1
|
Ohtsuka Y, Hisamatsu S. Construction of a realistic voxel phantom of the Japanese red fox (Vulpes vulpes japonica) based on MRI imaging and estimation of its background external radiation dose rate from environmental radionuclides. RADIATION PROTECTION DOSIMETRY 2024; 200:1580-1584. [PMID: 39540477 DOI: 10.1093/rpd/ncae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 11/16/2024]
Abstract
In this study, we selected the Japanese red fox (Vulpes vulpes japonica) as a representative mid-size mammal from the forests near the spent nuclear fuel reprocessing plant at Rokkasho. A fox voxel phantom was constructed based on magnetic resonance imaging of a female red fox caught in Rokkasho. This phantom consisted of 264 × 321 × 383 voxels (each voxel size: 0.78 × 0.78 × 2 mm) with internal organs. The external radiation dose rate to the voxel phantom by beta and gamma rays from environmental radionuclides was estimated using a Monte Carlo code (EGS4 and UCPIXEL). We estimated the dose rates to the phantom on the ground and in an average fox burrow in the Rokkasho forest, which were 11 and 27 nGy h-1, respectively. Assuming that the animal on the ground was irradiated by cosmic rays of 27 nGy h-1, the total external dose rate was evaluated to be 38 nGy h-1. Based on the assumption that the fox lives on the ground for 12 h and in the burrow for 12 h, the dose rate was estimated to be 33 nGy h-1.
Collapse
Affiliation(s)
- Yoshihito Ohtsuka
- Department of Radioecology, Institute for Environmental Sciences (IES), 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan
| | - Shun'ichi Hisamatsu
- Institute for Environmental Sciences (IES), 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan
| |
Collapse
|
2
|
Thakur A, Kumar A. Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. CHEMOSPHERE 2024; 352:141369. [PMID: 38342150 DOI: 10.1016/j.chemosphere.2024.141369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The release of radionuclides, including Cesium-137 (137Cs), Strontium-90 (90Sr), Uranium-238 (238U), Plutonium-239 (239Pu), Iodine-131 (131I), etc., from nuclear contamination presents profound threats to both the environment and human health. Traditional remediation methods, reliant on physical and chemical interventions, often prove economically burdensome and logistically unfeasible for large-scale restoration efforts. In response to these challenges, bioremediation has emerged as a remarkably efficient, environmentally sustainable, and cost-effective solution. This innovative approach harnesses the power of microorganisms, plants, and biological agents to transmute radioactive materials into less hazardous forms. For instance, consider the remarkable capability demonstrated by Fontinalis antipyretica, a water moss, which can accumulate uranium at levels as high as 4979 mg/kg, significantly exceeding concentrations found in the surrounding water. This review takes an extensive dive into the world of bioremediation for nuclear contaminant removal, exploring sources of radionuclides, the ingenious resistance mechanisms employed by plants against these harmful elements, and the fascinating dynamics of biological adsorption efficiency. It also addresses limitations and challenges, emphasizing the need for further research and implementation to expedite restoration and mitigate nuclear pollution's adverse effects.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department, Government of Bihar, 803108, India.
| |
Collapse
|
3
|
Sakauchi K, Otaki JM. Soil Microbes and Plant-Associated Microbes in Response to Radioactive Pollution May Indirectly Affect Plants and Insect Herbivores: Evidence for Indirect Field Effects from Chernobyl and Fukushima. Microorganisms 2024; 12:364. [PMID: 38399767 PMCID: PMC10892324 DOI: 10.3390/microorganisms12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific effects among species, which are difficult to evaluate under dosimetric laboratory conditions. From the viewpoint that microbes play a fundamental role in ecosystem function as decomposers and symbionts for plants, we reviewed studies on microbes inhabiting soil and plants in Chernobyl and Fukushima in an attempt to find supporting evidence for indirect field-specific effects on plants and insect herbivores. Compositional changes in soil microbes associated with decreases in abundance and species diversity were reported, especially in heavily contaminated areas of both Chernobyl and Fukushima, which may accompany explosions of radioresistant species. In Chernobyl, the population size of soil microbes remained low for at least 20 years after the accident, and the abundance of plant-associated microbes, which are related to the growth and defense systems of plants, possibly decreased. These reported changes in microbes likely affect soil conditions and alter plant physiology. These microbe-mediated effects may then indirectly affect insect herbivores through food-mass-mediated, pollen-mediated, and metabolite-mediated interactions. Metabolite-mediated interactions may be a major pathway for ecological impacts at low pollution levels and could explain the decreases in insect herbivores in Fukushima. The present review highlights the importance of the indirect field effects of long-term low-dose radiation exposure under complex field circumstances.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan;
| |
Collapse
|
4
|
Nybakken L, Lee Y, Brede DA, Mageroy MH, Lind OC, Salbu B, Kashparov V, Olsen JE. Long term effects of ionising radiation in the Chernobyl Exclusion zone on DNA integrity and chemical defence systems of Scots pine (Pinus sylvestris). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166844. [PMID: 37689207 DOI: 10.1016/j.scitotenv.2023.166844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The Chernobyl Nuclear Power Plant (ChNPP) accident in 1986 resulted in extremely high levels of acute ionising radiation, that killed or damaged Scots pine (Pinus sylvestris) trees in the surrounding areas. Dead trees were cleared and buried, and new plantations established a few years later. Today, more than three decades later, gamma and beta-radiation near the ChNPP is still elevated compared with ambient levels but have decreased by a factor of 300 and 100, respectively. In the present work, Scots pine-trees growing at High (220 μGy h-1), Medium (11 μGy h-1), and Low (0.2 μGy h-1) total (internal + external) dose rates of chronically elevated ionising radiation in the Chernobyl Exclusion zone were investigated with respect to possible damage to DNA, cells and organelles, as well as potentially increased levels of phenolic and terpenoid antioxidants. Scots pine from the High and Medium radiation sites had elevated levels of DNA damage in shoot tips and needles as shown by the COMET assay, as well as increased numbers of resin ducts and subcellular abnormalities in needles. Needles from the High radiation site showed elevated levels of monoterpenes and condensed tannins compared with those from the other sites. In conclusion, more than three decades after the ChNPP accident substantial DNA damage and (sub)cellular effects, but also mobilisation of stress-protective substances possessing antioxidant activity were observed in Scots pine trees growing at elevated levels of ionising radiation. This demonstrates that the radiation levels in the Red Forest still significantly impact the plant community.
Collapse
Affiliation(s)
- Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Korea University Graduate School, Department of Plant Biotechnology, 145, Anam-ro, Seongbuk-ku, Seoul, Republic of Korea
| | - Dag A Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Melissa H Mageroy
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway
| | - Ole Christian Lind
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Valery Kashparov
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Ukrainian Institute of Agricultural Radiology (UIAR) of National University of Life and Environment Sciences of Ukraine, Kiev, Ukraine
| | - Jorunn E Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences, N-1432 Ås, Norway; Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
5
|
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, Cuypers A. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107304. [PMID: 37871537 DOI: 10.1016/j.jenvrad.2023.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.
Collapse
Affiliation(s)
- Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium.
| | - Jackline Kariuki
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - May Van Hees
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | | | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
6
|
Sears RG, Rigoulot SB, Occhialini A, Morgan B, Kakeshpour T, Brabazon H, Barnes CN, Seaberry EM, Jacobs B, Brown C, Yang Y, Schimel TM, Lenaghan SC, Neal Stewart C. Engineered gamma radiation phytosensors for environmental monitoring. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1745-1756. [PMID: 37224108 PMCID: PMC10440981 DOI: 10.1111/pbi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Nuclear energy, already a practical solution for supplying energy on a scale similar to fossil fuels, will likely increase its footprint over the next several decades to meet current climate goals. Gamma radiation is produced during fission in existing nuclear reactors and thus the need to detect leakage from nuclear plants, and effects of such leakage on ecosystems will likely also increase. At present, gamma radiation is detected using mechanical sensors that have several drawbacks, including: (i) limited availability; (ii) reliance on power supply; and (iii) requirement of human presence in dangerous areas. To overcome these limitations, we have developed a plant biosensor (phytosensor) to detect low-dose ionizing radiation. The system utilizes synthetic biology to engineer a dosimetric switch into potato utilizing the plant's native DNA damage response (DDR) machinery to produce a fluorescent output. In this work, the radiation phytosensor was shown to respond to a wide range of gamma radiation exposure (10-80 Grey) producing a reporter signal that was detectable at >3 m. Further, a pressure test of the top radiation phytosensor in a complex mesocosm demonstrated full function of the system in a 'real world' scenario.
Collapse
Affiliation(s)
- Robert G. Sears
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Stephen B. Rigoulot
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Alessandro Occhialini
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Britany Morgan
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayebeh Kakeshpour
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Holly Brabazon
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Caitlin N. Barnes
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Erin M. Seaberry
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Brianna Jacobs
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Chandler Brown
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Yongil Yang
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| | - Tayler M. Schimel
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
- Department of Food ScienceThe University of TennesseeKnoxvilleTennesseeUSA
| | - C. Neal Stewart
- Department of Plant SciencesThe University of TennesseeKnoxvilleTennesseeUSA
- Center for Agricultural Synthetic BiologyThe University of Tennessee, KnoxvilleKnoxvilleTennesseeUSA
| |
Collapse
|
7
|
Sakauchi K, Otaki JM. Imaging Plate Autoradiography for Ingested Anthropogenic Cesium-137 in Butterfly Bodies: Implications for the Biological Impacts of the Fukushima Nuclear Accident. Life (Basel) 2023; 13:life13051211. [PMID: 37240856 DOI: 10.3390/life13051211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Fukushima nuclear accident in March 2011 caused biological impacts on the pale grass blue butterfly Zizeeria maha. At least some of the impacts are likely mediated by the host plant, resulting in "field effects". However, to obtain the whole picture of the impacts, direct exposure effects should also be evaluated. Here, we examined the distribution of experimentally ingested anthropogenic cesium-137 (137Cs) in adult butterfly bodies using imaging plate autoradiography. We showed that 137Cs ingested by larvae was incorporated into adult bodies and was biased to females, although the majority of ingested 137Cs was excreted in the pupal cuticle and excretory material during eclosion. 137Cs accumulation in adult bodies was the highest in the abdomen, followed by the thorax and other organs. These results suggest that 137Cs accumulation in reproductive organs may cause adverse transgenerational or maternal effects mediated by reactive oxygen species (ROS) on germ cells. 137Cs accumulation was detected in field individuals collected in September 2011 and September 2016 but not in May 2011, which is consistent with the abnormality dynamics known from previous studies. Taken together, these results contribute to an integrative understanding of the multifaceted biological effects of the Fukushima nuclear accident in the field.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
8
|
Ueno S, Hasegawa Y, Kato S, Mori H, Tsukada H, Ohira H, Kaneko S. Rapid survey of de novo mutations in naturally growing tree species following the March 2011 disaster in Fukushima: The effect of low-dose-rate radiation. ENVIRONMENT INTERNATIONAL 2023; 174:107893. [PMID: 37058973 DOI: 10.1016/j.envint.2023.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The impact of low-dose-rate radiation on genetics is largely unknown, particularly in natural environments. The Fukushima Dai-ich Nuclear Power Plant disaster resulted in the creation of contaminated natural lands. In this study, de novo mutations (DNMs) in germ line cells were surveyed from double-digest RADseq fragments in Japanese cedar and flowering cherry trees exposed to ambient dose rates ranging from 0.08 to 6.86 μGy h-1. These two species are among the most widely cultivated Japanese gymnosperm and angiosperm trees for forestry and horticultural purpose, respectively. For Japanese flowering cherry, open crossings were performed to produce seedlings, and only two candidate DNMs were detected from uncontaminated area. For Japanese cedar, the haploid megagametophytes were used as next generation samples. The use of megagametophytes from open crossing for next generation mutation screening had many advantages such as reducing exposure to radiation in contaminated areas because artificial crossings are not needed and the ease of data analysis owing to the haploid nature of megagametophytes. A direct comparison of the nucleotide sequences of parents and megagametophytes revealed an average of 1.4 candidate DNMs per megagametophyte sample (range: 0-40) after filtering procedures were optimized based on the validation of DNMs via Sanger sequencing. There was no relationship between the observed mutations and the ambient dose rate in the growing area or the concentration of 137Cs in cedar branches. The present results also suggest that mutation rates differ among lineages and that the growing environment has a relatively large influence on these mutation rates. These results suggested there was no significant increase in the mutation rate of the germplasm of Japanese cedar and flowering cherry trees growing in the contaminated areas.
Collapse
Affiliation(s)
- Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
| | - Yoichi Hasegawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Shuri Kato
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; Tama Forest Science Garden, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1833-81 Todori, Hachioji, Tokyo 193-0843, Japan
| | - Hideki Mori
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Hirofumi Tsukada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Hajime Ohira
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan.
| |
Collapse
|
9
|
Duarte GT, Volkova PY, Fiengo Perez F, Horemans N. Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1178. [PMID: 36904038 PMCID: PMC10005729 DOI: 10.3390/plants12051178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families' depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed.
Collapse
Affiliation(s)
| | | | | | - Nele Horemans
- Belgian Nuclear Research Centre—SCK CEN, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
10
|
Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, Rinklebe J, Chen X, Peng W. A strategy for bioremediation of nuclear contaminants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120964. [PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
Collapse
Affiliation(s)
- Zhaolin Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yifeng He
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, M079, Perth, WA, 6009, Australia
| | - Jörg Rinklebe
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation, Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
11
|
Otaki JM, Sakauchi K, Taira W. The second decade of the blue butterfly in Fukushima: Untangling the ecological field effects after the Fukushima nuclear accident. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1539-1550. [PMID: 35475314 DOI: 10.1002/ieam.4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Many field observations of the biological effects of the Fukushima nuclear accident have been reported in the first decade after the accident. A series of observational and experimental studies have demonstrated causal adverse effects on the pale grass blue butterfly even at the low-level radiation exposure in the "field," contrary to the dosimetric view that insects are generally tolerant of radiation exposure. However, it has been demonstrated that the pale grass blue butterfly is tolerant of high oral doses of anthropogenic radioactive cesium (137 Cs) under "laboratory" conditions. This field-laboratory paradox can be explained by ecological field effects; for example, radiation stress in the field causes physiological and biochemical changes in the host plant, which then trophically affects butterfly larvae. The second decade of butterfly-based Fukushima research will be devoted to demonstrating how such adverse field effects occur. Changes in the host plant's nutritional contents likely affect butterfly physiology. The host plant may also upregulate secondary metabolites that affect herbivorous insects. The plant may be affected by changes in endophytic soil microbes in radioactively contaminated areas. If demonstrated, these results will reveal that the delicate ecological balances among the butterfly, its host plant, and soil microbes have been affected by radioactive pollution in Fukushima, which has important implications for environmental policies and human health. Integr Environ Assess Manag 2022;18:1539-1550. © SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Research Planning Office, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
12
|
Hirao AS, Watanabe Y, Hasegawa Y, Takagi T, Ueno S, Kaneko S. Mutational effects of chronic gamma radiation throughout the life cycle of Arabidopsis thaliana: Insight into radiosensitivity in the reproductive stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156224. [PMID: 35644386 DOI: 10.1016/j.scitotenv.2022.156224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Organisms living on Earth have always been exposed to natural sources of ionizing radiation, but following recent nuclear disasters, these background levels have often increased regionally due to the addition of man-made sources of radiation. To assess the mutational effects of ubiquitously present radiation on plants, we performed a whole-genome resequencing analysis of mutations induced by chronic irradiation throughout the life cycle of Arabidopsis thaliana grown under controlled conditions. We obtained resequencing data from 36 second generation post-mutagenesis (M2) progeny derived from 12 first generation (M1) lines grown under gamma-irradiation conditions, ranging from 0.0 to 2.0 Gray per day (Gy/day), to identify de novo mutations, including single base substitutions (SBSs) and small insertions/deletions (INDELs). The relationship between de novo mutation frequency and radiation dose rate from 0.0 to 2.0 Gy/day was assessed by statistical modeling. The increase in de novo mutations in response to irradiation dose fit the negative binomial model, which accounted for the high variability of mutation frequency observed. Among the different types of mutations, SBSs were more prevalent than INDELs, and deletions were more frequent than insertions. Furthermore, we observed that the mutational effects of chronic radiation were greater during the reproductive stage. These results will provide valuable insights into practical strategies for analyzing mutational effects in wild plants growing in environments with various mutagens.
Collapse
Affiliation(s)
- Akira S Hirao
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan; National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoichi Hasegawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, Japan
| | - Toshihito Takagi
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, Japan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, Japan.
| |
Collapse
|
13
|
De Marco A, Sicard P, Feng Z, Agathokleous E, Alonso R, Araminiene V, Augustatis A, Badea O, Beasley JC, Branquinho C, Bruckman VJ, Collalti A, David‐Schwartz R, Domingos M, Du E, Garcia Gomez H, Hashimoto S, Hoshika Y, Jakovljevic T, McNulty S, Oksanen E, Omidi Khaniabadi Y, Prescher A, Saitanis CJ, Sase H, Schmitz A, Voigt G, Watanabe M, Wood MD, Kozlov MV, Paoletti E. Strategic roadmap to assess forest vulnerability under air pollution and climate change. GLOBAL CHANGE BIOLOGY 2022; 28:5062-5085. [PMID: 35642454 PMCID: PMC9541114 DOI: 10.1111/gcb.16278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 05/13/2023]
Abstract
Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.
Collapse
Affiliation(s)
| | | | - Zhaozhong Feng
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Evgenios Agathokleous
- Key Laboratory of Agro‐Meteorology of Jiangsu Province, School of Applied MeteorologyNanjing University of Information Science & TechnologyNanjingChina
| | - Rocio Alonso
- Ecotoxicology of Air Pollution, CIEMATMadridSpain
| | - Valda Araminiene
- Lithuanian Research Centre for Agriculture and ForestryKaunasLithuania
| | - Algirdas Augustatis
- Faculty of Forest Sciences and EcologyVytautas Magnus UniversityKaunasLithuania
| | - Ovidiu Badea
- “Marin Drăcea” National Institute for Research and Development in ForestryVoluntariRomania
- Faculty of Silviculture and Forest Engineering“Transilvania” UniversityBraşovRomania
| | - James C. Beasley
- Savannah River Ecology Laboratory and Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| | - Viktor J. Bruckman
- Commission for Interdisciplinary Ecological StudiesAustrian Academy of SciencesViennaAustria
| | | | | | - Marisa Domingos
- Instituto de BotanicaNucleo de Pesquisa em EcologiaSao PauloBrazil
| | - Enzai Du
- Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | | | - Shoji Hashimoto
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| | | | | | | | - Elina Oksanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Yusef Omidi Khaniabadi
- Department of Environmental Health EngineeringIndustrial Medial and Health, Petroleum Industry Health Organization (PIHO)AhvazIran
| | | | - Costas J. Saitanis
- Lab of Ecology and Environmental ScienceAgricultural University of AthensAthensGreece
| | - Hiroyuki Sase
- Ecological Impact Research DepartmentAsia Center for Air Pollution Research (ACAP)NiigataJapan
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine‐WestphaliaRecklinghausenGermany
| | | | - Makoto Watanabe
- Institute of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - Michael D. Wood
- School of Science, Engineering and EnvironmentUniversity of SalfordSalfordUK
| | | | - Elena Paoletti
- Department of Forest SoilsForestry and Forest Products Research InstituteTsukubaJapan
| |
Collapse
|
14
|
Anderson D, Kaneko S, Harshman A, Okuda K, Takagi T, Chinn S, Beasley JC, Nanba K, Ishiniwa H, Hinton TG. Radiocesium accumulation and germline mutations in chronically exposed wild boar from Fukushima, with radiation doses to human consumers of contaminated meat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119359. [PMID: 35487469 DOI: 10.1016/j.envpol.2022.119359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Genetic effects and radioactive contamination of large mammals, including wild boar (Sus scrofa), have been studied in Japan because of dispersal of radionuclides from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Such studies have generally demonstrated a declining trend in measured radiocesium body burdens in wildlife. Estimating radiation exposure to wildlife is important to understand possible long-term impacts. Here, radiation exposure was evaluated in 307 wild boar inhabiting radioactively contaminated areas (50-8000 kBq m-2) in Fukushima Prefecture from 2016 to 2019, and genetic markers were examined to assess possible germline mutations caused by chronic radiation exposures to several generations of wild boar. Internal Cs activity concentrations in boar remained high in areas near the power plant with the highest concentration of 54 kBq kg-1 measured in 2019. Total dose rates to wild boar ranged from 0.02 to 36 μGy h-1, which was primarily attributed to external radiation exposure, and dose rates to the maximally exposed animals were above the generic no-effects benchmark of 10 μGy h-1. Using the estimated age of each animal, lifetime radiation doses ranged from <0.1 mGy to 700 mGy. Despite chronic exposures, the genetic analyses showed no significant accumulation of mutation events. Because wild boar is an occasional human dietary item in Japan, effective dose to humans from ingesting contaminated wild boar meat was calculated. Hypothetical consumption of contaminated wild boar meat from radioactively contaminated areas in Fukushima, at the per capita pork consumption rate (12.9 kg y-1), would result in an average effective annual dose of 0.9 mSv y-1, which is below the annual ingestion limit of 1 mSv y-1. Additionally, a consumption rate of about 1.4 kg y-1 of the most contaminated meat in this study would not exceed annual ingestion limits.
Collapse
Affiliation(s)
- Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Shingo Kaneko
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Amber Harshman
- Environmental Protection Services Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima, Japan
| | - Toshihito Takagi
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Sarah Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan; Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
15
|
Ingestional Toxicity of Radiation-Dependent Metabolites of the Host Plant for the Pale Grass Blue Butterfly: A Mechanism of Field Effects of Radioactive Pollution in Fukushima. Life (Basel) 2022; 12:life12050615. [PMID: 35629283 PMCID: PMC9146399 DOI: 10.3390/life12050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Biological effects of the Fukushima nuclear accident have been reported in various organisms, including the pale grass blue butterfly Zizeeria maha and its host plant Oxalis corniculata. This plant upregulates various secondary metabolites in response to low-dose radiation exposure, which may contribute to the high mortality and abnormality rates of the butterfly in Fukushima. However, this field effect hypothesis has not been experimentally tested. Here, using an artificial diet for larvae, we examined the ingestional toxicity of three radiation-dependent plant metabolites annotated in a previous metabolomic study: lauric acid (a saturated fatty acid), alfuzosin (an adrenergic receptor antagonist), and ikarugamycin (an antibiotic likely from endophytic bacteria). Ingestion of lauric acid or alfuzosin caused a significant decrease in the pupation, eclosion (survival), and normality rates, indicating toxicity of these compounds. Lauric acid made the egg-larval days significantly longer, indicating larval growth retardation. In contrast, ikarugamycin caused a significant increase in the pupation and eclosion rates, probably due to the protection of the diet from fungi and bacteria. These results suggest that at least some of the radiation-dependent plant metabolites, such as lauric acid, contribute to the deleterious effects of radioactive pollution on the butterfly in Fukushima, providing experimental evidence for the field effect hypothesis.
Collapse
|
16
|
Ludovici GM, Chierici A, de Souza SO, d’Errico F, Iannotti A, Malizia A. Effects of Ionizing Radiation on Flora Ten Years after the Fukushima Dai-ichi Disaster. PLANTS (BASEL, SWITZERLAND) 2022; 11:222. [PMID: 35050110 PMCID: PMC8781571 DOI: 10.3390/plants11020222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The aim of this work is to analyze the effects of ionizing radiation and radionuclides (like 137Cs) in several higher plants located around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), evaluating both their adaptive processes and evolution. After the FNPP accident in March 2011 much attention was focused to the biological consequences of ionizing radiation and radionuclides released in the area surrounding the nuclear plant. This unexpected mishap led to the emission of radionuclides in aerosol and gaseous forms from the power plant, which contaminated a large area, including wild forest, cities, farmlands, mountains, and the sea, causing serious problems. Large quantities of 131I, 137Cs, and 134Cs were detected in the fallout. People were evacuated but the flora continued to be affected by the radiation exposure and by the radioactive dusts' fallout. The response of biota to FNPP irradiation was a complex interaction among radiation dose, dose rate, temporal and spatial variation, varying radiation sensitivities of the different plants' species, and indirect effects from other events. The repeated ionizing radiations, acute or chronic, guarantee an adaptation of the plant species, demonstrating a radio-resistance. Consequently, ionizing radiation affects the genetic structure, especially during chronic irradiation, reducing genetic variability. This reduction is associated with the different susceptibility of plant species to chronic stress. This would confirm the adaptive theory associated with this phenomenon. The effects that ionizing radiation has on different life forms are examined in this review using the FNPP disaster as a case study focusing the attention ten years after the accident.
Collapse
Affiliation(s)
- Gian Marco Ludovici
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (G.M.L.); (A.I.)
| | - Andrea Chierici
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy; (A.C.); (F.d.)
| | - Susana Oliveira de Souza
- Physics Department, Federal University of Sergipe, UFS, Av. Marechal Rondon, s/n Jardim Rosa Elze, São Cristóvão SE 49100-000, Brazil;
| | - Francesco d’Errico
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy; (A.C.); (F.d.)
| | - Alba Iannotti
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (G.M.L.); (A.I.)
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via di Motpellier 1, 00133 Rome, Italy
| |
Collapse
|
17
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
18
|
Pozolotina VN, Lebedev VA, Antonova EV, Grigor’ev AA, Shalaumova YV, Tarasov OV. Current State of Tree Stands in the East-Ural Radioactive Trace Area Closest to Kyshtym Accident Epicenter. RUSS J ECOL+ 2021. [DOI: 10.1134/s106741362201009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Makarenko ES, Geras’kin SA, Yoschenko VI, Lychenkova MA. Morphological Characteristics of Japanese Red Pine Needles from the Areas of the Fukushima NPP Accident. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521070131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Response of the Creeping Wood Sorrel Oxalis corniculata to Low-Dose Radiation Exposure from Fukushima's Contaminated Soil. Life (Basel) 2021; 11:990. [PMID: 34575139 PMCID: PMC8472241 DOI: 10.3390/life11090990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
The biological consequences of the Fukushima nuclear accident have been intensively studied using the pale grass blue butterfly Zizeeria maha and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed metabolomic analyses of Oxalis leaves from Okinawa to examine the plant metabolites that were upregulated or downregulated in response to low-dose radiation exposure from Fukushima's contaminated soil. The cumulative dose of radiation to the plants was 5.7 mGy (34 μGy/h for 7 days). The GC-MS analysis revealed a systematic tendency of downregulation among the metabolites, some of which were annotated as caproic acid, nonanoic acid, azelaic acid, and oleic acid. Others were annotated as fructose, glucose, and citric acid, involved in the carbohydrate metabolic pathways. Notably, the peak annotated as lauric acid was upregulated. In contrast, the LC-MS analysis detected many upregulated metabolites, some of which were annotated as either antioxidants or stress-related chemicals involved in defense pathways. Among them, only three metabolite peaks had a single annotation, one of which was alfuzosin, an antagonist of the α1-adrenergic receptor. We conclude that this Oxalis plant responded metabolically to low-dose radiation exposure from Fukushima's contaminated soil, which may mediate the ecological "field effects" of the developmental deterioration of butterflies in Fukushima.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| |
Collapse
|
21
|
Nguyen Phuong T, Kaneko S, Koya S, Ohira H, Tsukada H. Radiation dose rate to Japanese cedar and plants collected from Okuma, Fukushima Prefecture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146350. [PMID: 33744576 DOI: 10.1016/j.scitotenv.2021.146350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
After the 2011 Fukushima Dai-ichi Nuclear Power Station (FDNPS) accident, wild populations of animals and plants living in the evacuation zone received additional ionizing radiation of both internal and external radiation doses. Morphological abnormalities of pine and fir trees near the FDNPS were reported. In order to evaluate dose-effect relationships, it is necessary to quantify the radiation doses to trees and plants. In this study, the internal and external dose rates to Japanese cedar and plants collected at three sites in Okuma, approximately 4 km southwest of FDNPS were estimated applying the ERICA Assessment Tool. The activity concentrations of 134Cs and 137Cs in soils, cedar trunks, and plants were determined. The total dose rates to cedar ranged from 2.2 ± 1.2 to 6.1 ± 2.2 μGy h-1. These rates were within the derived consideration reference levels (DCRLs) reported by ICRP 108 as 4-40 μGy h-1 for pine trees. The highest estimate for plants was 7.1 ± 2.7 μGy h-1, much smaller than the DCRLs reported for grasses and herbs (40-400 μGy h-1). On average, the internal radiation dose rates to cedars at the two sites accounted for 5% and 29% of the external dose rates, respectively, while the value in another site was only 0.4% for cedar. This was attributed to differences in the crown area between the three sites. The trunk diameter of cedars shows a positive correlation with the ratio of internal to external radiation dose rates. It indicates that the total dose rate to cedars is easily estimated with the soil radiocaesium inventory and trunk diameter. The internal radiation dose rate to the plant varied depending on the plant species. This variation was considerably large in plants due to the presence of two species, including Solidago altissima and Artemisia indica var. maximowiczii.
Collapse
Affiliation(s)
- Thoa Nguyen Phuong
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Shingo Kaneko
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Shishido Koya
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Hajime Ohira
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan
| | - Hirofumi Tsukada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture 960-1296, Japan.
| |
Collapse
|
22
|
Geras'kin S, Yoschenko V, Bitarishvili S, Makarenko E, Vasiliev D, Prazyan A, Lychenkova M, Nanba K. Multifaceted effects of chronic radiation exposure in Japanese red pines from Fukushima prefecture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142946. [PMID: 33498123 DOI: 10.1016/j.scitotenv.2020.142946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Despite many studies carried out to date, the long-term effects of chronic exposure on plants and animals inhabiting the territories affected by the Fukushima Dai-Ichi NPP accident remain the subject of scientific discussions. Our investigations were performed on Japanese red pine, the native tree species that is widely spread in the radioactive contaminated areas. Earlier observations revealed the radiation-induced cancellation of the apical dominance in young trees of this species. To understand the mechanism of such transformation, we evaluated the morphometric parameters of needles, the frequency of cytogenetic abnormalities, and the concentrations of the major classes of phytohormones in several natural populations of young red pine trees growing under different exposure conditions in Fukushima prefecture. No significant relationships between the morphometric parameters of needles and dose rates at the experimental sites were revealed. The frequencies of aberrant cells in the needle's intercalary meristem and the frequencies of cancellation of the apical dominance in the young pine populations in the radioactive contaminated areas were significantly higher than in the reference population. However, only cytogenetic abnormalities increased with the dose rate. We have not found the relation between the frequency of cytogenetic abnormalities in needles and cancellation of the apical dominance in the individual trees. In this paper, for the first time, it is shown that chronic radiation exposure changes the concentration ratio of the major classes of phytohormones in the needles of Japanese red pine. Given the complete lack of information about the most important regulatory system of plants in chronically irradiated populations, this study fills a substantial gap in our knowledge. Finally, our findings indicated that the most probable causes of the cancellation of apical dominance observed in chronically exposed Japanese red pines are radiation damage to the apical meristems of the trees and changes in their phytohormonal balance.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia.
| | - Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Denis Vasiliev
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Alexandr Prazyan
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Maria Lychenkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, Obninsk, Kaluga Region 249032, Russia
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
23
|
Bitarishvili SV, Geras’kin SA, Yoschenko VI, Prazyan AA, Nanba K. Change in the Phytohormonal Status of Japanese Red Pine after the Fukushima Accident. RUSS J ECOL+ 2021. [DOI: 10.1134/s1067413621020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Nutrient Imbalance of the Host Plant for Larvae of the Pale Grass Blue Butterfly May Mediate the Field Effect of Low-Dose Radiation Exposure in Fukushima: Dose-Dependent Changes in the Sodium Content. INSECTS 2021; 12:insects12020149. [PMID: 33572324 PMCID: PMC7916146 DOI: 10.3390/insects12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
Collapse
|
25
|
Maruyama K, Wang B, Doi K, Ishibashi K, Ichikawa S, Furuhata Y, Kubota M, Watanabe Y. Radiation effects on wild medaka around Fukushima Dai-ichi Nuclear Power Plant assessed by micronucleus assay. JOURNAL OF RADIATION RESEARCH 2021; 62:79-85. [PMID: 33326996 PMCID: PMC7779352 DOI: 10.1093/jrr/rraa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Indexed: 06/12/2023]
Abstract
Since the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) accident in 2011, radiation effects on wildlife in the contaminated areas have been a major concern. The outskirts of the F1-NPP are mainly rural areas, where many rice fields, streams and reservoirs are located. We searched for wild medaka (small aquarium fish) around the F1-NPP and found two wild medaka habitats (S1 and S2). S1 is a stream located 4 km from the F1-NPP, where the ambient dose equivalent rate was 0.4-0.9 μSv/h (2013-14), and S2 is a reservoir located 7.5 km from the F1-NPP, where the ambient dose equivalent rate was 9.8-22 μSv/h (2013-14 and 2017-18). Dosimeters were placed for one day at the locations where the medaka were captured, and the absorbed dose rates were estimated. Radiation effects on wild medaka were examined using micronucleus assay between 2013 and 2018. No significant difference in frequency of micronucleated gill cells was observed among the wild medaka from S1, S2 and our cultivated medaka that were used as a control.
Collapse
Affiliation(s)
- Kouichi Maruyama
- Corresponding author: Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Tel: +81-43-206-3085; Fax: +81-43- 251-4582;
| | - Bing Wang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Kazutaka Doi
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Koji Ishibashi
- Tokyo College of Environment, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-0022, Japan
| | - San’ei Ichikawa
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoshiaki Furuhata
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Masahide Kubota
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoshito Watanabe
- Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
26
|
Tanaka S, Kinouchi T, Fujii T, Imanaka T, Takahashi T, Fukutani S, Maki D, Nohtomi A, Takahashi S. Observation of morphological abnormalities in silkworm pupae after feeding 137CsCl-supplemented diet to evaluate the effects of low dose-rate exposure. Sci Rep 2020; 10:16055. [PMID: 32994421 PMCID: PMC7524783 DOI: 10.1038/s41598-020-72882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, morphological abnormalities in lepidopteran insects, such as shrinkage and/or aberration of wings, have been reported. Butterflies experimentally exposed to radiocesium also show such abnormalities. However, because of a lack of data on absorbed dose and dose-effect relationship, it is unclear whether these abnormalities are caused directly by radiation. We conducted a low dose-rate exposure experiment in silkworms reared from egg to fully developed larvae on a 137CsCl-supplemented artificial diet and estimated the absorbed dose to evaluate morphological abnormalities in pupal wings. We used 137CsCl at 1.3 × 103 Bq/g fresh weight to simulate 137Cs contamination around the FDNPP. Absorbed doses were estimated using a glass rod dosimeter and Monte Carlo particle transport simulation code PHITS. Average external absorbed doses were approximately 0.24 (on diet) and 0.016 mGy/day (near diet); the average internal absorbed dose was approximately 0.82 mGy/day. Pupal wing structure is sensitive to radiation exposure. However, no significant differences were observed in the wing-to-whole body ratio of pupae between the 137CsCl-exposure and control groups. These results suggest that silkworms are insensitive to low dose-rate exposure due to chronic ingestion of high 137Cs at a high concentration.
Collapse
Affiliation(s)
- Sota Tanaka
- Research Group for Environmental Science, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan.
| | - Tadatoshi Kinouchi
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Motooka, Fukuoka, 819-0395, Japan
| | - Tetsuji Imanaka
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tomoyuki Takahashi
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Satoshi Fukutani
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Daisuke Maki
- Technical Staff Office, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akihiro Nohtomi
- Quantum Radiation Sciences, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Sentaro Takahashi
- Professor Emeritus, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
27
|
Kashparova E, Levchuk S, Morozova V, Kashparov V. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105731. [PMID: 29880300 DOI: 10.1016/j.jenvrad.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 01/18/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The assessment of the fluctuating asymmetry based on measurement of the parameters of left and right parts of silver birch (Betula pendula (L.) Roth.) leaves and relative sizes of pairs of Scots pine (Pinus sylvestris L.) needles from the Chernobyl Exclusion Zone (ChEZ) was carried out. Twelve samples of both birch leaves and pairs of needles were collected from 10 trees at 5 sites in the Chernobyl Exclusion Zone and also at one control site located outside the ChEZ. Values of gamma dose rate in the air varied between the sites from 0.1 to 40 μGy h-1. Activity concentrations of 90Sr and 137Cs in the birch leaves varied over the range of 0.9÷2460 kBq kg-1 and 0.1÷339 kBq·kg-1 (DW), respectively. In addition to the above, in the Scots pine needles, these ranges were 0.7 ÷1970 kBq kg-1f for 90Sr and 0.1÷78 kBq kg-1 (DW) for 137Cs. From the values of the radionuclides activity concentrations in the plants, the internal dose rate is estimated to be in the range of 0.1 ÷ 274 μGy h-1. The main sources of the internal dose rate were radiation of 90Sr and 90Y. Indices of fluctuating asymmetry of silver birch leaves and Scots pine needles varied over the range of 0.048 ± 0.007 ÷ 0.060 ± 0.009 and 0.014 ± 0.002 ÷ 0.018 ± 0.002, respectively, and did not statistically differ for all experimental sites. The indices also did not depend on the external or internal dose rate of ionizing radiation for plants. The above findings seem to be consistent with other research effort in terms of understanding the response of organisms to chronic pollutant exposure and the long-term effects of large scale nuclear accidents.
Collapse
Affiliation(s)
- Elena Kashparova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| | - Valeriia Morozova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine.
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str. 7, Chabany, Kyiv region, 08162, Ukraine
| |
Collapse
|
28
|
Hase Y, Satoh K, Seito H, Oono Y. Genetic Consequences of Acute/Chronic Gamma and Carbon Ion Irradiation of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:336. [PMID: 32273879 PMCID: PMC7113374 DOI: 10.3389/fpls.2020.00336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 05/19/2023]
Abstract
Gamma rays are the most frequently used ionizing radiation in plant mutagenesis; however, few studies are available on the characteristics of mutations at a genome-wide level. Here, we quantitatively and qualitatively characterized the mutations induced by acute/chronic gamma ray irradiation in Arabidopsis. The data were then compared with those previously obtained for carbon ion irradiation. In the acute irradiation of dry seeds at the same effective survival dose, gamma rays and carbon ions differed substantially, with the former inducing a significantly greater number of total mutation events, while the number of gene-affecting mutation events did not differ between the treatments. This may result from the gamma rays predominantly inducing single-base substitutions, while carbon ions frequently induced deletions ≥2 bp. Mutation accumulation lines prepared by chronic gamma irradiation with 100-500 mGy/h in five successive generations showed higher mutation frequencies per dose compared with acute irradiation of dry seeds. Chronic gamma ray irradiation may induce larger genetic changes compared with acute gamma ray irradiation. In addition, the transition/transversion ratio decreased as the dose rate increased, suggesting that plants responded to very low dose rates of gamma rays (∼1 mGy/h), even though the overall mutation frequency did not increase. These data will aid our understanding of the effects of radiation types and be useful in selecting suitable radiation treatments for mutagenesis.
Collapse
|
29
|
Mousseau TA, Møller AP. Plants in the Light of Ionizing Radiation: What Have We Learned From Chernobyl, Fukushima, and Other "Hot" Places? FRONTIERS IN PLANT SCIENCE 2020; 11:552. [PMID: 32457784 PMCID: PMC7227407 DOI: 10.3389/fpls.2020.00552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 05/13/2023]
Abstract
Perhaps the main factor determining success of space travel will be the ability to control effects of ionizing radiation for humans, but also for other living organisms. Manned space travel will require the cultivation of food plants under conditions of prolonged exposure to ionizing radiation. Although there is a significant literature concerning the effects of acute high dose rate exposures on plant genetics, growth, and development, much less is known concerning the effects of chronic low dose irradiation especially those related to the impacts of the high energy protons and heavy ions that are encountered in the space environment. Here, we make the argument that in situ studies of the effects of radionuclides at nuclear accident sites (e.g., Chernobyl and Fukushima), atomic bomb test sites, and areas of naturally high radiation levels, could provide insights concerning the mechanisms of radiation effects on living systems that cannot be assessed short of conducting research in space, which is not yet feasible for large scale, long term, multigenerational experiments. In this article we review the literature concerning the effects of chronic low-dose rate radiation exposure from studies conducted in Chernobyl, Fukushima, and other regions of the world with high ambient radiation levels (parts of India in particular). In general, mutation rates and other measures of genetic damage are considerably elevated, pollen and seed viability are reduced, growth rates are slower, and the frequency of developmental abnormalities is increased, although there is considerable variation among taxa for these effects. In addition, there are interactions between radiation and other environmental stressors (e.g., temperature, drought, heavy metals) that may play important roles in determining susceptibility to radiation induced stress.
Collapse
Affiliation(s)
- Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- SURA/LASSO/NASA, ISS Utilization and Life Sciences Division, Kennedy Space Center, Cape Canaveral, FL, United States
- *Correspondence: Timothy A. Mousseau,
| | - Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
30
|
Real A, Garnier-Laplace J. The importance of deriving adequate wildlife benchmark values to optimize radiological protection in various environmental exposure situations. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105902. [PMID: 30732942 DOI: 10.1016/j.jenvrad.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The actions to be taken to demonstrate that the environment is adequately protected against the detrimental effects of ionising radiation, and if needed to protect it, must be commensurate with the overall level of risk to non-human biota. To judge the level of risk, the estimated dose rates absorbed by animals and plants need to be compared with dose criteria, a benchmark or reference value. A variety of aspects will influence the final value of the derived benchmark, including: the aim of the application of the benchmark, the protection goals of the assessment, the data on radiation-induced biological effects considered, and the methodology used. Benchmark values have been proposed by several international organizations (UNSCEAR, ICRP, IAEA), countries (USA, Canada) and research projects (ERICA, PROTECT), for different application purposes and protection goals and using a variety of methodologies. This paper describes the aspects that need to be considered in the derivation of numerical benchmarks, the approaches used by different organizations and the benchmark values they have proposed for the radiation protection of the environment. The benchmark values proposed are compared with the dose-rates at which radiation-induced biological effects have been described in animals and plants.
Collapse
Affiliation(s)
- Almudena Real
- Spanish Research Centre in Energy, Environment and Technology (CIEMAT), Avenida Complutense 40, Madrid, 28040, Spain.
| | - Jacqueline Garnier-Laplace
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé et Environnement, Cadarache-Batiment 159, BP 3, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
31
|
Overwintering States of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) at the Time of the Fukushima Nuclear Accident in March 2011. INSECTS 2019; 10:insects10110389. [PMID: 31690046 PMCID: PMC6920751 DOI: 10.3390/insects10110389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
The Fukushima nuclear accident in March 2011 caused the massive release of anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant to its surrounding environment. Its biological effects have been studied using the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), but the overwintering states of this butterfly remain elusive. Here, we conducted a series of field surveys in March 2018, March 2019, and April 2019 in Fukushima and its vicinity to clarify the overwintering states of this butterfly at the time of the Fukushima nuclear accident. We discovered overwintering individuals in situ associated with the host plant Oxalis corniculata under natural straw mulch as first-instar to fourth-instar larvae in March 2018 and 2019. No other developmental stages were found. The body length and width were reasonably correlated with the accumulated temperature. On the basis of a linear regression equation between body size and accumulated temperature, together with other data, we deduced that the pale grass blue butterfly occurred as fourth-instar larvae in Fukushima and its vicinity at the time of the accident. This study paves the way for subsequent dosimetric analyses that determine the radiation doses absorbed by the butterfly after the accident.
Collapse
|
32
|
Blagojevic D, Lee Y, Brede DA, Lind OC, Yakovlev I, Solhaug KA, Fossdal CG, Salbu B, Olsen JE. Comparative sensitivity to gamma radiation at the organismal, cell and DNA level in young plants of Norway spruce, Scots pine and Arabidopsis thaliana. PLANTA 2019; 250:1567-1590. [PMID: 31372744 DOI: 10.1007/s00425-019-03250-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Persistent DNA damage in gamma-exposed Norway spruce, Scots pine and Arabidopsis thaliana, but persistent adverse effects at the organismal and cellular level in the conifers only. Gamma radiation emitted from natural and anthropogenic sources may have strong negative impact on plants, especially at high dose rates. Although previous studies implied different sensitivity among species, information from comparative studies under standardized conditions is scarce. In this study, sensitivity to gamma radiation was compared in young seedlings of the conifers Scots pine and Norway spruce and the herbaceous Arabidopsis thaliana by exposure to 60Co gamma dose rates of 1-540 mGy h-1 for 144 h, as well as 360 h for A. thaliana. Consistent with slightly less prominent shoot apical meristem, in the conifers growth was significantly inhibited with increasing dose rate ≥ 40 mGy h-1. Post-irradiation, the conifers showed dose-rate-dependent inhibition of needle and root development consistent with increasingly disorganized apical meristems with increasing dose rate, visible damage and mortality after exposure to ≥ 40 mGy h-1. Regardless of gamma duration, A. thaliana showed no visible or histological damage or mortality, only delayed lateral root development after ≥ 100 mGy h-1 and slightly, but transiently delayed post-irradiation reproductive development after ≥ 400 mGy h-1. In all species dose-rate-dependent DNA damage occurred following ≥ 1-10 mGy h-1 and was still at a similar level at day 44 post-irradiation. In conclusion, the persistent DNA damage (possible genomic instability) following gamma exposure in all species may suggest that DNA repair is not necessarily mobilized more extensively in A. thaliana than in Norway spruce and Scots pine, and the far higher sensitivity at the organismal and cellular level in the conifers indicates lower tolerance to DNA damage than in A. thaliana.
Collapse
Affiliation(s)
- Dajana Blagojevic
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - YeonKyeong Lee
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dag A Brede
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Ole Christian Lind
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Igor Yakovlev
- Norwegian Institute of Bioeconomy Research, 1431, Ås, Norway
| | - Knut Asbjørn Solhaug
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | | | - Brit Salbu
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Jorunn E Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
- Centre of Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
33
|
Gurung RD, Taira W, Sakauchi K, Iwata M, Hiyama A, Otaki JM. Tolerance of High Oral Doses of Nonradioactive and Radioactive Caesium Chloride in the Pale Grass Blue Butterfly Zizeeria maha. INSECTS 2019; 10:E290. [PMID: 31505757 PMCID: PMC6780287 DOI: 10.3390/insects10090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
The biological effects of the Fukushima nuclear accident have been examined in the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae). In previous internal exposure experiments, larvae were given field-collected contaminated host plant leaves that contained up to 43.5 kBq/kg (leaf) of radioactive caesium. Larvae ingested up to 480 kBq/kg (larva), resulting in high mortality and abnormality rates. However, these results need to be compared with the toxicological data of caesium. Here, we examined the toxicity of both nonradioactive and radioactive caesium chloride on the pale grass blue butterfly. Larvae were fed a caesium-containing artificial diet, ingesting up to 149 MBq/kg (larva) of radioactive caesium (137Cs) or a much higher amount of nonradioactive caesium. We examined the pupation rate, eclosion rate, survival rate up to the adult stage, and the forewing size. In contrast to previous internal exposure experiments using field-collected contaminated leaves, we could not detect any effect. We conclude that the butterfly is tolerant to ionising radiation from 137Cs in the range tested but is vulnerable to radioactive contamination in the field. These results suggest that the biological effects in the field may be mediated through ecological systems and cannot be estimated solely based on radiation doses.
Collapse
Affiliation(s)
- Raj D Gurung
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Instrumental Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan.
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
34
|
Fuma S, Soeda H, Watanabe Y, Kubota Y, Aono T. Dose rate estimation of freshwater wildlife inhabiting irrigation ponds in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:172-178. [PMID: 30921607 DOI: 10.1016/j.jenvrad.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
To assess the risks of ionising radiation to freshwater environments in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident, the absorbed dose rates to aquatic organisms possibly inhabiting the irrigation ponds were estimated using the ERICA Assessment Tool from 134Cs and 137Cs radioactivity monitoring data for the period 2013 to 2017. In each year, the total dose rates to benthic organisms were in the same or higher levels compared with those to pelagic organisms. Among pelagic organisms, the total dose rates to amphibians, birds, and pelagic fish were two orders of magnitude higher than those to plankton. The total dose rates to insect larvae, which attained a maximum of 130 μGy h-1, were higher than those to the other benthic organisms. The dose rates to benthic organisms increased from 2013 to 2015 and remained constant thereafter. In 50-93% of ponds, the dose rates to at least one taxon of freshwater organism, all of which were benthic organisms, exceeded the ERICA screening level (10 μGy h-1). Comparison of the estimated dose rates with the ICRP's derived consideration reference levels (DCRLs) suggests that radioactive contamination was not likely to damage amphibians, birds, pelagic fish, benthic fish, crustaceans, and insect larvae inhabiting most of the irrigation ponds in the exclusion zone. However, this comparison also suggests that there was some chance of deleterious effects occurring to birds and benthic fish in a limited number of the most severely contaminated irrigation ponds.
Collapse
Affiliation(s)
- Shoichi Fuma
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Haruhi Soeda
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshihisa Kubota
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tatsuo Aono
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
35
|
Geras'kin S, Volkova P, Vasiliyev D, Dikareva N, Oudalova A, Kazakova E, Makarenko E, Duarte G, Kuzmenkov A. Scots pine as a promising indicator organism for biomonitoring of the polluted environment: A case study on chronically irradiated populations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:3-13. [PMID: 31255224 DOI: 10.1016/j.mrgentox.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
In this paper the main results of long-term (2003-2016) observations on Scots pine populations inhabiting sites affected by the Chernobyl accident are presented. Populations growing for many years under chronic radiation exposure are characterized by the enhanced mutation rates, increased genetic diversity, changes in the gene expression and in the level of genome-wide methylation, alterations in the temporal dynamics of cytogenetic abnormalities and genetic structure of populations. However, significant changes at the genetic level had no effects on enzymatic activity, morphological abnormalities, and reproductive ability of pine trees. The results presented increase our understanding of the long-term effects of chronic radiation exposure on plant populations in the wild nature and provide important information for the management and monitoring of radioactively contaminated territories.
Collapse
Affiliation(s)
| | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Denis Vasiliyev
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Nina Dikareva
- Russian Institute of Radiology and Agroecology, Obninsk, Russia
| | - Alla Oudalova
- Russian Institute of Radiology and Agroecology, Obninsk, Russia; Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Obninsk, Russia
| | | | | | - Gustavo Duarte
- Russian Institute of Radiology and Agroecology, Obninsk, Russia; Institute Jean-Pierre Bourgin, Versailles, France
| | | |
Collapse
|
36
|
Developmental and hemocytological effects of ingesting Fukushima's radiocesium on the cabbage white butterfly Pieris rapae. Sci Rep 2019; 9:2625. [PMID: 30796244 PMCID: PMC6385249 DOI: 10.1038/s41598-018-37325-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
High morphological abnormality and mortality rates have been reported in the pale grass blue butterfly, Zizeeria maha, since the Fukushima nuclear accident. However, it remains uncertain if these effects are restricted to this butterfly. Here, we evaluated the effects of ingesting cabbage leaves grown with contaminated soils from Fukushima on the development and hemocytes of the cabbage white butterfly, Pieris rapae. Contaminated cabbage leaves containing various low levels of anthropogenic 134Cs and 137Cs radioactivity (less than natural 40K radioactivity) were fed to larvae from Okinawa, the least contaminated locality in Japan. Negative developmental and morphological effects were detected in the experimental groups. The cesium (but not potassium) radioactivity concentration was negatively correlated with the granulocyte percentage in hemolymph, and the granulocyte percentage was positively correlated with the pupal eclosion rate, the adult achievement rate, and the total normality rate. These results demonstrated that ingesting low-level radiocesium contaminants in Fukushima (but not natural radiopotassium) imposed biologically negative effects on the cabbage white butterfly, as in the pale grass blue butterfly, at both cellular and organismal levels.
Collapse
|
37
|
Horemans N, Nauts R, Vives I Batlle J, Van Hees M, Jacobs G, Voorspoels S, Gaschak S, Nanba K, Saenen E. Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:405-416. [PMID: 30055441 DOI: 10.1016/j.jenvrad.2018.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 05/22/2023]
Abstract
The long-term radiological impact to the environment of the nuclear accidents in Chernobyl and Fukushima is still under discussion. In the course of spring of 2016 we sampled two Brassicacea plants, Arabidopsis thaliana and Capsella bursa-pastoris native to Ukraine and Japan, respectively, alongside a gradient of radiation within the exclusion and difficult to return zones of Chernobyl (CEZ) and Fukushima (FEZ). Ambient dose rates were similar for both sampling gradients ranging from 0.5 to 80 μGy/h at plant height. The hypothesis was tested whether a history of several generations of plants growing in enhanced radiation exposure conditions would have led to changes in genome-wide DNA methylation. However, no differences were found in the global percentage of 5-methylated cytosines in Capsella bursa pastoris plants sampled in FEZ. On the other hand a significant decrease in whole genome methylation percentage in Arabidopsis thaliana plants was found in CEZ mainly governed by the highest exposed plants. These data support a link between exposure to changed environmental conditions and changes genome methylation. In addition to methylation the activity concentration of different radionuclides, 137Cs, 90Sr, 241Am and Pu-238,239,240 for CEZ and 137, 134Cs for FEZ, was analysed in both soil and plant samples. The ratio of 5.6 between 137Cs compared to 134Cs was as expected five years after the FEZ accident. For CEZ 137Cs is the most abundant polluting radionuclide in soil followed by 90Sr. Whereas 241Am and Pu-isotopes are only marginally present. In the plant tissue, however, higher levels of Sr than Cs were retrieved due to a high uptake of 90Sr in the plants. The 90Sr transfer factors ranged in CEZ from 5 to 20 (kg/kg) depending on the locality. Based on the activity concentrations of the different radionuclides the ERICA tool was used to estimate the total dose rates to the plants. It was found that for FEZ the doses was mainly contributable to the external Cs-isotopes and as such estimated total dose rates (0.13-38 μGy/h) were in the same range as the ambient measured dose rates. In strong contrast this was not true for CEZ where the total dose rate was mainly due to high uptake of the 90Sr leading to dose rates ranging from 1 to 370 μGy/h. Hence our data clearly indicate that not taking into account the internal contamination in CEZ will lead to considerable underestimation of the doses to the plants. Additionally they show that it is hard to compare the two nuclear accidental sites and one of the main reasons is the difference in contamination profile.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Universiteitslaan 1, 3590, Diepenbeek, Belgium.
| | - Robin Nauts
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - Jordi Vives I Batlle
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO Nv), Boeretang 200, B-2400, Mol, Belgium
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO Nv), Boeretang 200, B-2400, Mol, Belgium
| | - Sergey Gaschak
- Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100, Slavutych, Ukraine
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, B-2400, Mol, Belgium
| |
Collapse
|
38
|
Haematological analysis of Japanese macaques (Macaca fuscata) in the area affected by the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep 2018; 8:16748. [PMID: 30425289 PMCID: PMC6233195 DOI: 10.1038/s41598-018-35104-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Several populations of wild Japanese macaques (Macaca fuscata) inhabit the area around Fukushima Daiichi Nuclear Power Plant (FNPP). To measure and control the size of these populations, macaques are captured annually. Between May 2013 and December 2014, we performed a haematological analysis of Japanese macaques captured within a 40-km radius of FNPP, the location of a nuclear disaster two years post-accident. The dose-rate of radiocaesium was estimated using the ERICA Tool. The median internal dose-rate was 7.6 μGy/day (ranging from 1.8 to 219 μGy/day) and the external dose-rate was 13.9 μGy/day (ranging from 6.7 to 35.1 μGy/day). We performed multiple regression analyses to estimate the dose-rate effects on haematological values in peripheral blood and bone marrow. The white blood cell and platelet counts showed an inverse correlation with the internal dose-rate in mature macaques. Furthermore, the myeloid cell, megakaryocyte, and haematopoietic cell counts were inversely correlated and the occupancy of adipose tissue was positively correlated with internal dose-rate in femoral bone marrow of mature macaques. These relationships suggest that persistent whole body exposure to low-dose-rate radiation affects haematopoiesis in Japanese macaques.
Collapse
|
39
|
Yasuda Y, Utsumi Y, Tan X, Tashiro N, Fukuda K, Koga S. Suppression of growth and death of meristematic tissues in Abies sachalinensis under strong shading: comparisons between the terminal bud, the terminally lateral bud and the stem cambium. JOURNAL OF PLANT RESEARCH 2018; 131:817-825. [PMID: 29936574 DOI: 10.1007/s10265-018-1051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The suppression of apical growth and radial trunk growth in trees under shade is a key factor in the competition mechanism among individuals in natural and artificial forests. However, the timing of apical and radial growth suppression after shading and the physiological processes involved have not been evaluated precisely. Twenty-one Abies sachalinensis seedlings of 5-years-old were shaded artificially under a relative light intensity of 5% for 70 days from August 1, and the histological changes of the terminal bud and terminally lateral bud of terminal leader and the cambial zone of the trunk base were analyzed periodically. In shade-grown trees, cell death of the leaf primordia in a terminal bud of terminal leader was observed in one of the three samples after 56 and 70 days of shading, whereas the leaf primordia in a terminal bud of terminal leader in all open-grown trees survived until the end of the experiment. In addition, the leaf primordia of the terminally lateral buds of terminal leader retained their cell nuclei until the end of the experiment. No histological changes were observed in the cambial cells after shading, but the shade-grown trees had less cambial activity than the open-grown trees through the experiment. Strong shading appeared to inhibit the formation and survival of cells in the terminal bud of terminal leader rather than the terminally lateral buds of terminal leader and the cambium. The suppression of the terminal bud growth and elongation of the surviving lateral buds would result in an umbrella-shaped crown under shade.
Collapse
Affiliation(s)
- Yuko Yasuda
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Yasuhiro Utsumi
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | - Xianfang Tan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Naoaki Tashiro
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Kenji Fukuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shinya Koga
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| |
Collapse
|
40
|
Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. FRONTIERS IN PLANT SCIENCE 2018; 9:847. [PMID: 29997637 PMCID: PMC6028737 DOI: 10.3389/fpls.2018.00847] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 05/09/2023]
Abstract
Understanding the effects of ionizing radiation (IR) on plants is important for environmental protection, for agriculture and horticulture, and for space science but plants have significant biological differences to the animals from which much relevant knowledge is derived. The effects of IR on plants are understood best at acute high doses because there have been; (a) controlled experiments in the field using point sources, (b) field studies in the immediate aftermath of nuclear accidents, and (c) controlled laboratory experiments. A compilation of studies of the effects of IR on plants reveals that although there are numerous field studies of the effects of chronic low doses on plants, there are few controlled experiments that used chronic low doses. Using the Bradford-Hill criteria widely used in epidemiological studies we suggest that a new phase of chronic low-level radiation research on plants is desirable if its effects are to be properly elucidated. We emphasize the plant biological contexts that should direct such research. We review previously reported effects from the molecular to community level and, using a plant stress biology context, discuss a variety of acute high- and chronic low-dose data against Derived Consideration Reference Levels (DCRLs) used for environmental protection. We suggest that chronic low-level IR can sometimes have effects at the molecular and cytogenetic level at DCRL dose rates (and perhaps below) but that there are unlikely to be environmentally significant effects at higher levels of biological organization. We conclude that, although current data meets only some of the Bradford-Hill criteria, current DCRLs for plants are very likely to be appropriate at biological scales relevant to environmental protection (and for which they were intended) but that research designed with an appropriate biological context and with more of the Bradford-Hill criteria in mind would strengthen this assertion. We note that the effects of IR have been investigated on only a small proportion of plant species and that research with a wider range of species might improve not only the understanding of the biological effects of radiation but also that of the response of plants to environmental stress.
Collapse
Affiliation(s)
| | - Neil Willey
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| |
Collapse
|
41
|
Otaki JM, Taira W. Current Status of the Blue Butterfly in Fukushima Research. J Hered 2018; 109:178-187. [PMID: 28431090 DOI: 10.1093/jhered/esx037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Abstract
Adverse biological impacts of the Fukushima nuclear accident have been revealed using the pale grass blue butterfly, Zizeeria maha, since 2012, which were often considered incompatible with the conventional understanding of radiation biology. This discrepancy likely originates from different system conditions and methodologies. In this article, we first respond to comments from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) regarding our study; "technical errors" in unit usage and mathematical models noted by UNSCEAR are not errors but reflect our research philosophy not to introduce theoretical assumptions associated with unit conversion and mathematical fit. Second, we review our recent studies to support the original 2012 conclusions. Because the high morphological abnormality rate and small body size detected in Fukushima in 2011 have already ceased, likely through adaptive evolution, their present geographical distributions were investigated throughout Japan. Local populations showing relatively high abnormality rates and small body sizes were rare and basically restricted to Miyagi and its northern populations excluding the Fukushima populations, supporting the causal involvement of the accident. Lastly, we stress the importance of understanding the whole picture of the biological impacts of the Fukushima accident. In addition to the direct radiation impacts, indirect impacts through unknown radiation-associated mechanisms, such as immunological responses to insoluble particulate matter and nutritional deficiencies in plants and animals, would be in effect. Further environmental studies beyond conventional radiation biology and physics are necessary to understand the complex responses of organisms, including humans, to the Fukushima nuclear accident.
Collapse
Affiliation(s)
- Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
42
|
Akimoto SI, Li Y, Imanaka T, Sato H, Ishida K. Effects of Radiation From Contaminated Soil and Moss in Fukushima on Embryogenesis and Egg Hatching of the Aphid Prociphilus oriens. J Hered 2018; 109:199-205. [PMID: 28992200 DOI: 10.1093/jhered/esx072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Radiation-contaminated soils are widespread around the Fukushima Daiichi Nuclear Power Plant, and such soils raise concerns over its harmful effect on soil-dwelling organisms. We evaluated the effects of contaminated soil and moss sampled in Fukushima on the embryogenesis and hatching of aphid eggs, along with the measurement of the egg exposure dose. Cs-137 concentration in soil and moss from Fukushima ranged from 2200 to 3300 Bq/g and from 64 to 105 Bq/g, respectively. Eggs of the eriosomatine aphid Prociphilus oriens that were collected from a non-contaminated area were directly placed on the soil and moss for 4 or 3 months during diapause and then incubated until hatching. The total exposure dose to the eggs was estimated as ca. 100-200 mGy in the 4-month soil experiment and 4-10 mGy in the 4-month moss experiment. There was no significant difference in egg hatchability between the contaminated soil treatment and the control. No morphological abnormalities were detected in the first instars that hatched from the contaminated soil treatment. However, we found weak effects of radiation on egg hatching; eggs placed on the contaminated moss hatched earlier than did the control eggs. On the contaminated soil, the effects of radiation on egg hatching were not obvious because of uncontrolled environmental differences among containers. The effects of radiation on egg hatching were detected only in containers where high hatchability was recorded. Through the experiments, we concluded that the aphid eggs responded to ultra-low-dose radiation by advancing embryogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Akimoto
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yang Li
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Ken Ishida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Nohara C, Hiyama A, Taira W, Otaki JM. Robustness and Radiation Resistance of the Pale Grass Blue Butterfly from Radioactively Contaminated Areas: A Possible Case of Adaptive Evolution. J Hered 2018; 109:188-198. [PMID: 28199653 DOI: 10.1093/jhered/esx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The pale grass blue butterfly, Zizeeria maha, has been used to evaluate biological impacts of the Fukushima nuclear accident in March 2011. Here, we examined the possibility that butterflies have adapted to be robust in the contaminated environment. Larvae (n = 2432) were obtained from adult butterflies (n = 20) collected from 7 localities with various contamination levels in May 2012, corresponding to the 7th generation after the accident. When the larvae were reared on non-contaminated host plant leaves from Okinawa, the normality rates of natural exposure without artificial irradiation (as an indication of robustness) were high not only in the least contaminated locality but also in the most contaminated localities. The normality rates were similarly obtained when the larvae were reared on non-contaminated leaves with external irradiation or on contaminated leaves from Fukushima to deliver internal irradiation. The normality rate of natural exposure and that of external or internal exposure were correlated, suggesting that radiation resistance (or susceptibility) likely reflects general state of health. The normality rate of external or internal exposure was divided by the relative normality rate of natural exposure, being defined as the resistance value. The resistance value was the highest in the populations of heavily contaminated localities and was inversely correlated with the distance from the Fukushima Dai-ichi nuclear power plant. These results suggest that the butterfly population might have adapted to the contaminated environment within approximately 1 year after the accident. The present study may partly explain the decrease in mortality and abnormality rates later observed in the contaminated areas.
Collapse
Affiliation(s)
- Chiyo Nohara
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Atsuki Hiyama
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Wataru Taira
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
44
|
Fuma S, Ihara S, Takahashi H, Inaba O, Sato Y, Kubota Y, Watanabe Y, Kawaguchi I, Aono T, Soeda H, Yoshida S. Radiocaesium contamination and dose rate estimation of terrestrial and freshwater wildlife in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 171:176-188. [PMID: 28262604 DOI: 10.1016/j.jenvrad.2017.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
To characterise the radioactive contamination of terrestrial and freshwater wildlife caused by the Fukushima Dai-ichi Nuclear Power Plant accident, biological samples, namely, fungi, mosses, plants, amphibians, reptiles, insects, molluscs, and earthworms, were collected mainly from the forests of the exclusion zone in the Fukushima Prefecture from 2011 to 2012. Caesium-134 and 137Cs were detected by gamma spectrometry in almost all the samples. Fungi, ferns, and mosses accumulated high amounts of radiocaesium, as they did in Chernobyl, with 134Cs + 137Cs activity concentrations of 104-106 Bq kg-1 fresh mass (FM). Earthworms, amphibians, and the soft tissue of the garden snail Acusta despecta sieboldiana, also had levels as high as 104-105 Bq kg-1 FM of 134Cs + 137Cs. Most of the estimated total (internal + external) dose rates to herbaceous plants, amphibians, insects, and earthworms were below the corresponding derived consideration reference levels (DCRLs) recommended by the ICRP. This suggests that, in most cases, there was little chance of deleterious effects of ionising radiation on these organisms in the exclusion zone for the first year after the accident, though the dose rates were underestimated mainly due to the lack of consideration of short-lived radionuclides.
Collapse
Affiliation(s)
- Shoichi Fuma
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Sadao Ihara
- Hokkaido University of Education Kushiro Campus, 1-15-55 Shiroyama, Kushiro, Hokkaido, 085-8580, Japan
| | - Hiroyuki Takahashi
- Tokyo Nuclear Services Co., Ltd., Sorimachi Building, 1-3-5 Taito, Taito-ku, Tokyo, 110-0016, Japan
| | - Osamu Inaba
- Minamisoma City Museum, 194 Deguchi, Gorai, Haramachi-ku, Minamisoma, Fukushima, 975-0051, Japan
| | | | - Yoshihisa Kubota
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Isao Kawaguchi
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tatsuo Aono
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Haruhi Soeda
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Satoshi Yoshida
- Department of Management and Planning, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
45
|
Geras'kin S, Vasiliyev D, Makarenko E, Volkova P, Kuzmenkov A. Influence of long-term chronic exposure and weather conditions on Scots pine populations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11240-11253. [PMID: 28299565 DOI: 10.1007/s11356-017-8692-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
Over a period of 8 years (2007-2014), we were evaluating seed quality and morphological abnormalities in Scots pine trees affected as a result of the Chernobyl accident. The calculated dose rates for the trees at the study sites varied from background values at the reference sites to 40 mGy/year at the most contaminated site. We investigated whether radioactive contamination and/or weather factors could decrease the reproductive capacity or increase the frequency of morphological abnormalities of needles in pine trees. Scots pine seeds are characterized by high interannual variability of viability, which is largely determined by weather conditions. No consistent differences in reproductive capacity were detected between the impacted and reference populations. Brachyblasts with three needles were found only in the affected populations; however, their frequency was very low and only at the very border of significance at the p < 0.10 level.
Collapse
Affiliation(s)
- Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia.
| | - Denis Vasiliyev
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Polina Volkova
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| | - Alexey Kuzmenkov
- Russian Institute of Radiology and Agroecology, Kievskoe shosse, 109 km, 249020, Obninsk, Russia
| |
Collapse
|
46
|
Strand P, Sundell-Bergman S, Brown JE, Dowdall M. On the divergences in assessment of environmental impacts from ionising radiation following the Fukushima accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:159-173. [PMID: 28119209 DOI: 10.1016/j.jenvrad.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The accident at the Fukushima-Daiichi Nuclear Power Station on March 11, 2011, led to significant contamination of the surrounding terrestrial and marine environments. Whilst impacts on human health remain the primary concern in the aftermath of such an accident, recent years have seen a significant body of work conducted on the assessment of the accident's impacts on both the terrestrial and marine environment. Such assessments have been undertaken at various levels of biological organisation, for different species, using different methodologies and coming, in many cases, to divergent conclusions as to the effects of the accident on the environment. This article provides an overview of the work conducted in relation to the environmental impacts of the Fukushima accident, critically comparing and contrasting methodologies and results with a view towards finding reasons for discrepancies, should they indeed exist. Based on the outcomes of studies conducted to date, it would appear that in order to avoid the fractured and disparate conclusions drawn in the aftermath of previous accidents, radioactive contaminants and their effects can no longer simply be viewed in isolation with respect to the ecosystems these effects may impact. A combination of laboratory based and field studies with a focus on ecosystem functioning and effects could offer the best opportunities for coherence in the interpretation of the results of studies into the environmental impacts of ionising radiation.
Collapse
Affiliation(s)
- P Strand
- CERAD, Norwegian University of Life Sciences, 1430 Ås, Norway.
| | - S Sundell-Bergman
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, 750 07 Uppsala, Sweden
| | - J E Brown
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| | - M Dowdall
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| |
Collapse
|
47
|
Yoschenko V, Nanba K, Yoshida S, Watanabe Y, Takase T, Sato N, Keitoku K. Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear Power Plant. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 165:60-67. [PMID: 27637076 DOI: 10.1016/j.jenvrad.2016.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/25/2016] [Accepted: 09/04/2016] [Indexed: 05/06/2023]
Abstract
Our research, carried out in 2014-2016 at eight sites in the radioactive contaminated territories of Fukushima Prefecture, showed that the young trees of Japanese red pine (Pinus densiflora) are sensitive to radiation. Irradiation induced cancellation of the apical dominance in this species. The effect is similar to that observed in young trees of Scots pine growing in the Chernobyl zone. At the same time, we did not observed any morphological abnormalities in mature trees of Japanese red pine. The probability of cancelling the apical dominance in Japanese red pine increased to 0.11 and 0.14 in the two less irradiated populations, and to 0.5 and 0.9 at sites were the absorbed dose rates were approximately 14 and 25 μGy h-1, respectively. Most of the observed abnormalities appeared in the second whorl after the beginning of exposure. No new abnormalities were observed in the fifth whorl. This temporal pattern is similar to those reported for Scots pine in Chernobyl and for Japanese fir in Fukushima. Additional detailed studies are necessary for interpretation of the observed temporal pattern and, in general, for explanation of the mechanism of formation of the morphological abnormalities.
Collapse
Affiliation(s)
- Vasyl Yoschenko
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Satoshi Yoshida
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsugiko Takase
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Natsumi Sato
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Koji Keitoku
- Institute of Environmental Radioactivity of Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| |
Collapse
|
48
|
Blume YB, Grodzinsky DM. Thirty years after Chernobyl accident: Evaluation of consequences by biologists and medical scientists. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716060025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Yemets AI, Blume RY, Sorochinsky BV. Adaptation of the gymnosperms to the conditions of irradiation in the Chernobyl zone: from morphological abnormalities to the molecular genetic consequences. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716060086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Otaki JM. Fukushima's lessons from the blue butterfly: A risk assessment of the human living environment in the post-Fukushima era. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:667-672. [PMID: 27640413 DOI: 10.1002/ieam.1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
A series of studies on the pale grass blue butterfly that were carried out to assess the biological effects of the Fukushima nuclear accident teach 3 important lessons. First, it is necessary to have an environmental indicator species, such as the pale grass blue butterfly in Japan, that is common (not endangered), shares a living environment (air, water, and soil) with humans, and is amenable to laboratory experiments. The monitoring of such indicator species before and immediately after a nuclear accident likely reflects acute impacts caused by initial exposure. To assess transgenerational and chronic effects, continuous monitoring over time is encouraged. Second, it is important to understand the actual health status of a polluted region and comprehend the whole picture of the pollution impacts, rather than focusing on the selected effects of radiation alone. In our butterfly experiments, plant leaves from Fukushima were fed to larval butterflies to access whole-body effects, focusing on survival rate and morphological abnormalities (rather than focusing on a specific disease or biochemical marker). Our results revealed that ionizing radiation is unlikely to be the exclusive source of environmental disturbances. Airborne particulate matter from a nuclear reactor, regardless of its radioactivity, is likely equally important. Finally, our butterfly experiments demonstrate that there is considerable variation in sensitivities to nuclear pollution within a single species or even within a local population. Based on these results, it is speculated that high pollution sensitivity in humans may be caused not only by low levels of functional DNA repair enzymes but also by immunological responses to particulate matter in the respiratory tract. These lessons from the pale grass blue butterfly should be integrated in studying future nuclear pollution events and decision making on nuclear and environmental policies at the local and international levels in the postFukushima era. Integr Environ Assess Manag 2016;12:667-672. © 2016 SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|