8. J Clin Endocrinol Metab 2021; 106:1649-1667. [PMID: 33619548 PMCID: PMC8118582 DOI: 10.1210/clinem/dgab120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT ANGPTL8 (A8) plays a key role in determining the tissue fate of circulating triglycerides (TGs). Plasma A8 levels are associated with several parameters of glucose and TG metabolism, but the causality of these relationships and the contribution of genetic variants to differences in A8 levels have not been explored. OBJECTIVE To characterize the frequency distribution of plasma A8 levels in a diverse population using a newly-developed enzyme-linked immunosorbent assay (ELISA) and to identify genetic factors contributing to differences in plasma A8 levels. METHODS We studied a population-based sample of Dallas County, comprising individuals in the Dallas Heart Study (DHS-1, n = 3538; DHS-2, n = 3283), including 2131 individuals with repeated measurements 7 to 9 years apart (age 18-85 years; >55% female; 52% Black; 29% White; 17% Hispanic; and 2% other). The main outcome measures were associations of A8 levels with body mass index (BMI), plasma levels of glucose, insulin, lipids, and hepatic TGs, as well as DNA variants identified by exome-wide sequencing. RESULTS A8 levels varied over a 150-fold range (2.1-318 ng/mL; median, 13.3 ng/mL) and differed between racial/ethnic groups (Blacks > Hispanics > Whites). A8 levels correlated with BMI, fasting glucose, insulin, and TG levels. A variant in A8, R59W, accounted for 17% of the interindividual variation in A8 levels but was not associated with the metabolic parameters correlated with plasma A8 concentrations. CONCLUSIONS A8 levels were strongly associated with indices of glucose and TG metabolism, but the lack of association of genetic variants at the A8 locus that impact A8 levels with these parameters indicates that differences in A8 levels are not causally related to the associated metabolic phenotypes.
Collapse
Affiliation(s)
- Federico Oldoni
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Bass
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julia Kozlitina
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hannah Hudson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Jonathan C Cohen
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- The Eugene McDermott Center of Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
27
|
Su X, Zhang G, Cheng Y, Wang B. New insights into ANGPTL8 in modulating the development of cardio-metabolic disorder diseases. Mol Biol Rep 2021; 48:3761-3771. [PMID: 33864591 DOI: 10.1007/s11033-021-06335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia is being identified as the most important factors of several health problems, such as obesity, diabetes mellitus, and cardiovascular diseases (CVD), which are always grouped together as cardio-metabolic disorder diseases. Consistently, dyslipidemia has become one of the most rising crisis of general health. Recently, it is worth noting that both genome-wide association studies (GWAS) and experimental research are being taken advantage to elucidate the potential genetic mechanisms of dyslipidemia and to identify new gene loci which contribute to the development of cardio-metabolic disorder diseases. According to the results, both ANGPTL8 gene and ANGPTL8 protein has been shown to embrace vital functions in modulating serum glucose and lipid metabolism. In the current review, the modulatory effects of ANGPTL8 in cardio-metabolic disorder diseases were summarized. In addition, novel insights which elucidate the potential mechanisms whereby ANGPTL8 affects glucose and lipid metabolism were also provided.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
28
|
Navaeian M, Asadian S, Ahmadpour Yazdi H, Gheibi N. ANGPTL8 roles in proliferation, metabolic diseases, hypothyroidism, polycystic ovary syndrome, and signaling pathways. Mol Biol Rep 2021; 48:3719-3731. [PMID: 33864588 DOI: 10.1007/s11033-021-06270-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
A new and atypical member of the ANGPTL family is angiopoietin-like protein 8 (ANGPTL8). This newly discovered hormone is a drug target that can be used to treat diabetes and dyslipidemia. The protein, as a hepatocyte-derived circulating factor, can control the triglyceride level of plasma. ANGPTL8 is significantly associated with inflammation and metabolic syndrome consequences such as obesity, diabetes, hypothyroidism, and PCOS. ANGPTL8 gene has four exons encoding a 22/5 kDa weight of 198 amino acid polypeptides. A highly preserved ANGPTL8 gene among mammals exhibits the essential hormone functions of ANGPTL8. Nevertheless, the physiological function of this hormone in the body is poorly understood. Studies published in PubMed (2008-2020), Google Scholar (2004-2020), and Scopus (2004-2020) databases of clinical trials were reviewed. This analysis is aimed at collecting information on ANGPTL8. The emphasis of this review was on gathering information about the role of ANGPTL8 in the metabolism of glucose and lipids and cell proliferation. It addition to the different roles of ANGPTL8 in diabetes and lipid metabolism, this review emphasized on the protein role in signaling pathways. The study also proposes the signaling pathways that may be considered as a new target for treatment.
Collapse
Affiliation(s)
- Maryam Navaeian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
29
|
Wei X, Zhu Y, Du J, Ma X, Zhao X, Ma Y, Han S, Ma Y. Analysis of ANGPTL8 promoter activity and screening of related transcription factors in bovine. Gene 2021; 784:145594. [PMID: 33766704 DOI: 10.1016/j.gene.2021.145594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Analysing the molecular regulation mechanism of fat deposition in yellow cattle can provide a theoretical basis for the breeding of excellent beef cattle. ANGPTL8 (angiopoietin-like protein 8) promotes the formation of lipid droplets during adipocyte differentiation. To explore the promoter active region of ANGPTL8 and predict potential transcription factors, we further provide a theoretical basis for the functional analysis and regulatory mechanism of ANGPTL8 in adipogenesis. The promoter region of bovine ANGPTL8 was cloned by overlap extension PCR. Online software was used to predict potential transcription factor binding sites, and it identified PPARγ, SREBP1, C/EBPα, and Znf423 transcription factor binding sites in ANGPTL8 promoter region. A luciferase reporter gene vector which contained different deletion fragments of the ANGPTL8 promoter was constructed. Then, the vectors were cotransfected into 293 T cells with the internal control plasmid pRL-TK by cationic liposomes, and the relative fluorescence intensity was detected by a microplate reader. The results of the luciferase activity analysis showed that the core promoter area of ANGPTL8 was in the -885/-227 bp region of the 5' flanking sequence, while just two SREBP1 binding sites occurred in this area. When SREBP1 was knocked down by siRNA, the expression level of ANGPTL8 was reduced, and we speculated that SREBP1 may be an important transcription factor regulating ANGPTL8 transcription.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jie Du
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaojie Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yaoyao Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuang Han
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
30
|
Mohsen M, Elberry AA, Mohamed Rabea A, Abdelrahim MEA, Hussein RRS. Saxagliptin and vildagliptin lowered albuminuria in patients with diabetes and hypertension independent on glycaemic control. Int J Clin Pract 2021; 75:e13769. [PMID: 33068301 DOI: 10.1111/ijcp.13769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preclinical data illustrated that the dipeptidyl peptidase-4(DPP-4) inhibitors did lower urinary albumin excretion in diabetes-induced rats. We evaluated the effects of saxagliptin and vildagliptin on albuminuria in patients with diabetic nephropathy on top of the renin-angiotensin-aldosterone system (RAAS) blockade therapy. METHODS This study included 120 patients with type 2 diabetes (T2D), hypertension, and prevalent albuminuria [defined as urine albumin-to-creatinine ratio (UACR) 30-3000mg/g creatinine] on a stable dose of olmesartan as a standard RAAS blocker for diabetic nephropathy. Patients were assigned to receive either of saxagliptin 5mg/day (n = 40), vildagliptin 100mg/day (n = 40), or traditional antidiabetic therapy as control patients (n = 40) for 12 weeks. RESULTS Each of saxagliptin and vildagliptin significantly reduced albuminuria after 12 weeks, with mean percentage changes (%) of -57.9% [95% confidence interval (CI) -66.1 to -49.8], and -55.2% (95% CI -64.9 to -45.4); P < .001, respectively, compared with the control group. Significantly, saxagliptin shifted higher proportions of patients towards lower albuminuria categories (P < .001) compared with vildagliptin despite a similar UACR rate of changes. Results of binary logistic models confirmed that the change in UACR because saxagliptin was independent of changes in systolic blood pressure (SBP), glycated hemoglobin (HbA1c ), estimated glomerular filtration rate (eGFR), or body weight (overall regression: P = .002, R2 = 0.398) vs control. Likewise, vildagliptin reduced UACR independently on other confounders (overall regression: P = .002, R2 = 0.388). Furthermore, no significant correlation was observed between the change in UACR and changes in HbA1c, SBP or eGFR with either saxagliptin or vildagliptin (Pearson coefficients: 0.203, 0.143, -0.190; P > .05, and 0.003, 0.241, 0.019; P > .05, respectively). CONCLUSIONS DPP-4 inhibitors, saxagliptin, and vildagliptin, resulted in substantial reductions in albuminuria in patients with T2D and hypertension on top of RAAS blockade after short term therapy independently on glycaemic or hemodynamic changes. Saxagliptin was superior to vildagliptin in albuminuria-categorical shifting.
Collapse
Affiliation(s)
- Marwa Mohsen
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Elberry
- Clinical Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Alaa Mohamed Rabea
- Internal Medicine and Nephrology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
31
|
Sadeghipour HR, Yeganeh G, Zar A, Salesi M, Akbarzadeh S, Bernardi M. The effect of 4-week endurance training on serum levels of irisin and betatrophin in streptozotocin- induced diabetic rats. Arch Physiol Biochem 2020; 129:575-581. [PMID: 33270481 DOI: 10.1080/13813455.2020.1849310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Betatrophin known as pancreatic β-cell proliferation marker is secreted as a result of the muscle irisin's expression induced by exercise. The present study aimed to investigate the effect of endurance training on serum levels of irisin and betatrophin in diabetic rats. Twenty-four Wistar rats were randomly divided into three groups of (1) healthy control group (H-CG), (2) diabetic control group (D-CG), and diabetic group submitted to endurance training (D-ETG). The D-ETG performed endurance exercise (4 week/5 days) on the rodent treadmill. For data analysis we used one-way ANOVA, Scheffe test and Pearson correlation coefficient. Irisin (p = .04) and betatrophin (p = .005) levels were significantly decreased in the D-CG. Endurance exercise only increased serum levels of irisin significantly (p = .03). There was a significant correlation was shown between serum betatrophin and beta-cell function (p = .03). It appears that a specific exercise training can increase irisin hormone, with possible impact on betatrophin expression in diabetic individuals.
Collapse
Affiliation(s)
- Hamid Reza Sadeghipour
- Department of Sport Science, School of Literature and Humanities, Persian Gulf University, Boushehr, Iran
| | - Golan Yeganeh
- Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Abdossaleh Zar
- Department of Sport Science, School of Literature and Humanities, Persian Gulf University, Boushehr, Iran
| | - Mohsen Salesi
- Department of Sport Science, School of Psychology and Education, Shiraz University, Shiraz, Iran
| | - Samad Akbarzadeh
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Marco Bernardi
- School of Specialty in Sports Medicine and Physical Exercise; Department of Physiology and Pharmacology, "V. Erspamer"; "Sapienza", University of Rome, Rome, Italy
| |
Collapse
|
32
|
Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Prog Lipid Res 2020; 80:101067. [PMID: 33011191 DOI: 10.1016/j.plipres.2020.101067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Angiopoietin-like protein (ANGPTL) family members, mainly ANGPTL3, ANGPTL4 and ANGPTL8, are physiological inhibitors of lipoprotein lipase (LPL), and play a critical role in lipoprotein and triglyceride metabolism in response to nutritional cues. ANGPTL8 has been described by different names in various studies and has been ascribed various functions at the systemic and cellular levels. Circulating ANGPTL8 originates mainly from the liver and to a smaller extent from adipose tissues. In the blood, ANGPTL8 forms a complex with ANGPTL3 or ANGPTL4 to inhibit LPL in fed or fasted conditions, respectively. Evidence is emerging for additional intracellular and receptor-mediated functions of ANGPTL8, with implications in NFκB mediated inflammation, autophagy, adipogenesis, intra-cellular lipolysis and regulation of circadian clock. Elevated levels of plasma ANGPTL8 are associated with metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and NAFLD/NASH, even though the precise relationship is not known. Whether ANGPTL8 has direct pathogenic role in these diseases, remains to be explored. In this review, we develop a balanced view on the proposed association of this protein in the regulation of several pathophysiological processes. We also discuss the well-established functions of ANGPTL8 in lipoprotein metabolism in conjunction with the emerging novel extracellular and intracellular roles of ANGPTL8 and the implicated metabolic and signalling pathways. Understanding the diverse functions of ANGPTL8 in various tissues and metabolic states should unveil new opportunities of therapeutic intervention for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Unit, Dasman Diabetes Institute, Kuwait City, Kuwait..
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Université de Montréal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
33
|
Demircan S, Onalan E, Kuloğlu T, Aydın S, Yalçın MH, Gözel N, Dönder E. Effects of vitamin D on apoptosis and betatrophin in the kidney tissue of experimental diabetic rats. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020089. [PMID: 33525266 PMCID: PMC7927532 DOI: 10.23750/abm.v91i4.8944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
The aim of this study is to investigate the effects of vitamin D on betatrophin and apoptosis in rats kidney tissue using an experimental diabetes model created with streptozotocin (STZ). 41 male Wistar-albino breed rats were assigned to 5 groups, which included 3 groups consisting of 7 animals each and 2 groups consisting of 10 animals each. The control group received no treatments. Single-dose 0.1 M sodium buffer was administered ip to the Buffer group. The Vitamin D group was orally administered 200 IU/day vitamin D. The Diabetes group was injected ip with single-dose 50 mg/kg STZ by dissolving the material in 0.1 M sodium buffer. Subjects with a glucose level exceeding 250 mg/dl were accepted to be diabetic. The Diabetes + Vitamin D group was injected ip with 50 mg/kg single-dose STZ by dissolving the material in 0.1 M sodium buffer. Once diabetes was established, 200 IU/day vitamin D was administered orally. Rats in all groups were decapitated in the end of the experiment, their kidney tissues were promptly extracted and TUNEL stained with immunohistochemistry. Additionally, serum samples acquired from all groups were evaluated with regard to total antioxidant status (TAS) and total oxidant status (TOS) levels. The histological and biochemical analyses of the Control, Buffer, and Vitamin D groups revealed similar serum TOS and TAS levels, and TUNEL positivity and betatrophin immunoreactivity. While the Diabetes group showed significantly higher TOS levels and TUNEL positivity compared to the Control group, their TAS levels and betatrophin immunoreactivity were significantly reduced. The Diabetes+Vitamin group demonstrated significantly lower TOS levels and TUNEL positivity compared to the Diabetic group, and their TAS levels and betatrophin immunoreactivity increased significantly. In conclusion; experimental diabetes was found to increase TOS and apoptotic cells and decrease TAS and betatrophin levels in kidney tissue in experimental diabetes, and that administering VitD as treatment caused a decrease in TOS and apoptotic cells and an increase in TAS and betatrophin levels. It was concluded that future studies needed to investigate various experimental diabetes times so that the role of diabetes in the pathophysiology of its effect on kidney tissue could be uncovered. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Selçuk Demircan
- Department of Internal Medicine, Ağrı State Hospital 23000, Ağrı, Turkey .
| | - Erhan Onalan
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey.
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, 23000, Elazig, Turkey.
| | - Süleyman Aydın
- Department of Biochemistry, Faculty of Medicine, Firat University, 23000, Elazig, Turkey.
| | - Mehmet Hanifi Yalçın
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Firat University, 23000, Elazig, Turkey.
| | - Nevzat Gözel
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey .
| | - Emir Dönder
- Department of Internal Medicine, Faculty of Medicine, Firat Univeristy, 23000, Elazig, Turkey .
| |
Collapse
|
34
|
Alterki A, Joseph S, Thanaraj TA, Al-Khairi I, Cherian P, Channanath A, Sriraman D, Ebrahim MAK, Ibrahim A, Tiss A, Al-Mulla F, Rahman AMA, Abubaker J, Abu-Farha M. Targeted Metabolomics Analysis on Obstructive Sleep Apnea Patients after Multilevel Sleep Surgery. Metabolites 2020; 10:metabo10090358. [PMID: 32882816 PMCID: PMC7569907 DOI: 10.3390/metabo10090358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is caused by partial or complete obstruction of the upper airways. Corrective surgeries aim at removing obstructions in the nasopharynx, oropharynx, and hypopharynx. OSA is associated with an increased risk of various metabolic diseases. Our objective was to evaluate the effect of surgery on the plasma metabolome. METHODS This study included 39 OSA patients who underwent Multilevel Sleep Surgery (MLS). Clinical and anthropometric measures were taken at baseline and five months after surgery. RESULTS The mean Apnea-Hypopnea Index (AHI) significantly dropped from 22.0 ± 18.5 events/hour to 8.97 ± 9.57 events/hour (p-Value < 0.001). Epworth's sleepiness Score (ESS) dropped from 12.8 ± 6.23 to 2.95 ± 2.40 (p-Value < 0.001), indicating the success of the surgery in treating OSA. Plasma levels of metabolites, phosphocholines (PC) PC.41.5, PC.42.3, ceremide (Cer) Cer.44.0, and triglyceride (TG) TG.53.6, TG.55.6 and TG.56.8 were decreased (p-Value < 0.05), whereas lysophosphatidylcholines (LPC) 20.0 and PC.39.3 were increased (p-Value < 0.05) after surgery. CONCLUSION This study highlights the success of MLS in treating OSA. Treatment of OSA resulted in an improvement of the metabolic status that was characterized by decreased TG, PCs, and Cer metabolites after surgery, indicating that the success of the surgery positively impacted the metabolic status of these patients.
Collapse
Affiliation(s)
- Abdulmohsen Alterki
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Shibu Joseph
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (T.A.T.); (A.C.)
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (T.A.T.); (A.C.)
| | - Devarajan Sriraman
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Mahmoud A. K. Ebrahim
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Alaaeldin Ibrahim
- Department of Otolaryngology Head & Neck Surgery, Zain and Al Sabah Hospitals and Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.); (M.A.K.E.); (A.I.)
| | - Ali Tiss
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (I.A.-K.); (P.C.); (A.T.)
| | - Fahd Al-Mulla
- Special Service Facility Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.J.); (D.S.); (F.A.-M.)
| | - Anas M. Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Jehad Abubaker
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (J.A.); (M.A.-F.); Tel.: +965-2224-2999 (ext. 3563) (J.A.); +965-2224-2999 (ext. 3010) (M.A.-F.)
| | - Mohamed Abu-Farha
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (J.A.); (M.A.-F.); Tel.: +965-2224-2999 (ext. 3563) (J.A.); +965-2224-2999 (ext. 3010) (M.A.-F.)
| |
Collapse
|
35
|
Zhang L, Shannon CE, Bakewell TM, Abdul-Ghani MA, Fourcaudot M, Norton L. Regulation of ANGPTL8 in liver and adipose tissue by nutritional and hormonal signals and its effect on glucose homeostasis in mice. Am J Physiol Endocrinol Metab 2020; 318:E613-E624. [PMID: 32154742 DOI: 10.1152/ajpendo.00339.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The angiopoietin-like protein (ANGPTL) family represents a promising therapeutic target for dyslipidemia, which is a feature of obesity and type 2 diabetes (T2DM). The aim of the present study was to determine the metabolic role of ANGPTL8 and to investigate its nutritional, hormonal, and molecular regulation in key metabolic tissues. The regulation of Angptl8 gene expression by insulin and glucose was quantified using a combination of in vivo insulin clamp experiments in mice and in vitro experiments in primary and cultured hepatocytes and adipocytes. The role of AMPK signaling was examined, and the transcriptional control of Angptl8 was determined using bioinformatic and luciferase reporter approaches. The metabolism of Angptl8 knockout mice (ANGPTL8-/-) was examined following chow and high-fat diets (HFD). Insulin acutely increased Angptl8 expression in liver and adipose tissue, which involved the CCAAT/enhancer-binding protein (C/EBPβ) transcription factor. In insulin clamp experiments, glucose further enhanced Angptl8 expression in the presence of insulin in adipose tissue. The activation of AMPK signaling antagonized the effect of insulin on Angptl8 expression in hepatocytes and adipocytes. The ANGPTL8-/- mice had improved glucose tolerance and displayed reduced fed and fasted plasma triglycerides. However, there was no change in body weight or steatosis in ANGPTL8-/- mice after the HFD. These data show that ANGPTL8 plays important metabolic roles in mice that extend beyond triglyceride metabolism. The finding that insulin, glucose, and AMPK signaling regulate Angptl8 expression may provide important clues about the distinct function of ANGPTL8 in these tissues.
Collapse
Affiliation(s)
- Lu Zhang
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Chris E Shannon
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Terry M Bakewell
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | | | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
36
|
Association of ANGPTL8 (Betatrophin) Gene Variants with Components of Metabolic Syndrome in Arab Adults. Sci Rep 2020; 10:6764. [PMID: 32317770 PMCID: PMC7174409 DOI: 10.1038/s41598-020-63850-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) has a role in lipid metabolism, beta-cell proliferation and diabetes progression, however, the association between different variants in the ANGPTL8 gene and metabolic syndrome (MetS) components has not been studied widely especially in Arab ethnic groups. In this study, the associations of ANGPTL8 variants on MetS risk in Saudi Arab adults were investigated. A total of 905 unrelated Saudi adults (580 healthy controls and 325 MetS) were included. MetS was screened based on the International Diabetes Federation (IDF) criteria. The genotype and allele frequency distribution of rs737337 (T/C) and rs2278426 (C/T) polymorphism in ANGPTL8 gene was studied. Participants with MetS were significantly older, had higher BMI, and rs737337 polymorphism frequency was significantly lower than in control. Furthermore, the TC + CC genotype and C allele of rs737337 (T/C) was associated with decreased risk of hypercholesterolemia and hyperglycemia [odds ratio (OR) 0.61, 95%CI 0.40-0.93, p = 0.016 and OR 0.58, 0.39-0.86, p = 0.007 respectively for hypercholesterolemia; and OR 0.66, 0.45-0.97, p = 0.032 and OR 0.65, 0.46-0.93; p = 0.016 respectively for hyperglycemia]. Similarly, CT, CT + TT genotype and T allele of rs2278426 (C/T) were associated with decreased risk of hyperglycemia (p < 0.05). In conclusion, the study suggests that the gene variants in SNPs rs 737337 (T/C) and rs 2278426 (C/T) are associated with lower risk of hypercholesterolemia and hyperglycemia. These findings supplement the growing literature supporting the role of ANGPTL8 in lipid and glucose metabolism.
Collapse
|
37
|
Hammad MM, Abu-Farha M, Al-Taiar A, Alam-Eldin N, Al-Sabah R, Shaban L, Al-Mulla F, Abubaker J, Rahman A. Correlation of circulating ANGPTL5 levels with obesity, high sensitivity C-reactive protein and oxidized low-density lipoprotein in adolescents. Sci Rep 2020; 10:6330. [PMID: 32286392 PMCID: PMC7156513 DOI: 10.1038/s41598-020-63076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like proteins (ANGPTL) is a family of eight members known to play an important role in metabolic diseases. Of these, ANGPTL5 is suggested to regulate triglyceride metabolism and is increased in obesity and diabetes. However, its role in metabolic diseases in adolescents is not well-studied. In this study, we tested the hypothesis of a positive association between plasma ANGPTL5, and obesity, high sensitivity C-reactive protein (HsCRP) and oxidized low-density lipoprotein (Ox-LDL) in adolescents. Adolescents (N = 431; age 11–14 years) were randomly selected from middle schools in Kuwait. Obesity was classified by the BMI-for-age based on the WHO growth charts. Plasma ANGPTL5, HsCRP, and Ox-LDL were measured using ELISA. The prevalence of overweight and obesity was 20.65% and 33.18%, respectively. Mean (SD) plasma ANGPTL5 levels were significantly higher in obese, compared with overweight and normal-weight adolescents (23.05 (8.79) vs 18.39 (7.08) ng/mL, and 18.26 (6.95) ng/ml, respectively). ANGPTL5 was positively associated with both HsCRP (ρ=0.27, p < 0.001) and Ox-LDL (ρ = 0.24, p < 0.001). In Conclusion, ANGPTL5 levels are elevated in obese adolescents and are associated with cardiovascular disease risk factors, HsCRP and Ox-LDL. The use of ANGPTL5 as a powerful diagnostic and prognostic tool in obesity and metabolic diseases needs to be further evaluated.
Collapse
Affiliation(s)
- Maha M Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
38
|
Higher circulating levels of ANGPTL8 are associated with body mass index, triglycerides, and endothelial dysfunction in patients with coronary artery disease. Mol Cell Biochem 2020; 469:29-39. [PMID: 32239421 DOI: 10.1007/s11010-020-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
Bac Coronary artery disease (CAD) is the leading cause of death worldwide and most commonly develops as a result of atherosclerosis. ANGPTL8 is a secreted adipokine that regulates lipid metabolism and is associated with cardiometabolic diseases, including type 2 diabetes and CAD. However, the association between circulating ANGPTL8 levels and CAD is inconsistent among studies and the mechanism by which ANGPTL8 contributes to CAD development remains poorly understood. Here we sought to evaluate the relationship between ANGPTL8 levels and endothelial dysfunction and adipose tissue inflammation in CAD patients. Concentrations of ANGPTL8, adiponectin, TNF-α, IL6, hsCRP, ICAM-1, and VCAM-1 were measured by ELISA in serum samples from 192 CAD patients diagnosed with stenosis > 50% in at least one coronary artery by angiography and 71 individuals with normal heart function. Serum ANGPTL8 levels were significantly higher in CAD patients compared to controls (83.84 ± 23.25 ng/mL vs. 50.45 ± 17.73; p < 0.001), independent of adjustment for age, sex, BMI, smoking and statin use. ANGPTL8 could also differentiate CAD patients from controls with 82.3% specificity and 81.4% sensitivity (p < 0.001). Adiponectin levels were lower in CAD patients, while ICAM-1, VCAM-1, TNF-α, IL6, and hsCRP levels were higher compared to non-CAD controls (all p < 0.001). ANGPTL8 levels were associated with BMI in controls and with BMI, TG, and ICAM-1 in CAD patients. The presence of elevated ANGPTL8 levels in CAD patients and independent association with TG and ICAM-1 suggest a possible role related to endothelial dysfunction in the pathogenesis of atherosclerosis.
Collapse
|
39
|
Evidences for Expression and Location of ANGPTL8 in Human Adipose Tissue. J Clin Med 2020; 9:jcm9020512. [PMID: 32069954 PMCID: PMC7074245 DOI: 10.3390/jcm9020512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022] Open
Abstract
The metabolism of triglycerides (TGs) is regulated, among others, by the lipoprotein lipase (LPL) that hydrolyses the TGs on endothelial cells. In turn, LPL is inhibited by the ANGPTLs family of proteins, such as ANGPTL3, 4, and, 8; the latter is the least known. In this work, we have tried to establish the expression and localisation of the Angiopoietin-like 8 (ANGPTL8) protein in the visceral adipose tissue (VAT) of morbid-obese and non-obese patients. 109 subjects (66 women and 43 men) undergoing laparoscopic surgery participated in this study. A blood sample and a portion of the VAT were obtained, and the patients were classified according to their Body Mass Index (BMI) as non-obese (19.5–30 kg/m2) and morbid-obese (40–50 kg/m2). No significant changes in ANGPTL8 plasma levels were determined by EIA in obese patients. The immunocytochemistry and Western blotting showed the presence of increased ANGPTL8 in morbid-obese patients (p < 0.05). In-situ hybridisation and a real time polymerase chain reaction (RT-PCR) confirmed that the mRNA that encodes ANGPTL8 was present in adipocytes, without differences in their nutritional state (p = 0.89), and even in the endothelial cells. Our data suggests that ANGPT8 plasmatic levels do not change significantly in patients with morbid obesity, although there is a modest difference related to gender. Besides, we demonstrate that in visceral adipose tissue, ANGPTL8 is well defined in the cytoplasm of adipocytes coexisting with perilipin-1 and its mRNA, also is present in endothelial cells. These findings suggest the possibility that among other functions, ANGPTL8 could perform either a paracrine and/or an endocrine role in the adipose tissue.
Collapse
|
40
|
Hou G, Tang Y, Ren L, Guan Y, Hou X, Song G. The ANGPTL8 rs2278426 (C/T) Polymorphism Is Associated with Prediabetes and Type 2 Diabetes in a Han Chinese Population in Hebei Province. Int J Endocrinol 2020; 2020:1621239. [PMID: 33343659 PMCID: PMC7728483 DOI: 10.1155/2020/1621239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our aim was to investigate the association between the genetics of the angiopoietin protein-like 8 (ANGPTL8) rs2278426 (C/T) polymorphism with prediabetes (pre-DM) and type 2 diabetes (T2DM) in a Han Chinese population in Hebei Province, China. METHODS We enrolled 1,460 participants into this case-control study: healthy controls, n = 524; pre-DM, n = 460; and T2DM: n = 460. Ligase assays on blood samples from all participants were used to identify polymorphisms. Differences in genotype and allele distributions were compared by the chi-square test and one-way analysis of variance, and a post hoc pairwise analysis was performed using the Bonferroni test. The logistic regression technique was adjusted for age, sex, and body mass index. RESULTS The frequency of the TT (10.9%) genotype was significantly higher in pre-DM patients than in controls (odds ratio [OR] = 1.696, 95% confidence interval [CI] = 1.026-2.802, P=0.039). In the T2DM group, the CT (48%) and TT (15%) genotypes were significantly higher compared with those in the control group (CT : OR = 1.384, 95% CI = 1.013-1.890, P=0.041; TT : OR = 2.530, 95% CI = 1.476-4.334, P=0.001). The frequency of the T allele was significantly higher in the pre-DM (32.8%) and T2DM (39%) groups compared with the control group (26.9%) and was significantly associated with an increased risk of pre-DM (OR = 1.253, 95% CI = 1.017-1.544, P=0.034) and T2DM (OR = 1.518, 95% CI = 1.214-1.897, P=0.001). Furthermore, insulin levels in the pre-DM and T2DM groups were significantly decreased in those with the TT genotype compared with the CC and CT genotypes. CONCLUSION ANGPTL8 rs2278426 may be involved in the mechanism of insulin secretion and could lead to an increased risk of pre-DM and T2DM.
Collapse
Affiliation(s)
- Guangsen Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yong Tang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Luping Ren
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
41
|
Leiherer A, Ebner J, Muendlein A, Brandtner EM, Zach C, Geiger K, Fraunberger P, Drexel H. High betatrophin in coronary patients protects from cardiovascular events. Atherosclerosis 2020; 293:62-68. [DOI: 10.1016/j.atherosclerosis.2019.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
|
42
|
Esfahani M, Goodarzi MT. A Short Review on ANGPTL-8 as an Important Regulator in Diabetes. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ANGPTL8, a new hormone, is regarded as a novel target for type-2 diabetes and associated metabolic disorder. Nutritional state and hormonal factors are involved in the regulation of ANGPTL-8 expression. This protein is associated with some myokines or adipokines. Several studies confirmed the function of ANGPTL-8 in glucose metabolism and diabetes complications; however, there are opposite results. The accurate function of ANGPTL-8 in T2D remains unclear. Further strictly controlled studies including measuring methods, nutritional state, diagnostic criteria of overweight/obesity, age, and ethnicity may help to resolve discrepancies. In addition, more studies are demanded to clarify the potential role of ANGPTL-8 in humans, a cause or an effect of this protein in association with insulin resistance, the regulatory mechanism of ANGPTL-8 expression, and the association of ANGPTL8 with other adipokines or myokines. In this mini review, we described various roles of ANGPTL-8 in diabetes.
Collapse
Affiliation(s)
- Maryam Esfahani
- Ph.D. in Clinical Biochemistry, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Professor of Clinical Biochemistry, Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
43
|
AlKhairi I, Cherian P, Abu-Farha M, Madhoun AA, Nizam R, Melhem M, Jamal M, Al-Sabah S, Ali H, Tuomilehto J, Al-Mulla F, Abubaker J. Increased Expression of Meteorin-Like Hormone in Type 2 Diabetes and Obesity and Its Association with Irisin. Cells 2019; 8:1283. [PMID: 31635130 PMCID: PMC6829873 DOI: 10.3390/cells8101283] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a growing pandemic associated with metabolic dysregulation and chronic inflammation. Meteorin-like hormone (METRNL) is an adipomyokine that is linked to T2D. Our objective was to evaluate the changes in METRNL levels in T2D and obesity and assess the association of METRNL levels with irisin. Overall, 228 Arab individuals were enrolled. Plasma levels of METRNL and irisin were assessed using immunoassay. Plasma levels of METRNL and irisin were significantly higher in T2D patients than in non-diabetic patients (p < 0.05). When the population was stratified based on obesity, METRNL and irisin levels were significantly higher in obese than in non-obese individuals (p < 0.05). We found a significant positive correlation between METRNL and irisin (r = 0.233 and p = 0.001). Additionally, METRNL and irisin showed significant correlation with various metabolic biomarkers associated with T2D and Obesity. Our data shows elevated METRNL plasma levels in individuals with T2D, further exacerbated with obesity. Additionally, a strong positive association was observed between METRNL and irisin. Further studies are necessary to examine the role of these proteins in T2D and obesity, against their ethnic background and to understand the mechanistic significance of their possible interplay.
Collapse
Affiliation(s)
- Irina AlKhairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Ashraf Al Madhoun
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Rasheeba Nizam
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Motasem Melhem
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Mohamed Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Sulaibekhat 90805, Kuwait.
| | - Suleiman Al-Sabah
- Department of Pharmacology & Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Sulaibekhat 90805, Kuwait.
| | - Hamad Ali
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Centre, Kuwait University, Sulaibekhat 90805, Kuwait.
| | - Jaakko Tuomilehto
- Research division, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Fahd Al-Mulla
- Department of Genetic and Bioinformatics, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City 15462, Kuwait.
| |
Collapse
|
44
|
Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, Sun Z, Wang W, Jiang H, Hong Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY) 2019; 11:7510-7524. [PMID: 31562809 PMCID: PMC6781997 DOI: 10.18632/aging.102263] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/02/2019] [Indexed: 04/18/2023]
Abstract
This study aimed to establish a high-fat diet (HFD)-fed obese mouse model and a cell culture model of insulin resistance (IR) in mature 3T3-L1 adipocytes. A dual-luciferase reporter assay (DLRA) was confirmed interaction between miR-27a and the 3'-untranslated region (UTR) of Peroxisome proliferator-activated receptor (PPAR)-γ. The inhibition of PPAR-γ expression by microRNA (miR)-27a in IR cells at both the protein and mRNA levels was confirmed by a mechanistic investigation. Moreover, the 3'-UTR of PPAR-γ was found to be a direct target of miR-27a, based on the DLRA. Furthermore, antagomiR-27a upregulated the activation of PI3K/Akt signaling and glucose transporter type 4 (GLUT4) expression at the protein and mRNA levels. Additionally, the PPAR inhibitor T0070907 repressed the insulin sensitivity upregulated by antagomiR-27a, which was accompanied by the inhibition of PPAR-γ expression and increased levels of AKT phosphorylation and GLUT4. The PI3K inhibitor wortmannin reduced miR-27a-induced increases in AKT phosphorylation, glucose uptake, and GLUT4. miR-27a is considered to be involved in the PPAR-γ-PI3K/AKT-GLUT4 signaling axis, thus leading to increased glucose uptake and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Therefore, miR-27a is a novel target for the treatment of IR in obesity and diabetes.
Collapse
Affiliation(s)
- Tianbao Chen
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yi Zhang
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Yilan Liu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Dexiao Zhu
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Jing Yu
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Guoqian Li
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Zhichun Sun
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanru Wang
- Department of Cardiology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhenzhen Hong
- Department of Endocrinology, The First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
45
|
Issa YA, Abd ElHafeez SS, Amin NG. The potential role of angiopoietin-like protein-8 in type 2 diabetes mellitus: a possibility for predictive diagnosis and targeted preventive measures? EPMA J 2019; 10:239-248. [PMID: 31462941 PMCID: PMC6695457 DOI: 10.1007/s13167-019-00180-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies showed altered angiopoietin-like protein-8 (ANGPTL-8) circulating levels in type 2 diabetes mellitus (DM). Whether or not the alteration in ANGPTL-8 level can be a predictive maker for increased DM risk remains unclear. AIM Investigating possible role of ANGPTL-8 as a risk predictor of type2 DM, in addition to a set of factors likely to affect ANGPTL-8 level. METHODS One hundred recently diagnosed persons with type 2 DM and 100 sex- and age-matched healthy controls were enrolled. Exclusion criteria included type 1 DM, acute infections, history of chronic kidney disease, malignancy, and blood loss or transfusion. Serum levels of ANGPTL-8, blood pressure, weight, height, glycosylated hemoglobin (HbA1c), fasting blood glucose, cystatin C, lipid profile, liver, and kidney function tests were assessed. The independent relationship between DM and ANGPTL-8 was tested in the unadjusted and multiple-adjusted regression models. RESULTS Serum ANGPTL-8 levels showed significant elevation among persons with vs. without DM (p = 0.006), positive correlation with HbA1c (p < 0.001), and negative correlation with estimated GFR (eGFR) (p = 0.003) but no significant correlation to fasting glucose level. In the unadjusted model, patients in the third tertile of ANGPTL-8 had 4 times risk of DM (OR 4.03; 95% CI = 1.37-11.84). Data adjustment for cardiovascular diseases, smoking, body mass index, systolic blood pressure, alanine transaminase (ALT), and low-density lipoprotein (LDL) increased the direct relationship between ANGPTL-8 and DM (OR 6.26; 95% CI = 1.21-32.50). However, the risk significantly decreased after adjustment of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) eGFR creatinine-cystatin (OR 2.17; 95% CI = 0.10-49.84). CONCLUSION This study highlights a possible predictive role of ANGPTL-8 in diabetic complications, particularly nephropathy. Larger prognostic studies are needed to validate the cause-effect relationship between ANGPTL-8 and deteriorated kidney functions.
Collapse
Affiliation(s)
- Yasmine Amr Issa
- Department of Medical Biochemistry, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar Samy Abd ElHafeez
- Department of Epidemiology, High Institute of Public Health, University of Alexandria, Alexandria, Egypt
| | - Noha Gaber Amin
- Department of Internal Medicine, Clinical Diabetes and Metabolism unit, Alexandria Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
46
|
Reduced miR-181d level in obesity and its role in lipid metabolism via regulation of ANGPTL3. Sci Rep 2019; 9:11866. [PMID: 31413305 PMCID: PMC6694160 DOI: 10.1038/s41598-019-48371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity impacts the endocrine and metabolic functions of the adipose tissue. There is increasing interest in the role of epigenetic factors in obesity and its impact on diabetes and dyslipidemia. One such substance, miR-181, reduces plasma triglyceride levels in mice by targeting isocitrate dehydrogenase 1. In the other hand, the adipocyte differentiation and lipid regulating hormone angiopoietin-like 3 (ANGPTL3) is a known regulator of circulating apolipoproteins through its inhibition of the lipoprotein lipase activity. We aimed to study the miR-181d expression in the blood and adipose tissue in a cohort of obese and non-obese people, assessing its possible role in obesity. We also aimed to confirm whether miR-181d can bind and regulate ANGPTL3. miR-181d expression levels were investigated in 144 participants, 82 who were non-obese (body mass index [BMI] < 30) and 62 who were obese (BMI > 30). miR-181d levels in plasma and adipose tissue were measured by RT-PCR. Hepatocyte cell cultures were assessed by overexpression and 3′-UTR-luciferase assays for miR-181d binding to its target protein and its effect on the protein. The plasma levels of ANGPTL3 were also measured by ELISA. The miR-181d levels were significantly lower in obese than in non-obese individuals. In vitro analysis confirmed miR-181 binding to and repression of the ANGPTL3 transcript. Obesity leads to alterations in miR-181d expression. Its downregulation in obese humans was inversely correlated with ANGPTL3, a protein involved in adipocyte differentiation and lipid metabolism. miR-181d can be used as an inhibitor of ANGPTL3 to reduce the TG plasma level.
Collapse
|
47
|
Tang W, Fan Y. SIRT6 as a potential target for treating insulin resistance. Life Sci 2019; 231:116558. [PMID: 31194993 DOI: 10.1016/j.lfs.2019.116558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the role of SIRT6 in Insulin resistance (IR). We are the first to investigate on this crucial relationship in an obese mouse model fed on a high-fat diet (HFD) and an IR model based on the mature 3T3-L1-derived adipocytes. MAIN METHODS Western blotting (WB) and qPCR analysis were performed to evaluate the SIRT6 protein and mRNA expressions in HFD mice as well as IR cells. Injection of adenovirus encoding SIRT6 gene in HFD mice and transfection of pcDNA3-SIRT6 in IR cells increased the glucose uptake levels and insulin sensitivity. KEY FINDINGS The positive regulatory effects of SIRT6 on transient receptor potential vallinoid 1 (TRPV1) in IR cells were confirmed by a mechanistic investigation at both protein and mRNA levels. Further, the overexpression of SIRT6 was found to activate the TRPV1/Calcitonin gene-related peptide (CGRP) signaling and upregulate the glucose transporter (GLUT) expression at protein and mRNA levels. Additionally, administration of the TRPV1 antagonist, SB-705498 repressed the insulin sensitivity upregulated by SIRT6 overexpression accompanied with the inhibition of CGRP and decrease in GLUT proportions. The results also showed that TRPV1 agonist, Capsaicin boosted the SIRT6-induced glucose uptake, CGRP production, and GLUT4 levels. SIGNIFICANCE Overall, SIRT6 was concluded to be involved in the TRPV1-CGRP-GLUT4 signaling axis thus leading to increased glucose uptake and decreased IR in HFD mice and 3T3-L1 adipocytes. Therefore, in terms of obesity and diabetes, SIRT6 is a novel candidate for treating IR.
Collapse
Affiliation(s)
- Wei Tang
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China.
| | - Yingying Fan
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
48
|
Hu H, Yuan G, Wang X, Sun J, Gao Z, Zhou T, Yin W, Cai R, Ye X, Wang Z. Effects of a diet with or without physical activity on angiopoietin-like protein 8 concentrations in overweight/obese patients with newly diagnosed type 2 diabetes: a randomized controlled trial. Endocr J 2019; 66:89-105. [PMID: 30429410 DOI: 10.1507/endocrj.ej18-0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) is a newly discovered adipokine plays an important role in energy homoeostasis, obesity and type 2 diabetes (T2D). Although lifestyle modification in obesity and T2D is known to offer metabolic benefits, there is paucity of comprehensive data on change in ANGPTL8. We investigated the effect of lifestyle intervention on ANGPTL8 concentrations. 384 obese/overweight adults with newly diagnosed T2D were randomly assigned (1:1:1) to diet (n = 128), diet + activity (n = 128) or usual care (control, n = 128) groups. All patients received usual care. Besides, the diet group received a calorie-restricted diet aiming for a weight loss of 5-10%. The diet + activity group additionally received a pedometer-based walking program. Primary outcome was change in ANGPTL8 concentration at 6 months. Data were analyzed according to intention-to-treat. From baseline to 6 months, the median ANGPTL8 level changed from 804.38 pg/mL to 792.86 pg/mL in control group. Compared with control, ANGPTL8 decreased with diet (baseline-adjusted between-group difference was -121.00 pg/mL, 95% CI -177.47 to -64.53; p < 0.0001) and diet + activity (-126.16 pg/mL, -181.21 to -71.11; p < 0.0001). There was no greater effect of diet + activity compared with diet (-5.16 pg/mL, -53.63 to 43.31; p = 0.8348). Both effects disappeared after adjusting for change in body fat, but did not differ significantly when adjusting for physical activity. A 6-month intervention inducing weight loss by a calorie-restricted diet or diet + activity, resulted in significant decrease on ANGPTL8 concentration. These effects were established by change in total body fat, and not by change in physical activity.
Collapse
Affiliation(s)
- Hao Hu
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Jiangsu 212001, China
| | - Xinchen Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Zhejiang 310012, China
| | - Jin Sun
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Zhaohua Gao
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Tingting Zhou
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Wenwen Yin
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Ruonan Cai
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Xing Ye
- Department of Cardiovascular Medicine, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| | - Zhaoling Wang
- Department of Endocrinology, the First People's Hospital of Xuzhou, Jiangsu 221002, China
| |
Collapse
|
49
|
Sertogullarindan B, Komuroglu AU, Ucler R, Gunbatar H, Sunnetcioglu A, Cokluk E. Betatrophin association with serum triglyceride levels in obstructive sleep apnea patients. Ann Thorac Med 2019; 14:63-68. [PMID: 30745937 PMCID: PMC6341867 DOI: 10.4103/atm.atm_52_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep problem, in which patients are at increased risk for metabolic and cardiovascular problems, including metabolic syndrome, diabetes mellitus (DM), and dyslipidemia. Betatrophin is a novel protein that regulates fatty acid and triglyceride (TG) metabolism and is related to obesity and metabolic abnormalities, including metabolic syndrome, DM, and dyslipidemia. Although OSA and betatrophin share common abnormalities, their relationship has not been investigated. AIM The aim of this study is to investigate the relationships among betatrophin, OSA, and the serum lipid profile. METHODS Ninety consecutive patients with suspected OSA underwent polysomnography (PSG) to confirm OSA. Plasma betatrophin, leptin, adiponectin, and the full lipid profile were analyzed. The patients were categorized as OSA or control based on the apnea-hypopnea index (AHI). RESULTS About 61% of patients had OSA, and 39% had normal PSG. The levels of betatrophin, leptin, and adiponectin were higher in patients with OSA (256.59 ± 29.35, 374.20 ± 37.93, and 17.86 ± 2.63 μg/mL, respectively) compared to the controls (141.86 ± 26.20, 205.53 ± 14.75, and 7.52 ± 1.02 μg/mL, respectively). Betatrophin levels were correlated with the AHI, leptin (r = 0.413, P = 0.002, r = 0.782, P = 0.000). TG levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in OSA patients compared to controls (244 ± 20.33 vs. 138 ± 14.89, and 37.21 ± 1.26 vs. 43.78 ± 1.62, respectively). The TG level was correlated with betatrophin (r = 0.353, P = 0.013). Multiple regression analysis showed that the AHI, leptin, and arousals were independent predictors of betatrophin level (B = 1.70 P = 0.046 95%, B = 0.56 P < 0.005, and B = 1, 2, P = 0.003, respectively). CONCLUSIONS Our results suggest a complex relationship between OSA, betatrophin, TG, and HDL, as well as other adipokines. Our results require further investigation to assess this complex association and re-evaluate previous related studies.
Collapse
Affiliation(s)
| | | | - Rifki Ucler
- Department of Endocrinology and Metabolism, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Hulya Gunbatar
- Department of Pulmonary Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Aysel Sunnetcioglu
- Department of Pulmonary Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Erdem Cokluk
- Department of Medical Biochemistry, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
50
|
Alghanim G, Qaddoumi MG, Alhasawi N, Cherian P, Al-Khairi I, Nizam R, Alkayal F, Alanbaei M, Tuomilehto J, Abubaker J, Abu-Farha M, Al-Mulla F. Higher Levels of ANGPTL5 in the Circulation of Subjects With Obesity and Type 2 Diabetes Are Associated With Insulin Resistance. Front Endocrinol (Lausanne) 2019; 10:495. [PMID: 31396158 PMCID: PMC6668602 DOI: 10.3389/fendo.2019.00495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022] Open
Abstract
Objective: The family of angiopoietin-like proteins (ANGPTLs) is composed of eight ANGPTLs members that are involved in regulating various metabolic processes and have been implicated in type 2 diabetes (T2D) and obesity. ANGPTL5 is an understudied member of this family that has been suggested to regulate triglyceride metabolism with a potential role in obesity. This study was designed to investigate the expression levels of ANGPTL5 protein in the circulation of subjects with obesity and T2D. Methods: A total of 204 subjects were enrolled in this cross-sectional study, of which 95 had diagnosed T2D and 109 did not (non-T2D). Within the non-T2D group, 39 subjects were obese (BMI ≥ 30 Kg/m2) and 70 were not (BMI < 30 Kg/m2). Among subjects with T2D, 61 were obese and 34 were non-obese. Circulating ANGPTL5 plasma levels were measured by enzyme-linked immunosorbent assay (ELISA). Results: In this study, we showed that ANGPTL5 levels were higher in the plasma of subjects with T2D [mean ± standard error of the mean (SEM): 5.78 ± 2.70 ng/mL] compared with individuals without T2D (mean ± SEM: 4.42 ± 2.22 ng/mL; P < 0.001). Obese and non-T2D subjects had significantly higher levels of ANGPTL5 (mean ± SEM: 5.115 ± 0.366 ng/mL) compared with non-obese, non-T2D subjects (mean ± SEM: 4.02 ± 0.271 ng/mL; P = 0.003). Similarly, among subjects with diagnosed T2D, those who were obese had higher ANGPTL5 plasma levels than non-obese subjects, although this difference did not reach statistical significance (P = 0.088). Correlation analyses revealed that ANGPTL5 levels positively associated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), triglycerides (TGL), and insulin resistance as measured by HOMA-IR. Conclusion: our data shows for the first time that circulating ANGPTL5 levels were higher in obese individuals and those with T2D. Further analysis will be required to better understand the interaction between ANGPTL5 and other metabolic related biomarkers to shed more light on its role in diabetes and obesity.
Collapse
Affiliation(s)
- Ghazi Alghanim
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed G. Qaddoumi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Nouf Alhasawi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fadi Alkayal
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Muath Alanbaei
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Jehad Abubaker
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Mohamed Abu-Farha ;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Fahd Al-Mulla
| |
Collapse
|