1
|
Adasooriya D, Jeong JK, Kyeong M, Kan S, Kim J, Cho ES, Cho SW. Notum regulates the cusp and root patterns in mouse molar. Sci Rep 2024; 14:13633. [PMID: 38871845 PMCID: PMC11176191 DOI: 10.1038/s41598-024-64340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Notum is a direct target of Wnt/β-catenin signaling and plays a crucial role as a Wnt inhibitor within a negative feedback loop. In the tooth, Notum is known to be expressed in odontoblasts, and severe dentin defects and irregular tooth roots have been reported in Notum-deficient mice. However, the precise expression pattern of Notum in early tooth development, and the role of Notum in crown and root patterns remain elusive. In the present study, we identified a novel Notum expression in primary enamel knot (EK), secondary EKs, and dental papilla during tooth development. Notum-deficient mice exhibited enlarged secondary EKs, resulting in broader cusp tips, altered cusp patterns, and reduced concavity in crown outline. These alterations in crown outline led to a reduction in cervical tongue length, thereby inducing root fusion in Notum-deficient mice. Overall, these results suggest that the secondary EK size, regulated by the Wnt/Notum negative feedback loop, has a significant impact on the patterns of crown and root during tooth morphogenesis.
Collapse
Affiliation(s)
- Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Shiqi Kan
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jiwoo Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
2
|
Cheprakov MI. Phenotypic Variation and Inheritance of an Atypical Form of the M1 Anterior Lobe of Collared Lemmings (Dicrostonyx, Rodentia, Arvicolinae). BIOL BULL+ 2022. [DOI: 10.1134/s1062359022050053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Guimarães LM, Coura BP, Gomez RS, Gomes CC. The Molecular Pathology of Odontogenic Tumors: Expanding the Spectrum of MAPK Pathway Driven Tumors. FRONTIERS IN ORAL HEALTH 2022; 2:740788. [PMID: 35048058 PMCID: PMC8757814 DOI: 10.3389/froh.2021.740788] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Odontogenic tumors comprise a heterogeneous group of lesions that arise from the odontogenic apparatus and their remnants. Although the etiopathogenesis of most odontogenic tumors remains unclear, there have been some advances, recently, in the understanding of the genetic basis of specific odontogenic tumors. The mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) pathway is intimately involved in the regulation of important cellular functions, and it is commonly deregulated in several human neoplasms. Molecular analysis performed by different techniques, including direct sequencing, next-generation sequencing, and allele-specific qPCR, have uncovered mutations in genes related to the oncogenic MAPK/ERK signaling pathway in odontogenic tumors. Genetic mutations in this pathway genes have been reported in epithelial and mixed odontogenic tumors, in addition to odontogenic carcinomas and sarcomas. Notably, B-Raf proto-oncogene serine/threonine kinase (BRAF) and KRAS proto-oncogene GTPase (KRAS) pathogenic mutations have been reported in a high proportion of ameloblastomas and adenomatoid odontogenic tumors, respectively. In line with the reports about other neoplasms that harbor a malignant counterpart, the frequency of BRAF p.V600E mutation is higher in ameloblastoma (64% in conventional, 81% in unicystic, and 63% in peripheral) than in ameloblastic carcinoma (35%). The objective of this study was to review MAPK/ERK genetic mutations in benign and malignant odontogenic tumors. Additionally, such genetic alterations were discussed in the context of tumorigenesis, clinical behavior, classification, and future perspectives regarding therapeutic approaches.
Collapse
Affiliation(s)
- Letícia Martins Guimarães
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Pizziolo Coura
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Guo W, Lin X, Zhang R, Hu L, Wang J, Wang F, Wang J, Zhang C, Wu X, Wang S. Spatiotemporal Expression Patterns of Critical Genes Involved in FGF Signaling During Morphogenesis and Odontogenesis of Deciduous Molars in Miniature Pigs. Int J Med Sci 2022; 19:132-141. [PMID: 34975307 PMCID: PMC8692127 DOI: 10.7150/ijms.61798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
The fibroblast growth factor (FGF) pathway plays an important role in epithelial-mesenchymal interactions during tooth development. Nevertheless, how the ligands, receptors, and antagonists of the FGF pathway are involved in epithelial-mesenchymal interactions remains largely unknown. Miniature pigs exhibit tooth anatomy and replacement patterns like those in humans and hence can serve as large animal models. The present study investigated the spatiotemporal expression patterns of critical genes encoding FGF ligands (FGF3, FGF4, FGF7, and FGF9), antagonists (SPRY2 and SPRY4) and receptors (FGFR1, FGFR2, and FGFR3) in the third deciduous molars of miniature pigs at the cap (embryonic day 40, E40), early bell (E50), and late bell (E60) stages. The results of in situ hybridization (ISH) with tyramide signal amplification and of qRT-PCR analysis revealed increased expression of FGF7, FGFR1, FGFR2, and SPRY4 in dental epithelium and of FGF7 and FGFR1 in mesenchyme from E40 to E50. In contrast, the results revealed decreased expression of FGF3, FGF4, FGF9, and FGFR3 in dental epithelium and of FGF4, FGF9, FGFR2, and FGFR3 in the mesenchyme from E40 to E60. Mesenchyme signals of FGF3, FGF4, FGF7, SPRY2, FGFR2, and FGFR3 were concentrated in the odontoblast layer from E50 to E60. The distinct expression patterns of these molecules indicated elaborate regulation during dental morphogenesis. Our results provide a foundation for further investigation into fine-tuning dental morphogenesis and odontogenesis by controlling interactions between dental epithelium and mesenchyme, thus promoting tooth regeneration in large mammals.
Collapse
Affiliation(s)
- Wenwen Guo
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China
| | - Xiaoyu Lin
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lei Hu
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China
| | - Jiangyi Wang
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China
| | - Fu Wang
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China.,Department of Oral Basic Science, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jinsong Wang
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Chunmei Zhang
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China
| | - Xiaoshan Wu
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China.,Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health; Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China.,Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Seppala M, Thivichon-Prince B, Xavier GM, Shaffie N, Sangani I, Birjandi AA, Rooney J, Lau JNS, Dhaliwal R, Rossi O, Riaz MA, Stonehouse-Smith D, Wang Y, Papageorgiou SN, Viriot L, Cobourne MT. Gas1 Regulates Patterning of the Murine and Human Dentitions through Sonic Hedgehog. J Dent Res 2021; 101:473-482. [PMID: 34796774 PMCID: PMC8935464 DOI: 10.1177/00220345211049403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.
Collapse
Affiliation(s)
- M Seppala
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - B Thivichon-Prince
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France.,Faculté d'Odontologie, Université de Lyon 1, Université de Lyon, Lyon, France.,Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - G M Xavier
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - N Shaffie
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - I Sangani
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A A Birjandi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J Rooney
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J N S Lau
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - R Dhaliwal
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - O Rossi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - M A Riaz
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - D Stonehouse-Smith
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Y Wang
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - S N Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L Viriot
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France
| | - M T Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Nottmeier C, Decker MG, Luther J, von Kroge S, Kahl-Nieke B, Amling M, Schinke T, Petersen J, Koehne T. Accelerated tooth movement in Rsk2-deficient mice with impaired cementum formation. Int J Oral Sci 2020; 12:35. [PMID: 33353934 PMCID: PMC7755898 DOI: 10.1038/s41368-020-00102-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Coffin–Lowry–Syndrome (CLS) is a X-linked mental retardation characterized by skeletal dysplasia and premature tooth loss. We and others have previously demonstrated that the ribosomal S6 kinase RSK2, mutated in CLS, is essential for bone and cementum formation; however, it remains to be established whether RSK2 plays also a role in mechanically induced bone remodeling during orthodontic tooth movement (OTM). We, therefore, performed OTM in wild-type (WT) mice and Rsk2-deficient mice using Nitinol tension springs that were fixed between the upper left molars and the incisors. The untreated contralateral molars served as internal controls. After 12 days of OTM, the jaws were removed and examined by micro-computed tomography (µCT), decalcified histology, and immunohistochemistry. Our analysis of the untreated teeth confirmed that the periodontal phenotype of Rsk2-deficient mice is characterized by alveolar bone loss and hypoplasia of root cementum. Quantification of OTM using µCT revealed that OTM was more than two-fold faster in Rsk2-deficient mice as compared to WT. We also observed that OTM caused alveolar bone loss and root resorptions in WT and Rsk2-deficient mice. However, quantification of these orthodontic side effects revealed no differences between WT and Rsk2-deficient mice. Taken together, Rsk2 loss-of-function accelerates OTM in mice without causing more side effects.
Collapse
Affiliation(s)
- Cita Nottmeier
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian G Decker
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Luther
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Petersen
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koehne
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Morkmued S, Clauss F, Schuhbaur B, Fraulob V, Mathieu E, Hemmerlé J, Clevers H, Koo BK, Dollé P, Bloch-Zupan A, Niederreither K. Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Sci Rep 2020; 10:14817. [PMID: 32908163 PMCID: PMC7481257 DOI: 10.1038/s41598-020-71749-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Secreted extracellular matrix components which regulate craniofacial development could be reactivated and play roles in adult wound healing. We report a patient with a loss-of-function of the secreted matricellular protein SMOC2 (SPARC related modular calcium binding 2) presenting severe oligodontia, microdontia, tooth root deficiencies, alveolar bone hypoplasia, and a range of skeletal malformations. Turning to a mouse model, Smoc2-GFP reporter expression indicates SMOC2 dynamically marks a range of dental and bone progenitors. While germline Smoc2 homozygous mutants are viable, tooth number anomalies, reduced tooth size, altered enamel prism patterning, and spontaneous age-induced periodontal bone and root loss are observed in this mouse model. Whole-genome RNA-sequencing analysis of embryonic day (E) 14.5 cap stage molars revealed reductions in early expressed enamel matrix components (Odontogenic ameloblast-associated protein) and dentin dysplasia targets (Dentin matrix acidic phosphoprotein 1). We tested if like other matricellular proteins SMOC2 was required for regenerative repair. We found that the Smoc2-GFP reporter was reactivated in adjacent periodontal tissues 4 days after tooth avulsion injury. Following maxillary tooth injury, Smoc2−/− mutants had increased osteoclast activity and bone resorption surrounding the extracted molar. Interestingly, a 10-day treatment with the cyclooxygenase 2 (COX2) inhibitor ibuprofen (30 mg/kg body weight) blocked tooth injury-induced bone loss in Smoc2−/− mutants, reducing matrix metalloprotease (Mmp)9. Collectively, our results indicate that endogenous SMOC2 blocks injury-induced jaw bone osteonecrosis and offsets age-induced periodontal decay.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculty of Dentistry, Pediatrics Division, Preventive Department, Khon Kaen University, Khon Kaen, Thailand
| | - François Clauss
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France.,Regenerative NanoMedicine, INSERM UMR1260, FMTS, Hôpitaux Universitaires de Strasbourg, 11 rue Humann, 67000, Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Valérie Fraulob
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Eric Mathieu
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Joseph Hemmerlé
- Biomaterials and Bioengineering, Université de Strasbourg, INSERM UMR1121, 11 rue Humann, 67000, Strasbourg, France
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Bon-Kyoung Koo
- Hubrecht Institute, University Medical Center Utrecht, and University Utrecht, Utrecht, The Netherlands
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Faculté de Médecine, Université de Strasbourg, FMTS, 4 Rue Kirschleger, 67000, Strasbourg, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O Rares, Filière TETECOU, ERN CRANIO, 1 place de l'Hôpital, 67000, Strasbourg, France. .,Eastman Dental Institute, University College London, London, UK.
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and of Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, BP 10142, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, INSERM U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000, Strasbourg, France.
| |
Collapse
|
8
|
Marangoni P, Charles C, Ahn Y, Seidel K, Jheon A, Ganss B, Krumlauf R, Viriot L, Klein OD. Downregulation of FGF Signaling by Spry4 Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus 2019; 3:e10205. [PMID: 31485553 PMCID: PMC6715786 DOI: 10.1002/jbm4.10205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14‐Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14‐Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Youngwook Ahn
- Stowers Institute for Medical Research Kansas City MO USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Andrew Jheon
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City MO USA.,Department of Anatomy and Cell Biology Kansas University Medical Center Kansas City KS USA
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA.,Department of Pediatrics and Institute for Human Genetics University of California San Francisco CA USA
| |
Collapse
|
9
|
Caccavo A, Weksler M. Mesial hyperdontia in Sigmodontinae (Rodentia: Cricetidae), with comments on the evolution of the anteroconid in Myomorpha. MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Supernumerary teeth are common dental anomalies reported in rodents, mainly occurring distally to molars. We report the first case of mesial hyperdontia in wild-caught sigmodontine: a simplified tooth anterior to the right first lower molar in Neacomys amoenus. It affected the first molar morphology, which exhibits an underdeveloped mesial region with a reduced anterior conulid, a similar pattern observed in early known myomorph fossils, including lineages that still possess the last premolar. However, only lineages without premolar display an elongated first lower molar with a large anteroconid, as observed in extant Myomorpha. During the odontogenesis in myomorphs, the posteriormost vestigial diastemal tooth bud, located at the same locus of the last lower premolar, has its development arrested and merges with the cap of the first molar. This process might have contributed to the development of an increased anteroconid in this lineage. The abnormal Neacomys’ atavistic phenotype corroborates the hypothesis that the absorption of the primordium of the last lower premolar had played an important role in the development of first molar’s mesial region. Additionally, it also might have promoted the evolutionary transition from a reduced conulid into an enlarged anteroconid, as deduced from the fossil record and developmental evidence
Collapse
Affiliation(s)
- Aldo Caccavo
- Universidade Federal do Rio de Janeiro, Museu Nacional , Programa de Pós-Graduação em Zoologia , Rio de Janeiro, RJ 20940-040 , Brazil
- Universidade Federal do Rio de Janeiro, Museu Nacional , Departamento de Vertebrados, Setor de Mastozoologia , Rio de Janeiro, RJ 20940-040 , Brazil
| | - Marcelo Weksler
- Universidade Federal do Rio de Janeiro, Museu Nacional , Departamento de Vertebrados, Setor de Mastozoologia , Rio de Janeiro, RJ 20940-040 , Brazil
| |
Collapse
|
10
|
Abstract
Deviations from the precisely coordinated programme of human head development can lead to craniofacial and orofacial malformations often including a variety of dental abnormalities too. Although the aetiology is still unknown in many cases, during the last decades different intracellular signalling pathways have been genetically linked to specific disorders. Among these pathways, the RAS/extracellular signal-regulated kinase (ERK) signalling cascade is the focus of this review since it encompasses a large group of genes that when mutated cause some of the most common and severe developmental anomalies in humans. We present the components of the RAS/ERK pathway implicated in craniofacial and orodental disorders through a series of human and animal studies. We attempt to unravel the specific molecular targets downstream of ERK that act on particular cell types and regulate key steps in the associated developmental processes. Finally we point to ambiguities in our current knowledge that need to be clarified before RAS/ERK-targeting therapeutic approaches can be implemented.
Collapse
|
11
|
Kim J, Ahn Y, Adasooriya D, Woo E, Kim H, Hu K, Krumlauf R, Cho S. Shh Plays an Inhibitory Role in Cusp Patterning by Regulation of Sostdc1. J Dent Res 2018; 98:98-106. [DOI: 10.1177/0022034518803095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crown shapes in mammalian teeth vary considerably from species to species, and morphological characters in crown shape have been used to identify species. Cusp pattern is one of the characters in crown shape. In the processes governing the formation of cusp pattern, the Shh pathway has been implicated as an important player. Suppression of Shh signaling activity in vitro in explant assays appears to induce supernumerary cusp formation in wild-type tooth germs. However, the in vivo role of Shh signaling in cusp pattern formation and the molecular mechanisms by which Shh regulates cusp patterning are not clear. Here, through in vivo phenotypic analyses of mice in which Shh activity was suppressed and compared with wild-type mice, we characterized differences in the location, number, incidence, and shape of supernumerary cusps in molars at embryonic day 15.5. We found that the distances between cusps were reduced in molars of Shh activity–suppressed mice in vivo. These findings confirm and extend the previous idea that Shh acts as an inhibitor in the reaction-diffusion model for cusp pattern formation by negatively regulating the intercuspal distance. We uncovered a significant reduction of expression level of Sostdc1, which encodes a secreted modulator of Wnt signaling, after suppression of Shh activity. The supernumerary cusp formation in Sostdc1−/− mice and compound Sostdc1 and Lrp mutant mice indicates a strong association between Wnt and Shh signaling pathways in cusp patterning. In further support of this idea, there is a high degree of similarity in the supernumerary cusp patterns of mice lacking Sostdc1 or Shh at embryonic day 15.5. These results suggest that Shh plays an inhibitory role in cusp pattern formation by modulating Wnt signaling through the positive regulation of Sostdc1.
Collapse
Affiliation(s)
- J. Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Y. Ahn
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - D. Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | - E.J. Woo
- Department of History, College of Liberal Art, Sejong University, Seoul, Korea
| | - H.J. Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea
| | - K.S. Hu
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
- Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea
| | - R. Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S.W. Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
12
|
Zurowski C, Jamniczky H, Graf D, Theodor J. Deletion/loss of bone morphogenetic protein 7 changes tooth morphology and function in Mus musculus: implications for dental evolution in mammals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170761. [PMID: 29410800 PMCID: PMC5792877 DOI: 10.1098/rsos.170761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Quantifying regulatory gene effects on dental morphology and function has implications for the underlying mechanisms that generated dental diversity in mammals. We tested the hypothesis that regulatory gene expression changes lead to differences in molars using a neural crest knockout of bone morphogenetic protein 7 (BMP7) in Mus musculus. Three-dimensional geometric morphometric methods were used to quantify the shape of the molar toothrow. BMP7 mutants have extra cusps on the first upper and lower molars, and alterations in cusp orientation and morphology. Furthermore, significant shape differences between control and mutant were found for upper and lower toothrows. Mutant mice also exhibited differences in attrition facets, indicating functional changes that could lead to advantages in chewing new food resources and eventually niche diversification. The size ratio of the molars in the toothrow remained unchanged, implying that BMP7-induced changes in molar size ratio are a result of knocking out epithelial, rather than neural crest, expression of BMP7. Our results indicate that changes in BMP7 expression are sufficient to alter the morphology and function of the toothrow, suggesting that BMP7 or genes affecting its function could have played a role in structuring the dental diversity of extinct and extant mammals.
Collapse
Affiliation(s)
- Chelsey Zurowski
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| | - Heather Jamniczky
- Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - Daniel Graf
- Dentistry and Medical Genetics, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, CanadaT6G 2R3
| | - Jessica Theodor
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, CanadaT2N 1N4
| |
Collapse
|
13
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
14
|
Percival CJ, Marangoni P, Tapaltsyan V, Klein O, Hallgrímsson B. The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape. G3 (BETHESDA, MD.) 2017; 7:1439-1450. [PMID: 28280213 PMCID: PMC5427488 DOI: 10.1534/g3.117.040659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
Abstract
Inbred genetic background significantly influences the expression of phenotypes associated with known genetic perturbations and can underlie variation in disease severity between individuals with the same mutation. However, the effect of epistatic interactions on the development of complex traits, such as craniofacial morphology, is poorly understood. Here, we investigated the effect of three inbred backgrounds (129X1/SvJ, C57BL/6J, and FVB/NJ) on the expression of craniofacial dysmorphology in mice (Mus musculus) with loss of function in three members of the Sprouty family of growth factor negative regulators (Spry1, Spry2, or Spry4) in order to explore the impact of epistatic interactions on skull morphology. We found that the interaction of inbred background and the Sprouty genotype explains as much craniofacial shape variation as the Sprouty genotype alone. The most severely affected genotypes display a relatively short and wide skull, a rounded cranial vault, and a more highly angled inferior profile. Our results suggest that the FVB background is more resilient to Sprouty loss of function than either C57 or 129, and that Spry4 loss is generally less severe than loss of Spry1 or Spry2 While the specific modifier genes responsible for these significant background effects remain unknown, our results highlight the value of intercrossing mice of multiple inbred backgrounds to identify the genes and developmental interactions that modulate the severity of craniofacial dysmorphology. Our quantitative results represent an important first step toward elucidating genetic interactions underlying variation in robustness to known genetic perturbations in mice.
Collapse
Affiliation(s)
- Christopher J Percival
- Alberta Children's Hospital Institute for Child and Maternal Health, University of Calgary, Alberta T2N 4N1, Canada
- The McCaig Bone and Joint Institute, University of Calgary, Alberta T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Alberta T2N 4N1, Canada
| | - Pauline Marangoni
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
| | - Vagan Tapaltsyan
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
- Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, California 94143
| | - Ophir Klein
- Department of Orofacial Sciences, University of California, San Francisco, California 94143
- Program in Craniofacial Biology, University of California, San Francisco, California 94143
- Department of Pediatrics, University of California, San Francisco, California 94143
- Institute for Human Genetics, University of California, San Francisco, California 94143
| | - Benedikt Hallgrímsson
- Alberta Children's Hospital Institute for Child and Maternal Health, University of Calgary, Alberta T2N 4N1, Canada
- The McCaig Bone and Joint Institute, University of Calgary, Alberta T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
15
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
16
|
Urdy S, Goudemand N, Pantalacci S. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues. Curr Top Dev Biol 2016; 119:227-90. [PMID: 27282028 DOI: 10.1016/bs.ctdb.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.
Collapse
Affiliation(s)
- S Urdy
- University of Zürich, Institute of Physics, Zürich, Switzerland.
| | - N Goudemand
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Lyon Cedex 07, France
| | - S Pantalacci
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratory of Biology and Modelling of the Cell, UMR 5239, INSERM U1210, Lyon Cedex 07, France
| |
Collapse
|
17
|
Koehne T, Jeschke A, Petermann F, Seitz S, Neven M, Peters S, Luther J, Schweizer M, Schinke T, Kahl-Nieke B, Amling M, David JP. Rsk2, the Kinase Mutated in Coffin-Lowry Syndrome, Controls Cementum Formation. J Dent Res 2016; 95:752-60. [PMID: 26927527 DOI: 10.1177/0022034516634329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ribosomal S6 kinase RSK2 is essential for osteoblast function, and inactivating mutations of RSK2 cause osteopenia in humans with Coffin-Lowry syndrome (CLS). Alveolar bone loss and premature tooth exfoliation are also consistently reported symptoms in CLS patients; however, the pathophysiologic mechanisms are unclear. Therefore, aiming to identify the functional relevance of Rsk2 for tooth development, we analyzed Rsk2-deficient mice. Here, we show that Rsk2 is a critical regulator of cementoblast function. Immunohistochemistry, histology, micro-computed tomography imaging, quantitative backscattered electron imaging, and in vitro assays revealed that Rsk2 is activated in cementoblasts and is necessary for proper acellular cementum formation. Cementum hypoplasia that is observed in Rsk2-deficient mice causes detachment and disorganization of the periodontal ligament and was associated with significant alveolar bone loss with age. Moreover, Rsk2-deficient mice display hypomineralization of cellular cementum with accumulation of nonmineralized cementoid. In agreement, treatment of the cementoblast cell line OCCM-30 with a Rsk inhibitor reduces formation of mineralization nodules and decreases the expression of cementum markers. Western blot analyses based on antibodies against Rsk1, Rsk2, and an activated form of the 2 kinases confirmed that Rsk2 is expressed and activated in differentiating OCCM-30 cells. To discriminate between periodontal bone loss and systemic bone loss, we additionally crossed Rsk2-deficient mice with transgenic mice overexpressing the osteoanabolic transcription factor Fra1. Fra1 overexpression clearly increases systemic bone volume in Rsk2-deficient mice but does not protect from alveolar bone loss. Our results indicate that cell autonomous cementum defects are causing early tooth loss in CLS patients. Moreover, we identify Rsk2 as a nonredundant regulator of cementum homeostasis, alveolar bone maintenance, and periodontal health, with all these features being independent of Rsk2 function in systemic bone formation.
Collapse
Affiliation(s)
- T Koehne
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - F Petermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Seitz
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Schweizer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J-P David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|