1
|
Bhat M, Saha P, Narasimhan M, Shelar A, Hole A, Murali Krishna C, Govekar R. Analysis of lipids by Raman spectroscopy and mass spectrometry provides a detection tool and mechanistic insight into imatinib resistance in CML-BC. Biochim Biophys Acta Gen Subj 2025; 1869:130771. [PMID: 39938699 DOI: 10.1016/j.bbagen.2025.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) is a major challenge in the treatment of chronic myeloid leukemia (CML). Established tests based on the known mechanisms of resistance in the initial chronic phase (CP) confirm resistance, reveal the underlying reason and thereby direct treatment modifications. In the terminal phase of blast crisis (BC), however, additional partially identified mechanisms of resistance exist which necessitates developing modalities to detect resistance regardless of the underlying mechanism and concurrent exploration of the resistance mechanism to assist in identification of appropriate drug targets. In this study both the clinical objectives were achieved by analysing lipids in BC cells, sensitive and resistant to TKIs, using the complementary strengths of distinct analytical technologies. Raman spectroscopy, through the spectral signatures with lipids as a significant differentiating component could segregate resistant from sensitive cells in the Principal Component Analysis (PCA) and Principal Component based Linear Discriminant Analysis (PC-LDA). This provided a tool to rapidly detect resistance in CML-BC despite unclear mechanism of TKI resistance. The depth of coverage achievable by mass spectrometry allowed the generation of quantitative differential profile of individual lipids in resistant cells. The alterations were in diverse classes of lipids which are involved in cell signalling and inhibition studies could link these alterations to modulation of phospholipase A2 (PLA2) levels mediated by p38 mitogen activated protein kinase (p38MAPK), which is causally associated with TKI resistance in CML-BC. Together, lipid analysis using the two platforms, contributed to the detection and mechanistic understanding of imatinib resistance in CML-BC.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Humans
- Drug Resistance, Neoplasm
- Spectrum Analysis, Raman/methods
- Lipids/analysis
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Blast Crisis/drug therapy
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Mass Spectrometry/methods
- Principal Component Analysis
- Cell Line, Tumor
Collapse
Affiliation(s)
- Manish Bhat
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India
| | - Panchali Saha
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India
| | - Mythreyi Narasimhan
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Pvt. Ltd., Mumbai 400 059, India
| | - Arti Hole
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - C Murali Krishna
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India.
| | - Rukmini Govekar
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai 400094, India.
| |
Collapse
|
2
|
Mazur N, Dzhagan V, Kapush O, Isaieva O, Demydov P, Lytvyn V, Chegel V, Kukla O, Yukhymchuk V. SERS of nitro group compounds for sensing of explosives. RSC Adv 2025; 15:252-260. [PMID: 39758932 PMCID: PMC11694722 DOI: 10.1039/d4ra07309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Detecting small concentrations of nitro-compounds via surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate. In the second method, the analyte solution was drop-casted onto SERS substrates formed by annealing of thin Ag films deposited over self-assembled layers of SiO2 spheres. Both approaches allowed for the SERS detection of analyte concentrations down to 10-4-10-7 M. Furthermore, the possible reasons for the different enhancements of the above analytes as well as their differences in the liquid (drop) and dried states are discussed.
Collapse
Affiliation(s)
- Nazar Mazur
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Dzhagan
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Olga Kapush
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Oksana Isaieva
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Petro Demydov
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Vitalii Lytvyn
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Chegel
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Oleksandr Kukla
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Yukhymchuk
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| |
Collapse
|
3
|
Dagci I, Solak K, Oncer N, Yildiz Arslan S, Unver Y, Yilmaz M, Mavi A. Machine Learning-Assisted SERS Reveals the Biochemical Signature of Enhanced Protein Secretion from Surface-Modified Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70392-70406. [PMID: 39662987 DOI: 10.1021/acsami.4c18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study introduces a novel investigation of the interaction between Komagataella phaffii cells and iron oxide-based magnetic nanoparticles (Fe3O4 MNPs) via protein secretion and machine learning (ML)-assisted surface-enhanced Raman scattering (SERS). For the first time, we produced Fe3O4, Fe3O4@PEG, Fe3O4@PEI10kDa, and Fe3O4@PEI25kDa MNPs by a one-pot coprecipitation reaction. The addition of polymers to the reaction conditions significantly affected the shape, surface charge, size, and size distribution of the MNPs. The surface modification of MNPs is effectively accomplished using polyethylenimine (PEI), and the ζ-potential values of the MNPs exceed +25 mV under the NH4OH control. The homogeneity of MNPs synthesized with NH4OH is more pronounced according to transmission electron microscopy (TEM) pictures. All MNPs exhibited excellent immobilization efficiency (>92%) when we used 250 ppm Fe-containing MNP solutions. Smaller MNPs uniformly encapsulated the surface of K. phaffii cells, whereas larger MNPs exhibited irregular accumulation. K. phaffii cells exhibited excellent viability in all MNP solutions at up to 1000 ppm of Fe concentrations. Finally, the highest recombinant azurin protein secretion rate was obtained in Fe3O4@PEI10kDa MNP-immobilized cells (about 1.3 times). The ML-assisted SERS analysis revealed that MNP interactions with K. phaffii cells were mediated by proteins such as mannoproteins and membrane transporter proteins as well as N-acetylglucosamine (i.e., chitin). These findings revealed the effect of the size and surface properties of MNPs on the immobilization of K. phaffii cells and the enormous potential of magnetic immobilization for protein secretion.
Collapse
Affiliation(s)
- Ibrahim Dagci
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
| | - Kubra Solak
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Türkiye
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Nazli Oncer
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
| | - Yagmur Unver
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Mehmet Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Türkiye
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
- Department of Chemical Engineering, Atatürk University, 25240 Erzurum, Türkiye
| | - Ahmet Mavi
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Türkiye
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, 25240 Erzurum, Türkiye
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, 25240 Erzurum, Türkiye
| |
Collapse
|
4
|
Costa MHG, Carrondo I, Isidro IA, Serra M. Harnessing Raman spectroscopy for cell therapy bioprocessing. Biotechnol Adv 2024; 77:108472. [PMID: 39490752 DOI: 10.1016/j.biotechadv.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Cell therapy manufacturing requires precise monitoring of critical parameters to ensure product quality, consistency and to facilitate the implementation of cost-effective processes. While conventional analytical methods offer limited real-time insights, integration of process analytical technology tools such as Raman spectroscopy in bioprocessing has the potential to drive efficiency and reliability during the manufacture of cell-based therapies while meeting stringent regulatory requirements. The non-destructive nature of Raman spectroscopy, combined with its ability to be integrated on-line with scalable platforms, allows for continuous data acquisition, enabling real-time correlations between process parameters and critical quality attributes. Herein, we review the role of Raman spectroscopy in cell therapy bioprocessing and discuss how simultaneous measurement of distinct parameters and attributes, such as cell density, viability, metabolites and cell identity biomarkers can streamline on-line monitoring and facilitate adaptive process control. This, in turn, enhances productivity and mitigates process-related risks. We focus on recent advances integrating Raman spectroscopy across various manufacturing stages, from optimizing culture media feeds to monitoring bioprocess dynamics, covering downstream applications such as detection of co-isolated contaminating cells, cryopreservation, and quality control of the drug product. Finally, we discuss the potential of Raman spectroscopy to revolutionize current practices and accelerate the development of advanced therapy medicinal products.
Collapse
Affiliation(s)
- Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Inês Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A Isidro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Sun J, Lai W, Zhao J, Xue J, Zhu T, Xiao M, Man T, Wan Y, Pei H, Li L. Rapid Identification of Drug Mechanisms with Deep Learning-Based Multichannel Surface-Enhanced Raman Spectroscopy. ACS Sens 2024; 9:4227-4235. [PMID: 39138903 DOI: 10.1021/acssensors.4c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Rapid identification of drug mechanisms is vital to the development and effective use of chemotherapeutics. Herein, we develop a multichannel surface-enhanced Raman scattering (SERS) sensor array and apply deep learning approaches to realize the rapid identification of the mechanisms of various chemotherapeutic drugs. By implementing a series of self-assembled monolayers (SAMs) with varied molecular characteristics to promote heterogeneous physicochemical interactions at the interfaces, the sensor can generate diversified SERS signatures for directly high-dimensionality fingerprinting drug-induced molecular changes in cells. We further train the convolutional neural network model on the multidimensional SAM-modulated SERS data set and achieve a discriminatory accuracy toward 99%. We expect that such a platform will contribute to expanding the toolbox for drug screening and characterization and facilitate the drug development process.
Collapse
Affiliation(s)
- Jiajia Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Jiayan Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jinhong Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
6
|
Tewes TJ, Kerst M, Pavlov S, Huth MA, Hansen U, Bockmühl DP. Unveiling the efficacy of a bulk Raman spectra-based model in predicting single cell Raman spectra of microorganisms. Heliyon 2024; 10:e27824. [PMID: 38510034 PMCID: PMC10950671 DOI: 10.1016/j.heliyon.2024.e27824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
In a previous publication, we trained predictive models based on Raman bulk spectra of microorganisms placed on a silicon dioxide protected silver mirror slide to make predictions for new Raman spectra, unknown to the models, of microorganisms placed on a different substrate, namely stainless steel. Now we have combined large sections of this data and trained a convolutional neural network (CNN) to make predictions for single cell Raman spectra. We show that a database based on microbial bulk material is conditionally suited to make predictions for the same species in terms of single cells. Data of 13 different microorganisms (bacteria and yeasts) were used. Two of the 13 species could be identified 90% correctly and five other species 71%-88%. The six remaining species were correctly predicted by only 0%-49%. Especially stronger fluorescence in bulk material compared to single cells but also photodegradation of carotenoids are some effects that can complicate predictions for single cells based on bulk data. The results could be helpful in assessing universal Raman tools or databases.
Collapse
Affiliation(s)
- Thomas J. Tewes
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - Mario Kerst
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - Svyatoslav Pavlov
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - Miriam A. Huth
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| | - Ute Hansen
- Faculty of Communication and Environment, Rhine-Waal University of Applied Sciences, Friedrich-Heinrich-Allee, 47475, Kamp-Lintfort, Germany
| | - Dirk P. Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533, Kleve, Germany
| |
Collapse
|
7
|
Frempong SB, Salbreiter M, Mostafapour S, Pistiki A, Bocklitz TW, Rösch P, Popp J. Illuminating the Tiny World: A Navigation Guide for Proper Raman Studies on Microorganisms. Molecules 2024; 29:1077. [PMID: 38474589 PMCID: PMC10934050 DOI: 10.3390/molecules29051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless, a lot of different parameters need to be considered to establish a reliable database capable of identifying real-world samples such as medical or environmental probes. In this review, the establishment of such reliable databases with the proper design in microbiological Raman studies is demonstrated, shining a light into all the parts that require attention. Aspects such as the strain selection, sample preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is to serve as a guide for the design of microbiological Raman studies that can support the establishment of this method in different fields.
Collapse
Affiliation(s)
- Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sara Mostafapour
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thomas W. Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
8
|
Chen Q, Zhai H, Beebe DJ, Li C, Wang B. Visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions. Nat Commun 2024; 15:1155. [PMID: 38326343 PMCID: PMC10850056 DOI: 10.1038/s41467-024-45076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Under-oil open microfluidic system, utilizing liquid-liquid boundaries for confinements, offers inherent advantages including clogging-free flow channels, flexible access to samples, and adjustable gas permeation, making it well-suited for studying multi-phase chemical reactions that are challenging for closed microfluidics. However, reports on the novel system have primarily focused on device fabrication and functionality demonstrations within biology, leaving their application in broader chemical analysis underexplored. Here, we present a visualization-enhanced under-oil open microfluidic system for in situ characterization of multi-phase chemical reactions with Raman spectroscopy. The enhanced system utilizes a semi-transparent silicon (Si) nanolayer over the substrate to enhance visualization in both inverted and upright microscope setups while reducing Raman noise from the substrate. We validated the system's chemical stability and capability to monitor gas evolution and gas-liquid reactions in situ. The enhanced under-oil open microfluidic system, integrating Raman spectroscopy, offers a robust open-microfluidic platform for label-free molecular sensing and real-time chemical/biochemical process monitoring in multi-phase systems.
Collapse
Affiliation(s)
- Qiyuan Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Bu Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Dzhagan V, Mazur N, Kapush O, Skoryk M, Pirko Y, Yemets A, Dzhahan V, Shepeliavyi P, Valakh M, Yukhymchuk V. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. ACS OMEGA 2024; 9:4819-4830. [PMID: 38313516 PMCID: PMC10832017 DOI: 10.1021/acsomega.3c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
One of the requirements of an efficient surface-enhanced Raman spectroscopy (SERS) substrate is a developed surface morphology with a high density of "hot spots", nm-scale spacings between plasmonic nanoparticles. Of particular interest are plasmonic architectures that could enable self-localization (enrichment) of the analyte in the hot spots. We report a straightforward method of fabrication of efficient SERS substrates that comply with these requirements. The basis of the substrate is a large-area film of tightly packed SiO2 spheres formed by their quick self-assembling upon drop casting from the solution. Thermally evaporated thin Ag layer is converted by quick thermal annealing into nanoparticles (NPs) self-assembled in the trenches between the silica spheres, i.e., in the places where the analyte molecules get localized upon deposition from solution and drying. Therefore, the obtained substrate morphology enables an efficient enrichment of the analyte in the hot spots formed by the densely arranged plasmonic NPs. The high efficiency of the developed SERS substrates is demonstrated by the detection of Rhodamine 6G down to 10-13 mol/L with an enhancement factor of ∼108, as well as the detection of low concentrations of various nonresonant analytes, both small dye molecules and large biomolecules. The developed approach to SERS substrates is very straightforward for implementation and can be further extended to using gold or other plasmonic NPs.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Nazar Mazur
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Olga Kapush
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykola Skoryk
- G. V.
Kurdyumov Institute for Metal Physics, National
Academy of Sciences of Ukraine, Kyiv 03142, Ukraine
| | - Yaroslav Pirko
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Alla Yemets
- Institute
of Food Biotechnology and Genomics, National
Academy of Sciences of Ukraine, Kyiv 04123, Ukraine
| | - Vladyslav Dzhahan
- Physics
Department, Taras Shevchenko National University
of Kyiv, Kyiv 01601, Ukraine
| | - Petro Shepeliavyi
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Mykhailo Valakh
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Volodymyr Yukhymchuk
- V.
Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| |
Collapse
|
10
|
Dzhagan V, Smirnov O, Kovalenko M, Gudymenko O, Mazur N, Kapush O, Skoryk M, Pirko Y, Yemets A, Valakh M, Shepeliavyi P, Yukhymchuk V. SERS-substrates based on ZnO nanoflowers prepared by green synthesis. Anal Biochem 2023; 681:115328. [PMID: 37722524 DOI: 10.1016/j.ab.2023.115328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
ZnO nanoparticles (NPs) with a flower-like morphology, synthesized by an affordable colloidal route using an aqueous fungi extract of Ganoderma lucidum as a reducing agent and stabilizer, are investigated as SERS-substrate. Each "flower" has large effective surface that is preserved at packing particles into a dense film and thus exhibits an advantageous property for SERS and similar sensing applications. The mycoextract used in our low-cost and green synthesis as surface stabilizer allows subsequent deposition of metal NPs or layers. One type of SERS substrates studied here was ZnO NPs decorated in situ in the solution by Ag NPs, another type was prepared by thermally evaporating Ag layer on the ZnO NP film on a substrate. A huge difference in the enhancement of the same analyte in the solution and in the dried form is found and discussed. Detection down to 10-7 M of standard dye analytes such as rhodamine 6G and methylene blue was achieved without additional optimization of the SERS substrates. The observed SERS-activity demonstrate the potential of both the free-standing flower-like ZnO NPs and thereof made dense films also for other applications where large surface area accessible for the external agent is crucial, such as catalysis or sensing.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Oleksandr Smirnov
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mariia Kovalenko
- ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Gudymenko
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nazar Mazur
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Skoryk
- G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav Pirko
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykhailo Valakh
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Petro Shepeliavyi
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Yukhymchuk
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
11
|
Elsayed A, Othman AM, Sabry YM, Marty F, Omran H, Khalil D, Liu AQ, Bourouina T. Substrate Signal Inhibition in Raman Analysis of Microplastic Particles. ACS OMEGA 2023; 8:9854-9860. [PMID: 36969403 PMCID: PMC10034780 DOI: 10.1021/acsomega.2c06536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
In Raman analysis, the substrate material serves very often for signal enhancement, especially when metallic surfaces are involved; however, in other cases, the substrate has an opposite effect as it is the source of a parasitic signal preventing the observation of the sample material of interest. This is particularly true with the advent of microfluidic devices involving either silicon or polymer surfaces. On the other hand, in a vast majority of Raman experiments, the analysis is made on a horizontal support holding the sample of interest. In our paper, we report that a simple tilting of the supporting substrate, in this case, silicon, can drastically decrease and eventually inhibit the Raman signal of the substrate material, leading to an easier observation of the target analyte of the sample, in this case, microplastic particles. This effect is very pronounced especially when looking for tiny particles. Explanation of this trend is provided thanks to a supporting experiment and further numerical simulations that suggest that the lensing effect of the particles plays an important role. These findings may be useful for Raman analysis of other microscale particles having curved shapes, including biological cells.
Collapse
Affiliation(s)
- Ahmed
A. Elsayed
- CNRS
ESYCOM UMR 9007, Noisy-le-Grand, ESIEE, Université Gustave Eiffel, Paris 93162, France
| | - Ahmed M. Othman
- CNRS
ESYCOM UMR 9007, Noisy-le-Grand, ESIEE, Université Gustave Eiffel, Paris 93162, France
- Si-Ware
Systems, 3 Khalid Ibn
Al-Waleed Street, Heliopolis, Cairo 11361, Egypt
| | - Yasser M. Sabry
- Si-Ware
Systems, 3 Khalid Ibn
Al-Waleed Street, Heliopolis, Cairo 11361, Egypt
- Faculty
of Engineering, Ain-Shams University, 1 Elsarayat Street, Abbassia, Cairo 11535, Egypt
| | - Frédéric Marty
- CNRS
ESYCOM UMR 9007, Noisy-le-Grand, ESIEE, Université Gustave Eiffel, Paris 93162, France
| | - Haitham Omran
- Faculty
of Information Engineering and Technology, Laboratory of Micro Optics, German University in Cairo, Cairo 11835, Egypt
| | - Diaa Khalil
- Si-Ware
Systems, 3 Khalid Ibn
Al-Waleed Street, Heliopolis, Cairo 11361, Egypt
- Faculty
of Engineering, Ain-Shams University, 1 Elsarayat Street, Abbassia, Cairo 11535, Egypt
| | - Ai-Qun Liu
- CNRS
ESYCOM UMR 9007, Noisy-le-Grand, ESIEE, Université Gustave Eiffel, Paris 93162, France
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tarik Bourouina
- CNRS
ESYCOM UMR 9007, Noisy-le-Grand, ESIEE, Université Gustave Eiffel, Paris 93162, France
| |
Collapse
|
12
|
Thomas G, Fitzgerald ST, Gautam R, Chen F, Haugen E, Rasiah PK, Adams WR, Mahadevan-Jansen A. Enhanced characterization of breast cancer phenotypes using Raman micro-spectroscopy on stainless steel substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1188-1205. [PMID: 36799369 DOI: 10.1039/d2ay01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biochemical insights into varying breast cancer (BC) phenotypes can provide a fundamental understanding of BC pathogenesis, while identifying novel therapeutic targets. Raman spectroscopy (RS) can gauge these biochemical differences with high specificity. For routine RS, cells are traditionally seeded onto calcium fluoride (CaF2) substrates that are costly and fragile, limiting its widespread adoption. Stainless steel has been interrogated previously as a less expensive alternative to CaF2 substrates, while reporting increased Raman signal intensity than the latter. We sought to further investigate and compare the Raman signal quality measured from stainless steel versus CaF2 substrates by characterizing different BC phenotypes with altered human epidermal growth factor receptor 2 (HER2) expression. Raman spectra were obtained on stainless steel and CaF2 substrates for HER2 negative cells - MDA-MB-231, MDA-MB-468 and HER2 overexpressing cells - AU565, SKBr3. Upon analyzing signal-to-noise ratios (SNR), stainless steel provided a stronger Raman signal, improving SNR by 119% at 1450 cm-1 and 122% at 2925 cm-1 on average compared to the CaF2 substrate. Utilizing only 22% of laser power on sample relative to the CaF2 substrate, stainless steel still yielded improved spectral characterization over CaF2, achieving 96.0% versus 89.8% accuracy in BC phenotype discrimination and equivalent 100.0% accuracy in HER2 status classification. Spectral analysis further highlighted increased lipogenesis and altered metabolism in HER2 overexpressing cells, which was subsequently visualized with coherent anti-Stokes Raman scattering microscopy. Our findings demonstrate that stainless steel substrates deliver improved Raman signal and enhanced spectral characterization, underscoring its potential as a cost-effective alternative to CaF2 for non-invasively monitoring cellular biochemical dynamics in translational cancer research.
Collapse
Affiliation(s)
- Giju Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Sean T Fitzgerald
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Rekha Gautam
- Tyndall National Institute, Cork, T12 R5CP, Ireland
| | - Fuyao Chen
- Yale School of Medicine, Yale University, New Haven 06510, CT, USA
| | - Ezekiel Haugen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Pratheepa Kumari Rasiah
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt University, Nashville 37232, TN, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| |
Collapse
|
13
|
Comparative Study of Sample Carriers for the Identification of Volatile Compounds in Biological Fluids Using Raman Spectroscopy. Molecules 2022; 27:molecules27103279. [PMID: 35630756 PMCID: PMC9144713 DOI: 10.3390/molecules27103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrational spectroscopic techniques and especially Raman spectroscopy are gaining ground in substituting the officially established chromatographic methods in the identification of ethanol and other volatile substances in body fluids, such as blood, urine, saliva, semen, and vaginal fluids. Although a couple of different carriers and substrates have been employed for the biochemical analysis of these samples, most of them are suffering from important weaknesses as far as the analysis of volatile compounds is concerned. For this reason, in this study three carriers are proposed, and the respective sample preparation methods are described for the determination of ethanol in human urine samples. More specifically, a droplet of the sample on a highly reflective carrier of gold layer, a commercially available cuvette with a mirror to enhance backscattered radiation sealed with a lid, and a home designed microscope slide with a cavity coated with gold layer and covered with transparent cling film have been evaluated. Among the three proposed carriers, the last one achieved a quick, simple, and inexpensive identification of ethanol, which was used as a case study for the volatile compound, in the biological samples. The limit of detection (LoD) was found to be 1.00 μL/mL, while at the same time evaporation of ethanol was prevented.
Collapse
|
14
|
Raman Microscopic Identification of Microorganisms on Metal Surfaces via Support Vector Machines. Microorganisms 2022; 10:microorganisms10030556. [PMID: 35336131 PMCID: PMC8954127 DOI: 10.3390/microorganisms10030556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
An easy, inexpensive, and rapid method to identify microorganisms is in great demand in various areas such as medical diagnostics or in the food industry. In our study, we show the development of several predictive models based on Raman spectroscopy combined with support vector machines (SVM) for 21 species of microorganisms. The microorganisms, grown under standardized conditions, were placed on a silver mirror slide to record the data for model development. Additional data was obtained from microorganisms on a polished stainless-steel slide in order to validate the models in general and to assess possible negative influences of the material change on the predictions. The theoretical prediction accuracies for the most accurate models, based on a five-fold cross-validation, are 98.4%. For practical validation, new spectra (from stainless-steel surfaces) have been used, which were not included in the calibration data set. The overall prediction accuracy in practice was about 80% and the inaccurate predictions were only due to a few species. The development of a database provides the basis for further investigations such as the application and extension to single-cell analytics and for the characterization of biofilms.
Collapse
|
15
|
Rahman L, Mallach G, Kulka R, Halappanavar S. Microplastics and nanoplastics science: collecting and characterizing airborne microplastics in fine particulate matter. Nanotoxicology 2022; 15:1253-1278. [PMID: 35007468 DOI: 10.1080/17435390.2021.2018065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastic (MP) pollution in the environment is increasing, leading to growing concerns about human exposures and the subsequent impact on health. Although marine MP research has received significant attention in recent years, only a few studies have attempted characterization of MP in air and examined the MP uptake and influence via inhalation on human health. Moreover, the methods used for MP characterization in the marine environment require further optimization to be applicable to MP in the air. This paper details method for collecting and characterizing MP < 2.5 μm in air samples for the purposes of toxicological assessment. The first phase of the study evaluated (a) the suitability of various filter types to collect respirable airborne MP <2.5 μm, and; (b) the ability of Raman and enhanced darkfield-hyperspectral spectroscopy methods to identify MP reference standards collected from spiked filters and in cells after exposure to reference MP. In the second phase, these methods were employed to characterize MP <2.5 μm in personal, indoor and outdoor filter air samples and in cells following exposure to filter extracted material. The results showed the presence of a variety of MP in the respirable size fraction (0.1-1 µm aerodynamic diameter). Silver membrane filters were found not suitable for collecting and analyzing MP <2.5 μm. While it was easy to detect reference MP in cells post-exposure, the identity of only two types of air-borne MP was confirmed in cells. The study highlighted possible sources of artifacts and inconsistencies in analyzing airborne MP.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Gary Mallach
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Ryan Kulka
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
17
|
Gibała A, Żeliszewska P, Gosiewski T, Krawczyk A, Duraczyńska D, Szaleniec J, Szaleniec M, Oćwieja M. Antibacterial and Antifungal Properties of Silver Nanoparticles-Effect of a Surface-Stabilizing Agent. Biomolecules 2021; 11:1481. [PMID: 34680114 PMCID: PMC8533414 DOI: 10.3390/biom11101481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/23/2023] Open
Abstract
The biocidal properties of silver nanoparticles (AgNPs) prepared with the use of biologically active compounds seem to be especially significant for biological and medical application. Therefore, the aim of this research was to determine and compare the antibacterial and fungicidal properties of fifteen types of AgNPs. The main hypothesis was that the biological activity of AgNPs characterized by comparable size distributions, shapes, and ion release profiles is dependent on the properties of stabilizing agent molecules adsorbed on their surfaces. Escherichia coli and Staphylococcus aureus were selected as models of two types of bacterial cells. Candida albicans was selected for the research as a representative type of eukaryotic microorganism. The conducted studies reveal that larger AgNPs can be more biocidal than smaller ones. It was found that positively charged arginine-stabilized AgNPs (ARGSBAgNPs) were the most biocidal among all studied nanoparticles. The strongest fungicidal properties were detected for negatively charged EGCGAgNPs obtained using (-)-epigallocatechin gallate (EGCG). It was concluded that, by applying a specific stabilizing agent, one can tune the selectivity of AgNP toxicity towards desired pathogens. It was established that E. coli was more sensitive to AgNP exposure than S. aureus regardless of AgNP size and surface properties.
Collapse
Affiliation(s)
- Agnieszka Gibała
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-12 Krakow, Poland; (T.G.); (A.K.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Joanna Szaleniec
- Department of Otolaryngology, Faculty of Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.Ż.); (D.D.); (M.S.); (M.O.)
| |
Collapse
|
18
|
Kim H, Han Y, Suhito IR, Choi Y, Kwon M, Son H, Kim HR, Kim TH. Raman Spectroscopy-Based 3D Analysis of Odontogenic Differentiation of Human Dental Pulp Stem Cell Spheroids. Anal Chem 2021; 93:9995-10004. [PMID: 34241992 DOI: 10.1021/acs.analchem.0c05165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous efforts have been made to establish three-dimensional (3D) cell cultures that mimic the structure, cell composition, and functions of actual tissues and organs in vitro; however, owing to its intrinsic complexity, precise characterization of 3D differentiation remains challenging and often results in high variations in the resulting differentiated spheroids. This study reports a 3D Raman mapping-based analytical method that helps us to identify the crucial factors responsible for inducing variability in differentiated stem cell spheroids. Human dental pulp stem cell spheroids were generated at various cell densities using the hanging drop (HD) and molded parafilm-based (MP) methods and were then further subjected to odontogenic differentiation. Thereafter, the 3D cellular differentiation in these spheroids was analyzed based on three different Raman peaks, namely, 960, 1156/1528, and 2935 cm-1, which correspond to hydroxyapatite (HA, odontogenic differentiation marker), β-carotene (precursor of HA), and proteins/cellular components (cell reference). By correlating such cell differentiation-related peaks and water/medium peaks (3400 cm-1), we discovered that the diffusion of the medium containing various nutrients and differentiation factors was crucial in determining the variations in 3D differentiation of stem cell spheroids. Odontogenic differentiation was majorly induced at the outer shell of HD spheroids (up to ∼20 μm), whereas odontogenic differentiation was markedly induced in MP spheroids (up to 40-50 μm). Considering the challenges associated with high variations in spheroid and organoid differentiation, we conclude that the proposed Raman-based 3D analysis plays a pivotal role in stem cell-based regenerative therapy and drug screening.
Collapse
Affiliation(s)
- Huijung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoojoong Han
- R&D Division, Nanobase, Inc., Seoul 08502, Republic of Korea
| | - Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Choi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minkyeong Kwon
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.,Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
19
|
Optimization of High-Density Fe-Au Nano-Arrays for Surface-Enhanced Raman Spectroscopy of Biological Samples. BIOSENSORS-BASEL 2021; 11:bios11060181. [PMID: 34198940 PMCID: PMC8229969 DOI: 10.3390/bios11060181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The method of realizing nanostructures using porous alumina templates has attracted interest due to the precise geometry and cheap cost of nanofabrication. In this work, nanoporous alumina membranes were utilized to realize a forest of nanowires, providing a bottom-up nanofabrication method suitable for surface-enhanced Raman spectroscopy (SERS). Gold and iron were electroplated through the straight channels of the membrane. The resulting nanowires are, indeed, made of an active element for plasmonic resonance and SERS as the hexagonal distribution of the nanowires and the extreme high density of the nanowires allows to excite the plasmon and detect the Raman signal. The method to reduce the distance between pores and, consequently, the distance of the nanowires after electrodeposition is optimized here. Indeed, it has been predicted that the light intensity enhancement factor is up to 1012 when the gap is small than 10 nm. Measurements of Raman signal of thiol groups drying on the gold nanowires show that the performance of the device is improved. As the thiol group can be linked to proteins, the device has the potential of a biosensor for the detection of a few biomolecules. To assess the performance of the device and demonstrate its ability to analyze biological solutions, we used it as SERS substrates to examine solutions of IgG in low abundance ranges. The results of the test indicate that the sensor can convincingly detect biomolecules in physiologically relevant ranges.
Collapse
|
20
|
Yadav S, Satija J. The current state of the art of plasmonic nanofibrous mats as SERS substrates: design, fabrication and sensor applications. J Mater Chem B 2021; 9:267-282. [PMID: 33241248 DOI: 10.1039/d0tb02137g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used analytical tool that allows molecular fingerprint-based ultra-sensitive detection through an enhanced electromagnetic field generated by plasmonic metal nanoparticles (MNPs) by virtue of their localized surface plasmon resonance (LSPR). Although significant progress has been made in the design and fabrication of a variety of SERS substrates, MNP-decorated electrospun nanofibrous (NF) mats have attracted much attention due to their unique nanoscale structural and functional properties. This review focuses on the current state of the art in the fabrication of plasmonic NF mats with the main focus on the pre-mix, in situ, and ex situ approaches. The characteristic functional advantages and limitations of these strategies are also highlighted, which might be helpful for the research community when adopting a suitable approach. The potential of these plasmonic NF mats as a SERS-active optical sensor substrate, and their performance parameters such as the limit of detection, analytical range, and enhancement factor, and real-world applications are also discussed. The summary and futuristic discussion in this review might be of significant value in developing plasmonic NF mat-based SERS-active point-of-care diagnostic chips for a wide range of applications.
Collapse
Affiliation(s)
- Sangeeta Yadav
- School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
21
|
Loskutov AI, Lokshin BV, Sazonova NM, Pinargote NS, Vysotskii VV, Loskutov SA. Features of the crystallization of multicomponent solutions: a dipeptide, its salt and potassium carbonate. CrystEngComm 2021. [DOI: 10.1039/d1ce00491c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various stages of crystallization of the dipeptide potassium salt on graphite and gold. Possible molecular structures of the dipeptide (a) and its potassium salt (b).
Collapse
Affiliation(s)
- Alexander I. Loskutov
- Moscow State Technological University STANKIN, Vadkovskii per. 1, Moscow, 127994 Russia
| | - Boris V. Lokshin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, 119991 Russia
| | - Nellya M. Sazonova
- V. V. Zakusov Scientific Research Institute of Pharmacology, Russian Academy of Medical Sciences, Baltiiskaya str. 8, Moscow, 125315 Russia
| | | | - Vladimir V. Vysotskii
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia
| | - Sergei A. Loskutov
- Moscow State Technological University STANKIN, Vadkovskii per. 1, Moscow, 127994 Russia
| |
Collapse
|
22
|
Pastrana-Otero I, Majumdar S, Gilchrist AE, Gorman BL, Harley BAC, Kraft ML. Development of an inexpensive Raman-compatible substrate for the construction of a microarray screening platform. Analyst 2020; 145:7030-7039. [PMID: 33103665 PMCID: PMC7594104 DOI: 10.1039/d0an01153c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biomaterial microarrays are being developed to facilitate identifying the extrinsic cues that elicit stem cell fate decisions to self-renew, differentiate and remain quiescent. Raman microspectroscopy, often combined with multivariate analysis techniques such as partial least square-discriminant analysis (PLS-DA), could enable the non-invasive identification of stem cell fate decisions made in response to extrinsic cues presented at specific locations on these microarrays. Because existing biomaterial microarrays are not compatible with Raman microspectroscopy, here, we develop an inexpensive substrate that is compatible with both single-cell Raman spectroscopy and the chemistries that are often used for biomaterial microarray fabrication. Standard deposition techniques were used to fabricate a custom Raman-compatible substrate that supports microarray construction. We validated that spectra from living cells on functionalized polyacrylamide (PA) gels attached to the custom Raman-compatible substrate are comparable to spectra acquired from a more expensive commercially available substrate. We also showed that the spectra acquired from individual living cells on functionalized PA gels attached to our custom substrates were of sufficient quality to enable accurate identification of cell phenotypes using PLS-DA models of the cell spectra. We demonstrated this by using cells from laboratory lines (CHO and transfected CHO cells) as well as adult stem cells that were freshly isolated from mice (long-term and short-term hematopoietic stem cells). The custom Raman-compatible substrate reported herein may be used as an inexpensive substrate for constructing biomaterial microarrays that enable the use of Raman microspectroscopy to non-invasively identify the fate decisions of stem cells in response to extrinsic cues.
Collapse
Affiliation(s)
- Isamar Pastrana-Otero
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Zdaniauskienė A, Charkova T, Ignatjev I, Melvydas V, Garjonytė R, Matulaitienė I, Talaikis M, Niaura G. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118560. [PMID: 32526402 DOI: 10.1016/j.saa.2020.118560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 05/13/2023]
Abstract
Studying the biochemistry of yeast cells has enabled scientists to understand many essential cellular processes in human cells. Further development of biotechnological and medical progress requires revealing surface chemistry in living cells by using a non-destructive and molecular structure sensitive technique. In this study shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was applied for probing the molecular structure of Metschnikowia pulcherrima yeast cells. Important function of studied cells is the ability to eliminate iron from growth media by precipitating the insoluble pigment pulcherrimin. Comparative SERS and SHINERS analysis of the yeast cells in combination with bare Au and shell-isolated Au@SiO2 nanoparticles were performed. It was observed that additional bands, such as adenine ring-related vibrational modes appear due to interaction with bare Au nanoparticles; the registered spectra do not coincide with the spectra where Au@SiO2 nanoparticles were used. SHINERS spectra of M. pulcherrima were significantly enhanced comparing to the Raman spectra. Based on first-principles calculations and 830-nm excited Raman analysis of pulcherrimin, the SHINERS signatures of iron pigment in yeast cells were revealed. Being protected from direct interaction of metal with adsorbate, Au@SiO2 nanoparticles yield reproducible and reliable vibrational signatures of yeast cell wall constituents.
Collapse
Affiliation(s)
- Agnė Zdaniauskienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Tatjana Charkova
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Ilja Ignatjev
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Rasa Garjonytė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Matulaitienė
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
24
|
Gieroba B, Sroka-Bartnicka A, Kazimierczak P, Kalisz G, Lewalska-Graczyk A, Vivcharenko V, Nowakowski R, Pieta IS, Przekora A. Spectroscopic studies on the temperature-dependent molecular arrangements in hybrid chitosan/1,3-β-D-glucan polymeric matrices. Int J Biol Macromol 2020; 159:911-921. [PMID: 32445816 DOI: 10.1016/j.ijbiomac.2020.05.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Chitosan/1,3-β-D-glucan matrices have been recently used in various biomedical applications. Within this study, the structural changes in hybrid polysaccharide chitosan/1,3-β-D-glucan matrices cross-linked at 70 °C and 80 °C were detected with Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR FT-IR) and Raman spectroscopy enabled thorough insights into molecular structure of studied biomaterials, whereas X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) provided their surface characteristics with confirmation of their effective and non-destructive properties. There are temperature-dependent differences in the chemical interactions between 1,3-β-D-glucan units and N-glucosamine in chitosan, resulting in surface polarity changes. The second order derivatives and deconvolution revealed the alterations in the secondary structure of studied matrices, along with different sized grain-like structures revealed by AFM. Since surface physicochemical properties of biomaterials have great impact on cell behavior, abovementioned techniques may allow to optimize and modify the preparation of polymeric matrices with desired features.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Paulina Kazimierczak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Agnieszka Lewalska-Graczyk
- Institute of Physical Chemistry Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Vladyslav Vivcharenko
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Izabela S Pieta
- Institute of Physical Chemistry Polish Academy of Sciences, ul. Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| |
Collapse
|
25
|
Kim N, Thomas MR, Bergholt MS, Pence IJ, Seong H, Charchar P, Todorova N, Nagelkerke A, Belessiotis-Richards A, Payne DJ, Gelmi A, Yarovsky I, Stevens MM. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat Commun 2020; 11:207. [PMID: 31924755 PMCID: PMC6954179 DOI: 10.1038/s41467-019-13615-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023] Open
Abstract
Label-free surface-enhanced Raman spectroscopy (SERS) can interrogate systems by directly fingerprinting their components' unique physicochemical properties. In complex biological systems however, this can yield highly overlapping spectra that hinder sample identification. Here, we present an artificial-nose inspired SERS fingerprinting approach where spectral data is obtained as a function of sensor surface chemical functionality. Supported by molecular dynamics modeling, we show that mildly selective self-assembled monolayers can influence the strength and configuration in which analytes interact with plasmonic surfaces, diversifying the resulting SERS fingerprints. Since each sensor generates a modulated signature, the implicit value of increasing the dimensionality of datasets is shown using cell lysates for all possible combinations of up to 9 fingerprints. Reliable improvements in mean discriminatory accuracy towards 100% are achieved with each additional surface functionality. This arrayed label-free platform illustrates the wide-ranging potential of high-dimensionality artificial-nose based sensing systems for more reliable assessment of complex biological matrices.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mads S Bergholt
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Isaac J Pence
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Patrick Charchar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Anika Nagelkerke
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - David J Payne
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Amy Gelmi
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
26
|
Abramczyk H, Imiela A, Brożek-Płuska B, Kopeć M, Surmacki J, Śliwińska A. Aberrant Protein Phosphorylation in Cancer by Using Raman Biomarkers. Cancers (Basel) 2019; 11:E2017. [PMID: 31847192 PMCID: PMC6966530 DOI: 10.3390/cancers11122017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Novel methods are required for analysing post-translational modifications of protein phosphorylation by visualizing biochemical landscapes of proteins in human normal and cancerous tissues and cells. (2) Methods: A label-free Raman method is presented for detecting spectral changes that arise in proteins due to phosphorylation in the tissue of human breasts, small intestines, and brain tumours, as well as in the normal human astrocytes and primary glioblastoma U-87 MG cell lines. Raman spectroscopy and Raman imaging are effective tools for monitoring and analysing the vibrations of functional groups involved in aberrant phosphorylation in cancer without any phosphorecognition of tag molecules. (3) Results: Our results based on 35 fresh human cancer and normal tissues prove that the aberrant tyrosine phosphorylation monitored by the unique spectral signatures of Raman vibrations is a universal characteristic in the metabolic regulation in different types of cancers. Overexpressed tyrosine phosphorylation in the human breast, small intestine and brain tissues and in the human primary glioblastoma U-87 MG cell line was monitored by using Raman biomarkers. (4) We showed that the bands at 1586 cm-1 and 829 cm-1, corresponding to phosphorylated tyrosine, play a pivotal role as a Raman biomarker of the phosphorylation status in aggressive cancers. We found that the best Raman biomarker of phosphorylation is the 1586/829 ratio showing the statistical significance at p Values of ≤ 0.05. (5) Conclusions: Raman spectroscopy and imaging have the potential to be used as screening functional assays to detect phosphorylated target proteins and will help researchers to understand the role of phosphorylation in cellular processes and cancer progression. The abnormal and excessive high level of tyrosine phosphorylation in cancer samples compared with normal samples was found in the cancerous human tissue of breasts, small intestines and brain tumours, as well as in the mitochondria and lipid droplets of the glioblastoma U-87 MG cell line. Detailed insights are presented into the intracellular oncogenic metabolic pathways mediated by phosphorylated tyrosine.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.I.); (B.B.-P.); (M.K.); (J.S.)
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.I.); (B.B.-P.); (M.K.); (J.S.)
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.I.); (B.B.-P.); (M.K.); (J.S.)
| | - Monika Kopeć
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.I.); (B.B.-P.); (M.K.); (J.S.)
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.I.); (B.B.-P.); (M.K.); (J.S.)
| | - Agnieszka Śliwińska
- Faculty of Medicine, Medical University of Lodz, Chair of Department of Nucleic Acids Biochemistry, Pomorska 251, 92-213 Lodz, Poland;
| |
Collapse
|
27
|
Milewska A, Zivanovic V, Merk V, Arnalds UB, Sigurjónsson ÓE, Kneipp J, Leosson K. Gold nanoisland substrates for SERS characterization of cultured cells. BIOMEDICAL OPTICS EXPRESS 2019; 10:6172-6188. [PMID: 31853393 PMCID: PMC6913407 DOI: 10.1364/boe.10.006172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 05/17/2023]
Abstract
We demonstrate a simple approach for fabricating cell-compatible SERS substrates, using repeated gold deposition and thermal annealing. The substrates exhibit SERS enhancement up to six orders of magnitude and high uniformity. We have carried out Raman imaging of fixed mesenchymal stromal cells cultured directly on the substrates. Results of viability assays confirm that the substrates are highly biocompatible and Raman imaging confirms that cell attachment to the substrates is sufficient to realize significant SERS enhancement of cellular components. Using the SERS substrates as an in vitro sensing platform allowed us to identify multiple characteristic molecular fingerprints of the cells, providing a promising avenue towards non-invasive chemical characterization of biological samples.
Collapse
Affiliation(s)
- Adrianna Milewska
- Innovation Center Iceland, Árleynir 2–8, 112 Reykjavík, Iceland
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland
- University of Iceland, School of Engineering and Natural Sciences, Sæmundargötu 2, 101 Reykjavík, Iceland
| | - Vesna Zivanovic
- Humboldt University, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Virginia Merk
- Humboldt University, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Unnar B. Arnalds
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland
| | - Ólafur E. Sigurjónsson
- The Blood Bank, Landspitali University Hospital, Snorrabraut 60, 105 Reykjavík, Iceland
- Reykjavik University, School of Science and Engineering, Menntavegur 1, 101 Reykjavík, Iceland
| | - Janina Kneipp
- Humboldt University, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kristjan Leosson
- Innovation Center Iceland, Árleynir 2–8, 112 Reykjavík, Iceland
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland
| |
Collapse
|
28
|
Bioinspired oral insulin delivery system using yeast microcapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109753. [DOI: 10.1016/j.msec.2019.109753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
|
29
|
Pham TBN, Bui TTT, Tran VQ, Dang VQ, Hoang LN, Tran CK. Surface-enhanced Raman scattering (SERS) performance on salbutamol detection of colloidal multi-shaped silver nanoparticles. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Investigation on the Cancer Invasion and Metastasis of Skin Squamous Cell Carcinoma by Raman Spectroscopy. Molecules 2019; 24:molecules24112059. [PMID: 31151168 PMCID: PMC6600666 DOI: 10.3390/molecules24112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/23/2022] Open
Abstract
Raman spectroscopy facilitates accurate and minimally invasive investigation on biomedical samples to reveal their molecular-level biological information. In this work, the cancer field effects of squamous cell carcinoma (SCC) tissues were illustrated by Raman microspectroscopy. Referenced with hematoxylin and eosin (H&E) stained microscopic images, the biochemical variations during SCC progress were meticulously described by the Raman spectral features in different pathological areas of two lesion types, including the biochemical changes in collagen, lipids, DNA, and other components of SCC diffusion and metastasis. The experimental results demonstrated that the intensities of the Raman peaks representing collagen (853, 936, and 1248 cm−1) were decreased, whereas the intensities of peaks corresponding to DNA (720, 1327 cm−1) and lipids (1305 cm−1) were increased significantly in cancerous lesions, which testified that SCC originates from the epidermis and invades the dermis gradually. The achieved results not only described the molecular mechanism of skin carcinogenesis, but also provided vital reference data for in vivo skin cancer diagnosis using Raman spectroscopy.
Collapse
|
31
|
Öztaş DY, Altunbek M, Uzunoglu D, Yılmaz H, Çetin D, Suludere Z, Çulha M. Tracing Size and Surface Chemistry-Dependent Endosomal Uptake of Gold Nanoparticles Using Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4020-4028. [PMID: 30773019 DOI: 10.1021/acs.langmuir.8b03988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Surface-enhanced Raman scattering (SERS)-based single-cell analysis is an emerging approach to obtain molecular level information from molecular dynamics in a living cell. In this study, endosomal biochemical dynamics was investigated based on size and surface chemistry-dependent uptake of gold nanoparticles (AuNPs) on single cells over time using SERS. MDA-MB-231 breast cancer cells were exposed to 13 and 50 nm AuNPs and their polyadenine oligonucleotide-modified forms by controlling the order and combination of AuNPs. The average spectra obtained from 20 single cells were analyzed to study the nature of the biochemical species or processes taking place on the AuNP surfaces. The spectral changes, especially from proteins and lipids of endosomal vesicles, were observed depending on the size, surface chemistry, and combination as well as the duration of the AuNP treatment. The results demonstrate that SERS spectra are sensitive to trace biochemical changes not only the size, surface chemistry, and aggregation status of AuNPs but also the endosomal maturation steps over time, which can be simple and fast way for understanding the AuNP behavior in single cell and useful for the assisting and controlling of AuNP-based gene or drug delivery applications.
Collapse
Affiliation(s)
- Deniz Yaşar Öztaş
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Deniz Uzunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | - Hülya Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| | | | | | - Mustafa Çulha
- Department of Genetics and Bioengineering, Faculty of Engineering , Yeditepe University , Ataşehir, Istanbul 34755 , Turkey
| |
Collapse
|
32
|
Tamashevski A, Harmaza Y, Viter R, Jevdokimovs D, Poplausks R, Slobozhanina E, Mikoliunaite L, Erts D, Ramanaviciene A, Ramanavicius A. Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells. Talanta 2019; 200:378-386. [PMID: 31036199 DOI: 10.1016/j.talanta.2019.03.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/14/2023]
Abstract
Zinc oxide (ZnO) based nanostructures owing unique physical properties - high photoluminescence, biocompatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85-95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5-9% of these cells. Two types of antibodies labeled by fluorescein isothiocyanate (FITC) were used for the labeling of human leukemic cells: FITC-conjugated mouse antibodies against Human CD19 protein (anti-CD19-FITC*) and FITC-conjugated mouse antibodies against Human IgG1 protein (anti-IgG1-FITC*). In order to demonstrate the applicability of zinc oxide nanorods (ZnO-NRs) based platforms three types of ZnO-NRs-based structures were investigated: (i) ZnO-NRs modified by anti-CD19-FITC*; (ii) ZnO-NRs modified by IM9 cells, which were pre-incubated with anti-CD19-FITC*; (iii) ZnO-NRs modified by PBMC cells, which were pre-incubated with anti-CD19-FITC*. It was demonstrated that IM9 cells after specific interaction with anti-CD19-FITC* bind to ZnO-NRs (ZnO-NRs/IM9 +anti-CD19-FITC*) and photoluminescence based signal significantly increase in comparison with that observed in control samples, which contained PBMC cells incubated with anti-CD19-FITC* (ZnO-NRs/PBMC+anti-CD19-FITC*). The photoluminescence results are in good correlation with the data obtained by flow cytometry. This study illustrate that ZnO-NRs exhibit a photoluminescence signal suitable for the determination of anti-CD19-FITC* labeled IM9 cell line at concentrations - from 10 till 500 cells adsorbed per 1 mm2 of ZnO-NRs platform.
Collapse
Affiliation(s)
- Alexander Tamashevski
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus.
| | - Yuliya Harmaza
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia; Medical Institute, Sumy State University, 31, Sanatornaya st., 40018 Sumy, Ukraine.
| | - Daniels Jevdokimovs
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Raimond Poplausks
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Ekaterina Slobozhanina
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus, Akademicheskaya St. 27, Minsk 220072, Belarus
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Donats Erts
- Institute of Chemical Physics, University of Latvia, 19, Raina Blvd, 1586 Riga, Latvia
| | - Almira Ramanaviciene
- NanoTechnas - Centre of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
33
|
Potocki L, Depciuch J, Kuna E, Worek M, Lewinska A, Wnuk M. FTIR and Raman Spectroscopy-Based Biochemical Profiling Reflects Genomic Diversity of Clinical Candida Isolates That May Be Useful for Diagnosis and Targeted Therapy of Candidiasis. Int J Mol Sci 2019; 20:ijms20040988. [PMID: 30823514 PMCID: PMC6412866 DOI: 10.3390/ijms20040988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that Candida albicans is documented to be the main cause of human candidiasis, non-C. albicans Candida (NCAC) species, such as Candida glabrata and Candida tropicalis, are also suggested to be implicated in the etiopathogenesis of opportunistic fungal infections. As biology, epidemiology, pathogenicity, and antifungal resistance of NCAC species may be affected as a result of genomic diversity and plasticity, rapid and unambiguous identification of Candida species in clinical samples is essential for proper diagnosis and therapy. In the present study, 25 clinical isolates of C. albicans, C. glabrata, and C. tropicalis species were characterized in terms of their karyotype patterns, DNA content, and biochemical features. Fourier transform infrared (FTIR) spectra- and Raman spectra-based molecular fingerprints corresponded to the diversity of chromosomal traits and DNA levels that provided correct species identification. Moreover, Raman spectroscopy was documented to be useful for the evaluation of ergosterol content that may be associated with azole resistance. Taken together, we found that vibrational spectroscopy-based biochemical profiling reflects the variability of chromosome patterns and DNA content of clinical Candida species isolates and may facilitate the diagnosis and targeted therapy of candidiasis.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Mariusz Worek
- Department of Microbiology, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
34
|
Paraskevaidi M, Morais CLM, Freitas DLD, Lima KMG, Mann DMA, Allsop D, Martin-Hirsch PL, Martin FL. Blood-based near-infrared spectroscopy for the rapid low-cost detection of Alzheimer's disease. Analyst 2019; 143:5959-5964. [PMID: 30183030 DOI: 10.1039/c8an01205a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is currently under-diagnosed and is predicted to affect a great number of people in the future, due to the unrestrained aging of the population. An accurate diagnosis of AD at an early stage, prior to (severe) symptomatology, is of crucial importance as it would allow the subscription of effective palliative care and/or enrolment into specific clinical trials. Today, new analytical methods and research initiatives are being developed for the on-time diagnosis of this devastating disorder. During the last decade, spectroscopic techniques have shown great promise in the robust diagnosis of various pathologies, including neurodegenerative diseases and dementia. In the current study, blood plasma samples were analysed with near-infrared (NIR) spectroscopy as a minimally-invasive method to distinguish patients with AD (n = 111) from non-demented volunteers (n = 173). After applying multivariate classification models (principal component analysis with quadratic discriminant analysis - PCA-QDA), AD individuals were correctly identified with 92.8% accuracy, 87.5% sensitivity and 96.1% specificity. Our results show the potential of NIR spectroscopy as a simple and cost-effective diagnostic tool for AD. Robust and early diagnosis may be a first step towards tackling this disease by allowing timely intervention.
Collapse
Affiliation(s)
- Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pahlow S, Mayerhöfer T, van der Loh M, Hübner U, Dellith J, Weber K, Popp J. Interference-Enhanced Raman Spectroscopy as a Promising Tool for the Detection of Biomolecules on Raman-Compatible Surfaces. Anal Chem 2018; 90:9025-9032. [PMID: 29992805 DOI: 10.1021/acs.analchem.8b01234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Raman spectroscopy in combination with appropriate sample preparation strategies, for example, enrichment of bacteria on metal surfaces, has been proven to be a promising approach for rapidly diagnosing infectious diseases. Unfortunately, the fabrication of the required chip substrates is usually very challenging due to the lack of feasible instruments that can be used for quality control in the surface modification process. The intrinsically weak Raman signal of the biomolecules, employed for the enrichment of the micro-organisms on the chip surface, does not allow for monitoring of the successful immobilization by means of a Raman spectroscopic approach. Within this contribution, we demonstrate how a simple modification of a plain aluminum surface enables enhancement (or a decrease, if desired) of the Raman signal of molecules deposited on that surface. The manipulation of the Raman signal strength is achieved via exploiting interference effects that occur, if the highly reflective aluminum surface is modified with thin layers of transparent dielectrics like aluminum oxide. The thicknesses of these layers were determined by theoretical considerations and calculations. For the first time, it is shown that the interference effects can be used for the detection of biomolecules as well by investigating the siderophore ferrioxamine B. The observed degree of enhancement was approximately 1 order of magnitude. Moreover, the employed aluminum/aluminum oxide layers have been thoroughly characterized using atomic force and scanning electron microscopy as well as X-ray reflectometry and UV-Vis measurements.
Collapse
Affiliation(s)
- Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Centre for Applied Research , InfectoGnostics Research Campus Jena , Philosophenweg 7 , 07743 Jena , Germany
| | - Thomas Mayerhöfer
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| | - Marie van der Loh
- Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| | - Jan Dellith
- Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| | - Karina Weber
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Centre for Applied Research , InfectoGnostics Research Campus Jena , Philosophenweg 7 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics , Friedrich Schiller University Jena , Helmholtzweg 4 , 07743 Jena , Germany.,Centre for Applied Research , InfectoGnostics Research Campus Jena , Philosophenweg 7 , 07743 Jena , Germany.,Leibniz Institute of Photonic Technology-Member of the research alliance "Leibniz Health Technologies" , Albert-Einstein-Straße 9 , 07745 Jena , Germany
| |
Collapse
|
36
|
Perez-Guaita D, Marzec KM, Hudson A, Evans C, Chernenko T, Matthäus C, Miljkovic M, Diem M, Heraud P, Richards JS, Andrew D, Anderson DA, Doerig C, Garcia-Bustos J, McNaughton D, Wood BR. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research. Chem Rev 2018; 118:5330-5358. [DOI: 10.1021/acs.chemrev.7b00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, Kraków 30-348, Poland
- Center for Medical Genomics (OMICRON), Jagiellonian University, Kopernika 7C, Krakow 31-034, Poland
| | - Andrew Hudson
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Corey Evans
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Tatyana Chernenko
- Becton Dickinson and Company, 2350 Qume Drive, San Jose, California 95131, United States
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology, Albert Einstein Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University, Helmholtz Weg 4, Jena 07743, Germany
| | - Milos Miljkovic
- Department of Mechanical Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Max Diem
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, 316 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02155, United States
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - David A. Anderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Christian Doerig
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Suhito IR, Han Y, Min J, Son H, Kim TH. In situ label-free monitoring of human adipose-derived mesenchymal stem cell differentiation into multiple lineages. Biomaterials 2018; 154:223-233. [DOI: 10.1016/j.biomaterials.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022]
|
38
|
Botta R, Chindaudom P, Eiamchai P, Horprathum M, Limwichean S, Chananonnawathorn C, Patthanasettakul V, Kaewseekhao B, Faksri K, Nuntawong N. Tuberculosis determination using SERS and chemometric methods. Tuberculosis (Edinb) 2018. [PMID: 29523323 DOI: 10.1016/j.tube.2017.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanostructures have been multiplying the advantages of Raman spectroscopy and further amplify the advantages of Raman spectroscopy is a continuous effort focused on the appropriate design of nanostructures. Herein, we designed different shapes of plasmonic nanostructures such as Vertical, Zig Zag, Slant nanorods and Spherical nanoparticles employing the DC magnetron sputtering system as SERS-active substrates for ultrasensitive detection of target molecules. The fabricated plasmonic nanostructures sensitivity and uniformity were exploited by reference dye analyte. These nanostructures were utilized in the label free detection of infectious disease, Tuberculosis (TB). For the first time, TB detection from serum samples using SERS has been demonstrated. Various multivariate statistical methods such as principal component analysis, support vector machine, decision tree and random forest were developed and tested their ability to discriminate the healthy and active TB samples. The results demonstrate the performance of the SERS spectra, chemometric methods and potential of the method in clinical diagnosis.
Collapse
Affiliation(s)
- Raju Botta
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand.
| | - Pongpan Chindaudom
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Pitak Eiamchai
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Saksorn Limwichean
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chanunthorn Chananonnawathorn
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Viyapol Patthanasettakul
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Benjawan Kaewseekhao
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
39
|
Boschetto F, Toyama N, Horiguchi S, Bock RM, McEntire BJ, Adachi T, Marin E, Zhu W, Mazda O, Bal BS, Pezzotti G. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: II. Fourier transform infrared spectroscopy. Analyst 2018; 143:2128-2140. [DOI: 10.1039/c8an00234g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metabolic response of Gram-positiveStaphylococcus epidermidisbacteria to bioceramic substrates was probed by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Nami Toyama
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Satoshi Horiguchi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - B. Sonny Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| |
Collapse
|
40
|
Ye J, Liu E, Gong J, Wang J, Huang Y, He H, Yang VC. High-Yield Synthesis of Monomeric LMWP(CPP)-siRNA Covalent Conjugate for Effective Cytosolic Delivery of siRNA. Am J Cancer Res 2017; 7:2495-2508. [PMID: 28744330 PMCID: PMC5525752 DOI: 10.7150/thno.19863] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Because of the unparalleled efficiency and universal utility in treating a variety of disease types, siRNA agents have evolved as the future drug-of-choice. Yet, the inability of the polyanionic siRNA macromolecules to cross the cell membrane remains as the bottleneck of possible clinical applications. With the cell penetrating peptides (CPP) being discovered lately, the most effective tactic to achieve the highest intracellular siRNA delivery deems to be by covalently conjugating the drug to a CPP; for instance, the arginine-rich Tat or low molecular weight protamine (LMWP) peptides. However, construction of such a chemical conjugate has been referred by scientists in this field as the “Holy Grail” challenge due to self-assembly of the cationic CPP and anionic siRNA into insoluble aggregates that are deprived of the biological functions of both compounds. Based on the dynamic motion of PEG, we present herein a concise coupling strategy that is capable of permitting a high-yield synthesis of the cell-permeable, cytosol-dissociable LMWP-siRNA covalent conjugates. Cell culture assessment demonstrates that this chemical conjugate yields by far the most effective intracellular siRNA delivery and its corresponded gene-silencing activities. This work may offer a breakthrough advance towards realizing the clinical potential of all siRNA therapeutics and, presumably, most anionic macromolecular drugs such as anti-sense oligonucleotides, gene compounds, DNA vectors and proteins where conjugation with the CPP encounters with problems of aggregation and precipitation. To this end, the impact of this coupling technique is significant, far-reaching and wide-spread.
Collapse
|
41
|
Lewis AT, Gaifulina R, Isabelle M, Dorney J, Woods ML, Lloyd GR, Lau K, Rodriguez-Justo M, Kendall C, Stone N, Thomas GM. Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2017; 48:119-125. [PMID: 28163358 PMCID: PMC5256423 DOI: 10.1002/jrs.4980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 05/24/2023]
Abstract
Raman spectroscopy (RS) is a powerful technique that permits the non-destructive chemical analysis of cells and tissues without the need for expensive and complex sample preparation. To date, samples have been routinely mounted onto calcium fluoride (CaF2) as this material possesses the desired mechanical and optical properties for analysis, but CaF2 is both expensive and brittle and this prevents the technique from being routinely adopted. Furthermore, Raman scattering is a weak phenomenon and CaF2 provides no means of increasing signal. For RS to be widely adopted, particularly in the clinical field, it is crucial that spectroscopists identify an alternative, low-cost substrate capable of providing high spectral signal to noise ratios with good spatial resolution. Results show that these desired properties are attainable when using mirrored stainless steel as a Raman substrate. When compared with CaF2, data show that stainless steel has a low background signal and provides an average signal increase of 1.43 times during tissue analysis and 1.64 times when analyzing cells. This result is attributed to a double-pass of the laser beam through the sample where the photons from the source laser and the forward scattered Raman signal are backreflected and retroreflected from the mirrored steel surface and focused towards collection optics. The spatial resolution on stainless steel is at least comparable to that on CaF2 and it is not compromised by the reflection of the laser. Steel is a fraction of the cost of CaF2 and the reflection and focusing of photons improve signal to noise ratios permitting more rapid mapping. The low cost of steel coupled with its Raman signal increasing properties and robust durability indicates that steel is an ideal substrate for biological and clinical RS as it possesses key advantages over routinely used CaF2. © 2016 The Authors. Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Aaran T Lewis
- Department of Cell and Developmental Biology University College London London UK
| | - Riana Gaifulina
- Department of Cell and Developmental Biology University College London London UK
| | - Martin Isabelle
- Biophotonics Research Unit Gloucester Royal Hospitals NHS Foundation Trust Gloucestershire UK
| | - Jennifer Dorney
- School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences University of Exeter Exeter UK
| | - Mae L Woods
- Department of Cell and Developmental Biology University College London London UK
| | - Gavin R Lloyd
- Biophotonics Research Unit Gloucester Royal Hospitals NHS Foundation Trust Gloucestershire UK
| | | | | | - Catherine Kendall
- Biophotonics Research Unit Gloucester Royal Hospitals NHS Foundation Trust Gloucestershire UK
| | - Nicholas Stone
- School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences University of Exeter Exeter UK
| | - Geraint M Thomas
- Department of Cell and Developmental Biology University College London London UK
| |
Collapse
|
42
|
Joseph D, Rodriguez RD, Verma A, Pousaneh E, Zahn DRT, Lang H, Chandra S. Electrochemistry and surface-enhanced Raman spectroscopy of CTAB modulated interactions of magnetic nanoparticles with biomolecules. RSC Adv 2017. [DOI: 10.1039/c6ra26235j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In this study, cyclic voltammetry was used to unearth the electrochemical behavior of MNPs/CTAB and their interaction with biomolecules whereas SERS provided an insight into the mode of interaction in these molecular associations.
Collapse
Affiliation(s)
- Delina Joseph
- Department of Chemistry
- Sunandan Divatia School of Science
- NMIMS University
- Mumbai-400056
- India
| | - Raul D. Rodriguez
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Physics
- Semiconductor Physics
- 09107 Chemnitz
| | - Akash Verma
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Physics
- Semiconductor Physics
- 09107 Chemnitz
| | - Elaheh Pousaneh
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Dietrich R. T. Zahn
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Physics
- Semiconductor Physics
- 09107 Chemnitz
| | - Heinrich Lang
- Technische Universität Chemnitz
- Faculty of Natural Sciences
- Institute of Chemistry
- Inorganic Chemistry
- 09107 Chemnitz
| | - Sudeshna Chandra
- Department of Chemistry
- Sunandan Divatia School of Science
- NMIMS University
- Mumbai-400056
- India
| |
Collapse
|
43
|
Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 2016; 106:87-97. [DOI: 10.1016/j.biomaterials.2016.08.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
|
44
|
Mandair GS, Han AL, Keller ET, Morris MD. Raman microscopy of bladder cancer cells expressing green fluorescent protein. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115001. [PMID: 27805248 PMCID: PMC8357324 DOI: 10.1117/1.jbo.21.11.115001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/14/2016] [Indexed: 05/06/2023]
Abstract
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
Collapse
Affiliation(s)
- Gurjit S. Mandair
- University of Michigan, School of Dentistry, Department of Biologic and Materials Sciences, 1011 North University Avenue, Ann Arbor, Michigan 48109-1078, United States
- Address all correspondence to: Gurjit S. Mandair, E-mail:
| | - Amy L. Han
- University of Michigan, Department of Urology and Biointerfaces Institute, NCRC Building 20, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Evan T. Keller
- University of Michigan, Department of Urology and Biointerfaces Institute, NCRC Building 20, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Michael D. Morris
- University of Michigan, Department of Chemistry, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
45
|
Stremersch S, Marro M, Pinchasik BE, Baatsen P, Hendrix A, De Smedt SC, Loza-Alvarez P, Skirtach AG, Raemdonck K, Braeckmans K. Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3292-301. [PMID: 27171437 DOI: 10.1002/smll.201600393] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/11/2016] [Indexed: 05/20/2023]
Abstract
Exosome-like vesicles (ELVs) are a novel class of biomarkers that are receiving a lot of attention for the detection of cancer at an early stage. In this study the feasibility of using a surface enhanced Raman spectroscopy (SERS) based method to distinguish between ELVs derived from different cellular origins is evaluated. A gold nanoparticle based shell is deposited on the surface of ELVs derived from cancerous and healthy cells, which enhances the Raman signal while maintaining a colloidal suspension of individual vesicles. This nanocoating allows the recording of SERS spectra from single vesicles. By using partial least squares discriminant analysis on the obtained spectra, vesicles from different origin can be distinguished, even when present in the same mixture. This proof-of-concept study paves the way for noninvasive (cancer) diagnostic tools based on exosomal SERS fingerprinting in combination with multivariate statistical analysis.
Collapse
Affiliation(s)
- Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Monica Marro
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Bat-El Pinchasik
- Department of Interfaces, Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476, Potsdam, Germany
| | - Pieter Baatsen
- EM-facility EMoNe, VIB-KULeuven Bio Imaging Core and Center for Human Genetics, KULeuven, Herestraat 49, 3000, Leuven, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 900, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860, Castelldefels, Barcelona, Spain
| | - Andre G Skirtach
- Department of Interfaces, Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 OT Golm, 14476, Potsdam, Germany
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000, Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Centre for Nano- and Biophotonics, Ghent University, 9000, Ghent, Belgium
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
46
|
Rodriguez RD, Blaudeck T, Kalbacova J, Sheremet E, Schulze S, Adner D, Hermann S, Hietschold M, Lang H, Schulz SE, Zahn DRT. Metal nanoparticles reveal the organization of single-walled carbon nanotubes in bundles. RSC Adv 2016. [DOI: 10.1039/c5ra28181d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) were decorated with Ag and Au nanoparticles. The smaller SWCNTs in bundles are preferentially affected by the presence of metal nanoparticles. We postulate that smaller diameter SWCNTs surround larger ones.
Collapse
|