1
|
Pogozheva ID, Cherepanov S, Park SJ, Raghavan M, Im W, Lomize AL. Structural Modeling of Cytokine-Receptor-JAK2 Signaling Complexes Using AlphaFold Multimer. J Chem Inf Model 2023; 63:5874-5895. [PMID: 37694948 PMCID: PMC11791896 DOI: 10.1021/acs.jcim.3c00926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains, and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all of the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here by using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts, with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices, causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to the TM α-helices of the active TPOR dimer was proposed. The models also help elucidate the molecular basis of oncogenic mutations that may involve a noncanonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.
Collapse
Affiliation(s)
- Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Sang-Jun Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
2
|
Pogozheva ID, Cherepanov S, Park SJ, Raghavan M, Im W, Lomize AL. Structural modeling of cytokine-receptor-JAK2 signaling complexes using AlphaFold Multimer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544971. [PMID: 37398331 PMCID: PMC10312770 DOI: 10.1101/2023.06.14.544971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). They are cell-surface single-pass transmembrane (TM) glycoproteins that regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to TM α-helices of the active TPOR dimer was proposed. The models also help elucidating the molecular basis of oncogenic mutations that may involve non-canonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.
Collapse
Affiliation(s)
- Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | | | - Sang-Jun Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Andrei L. Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
3
|
Li Q, Huang Q, Kang C. Secondary Structures of the Transmembrane Domain of SARS-CoV-2 Spike Protein in Detergent Micelles. Int J Mol Sci 2022; 23:ijms23031040. [PMID: 35162961 PMCID: PMC8834715 DOI: 10.3390/ijms23031040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
Spike protein of SARS-CoV-2 contains a single-span transmembrane (TM) domain and plays roles in receptor binding, viral attachment and viral entry to the host cells. The TM domain of spike protein is critical for viral infectivity. Herein, the TM domain of spike protein of SARS-CoV-2 was reconstituted in detergent micelles and subjected to structural analysis using solution NMR spectroscopy. The results demonstrate that the TM domain of the protein forms a helical structure in detergent micelles. An unstructured linker is identified between the TM helix and heptapeptide repeat 2 region. The linker is due to the proline residue at position 1213. Side chains of the three tryptophan residues preceding to and within the TM helix important for the function of S-protein might adopt multiple conformations which may be critical for their function. The side chain of W1212 was shown to be exposed to solvent and the side chains of residues W1214 and W1217 are buried in micelles. Relaxation study shows that the TM helix is rigid in solution while several residues have exchanges. The secondary structure and dynamics of the TM domain in this study provide insights into the function of the TM domain of spike protein.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore 138670, Singapore;
| | - Congbao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore 138670, Singapore;
- Correspondence:
| |
Collapse
|
4
|
Cho B, Yoo SJ, Kim SY, Lee CH, Lee YI, Lee SR, Moon C. Second-generation non-hematopoietic erythropoietin-derived peptide for neuroprotection. Redox Biol 2021; 49:102223. [PMID: 34953452 PMCID: PMC8715119 DOI: 10.1016/j.redox.2021.102223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Erythropoietin (EPO) is a well-known erythropoietic cytokine having a tissue-protective effect in various tissues against hypoxic stress, including the brain. Thus, its recombinants may function as neuroprotective compounds. However, despite considerable neuroprotective effects, the EPO-based therapeutic approach has side effects, including hyper-erythropoietic and tumorigenic effects. Therefore, some modified forms and derivatives of EPO have been proposed to minimize the side effects. In this study, we generated divergently modified new peptide analogs derived from helix C of EPO, with several amino acid replacements that interact with erythropoietin receptors (EPORs). This modification resulted in unique binding potency to EPOR. Unlike recombinant EPO, among the peptides, ML1-h3 exhibited a potent neuroprotective effect against oxidative stress without additional induction of cell-proliferation, owing to a differential activating mode of EPOR signaling. Furthermore, it inhibited neuronal death and brain injury under hypoxic stress in vitro and in an in vivo ischemic brain injury model. Therefore, the divergent modification of EPO-derivatives for affinity to EPOR could provide a basis for a more advanced and optimal neuroprotective strategy. Short peptides derived from helix C of EPO have a neuroprotective effect. Divergent modification of EPO-derived peptides has a differential affinity to EPOR. ML1 and its analogs have differential cell protective and proliferative effects. ML1-h3 protects neurons by suppressing in vitro oxidative stress. ML1-h3 mitigates brain injury in the in vivo mouse ischemic model without hematopoietic effect.
Collapse
Affiliation(s)
- Bongki Cho
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea; Division of Biotechnology, DGIST, Daegu, 42988, South Korea
| | - Seung-Jun Yoo
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - So Yeon Kim
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Chang-Hun Lee
- Department of New Biology, DGIST, Daegu, 42988, South Korea; New Biology Research Center, DGIST, Daegu, 42988, South Korea
| | - Yun-Il Lee
- Division of Biotechnology, DGIST, Daegu, 42988, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR Center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
5
|
Seiffert P, Bugge K, Nygaard M, Haxholm GW, Martinsen JH, Pedersen MN, Arleth L, Boomsma W, Kragelund BB. Orchestration of signaling by structural disorder in class 1 cytokine receptors. Cell Commun Signal 2020; 18:132. [PMID: 32831102 PMCID: PMC7444064 DOI: 10.1186/s12964-020-00626-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Class 1 cytokine receptors (C1CRs) are single-pass transmembrane proteins responsible for transmitting signals between the outside and the inside of cells. Remarkably, they orchestrate key biological processes such as proliferation, differentiation, immunity and growth through long disordered intracellular domains (ICDs), but without having intrinsic kinase activity. Despite these key roles, their characteristics remain rudimentarily understood. METHODS The current paper asks the question of why disorder has evolved to govern signaling of C1CRs by reviewing the literature in combination with new sequence and biophysical analyses of chain properties across the family. RESULTS We uncover that the C1CR-ICDs are fully disordered and brimming with SLiMs. Many of these short linear motifs (SLiMs) are overlapping, jointly signifying a complex regulation of interactions, including network rewiring by isoforms. The C1CR-ICDs have unique properties that distinguish them from most IDPs and we forward the perception that the C1CR-ICDs are far from simple strings with constitutively bound kinases. Rather, they carry both organizational and operational features left uncovered within their disorder, including mechanisms and complexities of regulatory functions. CONCLUSIONS Critically, the understanding of the fascinating ability of these long, completely disordered chains to orchestrate complex cellular signaling pathways is still in its infancy, and we urge a perceptional shift away from the current simplistic view towards uncovering their full functionalities and potential. Video abstract.
Collapse
Affiliation(s)
- Pernille Seiffert
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mads Nygaard
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jacob H. Martinsen
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Martin N. Pedersen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Wouter Boomsma
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen Ø, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
6
|
He L, Cohen EB, Edwards APB, Xavier-Ferrucio J, Bugge K, Federman RS, Absher D, Myers RM, Kragelund BB, Krause DS, DiMaio D. Transmembrane Protein Aptamer Induces Cooperative Signaling by the EPO Receptor and the Cytokine Receptor β-Common Subunit. iScience 2019; 17:167-181. [PMID: 31279934 PMCID: PMC6614117 DOI: 10.1016/j.isci.2019.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
The erythropoietin receptor (EPOR) plays an essential role in erythropoiesis and other cellular processes by forming distinct signaling complexes composed of EPOR homodimers or hetero-oligomers between the EPOR and another receptor, but the mechanism of heteroreceptor assembly and signaling is poorly understood. We report here a 46-residue, artificial transmembrane protein aptamer, designated ELI-3, that binds and activates the EPOR and induces growth factor independence in murine BaF3 cells expressing the EPOR. ELI-3 requires the transmembrane domain and JAK2-binding sites of the EPOR for activity, but not the cytoplasmic tyrosines that mediate canonical EPOR signaling. Instead, ELI-3-induced proliferation and activation of JAK/STAT signaling requires the transmembrane and cytoplasmic domains of the cytokine receptor β-common subunit (βcR) in addition to the EPOR. Moreover, ELI-3 fails to induce erythroid differentiation of primary human hematopoietic progenitor cells but inhibits nonhematopoietic cell death induced by serum withdrawal.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Emily B Cohen
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Anne P B Edwards
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale School of Medicine, P.O. Box 208073, New Haven, CT 06520-8073, USA
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ross S Federman
- Department of Immunobiology, Yale School of Medicine, P.O. Box 208011, New Haven, CT 06520-8011, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Integrative Structural Biology at University of Copenhagen (ISBUC), Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, P.O. Box 208073, New Haven, CT 06520-8073, USA; Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA; Department of Molecular Biophysics & Biochemistry, P.O. Box 208114, Yale University, New Haven, CT 06520-8114, USA; Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
7
|
Li Q, Ng HQ, Kang C. Secondary structure and topology of the transmembrane domain of Syndecan‐2 in detergent micelles. FEBS Lett 2019; 593:554-561. [DOI: 10.1002/1873-3468.13335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Qingxin Li
- Institute of Chemical and Engineering Sciences Agency for Science, Technology and Research (A*STAR) Jurong Island Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre Experimental Drug Development Centre (EDDC) Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre Experimental Drug Development Centre (EDDC) Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
8
|
Pekas NJ, Newton SS. Computational analysis of ligand-receptor interactions in wild-type and mutant erythropoietin complexes. Adv Appl Bioinform Chem 2018; 11:1-8. [PMID: 30410371 PMCID: PMC6197206 DOI: 10.2147/aabc.s177206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Erythropoietin (EPO), a pleiotropic cytokine, binds to its receptor (EPOR) in bone marrow, activating a signaling cascade that results in red blood cell proliferation. A recently discovered naturally occurring EPO mutation (R150Q) at active site 1 (AS1) of the protein was shown to attenuate its canonical downstream signaling, eliminating its hematopoietic effects and causing a fatal anemia. The purpose of this work was to analyze the EPO–EPOR complex computationally to provide a structural explanation for this signaling change. Materials and methods Computational structural biology analyses and molecular dynamics simulations were used to determine key interaction differences between the R150Q mutant and the wild-type form of EPO. Both were compared to another variant mutated at the same position, R150E, which also lacks hematopoietic activity. Results The ligand–receptor interactions of the R150Q and R150E mutants showed significant variations in how they interacted with EPOR at AS1 of the EPO–EPOR complex. Both lost specific reported salt bridges previously associated with full complex activation. Conclusion This work describes how the ligand–receptor interactions at AS1 of the EPO– EPOR complex respond to mutations at the 150th position. The interactions at AS1 were used to propose a potential mechanism by which the binding of EPO to the extracellular domain of EPOR influences its cytosolic domain and the resulting signaling cascade.
Collapse
Affiliation(s)
- Nicholas J Pekas
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA,
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA,
| |
Collapse
|
9
|
Wang Y, Bugge K, Kragelund BB, Lindorff-Larsen K. Role of protein dynamics in transmembrane receptor signalling. Curr Opin Struct Biol 2018; 48:74-82. [DOI: 10.1016/j.sbi.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
10
|
He L, Steinocher H, Shelar A, Cohen EB, Heim EN, Kragelund BB, Grigoryan G, DiMaio D. Single methyl groups can act as toggle switches to specify transmembrane Protein-protein interactions. eLife 2017; 6:27701. [PMID: 28869036 PMCID: PMC5597333 DOI: 10.7554/elife.27701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Helena Steinocher
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Ashish Shelar
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Emily B Cohen
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Erin N Heim
- Department of Genetics, Yale School of Medicine, New Haven, United States
| | - Birthe B Kragelund
- Department of Biology, Structural and NMR Laboratory, University of Copenhagen, Copenhagen, Denmark
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, United States
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, United States.,Department of Therapeutic Radiology, Yale School of Medicine, New Haven, United States.,Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, United States.,Yale Cancer Center, New Haven, United States
| |
Collapse
|
11
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
12
|
Abstract
Erythropoietin (EPO) is a hormone that is important for regulating red blood cell production. It is functional through binding to its receptor-EpoR. EpoR is a single-span membrane protein. It contains an extracellular region, a transmembrane domain, and a C-terminus. The extracellular region is important for binding to EPO, and its conformation is critical for signal transduction. The transmembrane domain contains 21 residues forming a helix which plays an important role in transferring ligand-induced conformational changes of the extracellular domain across the cell membrane. The C-terminal region contains the Janus kinase 2-binding sites and eight tyrosine residues that can be phosphorylated to become binding sites for transcription factors to active the downstream pathways. This chapter focuses on structural description of the domains of the EpoR. The recent progress in the structural determination of these domains is summarized, which will be useful for understanding their function in signal transduction.
Collapse
|
13
|
Corbett MSP, Mark AE, Poger D. Do All X-ray Structures of Protein-Ligand Complexes Represent Functional States? EPOR, a Case Study. Biophys J 2017; 112:595-604. [PMID: 28256220 PMCID: PMC5340159 DOI: 10.1016/j.bpj.2016.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022] Open
Abstract
Based on differences between the x-ray crystal structures of ligand-bound and unbound forms, the activation of the erythropoietin receptor (EPOR) was initially proposed to involve a cross-action scissorlike motion. However, the validity of the motions involved in the scissorlike model has been recently challenged. Here, atomistic molecular dynamics simulations are used to examine the structure of the extracellular domain of the EPOR dimer in the presence and absence of erythropoietin and a series of agonistic or antagonistic mimetic peptides free in solution. The simulations suggest that in the absence of crystal packing effects, the EPOR chains in the different dimers adopt very similar conformations with no clear distinction between the agonist and antagonist-bound complexes. This questions whether the available x-ray crystal structures of EPOR truly represent active or inactive conformations. The study demonstrates the difficulty in using such structures to infer a mechanism of action, especially in the case of membrane receptors where just part of the structure has been considered in addition to potential confounding effects that arise from the comparison of structures in a crystal as opposed to a membrane environment. The work highlights the danger of assigning functional significance to small differences between structures of proteins bound to different ligands in a crystal environment without consideration of the effects of the crystal lattice and thermal motion.
Collapse
Affiliation(s)
- Michael S P Corbett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alan E Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - David Poger
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile janus kinase inhibition. Leukemia 2017; 31:1023-1038. [DOI: 10.1038/leu.2017.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
|
15
|
Trenker R, Call MJ, Call ME. Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Curr Opin Struct Biol 2016; 39:115-123. [DOI: 10.1016/j.sbi.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
|
16
|
Bugge K, Papaleo E, Haxholm GW, Hopper JTS, Robinson CV, Olsen JG, Lindorff-Larsen K, Kragelund BB. A combined computational and structural model of the full-length human prolactin receptor. Nat Commun 2016; 7:11578. [PMID: 27174498 PMCID: PMC4869255 DOI: 10.1038/ncomms11578] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.
Collapse
Affiliation(s)
- Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Gitte W. Haxholm
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Jonathan T. S. Hopper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Johan G. Olsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
17
|
Li Y, Liew LSY, Li Q, Kang C. Structure of the transmembrane domain of human nicastrin-a component of γ-secretase. Sci Rep 2016; 6:19522. [PMID: 26776682 PMCID: PMC4726005 DOI: 10.1038/srep19522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer's disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Lynette Sin Yee Liew
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - Qingxin Li
- Institute of Chemical &Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore, 138669 Singapore
| |
Collapse
|