1
|
Almeida CF, Juno JA. Sensing mycobacteria through unconventional pathways. J Clin Invest 2025; 135:e190230. [PMID: 40091837 PMCID: PMC11910222 DOI: 10.1172/jci190230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Approximately one-quarter of the global population is estimated to be infected with Mycobacterium tuberculosis. New developments in vaccine design and therapeutics are urgently needed, particularly in the face of multidrug-resistant tuberculosis (TB). In this issue of the JCI, Sakai and colleagues used a multidisciplinary approach to determine that trehalose-6-monomycolate (TMM), a mycobacterial cell wall lipid, serves as a T cell antigen presented by CD1b. CD1b-TMM-specific T cells were characterized by conserved T cell receptor features and were present at elevated frequencies in individuals with active TB disease. These findings highlight the dual role of TMM in stimulating both innate and adaptive immunity and broaden our understanding of CD1-mediated lipid recognition by unconventional T cells.
Collapse
|
2
|
Thongsin N, Suwanpitak S, Augsornworawat P, Srisantitham J, Saiprayong K, Jenjaroenpun P, Wattanapanitch M. Phenotypic and transcriptomic profiling of induced pluripotent stem cell (iPSC)-derived NK cells and their cytotoxicity against cancers. Stem Cell Res Ther 2024; 15:418. [PMID: 39533434 PMCID: PMC11559060 DOI: 10.1186/s13287-024-04029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Adoptive immunotherapy using natural killer (NK) cells has attracted considerable interest in numerous clinical trials targeting both hematological and solid tumors. Traditionally, NK cells are primarily derived from either peripheral blood (PB) or umbilical cord blood (UCB). However, these methods can lead to variability and heterogeneity within the NK cell population. In contrast, induced pluripotent stem cell (iPSC)-derived NK (iNK) cells provide a more controlled and uniform cellular population, suitable for large-scale clinical applications. This makes iNK cells a promising option for developing "off-the-shelf" immunotherapeutic products. Nevertheless, current NK cell differentiation protocols, which rely on embryoid body (EB) cultures, are labor-intensive and susceptible to unwanted heterogeneity during differentiation. Here, we developed a more efficient approach for generating iNK cells by employing a monolayer and feeder-free differentiation protocol, alongside optimized culture media. METHODS The iNK cells were generated using a two-step in vitro monolayer feeder-free system following NK cell development. To evaluate their maturity, phenotypic analysis was performed using flow cytometry, comparing with PB-NK cells and the NK-92 cell line. Additionally, single-cell RNA sequencing was performed to examine their transcriptomic profiles. The cytotoxic activity of the iNK cells was evaluated by co-culturing with cholangiocarcinoma (CCA) and breast cancer (BCA) cell lines in both monolayer (2D) and tumor spheroid (3D) co-culture systems. RESULTS We successfully differentiated iPSCs into mesoderm (ME), hematopoietic stem/progenitor cells (HSPCs), and NK cells. The resulting iNK cells exhibited typical NK cell markers such as CD45, CD56, and CD16, and expressed key functional proteins, including both activating and inhibitory receptors. Single-cell RNA sequencing confirmed that the transcriptomic profile of our iNK cells closely resembles that of PB-NK cells. Importantly, our iNK cells demonstrated strong cytotoxic abilities against various CCA and BCA cell lines, surpassing the NK-92 cell line in both monolayer cultures and tumor spheroid cultures. CONCLUSION This study highlights the potential of iPSCs as an effective alternative cell source for generating NK cells. Using a two-step in vitro monolayer feeder-free system, we successfully generated iNK cells that not only expressed key NK cell markers and their receptors but also displayed a transcriptomic profile closely resembling PB-NK cells. Furthermore, iNK cells exhibited cytotoxicity against CCA and BCA cell lines comparable to that of PB-NK cells. This approach could pave the way for off-the-shelf NK cell products, potentially enhancing the effectiveness of adoptive NK cell therapy.
Collapse
Affiliation(s)
- Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siriwal Suwanpitak
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Punn Augsornworawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jakkrapatra Srisantitham
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kritayaporn Saiprayong
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Huang Y, Liu X, Li S, Li C, Wang HY, Liu Q, Chen JY, Zhang Y, Li Y, Zhang X, Wang Q, Liu K, Liu YY, Pang Y, Liu S, Fan G, Shao C. Discovery of an unconventional lamprey lymphocyte lineage highlights divergent features in vertebrate adaptive immune system evolution. Nat Commun 2024; 15:7626. [PMID: 39227584 PMCID: PMC11372201 DOI: 10.1038/s41467-024-51763-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Lymphocyte receptors independently evolved in both jawed and jawless vertebrates with similar adaptive immune responses. However, the diversity of functional subtypes and molecular architecture in jawless vertebrate lymphocytes, comparable to jawed species, is not well defined. Here, we profile the gills, intestines, and blood of the lamprey, Lampetra morii, with single-cell RNA sequencing, using a full-length transcriptome as a reference. Our findings reveal higher tissue-specific heterogeneity among T-like cells in contrast to B-like cells. Notably, we identify a unique T-like cell subtype expressing a homolog of the nonlymphoid hematopoietic growth factor receptor, MPL-like (MPL-L). These MPL-L+ T-like cells exhibit features distinct from T cells of jawed vertebrates, particularly in their elevated expression of hematopoietic genes. We further discovered that MPL-L+ VLRA+ T-like cells are widely present in the typhlosole, gill, liver, kidney, and skin of lamprey and they proliferate in response to both a T cell mitogen and recombinant human thrombopoietin. These findings provide new insights into the adaptive immune response in jawless vertebrates, shedding new light on the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Yingyi Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Xiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Shuo Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Chen Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Qun Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jian-Yang Chen
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
| | - Yingying Zhang
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
| | - Yanan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Xianghui Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Kaiqiang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yu-Yan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China
| | - Shanshan Liu
- BGI Research, Shenzhen, China
- MGI Tech, Shenzhen, China
| | - Guangyi Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Gray EH, Srenathan U, Durham LE, Lalnunhlimi S, Steel KJA, Catrina A, Kirkham BW, Taams LS. Human in vitro-induced IL-17A+ CD8+ T-cells exert pro-inflammatory effects on synovial fibroblasts. Clin Exp Immunol 2023; 214:103-119. [PMID: 37367825 PMCID: PMC10711358 DOI: 10.1093/cei/uxad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
IL-17A+ CD8+ T-cells, termed Tc17 cells, have been identified at sites of inflammation in several immune-mediated inflammatory diseases. However, the biological function of human IL-17A+ CD8+ T-cells is not well characterized, likely due in part to the relative scarcity of these cells. Here, we expanded IL-17A+ CD8+ T-cells from healthy donor PBMC or bulk CD8+ T-cell populations using an in vitro polarization protocol. We show that T-cell activation in the presence of IL-1β and IL-23 significantly increased the frequencies of IL-17A+ CD8+ T-cells, which was not further enhanced by IL-6, IL-2, or anti-IFNγ mAb addition. In vitro-generated IL-17A+ CD8+ T-cells displayed a distinct type-17 profile compared with IL-17A- CD8+ T-cells, as defined by transcriptional signature (IL17A, IL17F, RORC, RORA, MAF, IL23R, CCR6), high surface expression of CCR6 and CD161, and polyfunctional production of IL-17A, IL-17F, IL-22, IFNγ, TNFα, and GM-CSF. A significant proportion of in vitro-induced IL-17A+ CD8+ T-cells expressed TCRVα7.2 and bound MR1 tetramers indicative of MAIT cells, indicating that our protocol expanded both conventional and unconventional IL-17A+ CD8+ T-cells. Using an IL-17A secretion assay, we sorted the in vitro-generated IL-17A+ CD8+ T-cells for functional analysis. Both conventional and unconventional IL-17A+ CD8+ T-cells were able to induce pro-inflammatory IL-6 and IL-8 production by synovial fibroblasts from patients with psoriatic arthritis, which was reduced upon addition of anti-TNFα and anti-IL-17A neutralizing antibodies. Collectively, these data demonstrate that human in vitro-generated IL-17A+ CD8+ T-cells are biologically functional and that their pro-inflammatory function can be targeted, at least in vitro, using existing immunotherapy.
Collapse
Affiliation(s)
- Elizabeth H Gray
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Ushani Srenathan
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Lucy E Durham
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Bruce W Kirkham
- Department of Rheumatology, Guy’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust Hospital, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
5
|
Hafer TL, Felton A, Delgado Y, Srinivasan H, Emerman M. A CRISPR Screen of HIV Dependency Factors Reveals That CCNT1 Is Non-Essential in T Cells but Required for HIV-1 Reactivation from Latency. Viruses 2023; 15:1863. [PMID: 37766271 PMCID: PMC10535513 DOI: 10.3390/v15091863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL, UBE2M, TBL1XR1, HDAC3, AMBRA1, and ALYREF. The knockout of Cyclin T1 (CCNT1), a component of the P-TEFb complex that is important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting the activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is non-essential in T cells but is absolutely required for HIV latency reversal.
Collapse
Affiliation(s)
- Terry L. Hafer
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA;
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yennifer Delgado
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Harini Srinivasan
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Hafer TL, Felton A, Delgado Y, Srinivasan H, Emerman M. A CRISPR screen of HIV dependency factors reveals CCNT1 is non-essential in T cells but required for HIV-1 reactivation from latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551016. [PMID: 37546973 PMCID: PMC10402164 DOI: 10.1101/2023.07.28.551016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
We sought to explore the hypothesis that host factors required for HIV-1 replication also play a role in latency reversal. Using a CRISPR gene library of putative HIV dependency factors, we performed a screen to identify genes required for latency reactivation. We identified several HIV-1 dependency factors that play a key role in HIV-1 latency reactivation including ELL , UBE2M , TBL1XR1 , HDAC3 , AMBRA1 , and ALYREF . Knockout of Cyclin T1 ( CCNT1 ), a component of the P-TEFb complex important for transcription elongation, was the top hit in the screen and had the largest effect on HIV latency reversal with a wide variety of latency reversal agents. Moreover, CCNT1 knockout prevents latency reactivation in a primary CD4+ T cell model of HIV latency without affecting activation of these cells. RNA sequencing data showed that CCNT1 regulates HIV-1 proviral genes to a larger extent than any other host gene and had no significant effects on RNA transcripts in primary T cells after activation. We conclude that CCNT1 function is redundant in T cells but is absolutely required for HIV latency reversal.
Collapse
Affiliation(s)
- Terry L Hafer
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yennifer Delgado
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Harini Srinivasan
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Rosine N, Rowe H, Koturan S, Yahia‐Cherbal H, Leloup C, Watad A, Berenbaum F, Sellam J, Dougados M, Aimanianda V, Cuthbert R, Bridgewood C, Newton D, Bianchi E, Rogge L, McGonagle D, Miceli‐Richard C. Characterization of Blood Mucosal-Associated Invariant T Cells in Patients With Axial Spondyloarthritis and of Resident Mucosal-Associated Invariant T Cells From the Axial Entheses of Non-Axial Spondyloarthritis Control Patients. Arthritis Rheumatol 2022; 74:1786-1795. [PMID: 35166073 PMCID: PMC9825958 DOI: 10.1002/art.42090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The importance of interleukin-17A (IL-17A) in the pathogenesis of axial spondyloarthritis (SpA) has been demonstrated by the success of IL-17A blockade. However, the nature of the cell populations that produce this important proinflammatory cytokine remains poorly defined. We undertook this study to characterize the major IL-17A-producing blood cell populations in the peripheral blood of patients with axial SpA, with a focus on mucosal-associated invariant T (MAIT) cells, a population known to be capable of producing IL-17. METHODS We evaluated IL-17A production from 5 sorted peripheral blood cell populations, namely, MAIT cells, γδ T cells, CD4+ T cells, CD8+ T cells, and neutrophils, before and after stimulation with phorbol myristate acetate, the calcium ionophore A23187, and β-1,3-glucan. Expression of IL-17A transcripts and protein were determined using nCounter and ultra-sensitive Simoa technology, respectively. MAIT cells from the axial entheses of non-axial SpA control patients (n = 5) were further characterized using flow cytometric immunophenotyping and quantitative polymerase chain reaction, and the production of IL-17 was assessed following stimulation. RESULTS On a per-cell basis, MAIT cells from peripheral blood produced the most IL-17A compared to CD4+ T cells (P < 0.01), CD8+ T cells (P < 0.0001), and γδ T cells (P < 0.0001). IL-17A was not produced by neutrophils. Gene expression analysis also revealed significantly higher expression of IL17A and IL23R in MAIT cells. Stimulation of peripheral blood MAIT cells with anti-CD3/CD28 and IL-7 and/or IL-18 induced strong expression of IL17F. MAIT cells were present in the normal, unaffected entheses of control patients who did not have axial SpA and showed elevated AHR, JAK1, STAT4, and TGFB1 transcript expression with inducible IL-17A protein. IL-18 protein expression was evident in spinal enthesis digests. CONCLUSION Both peripheral blood MAIT cells and resident MAIT cells in normal axial entheses contribute to the production of IL-17 and may play important roles in the pathogenesis of axial SpA.
Collapse
Affiliation(s)
- Nicolas Rosine
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of ImmunologyParisFrance
| | - Hannah Rowe
- University of Leeds Institute of Rheumatic and Musculoskeletal MedicineLeedsUK
| | - Surya Koturan
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of ImmunologyParisFrance
| | - Hanane Yahia‐Cherbal
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of ImmunologyParisFrance
| | - Claire Leloup
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of ImmunologyParisFrance
| | - Abdulla Watad
- University of Leeds Institute of Rheumatic and Musculoskeletal MedicineLeedsUK
| | - Francis Berenbaum
- Sorbonne Université, Service de Rhumatologie, Hôpital Saint‐Antoine, AP‐HP, and Centre de Recherche Saint‐Antoine, INSERM UMRS 938ParisFrance
| | - Jeremie Sellam
- Sorbonne Université, Service de Rhumatologie, Hôpital Saint‐Antoine, AP‐HP, and Centre de Recherche Saint‐Antoine, INSERM UMRS 938ParisFrance
| | - Maxime Dougados
- INSERM Unité 1153, Clinical epidemiology and biostatistics, PRES Université Sorbonne Paris Cité, Université de Paris, Service de Rhumatologie, Hôpital Cochin Port Royal, AP‐HP, and Unité Mixte AP‐HP/Institut Pasteur, Institut Pasteur, Immunoregulation UnitParisFrance
| | | | - Richard Cuthbert
- University of Leeds Institute of Rheumatic and Musculoskeletal MedicineLeedsUK
| | - Charlie Bridgewood
- University of Leeds Institute of Rheumatic and Musculoskeletal MedicineLeedsUK
| | - Darren Newton
- University of Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds Institute of Medical Research at St James's, and St James's University HospitalLeedsUK
| | - Elisabetta Bianchi
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of Immunology, and Unité Mixte AP‐HP/Institut Pasteur, Institut Pasteur, Immunoregulation UnitParisFrance
| | - Lars Rogge
- Institut Pasteur, Université de Paris, Immunoregulation Unit, Department of Immunology, and Unité Mixte AP‐HP/Institut Pasteur, Institut Pasteur, Immunoregulation UnitParisFrance
| | - Dennis McGonagle
- University of Leeds Institute of Rheumatic and Musculoskeletal MedicineLeedsUK
| | - Corinne Miceli‐Richard
- Université de Paris, Service de Rhumatologie, Hôpital Cochin Port Royal, AP‐HP, and Unité Mixte AP‐HP/Institut Pasteur, Institut Pasteur, Immunoregulation UnitParisFrance
| |
Collapse
|
9
|
Hai B, Song Q, Du C, Mao T, Jia F, Liu Y, Pan X, Zhu B, Liu X. Comprehensive bioinformatics analyses reveal immune genes responsible for altered immune microenvironment in intervertebral disc degeneration. Mol Genet Genomics 2022; 297:1229-1242. [PMID: 35767190 PMCID: PMC9418280 DOI: 10.1007/s00438-022-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
We sought to identify novel biomarkers and related mechanisms that might shape the immune infiltration in IDD, thereby providing novel perspective for IDD diagnosis and therapies. Gene expression data sets GSE124272 (for initial analysis) and GSE56081 (for validation analysis) involving samples from IDD patients and healthy controls were retrieved from the Gene Expression Omnibus (GEO) database. Immune genes associated with IDD were identified by GSEA; module genes that exhibited coordinated expression patterns and the strongest positive or negative correlation with IDD were identified by WGCNA. The intersection between immune genes and module genes was used for LASSO variable selection, whereby we obtained pivotal genes that were highly representative of IDD. We then correlated (Pearson correlation) the expression of pivotal genes with immune cell proportion inferred by CIBERSORT algorithm, and revealed the potential immune-regulatory roles of pivotal genes on the pathogenesis of IDD. We discovered several immune-associated pathways in which IDD-associated immune genes were highly clustered, and identified two gene modules that might promote or inhibit the pathogenesis of IDD. These candidate genes were further narrowed down to 8 pivotal genes, namely, MSH2, LY96, ADAM8, HEBP2, ANXA3, RAB24, ZBTB16 and PIK3CD, among which ANXA3, MSH2, ZBTB16, LY96, PIK3CD, ZBTB16, and ADAM8 were revealed to be correlated with the proportion of CD8 T cells and resting memory CD4 T cells. This work identified 8 pivotal genes that might be involved in the pathogenesis of IDD through triggering various immune-associated pathways and altering the composition of immune and myeloid cells in IDD patients, which provides novel perspectives on IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Bao Hai
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Qingpeng Song
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Chuanchao Du
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Fei Jia
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Street, Haidian District, Beijing, 100191, China.
| |
Collapse
|
10
|
Combined atorvastatin and pentoxifylline in ameliorating inflammation induced by complete Freund’s adjuvant. Inflammopharmacology 2022; 30:935-944. [DOI: 10.1007/s10787-022-00957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/21/2022] [Indexed: 11/05/2022]
|
11
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Won HY, Kim HK, Crossman A, Awasthi P, Gress RE, Park JH. The Timing and Abundance of IL-2Rβ (CD122) Expression Control Thymic iNKT Cell Generation and NKT1 Subset Differentiation. Front Immunol 2021; 12:642856. [PMID: 34054809 PMCID: PMC8161506 DOI: 10.3389/fimmu.2021.642856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Invariant NKT (iNKT) cells are thymus-generated innate-like T cells, comprised of three distinct subsets with divergent effector functions. The molecular mechanism that drives the lineage trifurcation of immature iNKT cells into the NKT1, NKT2, and NKT17 subsets remains a controversial issue that remains to be resolved. Because cytokine receptor signaling is necessary for iNKT cell generation, cytokines are proposed to contribute to iNKT subset differentiation also. However, the precise roles and requirements of cytokines in these processes are not fully understood. Here, we show that IL-2Rβ, a nonredundant component of the IL-15 receptor complex, plays a critical role in both the development and differentiation of thymic iNKT cells. While the induction of IL-2Rβ expression on postselection thymocytes is necessary to drive the generation of iNKT cells, surprisingly, premature IL-2Rβ expression on immature iNKT cells was detrimental to their development. Moreover, while IL-2Rβ is necessary for NKT1 generation, paradoxically, we found that the increased abundance of IL-2Rβ suppressed NKT1 generation without affecting NKT2 and NKT17 cell differentiation. Thus, the timing and abundance of IL-2Rβ expression control iNKT lineage fate and development, thereby establishing cytokine receptor expression as a critical regulator of thymic iNKT cell differentiation.
Collapse
Affiliation(s)
- Hee Yeun Won
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hye Kyung Kim
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Drashansky TT, Helm EY, Curkovic N, Cooper J, Cheng P, Chen X, Gautam N, Meng L, Kwiatkowski AJ, Collins WO, Keselowsky BG, Sant'Angelo D, Huo Z, Zhang W, Zhou L, Avram D. BCL11B is positioned upstream of PLZF and RORγt to control thymic development of mucosal-associated invariant T cells and MAIT17 program. iScience 2021; 24:102307. [PMID: 33870128 PMCID: PMC8042176 DOI: 10.1016/j.isci.2021.102307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans. BCL11B controls MAIT cell development in mice, predominantly MAIT17 lineage BCL11B sustains MAIT17 and TCR signaling programs at steady state and in infection BCL11B binds at MAIT17 and TCR program genes in human MAIT cells Many BCL11B binding sites at MAIT17 and TCR genes are at putative active enhancers
Collapse
Affiliation(s)
- Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jaimee Cooper
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Namrata Gautam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Lingsong Meng
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - William O Collins
- Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, FL 32605, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Derek Sant'Angelo
- Department of Pediatrics, The Child Health Institute of NJ, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Liang Zhou
- UF Health Cancer Center, Gainesville, FL 32610, USA.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Jafari A, Noormohammadi Z, Askari M, Daneshzad E. Zinc supplementation and immune factors in adults: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2020; 62:3023-3041. [PMID: 33356467 DOI: 10.1080/10408398.2020.1862048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This systematic review and meta-analysis aimed to investigate the effect of zinc supplementation on immune factors in randomized controlled trials. METHODS A comprehensive search was done in PubMed, Scopus, Web of Science, Embase, and Cochrane databases up to December 2020. We used standard and weighted mean differences and 95% confidence intervals for net changes in selected parameters of immune responses. Subgroup analysis was used to find heterogeneity. RESULT Overall, 35 RCTs comprising 1995 participants were eligible for this meta-analysis. There was a significant reduction of circulating CRP (WMD: -32.4; 95% CI: -44.45 to -19.62, p < 0.001), hs-CRP (WMD: -0.95; 95% CI: -1.01 to -0.89, p < 0.001), Neutrophil levels (SMD: -0.46; 95% CI: -0.90 to -0.01, p = 0.043), following zinc supplementation. CD4 level also increased significantly, (WMD: 1.79; 95% CI: 0.57 to 3, p = 0.004). Zinc supplementation had no significant effect on WBC (SMD: -0.66; 95% CI: -1.67 to 0.36, p = 0.204), lymphocyte (WMD: 1.86; 95% CI: -0.86 to 4.58, p = 0.181), monocyte levels (SMD: -0.16; 95% CI: -0.07 to 0.39, p = 0.167), CD3 (SMD: 0.37; 95% CI: -0.49 to 1.22, p = 0.399). CONCLUSION Zinc supplementation decreased the CRP, hs-CRP and TNF-α, IL-6, neutrophil and increased CD3 and CD4 level significantly.
Collapse
Affiliation(s)
- Alireza Jafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zeinab Noormohammadi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Plužarić V, Štefanić M, Mihalj M, Tolušić Levak M, Muršić I, Glavaš-Obrovac L, Petrek M, Balogh P, Tokić S. Differential Skewing of Circulating MR1-Restricted and γδ T Cells in Human Psoriasis Vulgaris. Front Immunol 2020; 11:572924. [PMID: 33343564 PMCID: PMC7744298 DOI: 10.3389/fimmu.2020.572924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/05/2020] [Indexed: 01/27/2023] Open
Abstract
Psoriasis vulgaris (PV) is a chronic, recurrent inflammatory dermatosis mediated by aberrantly activated immune cells. The role of the innate-like T cells, particularly gammadelta T (γδT) cells and MR1-restricted T lymphocytes, is incompletely explored, mainly through animal models, or by use of surrogate lineage markers, respectively. Here, we used case-control settings, multiparameter flow cytometry, 5-OP-RU-loaded MR1-tetramers, Luminex technology and targeted qRT-PCR to dissect the cellular and transcriptional landscape of γδ and MR1-restricted blood T cells in untreated PV cases (n=21, 22 matched controls). High interpersonal differences in cell composition were observed, fueling transcriptional variability at healthy baseline. A minor subset of canonical CD4+CD8+MR1-tet+TCRVα7.2+ and CD4+CD8-MR1-tet+TCRVα7.2+ T cells was the most significantly underrepresented community in male PV individuals, whereas Vδ2+ γδ T cells expressing high levels of TCR and Vδ1-δ2- γδ T cells expressing intermediate levels of TCR were selectively enriched in affected males, partly reflecting disease severity. Our findings highlight a formerly unappreciated skewing of human circulating MAIT and γδ cytomes during PV, and reveal their compositional changes in relation to sex, CMV exposure, serum cytokine content, BMI, and inflammatory burden. Complementing numerical alterations, we finally show that flow-sorted, MAIT and γδ populations exhibit divergent transcriptional changes in mild type I psoriasis, consisting of differential bulk expression for signatures of cytotoxicity/type-1 immunity (EOMES, RUNX3, IL18R), type-3 immunity (RORC, CCR6), and T cell innateness (ZBTB16).
Collapse
Affiliation(s)
- Vera Plužarić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Maja Tolušić Levak
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ivanka Muršić
- Department of Dermatology and Venerology, University Hospital Osijek, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czechia
| | - Peter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pecs, Pecs, Hungary
| | - Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, Osijek, Croatia
| |
Collapse
|
16
|
Park JY, DiPalma DT, Kwon J, Fink J, Park JH. Quantitative Difference in PLZF Protein Expression Determines iNKT Lineage Fate and Controls Innate CD8 T Cell Generation. Cell Rep 2020; 27:2548-2557.e4. [PMID: 31141681 DOI: 10.1016/j.celrep.2019.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Zbtb16 encodes the zinc-finger protein PLZF, which is often used as a lineage marker for innate-like T cells and is specifically required for the generation of invariant natural killer T (iNKT) cells in the thymus. Here, we report that not only PLZF expression itself but also the relative abundance of PLZF proteins plays critical roles in iNKT cell development. Utilizing a Zbtb16 hypomorphic allele, PLZFGFPCre, which produces PLZF proteins at only half of the level of the wild-type allele, we show that decreased PLZF expression results in a significant decrease in iNKT cell numbers, which is further associated with profound alterations in iNKT lineage choices and subset composition. These results document that there is a quantitative aspect of PLZF expression in iNKT cells, demonstrating that the availability of PLZF protein is a critical factor for both effective iNKT cell generation and subset differentiation.
Collapse
Affiliation(s)
- Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA; Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, 101 Daehakno, Jongno-gu, Seoul 03080, South Korea
| | - Devon T DiPalma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Juntae Kwon
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Juliet Fink
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1360, USA.
| |
Collapse
|
17
|
Kouakanou L, Peters C, Sun Q, Floess S, Bhat J, Huehn J, Kabelitz D. Vitamin C supports conversion of human γδ T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci Rep 2020; 10:6550. [PMID: 32300237 PMCID: PMC7162875 DOI: 10.1038/s41598-020-63572-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-β in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-β-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-β-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-β, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-β-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene.
Collapse
Affiliation(s)
- Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
| | - Qiwei Sun
- BGI Genomics Institute, Shenzhen, China
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany
- Metabolic Programming, School of Life Sciences, Technical University Munich (TUM), 85354, Freising, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, D-24105, Kiel, Germany.
| |
Collapse
|
18
|
Ding YQ, Luo H, Qi JG. MHCII-restricted T helper cells: an emerging trigger for chronic tactile allodynia after nerve injuries. J Neuroinflammation 2020; 17:3. [PMID: 31900220 PMCID: PMC6942353 DOI: 10.1186/s12974-019-1684-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Nerve injury-induced chronic pain has been an urgent problem for both public health and clinical practice. While transition to chronic pain is not an inevitable consequence of nerve injuries, the susceptibility/resilience factors and mechanisms for chronic neuropathic pain after nerve injuries still remain unknown. Current preclinical and clinical studies, with certain notable limitations, have shown that major histocompatibility complex class II–restricted T helper (Th) cells is an important trigger for nerve injury-induced chronic tactile allodynia, one of the most prevalent and intractable clinical symptoms of neuropathic pain. Moreover, the precise pathogenic neuroimmune interfaces for Th cells remain controversial, not to mention the detailed pathogenic mechanisms. In this review, depending on the biology of Th cells in a neuroimmunological perspective, we summarize what is currently known about Th cells as a trigger for chronic tactile allodynia after nerve injuries, with a focus on identifying what inconsistencies are evident. Then, we discuss how an interdisciplinary perspective would improve the understanding of Th cells as a trigger for chronic tactile allodynia after nerve injuries. Finally, we hope that the expected new findings in the near future would translate into new therapeutic strategies via targeting Th cells in the context of precision medicine to either prevent or reverse chronic neuropathic tactile allodynia.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Sheng H, Marrero I, Maricic I, Fanchiang SS, Zhang S, Sant'Angelo DB, Kumar V. Distinct PLZF +CD8αα + Unconventional T Cells Enriched in Liver Use a Cytotoxic Mechanism to Limit Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2150-2162. [PMID: 31554695 PMCID: PMC6783388 DOI: 10.4049/jimmunol.1900832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
Hepatic immune system is uniquely challenged to mount a controlled effector response to pathogens while maintaining tolerance to diet and microbial Ags. We have identified a novel population of innate-like, unconventional CD8αα+TCRαβ+ T cells in naive mice and in human peripheral blood, called CD8αα Tunc, capable of controlling effector T cell responses. They are NK1.1+ (CD161+ in human), express NK-inhibitory receptors, and express the promyelocytic leukemia zinc finger (PLZF) transcription factor that distinguishes them from conventional CD8+ T cells. These cells display a cytotoxic phenotype and use a perforin-dependent mechanism to control Ag-induced or T cell-mediated autoimmune diseases. CD8αα Tunc are dependent upon IL-15/IL-2Rβ signaling and PLZF for their development and/or survival. They are Foxp3-negative and their regulatory activity is associated with a functionally distinct Qa-1b-dependent population coexpressing CD11c and CD244. A polyclonal TCR repertoire, an activated/memory phenotype, and the presence of CD8αα Tunc in NKT- and in MAIT-deficient as well as in germ-free mice indicates that these cells recognize diverse self-protein Ags. Our studies reveal a distinct population of unconventional CD8+ T cells within the natural immune repertoire capable of controlling autoimmunity and also providing a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Huiming Sheng
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Idania Marrero
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Shaohsuan S Fanchiang
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Sai Zhang
- Rutgers University, New Brunswick, NJ 08901
| | | | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA 92093;
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
20
|
Zhang S, Vieth JA, Krzyzanowska A, Henry EK, Denzin LK, Siracusa MC, Sant'Angelo DB. The Transcription Factor PLZF Is Necessary for the Development and Function of Mouse Basophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:1230-1241. [PMID: 31366712 DOI: 10.4049/jimmunol.1900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023]
Abstract
Basophils are innate immune cells associated with type 2 immunity, allergic reactions, and host defense against parasite infections. In this study, we show that the transcription factor PLZF, which is known for its essential role in the function and development of several innate lymphocyte subsets, is also important for the myeloid-derived basophil lineage. PLZF-deficient mice had decreased numbers of basophil progenitors in the bone marrow and mature basophils in multiple peripheral tissues. Functionally, PLZF-deficient basophils were less responsive to IgE activation and produced reduced amounts of IL-4. The altered function of basophils resulted in a blunted Th2 T cell response to a protein allergen. Additionally, PLZF-deficient basophils had reduced expression of the IL-18 receptor, which impacted migration to lungs. PLZF, therefore, is a major player in controlling type 2 immune responses mediated not only by innate lymphocytes but also by myeloid-derived cells.
Collapse
Affiliation(s)
- Sai Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Joshua A Vieth
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Agata Krzyzanowska
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854
| | - Everett K Henry
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Mark C Siracusa
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Rutgers Graduate School of Biomedical Sciences, Piscataway, NJ 08854.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
21
|
Darcy PW, Jin K, Osorio L, Denzin LK, Sant'Angelo DB. Coexpression of YY1 Is Required to Elaborate the Effector Functions Controlled by PLZF in NKT Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:627-638. [PMID: 31227579 DOI: 10.4049/jimmunol.1900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
The promyelocytic leukemia zinc-finger transcription factor (PLZF) is essential for nearly all of the unique, innate-like functions and characteristics of NKT cells. It is not known, however, if the activity of PLZF is regulated by other factors. In this article, we show that the function of PLZF is completely dependent on the transcription factor Yin Yang 1 (YY1). Mouse NKT cells expressing wild-type levels of PLZF, but deficient for YY1, had developmental defects, lost their characteristic "preformed" mRNA for cytokines, and failed to produce cytokine protein upon primary activation. Immunoprecipitation experiments showed that YY1 and PLZF were coassociated. Taken together, these biochemical and genetic data show that the broadly expressed transcription factor, YY1, is required for the cell-specific "master regulator" functions of PLZF.
Collapse
Affiliation(s)
- Patrick W Darcy
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Kangxin Jin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Louis Osorio
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
22
|
Dashtsoodol N, Bortoluzzi S, Schmidt-Supprian M. T Cell Receptor Expression Timing and Signal Strength in the Functional Differentiation of Invariant Natural Killer T Cells. Front Immunol 2019; 10:841. [PMID: 31080448 PMCID: PMC6497757 DOI: 10.3389/fimmu.2019.00841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
The CD1d-restricted Vα14 invariant NKT (iNKT) cell lineage in mice (Vα24 in humans) represents an evolutionary conserved innate-like immune cell type that recognizes glycolipid antigens. Because of their unique ability to promptly secrete copious amounts of both pro-inflammatory and anti-inflammatory cytokines, typically produced by different T helper cell types, iNKT cells are implicated in the regulation of various pathologic conditions such as infection, allergy, autoimmune disease, maintenance of transplantation tolerance, and cancer. This striking multifaceted role in immune regulation is correlated with the presence of multiple functionally distinct iNKT cell subsets that can be distinguished based on the expression of characteristic surface markers and transcription factors. However, to date it, remains largely unresolved how this puzzling diversity of iNKT cell functional subsets emerges and what factors dictate the type of effector cell differentiation during the thymic differentiation considering the mono-specific nature of their T cell receptor (TCR) and their selecting molecule CD1d. Here, we summarize recent findings focusing on the role of TCR-mediated signaling and discuss possible mechanisms that may influence the sub-lineage choice of iNKT cells.
Collapse
Affiliation(s)
- Nyambayar Dashtsoodol
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany.,Department of Microbiology and Immunology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sabrina Bortoluzzi
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| | - Marc Schmidt-Supprian
- Department of Hematology and Medical Oncology, Klinikum rechts der Isar and TranslaTUM Cancer Center, Technische Universität München, München, Germany
| |
Collapse
|
23
|
PLZF play as an indirect facilitator of thymic retention for the innate-like T-cells to aquire innate-like functions. Cell Death Dis 2018; 9:1044. [PMID: 30310052 PMCID: PMC6181981 DOI: 10.1038/s41419-018-1075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/29/2022]
|
24
|
Tuttle KD, Krovi SH, Zhang J, Bedel R, Harmacek L, Peterson LK, Dragone LL, Lefferts A, Halluszczak C, Riemondy K, Hesselberth JR, Rao A, O'Connor BP, Marrack P, Scott-Browne J, Gapin L. TCR signal strength controls thymic differentiation of iNKT cell subsets. Nat Commun 2018; 9:2650. [PMID: 29985393 PMCID: PMC6037704 DOI: 10.1038/s41467-018-05026-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
During development in the thymus, invariant natural killer T (iNKT) cells commit to one of three major functionally different subsets, iNKT1, iNKT2, and iNKT17. Here, we show that T cell antigen receptor (TCR) signal strength governs the development of iNKT cell subsets, with strong signaling promoting iNKT2 and iNKT17 development. Altering TCR diversity or signaling diminishes iNKT2 and iNKT17 cell subset development in a cell-intrinsic manner. Decreased TCR signaling affects the persistence of Egr2 expression and the upregulation of PLZF. By genome-wide comparison of chromatin accessibility, we identify a subset of iNKT2-specific regulatory elements containing NFAT and Egr binding motifs that is less accessible in iNKT2 cells that develop from reduced TCR signaling. These data suggest that variable TCR signaling modulates regulatory element activity at NFAT and Egr binding sites exerting a determinative influence on the dynamics of gene enhancer accessibility and the developmental fate of iNKT cells. Invariant natural killer T (iNKT) cells can be subsetted by their cytokine profiles, but how they develop in the thymus is unclear. Here the authors show, by analysing mice carrying mutant Zap70 genes, that T cell receptor signaling strength induces epigenetic changes of genes to modulate iNKT lineages.
Collapse
Affiliation(s)
- Kathryn D Tuttle
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Romain Bedel
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Oncology, University of Lausanne, Chemin des Boveresses 155, Epalinges, 1066, Switzerland
| | - Laura Harmacek
- Center for Genes, Environment, and Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA
| | - Lisa K Peterson
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA.,ARUP Laboratories, Institute of Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, 84108, UT, Switzerland.,Department of Pathology, University of Utah, 30N 1900E, Salt Lake City, 84132, UT, USA
| | - Leonard L Dragone
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA.,Merck Research Laboratories, San Francisco, CA, USA
| | - Adam Lefferts
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Catherine Halluszczak
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, 80045, CO, USA
| | - Jay R Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, 80045, CO, USA.,Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - Anjana Rao
- La Jolla Institute, 9420 Athena Cir, La Jolla, 92037, CA, USA.,Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA.,University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Brian P O'Connor
- Center for Genes, Environment, and Health, Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, 80206, CO, USA
| | - Philippa Marrack
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA
| | - James Scott-Browne
- La Jolla Institute, 9420 Athena Cir, La Jolla, 92037, CA, USA.,Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
| |
Collapse
|
25
|
Bcl11b and combinatorial resolution of cell fate in the T-cell gene regulatory network. Proc Natl Acad Sci U S A 2018; 114:5800-5807. [PMID: 28584128 DOI: 10.1073/pnas.1610617114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
T-cell development from hematopoietic progenitors depends on multiple transcription factors, mobilized and modulated by intrathymic Notch signaling. Key aspects of T-cell specification network architecture have been illuminated through recent reports defining roles of transcription factors PU.1, GATA-3, and E2A, their interactions with Notch signaling, and roles of Runx1, TCF-1, and Hes1, providing bases for a comprehensively updated model of the T-cell specification gene regulatory network presented herein. However, the role of lineage commitment factor Bcl11b has been unclear. We use self-organizing maps on 63 RNA-seq datasets from normal and perturbed T-cell development to identify functional targets of Bcl11b during commitment and relate them to other regulomes. We show that both activation and repression target genes can be bound by Bcl11b in vivo, and that Bcl11b effects overlap with E2A-dependent effects. The newly clarified role of Bcl11b distinguishes discrete components of commitment, resolving how innate lymphoid, myeloid, and dendritic, and B-cell fate alternatives are excluded by different mechanisms.
Collapse
|
26
|
Sekar D, Govene L, Del Río ML, Sirait-Fischer E, Fink AF, Brüne B, Rodriguez-Barbosa JI, Weigert A. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma. Int J Mol Sci 2018. [PMID: 29518903 PMCID: PMC5877613 DOI: 10.3390/ijms19030752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.
Collapse
Affiliation(s)
- Divya Sekar
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| | - Luisa Govene
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| | - María-Luisa Del Río
- Transplantation Immunobiology Section, School of Biological Sciences and Biotechnology, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, 24071 Leon, Spain.
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| | - Annika F Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, 60590 Frankfurt, Germany.
| | - José I Rodriguez-Barbosa
- Transplantation Immunobiology Section, School of Biological Sciences and Biotechnology, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, 24071 Leon, Spain.
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
27
|
The role of zinc and its compounds in leukemia. J Biol Inorg Chem 2018; 23:347-362. [DOI: 10.1007/s00775-018-1545-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
|
28
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
29
|
Mao AP, Ishizuka IE, Kasal DN, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun 2017; 8:863. [PMID: 29038474 PMCID: PMC5643357 DOI: 10.1038/s41467-017-00882-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Zbtb16-encoded PLZF is a signature transcription factor (TF) that directs the acquisition of T-helper effector programs during the development of multiple innate lymphocyte lineages, including natural killer T cell, innate lymphoid cell, mucosal-associated invariant T cell and γδ lineages. PLZF is also essential in osteoblast and spermatogonial development. How Zbtb16 itself is regulated in different lineages is incompletely understood. Here, by systematic CRISPR/Cas9-assisted deletions of chromatin accessible regions within the Zbtb16 locus in mouse, we identify a critical enhancer controlling PLZF expression exclusively in innate lymphoid lineages. Multiple sites within this enhancer express canonical motifs for the TF Runx1, which is essential for the development of these lineages. Notably, some regulatory sites control the kinetic rather than the overall level of PLZF expression. Thus, our comprehensive, unbiased analysis of regulatory elements in vivo reveals critical mechanisms of Zbtb16 regulation shared between innate and innate-like lymphoid lineages. Zbtb16-encoded transcription factor PLZF directs the differentiation of multiple innate and innate-like cell lineages, but how Zbtb16 itself is regulated remains unclear. Here the authors show, using CRISPR gene editing, ATAC-seq and ChIP-seq, that specific Runx1-bound enhancer elements critically modulate lineage-dependent expressions of PLZF.
Collapse
Affiliation(s)
- Ai-Ping Mao
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Isabel E Ishizuka
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Malay Mandal
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.,Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA. .,Department of Pathology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Legoux F, Salou M, Lantz O. Unconventional or Preset αβ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev Cell Dev Biol 2017; 33:511-535. [PMID: 28661722 DOI: 10.1146/annurev-cellbio-100616-060725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A majority of T cells bearing the αβ T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.
Collapse
Affiliation(s)
- Francois Legoux
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , , .,Center of Clinical Investigations, CIC-1428 IGR/Curie, 75005 Paris, France.,Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France
| |
Collapse
|
31
|
Lee YJ, Starrett GJ, Lee ST, Yang R, Henzler CM, Jameson SC, Hogquist KA. Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst γδ T, Innate Lymphoid, and Th Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1460-70. [PMID: 27385777 DOI: 10.4049/jimmunol.1600643] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Abstract
Invariant NKT cells differentiate into three predominant effector lineages in the steady state. To understand these lineages, we sorted undifferentiated invariant NK T progenitor cells and each effector population and analyzed their transcriptional profiles by RNAseq. Bioinformatic comparisons were made to effector subsets among other lymphocytes, specifically Th cells, innate lymphoid cells (ILC), and γδ T cells. Myc-associated signature genes were enriched in NKT progenitors, like in other hematopoietic progenitors. Only NKT1 cells, but not NKT2 and NKT17 cells, had transcriptome similarity to NK cells and were also similar to other IFN-γ-producing lineages such as Th1, ILC1, and intraepithelial γδ T cells. NKT2 and NKT17 cells were similar to their analogous subsets of γδ T cells and ILCs, but surprisingly, not to Th2 and Th17 cells. We identified a set of genes common to each effector lineage regardless of Ag receptor specificity, suggesting the use of conserved regulatory cores for effector function.
Collapse
Affiliation(s)
- You Jeong Lee
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455;
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455; and
| | - Seungeun Thera Lee
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Rendong Yang
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455
| | - Christine M Henzler
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455;
| |
Collapse
|
32
|
Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival. Proc Natl Acad Sci U S A 2016; 113:7608-13. [PMID: 27330109 DOI: 10.1073/pnas.1521846113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.
Collapse
|
33
|
Thapa P, Chen MW, McWilliams DC, Belmonte P, Constans M, Sant'Angelo DB, Shapiro VS. NKAP Regulates Invariant NKT Cell Proliferation and Differentiation into ROR-γt-Expressing NKT17 Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4987-98. [PMID: 27183586 DOI: 10.4049/jimmunol.1501653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
Abstract
Invariant NKT (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and they recognize glycolipids presented by an MHC class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2, and NKT17 functional subsets that preferentially produce cytokines IFN-γ, IL-4, and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific deletion of NKAP in the iNKT cell lineage, leading to severe reductions in thymic and peripheral iNKT cell numbers. The decreased cell number is not due to defective homeostasis or increased apoptosis, and it is not rescued by Bcl-xL overexpression. NKAP is also required for differentiation into NKT17 cells, but NKT1 and NKT2 cell development and function are unaffected. This failure in NKT17 development is rescued by transgenic expression of promyelocytic leukemia zinc finger; however, the promyelocytic leukemia zinc finger transgene does not restore iNKT cell numbers or the block in positive selection into the iNKT cell lineage in CD4-cre NKAP conditional knockout mice. Therefore, NKAP regulates multiple steps in iNKT cell development and differentiation.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Meibo W Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | | | - Paul Belmonte
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Megan Constans
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; and
| | - Derek B Sant'Angelo
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901
| | | |
Collapse
|
34
|
Gapin L. Development of invariant natural killer T cells. Curr Opin Immunol 2016; 39:68-74. [PMID: 26802287 DOI: 10.1016/j.coi.2016.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/16/2015] [Accepted: 01/02/2016] [Indexed: 01/09/2023]
Abstract
Invariant natural killer T (iNKT) cells develop into functionally distinct subsets. Each subset expresses a unique combination of transcription factors that regulate cytokine gene transcription upon activation. The tissue distribution and localization within tissues also varies between subsets. Importantly, the relative abundance of the various subsets is directly responsible for altering several immunological parameters, which subsequently affect the immune response. Here, I review recent advances in our understanding of the molecular regulation of iNKT cell subset development.
Collapse
Affiliation(s)
- Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical campus and National Jewish Health, Aurora, CO 80045, USA.
| |
Collapse
|