1
|
Sikora M, Wąsik S, Semaniak J, Drulis-Kawa Z, Wiśniewska-Wrona M, Arabski M. Chitosan-based matrix as a carrier for bacteriophages. Appl Microbiol Biotechnol 2024; 108:6. [PMID: 38165478 PMCID: PMC10761466 DOI: 10.1007/s00253-023-12838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Wound healing is a dynamic and complex process where infection prevention is essential. Chitosan, thanks to its bactericidal activity against gram-positive and gram-negative bacteria, as well as anti-inflammatory and hemostatic properties, is an excellent candidate to design dressings for difficult-to-heal wound treatment. The great advantage of this biopolymer is its capacity to be chemically modified, which allows for the production of various functional forms, depending on the needs and subsequent use. Moreover, chitosan can be an excellent polymer matrix for bacteriophage (phage) packing as a novel alternative/supportive antibacterial therapy approach. This study is focused on the preparation and characteristics of chitosan-based material in the form of a film with the addition of Pseudomonas lytic phages (KTN4, KT28, and LUZ19), which would exhibit antibacterial activity as a potential dressing that accelerates the wound healing. We investigated the method of producing a polymer based on microcrystalline chitosan (MKCh) to serve as the matrix for phage deposition. We described some important parameters such as average molar mass, swelling capacity, surface morphology, phage release profile, and antibacterial activity tested in the Pseudomonas aeruginosa bacterial model. The chitosan polysaccharide turned out to interact with phage particles immobilizing them within a material matrix. Nevertheless, with the high hydrophilicity and swelling features of the prepared material, the external solution of bacterial culture was absorbed and phages went in direct contact with bacteria causing their lysis in the polymer matrix. KEY POINTS: • A novel chitosan-based matrix with the addition of active phages was prepared • Phage interactions with the chitosan matrix were determined as electrostatic • Phages in the matrix work through direct contact with the bacterial cells.
Collapse
Affiliation(s)
- Monika Sikora
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland
- Lukasiewicz Research Network-Lodz Institute of Technology, Lodz, Poland
| | - Sławomir Wąsik
- Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
- Central Office of Measures, Warsaw, Poland
| | - Jacek Semaniak
- Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
- Central Office of Measures, Warsaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | | | - Michał Arabski
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University in Kielce, Kielce, Poland.
- Central Office of Measures, Warsaw, Poland.
| |
Collapse
|
2
|
Kuhn T, Aljohmani A, Frank N, Zielke L, Mehanny M, Laschke MW, Koch M, Hoppstädter J, Kiemer AK, Yildiz D, Fuhrmann G. A cell-free, biomimetic hydrogel based on probiotic membrane vesicles ameliorates wound healing. J Control Release 2024; 365:969-980. [PMID: 38070602 DOI: 10.1016/j.jconrel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Probiotic bacteria, such as Lactobacilli, have been shown to elicit beneficial effects in various tissue regeneration applications. However, their formulation as living bacteria is challenging, and their therapeutic use as proliferating microorganisms is especially limited in immunocompromised patients. Here, we propose a new therapeutic avenue to circumvent these shortcomings by developing a bacteriomimetic hydrogel based on membrane vesicles (MVs) produced by Lactobacilli. We coupled MVs from Lactobacillus plantarum and Lactobacillus casei, respectively, to the surface of synthetic microparticles, and embedded those bacteriomimetics into a pharmaceutically applicable hydrogel matrix. The wound microenvironment changes during the wound healing process, including adaptions of the pH and changes of the oxygen supply. We thus performed proteomic characterization of the MVs harvested under different culture conditions and identified characteristic proteins related to the biological effect of the probiotics in every culture state. In addition, we highlight a number of unique proteins expressed and sorted into the MVs for every culture condition. Using different in vitro models, we demonstrated that increased cell migration and anti-inflammatory effects of the bacteriomimetic microparticles were dependent on the culture condition of the secreting bacteria. Finally, we demonstrated the bacteriomimetic hydrogel's ability to improve healing in an in vivo mouse full-thickness wound model. Our results create a solid basis for the future application of probiotic-derived vesicles in the treatment of inflammatory dispositions and stimulates the initiation of further preclinical trials.
Collapse
Affiliation(s)
- Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Ahmad Aljohmani
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Lina Zielke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany
| | - Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Rippon M, Rogers AA, Ousey K, Chadwick P. Experimental and clinical evidence for DACC-coated dressings: an update. J Wound Care 2023; 32:S13-S22. [PMID: 37591666 DOI: 10.12968/jowc.2023.32.sup8a.s13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To update the evidence in relation to the use of dialkylcarbamoyl chloride (DACC)-coated wound dressings in the prevention, treatment and management of wounds. METHOD PubMed and PubMed Central databases were searched to identify articles published since 2020 describing the experimental and clinical evidence for DACC-coated dressings, and their antimicrobial effect, as well as their impact on the prevention and treatment of infected wounds. The identified articles were then narratively reviewed. RESULTS The search yielded 113 articles (plus references from ad hoc sources), of which nine met the inclusion criteria. Of the nine included studies, five related to clinical aspects and four were laboratory studies. CONCLUSION A number of new studies have provided further evidence for the mode of action of the antimicrobial effect of DACC-coated dressings and its wide spectrum effect (including World Health Organization-prioritised microorganisms). Additional clinical studies have provided evidence of new applications, such as in treating wounds in paediatric patients, and extended the evidence relating to their use in treating surgical site infections. Evidence also shows that DACC-coated wound dressings can aid in the binding of biofilms, and how this technology can align and support antimicrobial stewardship in the prevention of antimicrobial resistance.
Collapse
Affiliation(s)
- Mark Rippon
- Visiting Clinical Research Associate, Huddersfield University, Huddersfield, UK
- Medical Marketing Consultant, Daneriver Consultancy Ltd., Holmes Chapel, UK
| | - Alan A Rogers
- Independent Wound Care Consultant, Flintshire, North Wales, UK
| | - Karen Ousey
- Professor of Skin Integrity, Director for the Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield, Huddersfield, UK
- Adjunct Professor, School of Nursing, Faculty of Health, Queensland University of Technology, Australia
- Visiting Professor, Royal College of Surgeons of Ireland, Dublin, Ireland
- Chair, International Wound Infection Institute, UK
- President Elect, International Skin Tear Advisory Panel
| | - Paul Chadwick
- Visiting Professor, Birmingham City University, Birmingham, UK
- Clinical Director and Acting Chief Executive, Royal College of Podiatry, UK
| |
Collapse
|
4
|
Rubio-Canalejas A, Baelo A, Herbera S, Blanco-Cabra N, Vukomanovic M, Torrents E. 3D spatial organization and improved antibiotic treatment of a Pseudomonas aeruginosa-Staphylococcus aureus wound biofilm by nanoparticle enzyme delivery. Front Microbiol 2022; 13:959156. [PMID: 36466653 PMCID: PMC9708873 DOI: 10.3389/fmicb.2022.959156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 08/08/2023] Open
Abstract
Chronic wounds infected by Pseudomonas aeruginosa and Staphylococcus aureus are a relevant health problem worldwide because these pathogens grow embedded in a network of polysaccharides, proteins, lipids, and extracellular DNA, named biofilm, that hinders the transport of antibiotics and increases their antimicrobial tolerance. It is necessary to investigate therapies that improve the penetrability and efficacy of antibiotics. In this context, our main objectives were to study the relationship between P. aeruginosa and S. aureus and how their relationship can affect the antimicrobial treatment and investigate whether functionalized silver nanoparticles can improve the antibiotic therapy. We used an optimized in vitro wound model that mimics an in vivo wound to co-culture P. aeruginosa and S. aureus biofilm. The in vitro wound biofilm was treated with antimicrobial combinatory therapies composed of antibiotics (gentamycin and ciprofloxacin) and biofilm-dispersing free or silver nanoparticles functionalized with enzymes (α-amylase, cellulase, DNase I, or proteinase K) to study their antibiofilm efficacy. The interaction and colocalization of P. aeruginosa and S. aureus in a wound-like biofilm were examined and detailed characterized by confocal and electronic microscopy. We demonstrated that antibiotic monotherapy is inefficient as it differentially affects the two bacterial species in the mixed biofilm, driving P. aeruginosa to overcome S. aureus when using ciprofloxacin and the contrary when using gentamicin. In contrast, dual-antibiotic therapy efficiently reduces both species while maintaining a balanced population. In addition, DNase I nanoparticle treatment had a potent antibiofilm effect, decreasing P. aeruginosa and S. aureus viability to 0.017 and 7.7%, respectively, in combined antibiotics. The results showed that using nanoparticles functionalized with DNase I enhanced the antimicrobial treatment, decreasing the bacterial viability more than using the antibiotics alone. The enzymes α-amylase and cellulase showed some antibiofilm effect but were less effective compared to the DNase I treatment. Proteinase K showed insignificant antibiofilm effect. Finally, we proposed a three-dimensional colocalization model consisting of S. aureus aggregates within the biofilm structure, which could be associated with the low efficacy of antibiofilm treatments on bacteria. Thus, designing a clinical treatment that combines antibiofilm enzymes and antibiotics may be essential to eliminating chronic wound infections.
Collapse
Affiliation(s)
- Alba Rubio-Canalejas
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aida Baelo
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sara Herbera
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Frost F, Schlesinger L, Wiese ML, Urban S, von Rheinbaben S, Tran QT, Budde C, Lerch MM, Pickartz T, Aghdassi AA. Infection of (Peri-)Pancreatic Necrosis Is Associated with Increased Rates of Adverse Events during Endoscopic Drainage: A Retrospective Study. J Clin Med 2022; 11:jcm11195851. [PMID: 36233718 PMCID: PMC9573742 DOI: 10.3390/jcm11195851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic necroses are a major challenge in the treatment of patients with pancreatitis, causing high morbidity. When indicated, these lesions are usually drained endoscopically using plastic or metal stents. However, data on factors associated with the occurrence of failure or adverse events during stent therapy are scarce. We retrospectively analyzed all adverse events and their associated features which occurred in patients who underwent a first-time endoscopic drainage of pancreatic necrosis from 2009 to 2019. During the observation period, a total of 89 eligible cases were identified. Adverse events occurred in 58.4% of the cases, of which 76.9% were minor (e.g., stent dislocation, residual lesions, or stent obstruction). However, these events triggered repeated interventions (63.5% vs. 0%, p < 0.001) and prolonged hospital stays (21.0 [11.8−63.0] vs. 14.0 [7.0−31.0], p = 0.003) compared to controls without any adverse event. Important factors associated with the occurrence of adverse events during endoscopic drainage therapy were positive necrosis cultures (6.1 [2.3−16.1], OR [95% CI], p < 0.001) and a larger diameter of the treated lesion (1.3 [1.1−1.5], p < 0.001). Superinfection of pancreatic necrosis is the most significant factor increasing the likelihood of adverse events during endoscopic drainage. Therefore, control of infection is crucial for successful drainage therapy, and future studies need to consider superinfection of pancreatic necrosis as a possible confounding factor when comparing different therapeutic modalities.
Collapse
Affiliation(s)
- Fabian Frost
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-7230
| | - Laura Schlesinger
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mats L. Wiese
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Steffi Urban
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | | | - Quang Trung Tran
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
| | - Christoph Budde
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
- Ludwig Maximilian University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Tilman Pickartz
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ali A. Aghdassi
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
6
|
Susilo YB, Mattsby-Baltzer I, Arvidsson A, Husmark J. Significant and rapid reduction of free endotoxin using a dialkylcarbamoyl chloride-coated wound dressing. J Wound Care 2022; 31:502-509. [PMID: 35678791 DOI: 10.12968/jowc.2022.31.6.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Endotoxin causes inflammation and can impair wound healing. Conventional methods that reduce bioburden in wounds by killing microorganisms using antibiotics, topical antimicrobials or antimicrobial dressings may induce endotoxin release from Gram-negative bacteria. Another approach is to reduce bioburden by adsorbing microorganisms, without killing them, using dialkylcarbamoyl chloride (DACC)-coated wound dressings. This study evaluated the endotoxin-binding ability of a DACC-coated wound dressing (Sorbact Compress, Abigo Medical AB, Sweden) in vitro, including its effect on the level of natural endotoxin released from Gram-negative bacteria. METHOD Different concentrations of purified Pseudomonas aeruginosa endotoxin and a DACC-coated dressing were incubated at 37°C for various durations. After incubation, the dressing was removed and endotoxin concentration in the solution was quantified using a Limulus amebocyte lysate (LAL) assay. The DACC-coated dressing was also incubated with Pseudomonas aeruginosa cells for one hour at 37°C. After incubation, the dressing and bacterial cells were removed and shed endotoxin remaining in the solution was quantified. RESULTS Overnight incubation of the DACC-coated wound dressing with various concentrations of purified Pseudomonas aeruginosa endotoxin (96-11000 EU/ml) consistently and significantly reduced levels of free endotoxin by 93-99% (p<0.0001). A significant endotoxin reduction of 39% (p<0.001) was observed after five minutes. The DACC-coated dressing incubated with clinically relevant Pseudomonas aeruginosa cells also reduced shed endotoxin by >99.95% (p<0.0001). CONCLUSION In this study, we showed that a DACC-coated wound dressing efficiently and rapidly binds both purified and shed endotoxin from Pseudomonas aeruginosa in vitro. This ability to remove both endotoxin and bacterial cells could promote the wound healing process.
Collapse
Affiliation(s)
| | - Inger Mattsby-Baltzer
- Department of Infectious Diseases/Clinical Bacteriology, University of Gothenburg, Guldhedsgatan 10, 413 46 Gothenburg, Sweden
| | - Anna Arvidsson
- ABIGO Medical AB, Ekonomivägen 5, SE-436 33, Askim, Sweden
| | | |
Collapse
|
7
|
Rippon MG, Westgate S, Rogers AA. Implications of endotoxins in wound healing: a narrative review. J Wound Care 2022; 31:380-392. [PMID: 35579309 DOI: 10.12968/jowc.2022.31.5.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial toxins are thought to play a role in delayed wound healing in critically colonised and infected wounds. Endotoxins are released from Gram-negative bacteria when they are lysed by host phagocytic cells during an immune response, or by antimicrobial agents, potentially leading to a detrimental effect on the host tissues. Endotoxins can affect all aspects of the wound healing process, leading to delayed healing and contributing to wound chronicity. Release of endotoxins by bacteria can also have serious systemic effects (for example, septic shock) that can lead to high levels of patient mortality. This review summarises the role and implications on wound healing of bacterial endotoxins, describing the impact of endotoxins on the various phases of the wound healing response. There is a paucity of in vivo/clinical evidence linking endotoxins attributed to a wound (via antibiotic treatment) or their release from infecting bacteria with parameters of delayed wound healing. Future work should investigate if this link is apparent and determine the mechanism(s) by which such detrimental effects occur, offering an opportunity to identify possible treatment pathways. This paper describes the phenomenon of antimicrobial-induced endotoxin release and summarises the use of wound dressings to reduce wound bioburden without inducing microbial death and subsequent release of endotoxins, thus limiting their detrimental effects.
Collapse
Affiliation(s)
- Mark G Rippon
- University of Huddersfield, Queensgate, Huddersfield, UK
| | | | | |
Collapse
|
8
|
Iudin D, Vasilieva M, Knyazeva E, Korzhikov-Vlakh V, Demyanova E, Lavrentieva A, Skorik Y, Korzhikova-Vlakh E. Hybrid Nanoparticles and Composite Hydrogel Systems for Delivery of Peptide Antibiotics. Int J Mol Sci 2022; 23:2771. [PMID: 35269910 PMCID: PMC8911036 DOI: 10.3390/ijms23052771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The growing number of drug-resistant pathogenic bacteria poses a global threat to human health. For this reason, the search for ways to enhance the antibacterial activity of existing antibiotics is now an urgent medical task. The aim of this study was to develop novel delivery systems for polymyxins to improve their antimicrobial properties against various infections. For this, hybrid core-shell nanoparticles, consisting of silver core and a poly(glutamic acid) shell capable of polymyxin binding, were developed and carefully investigated. Characterization of the hybrid nanoparticles revealed a hydrodynamic diameter of approximately 100 nm and a negative electrokinetic potential. The nanoparticles demonstrated a lack of cytotoxicity, a low uptake by macrophages, and their own antimicrobial activity. Drug loading and loading efficacy were determined for both polymyxin B and E, and the maximal loaded value with an appropriate size of the delivery systems was 450 µg/mg of nanoparticles. Composite materials based on agarose hydrogel were prepared, containing both the loaded hybrid systems and free antibiotics. The features of polymyxin release from the hybrid nanoparticles and the composite materials were studied, and the mechanisms of release were analyzed using different theoretical models. The antibacterial activity against Pseudomonas aeruginosa was evaluated for both the polymyxin hybrid and the composite delivery systems. All tested samples inhibited bacterial growth. The minimal inhibitory concentrations of the polymyxin B hybrid delivery system demonstrated a synergistic effect when compared with either the antibiotic or the silver nanoparticles alone.
Collapse
Affiliation(s)
- Dmitrii Iudin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Marina Vasilieva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| | - Elena Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.K.); (E.D.)
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.K.); (E.D.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Yury Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| |
Collapse
|
9
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
10
|
Clearance of Gram-Negative Bacterial Pathogens from the Ocular Surface by Predatory Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10070810. [PMID: 34356731 PMCID: PMC8300752 DOI: 10.3390/antibiotics10070810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
It was previously demonstrated that predatory bacteria are able to efficiently eliminate Gram-negative pathogens including antibiotic-resistant and biofilm-associated bacteria. In this proof-of-concept study we evaluated whether two species of predatory bacteria, Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus, were able to alter the survival of Gram-negative pathogens on the ocular surface. Clinical keratitis isolates of Pseudomonas aeruginosa (strain PAC) and Serratia marcescens (strain K904) were applied to the ocular surface of NZW rabbits followed by application of predatory bacteria. At time intervals, surviving pathogenic bacteria were enumerated. In addition, B. bacteriovorus and S. marcescens were applied to porcine organ culture corneas under contact lenses, and the ocular surface was examined by scanning electron microscopy. The ocular surface epithelial layer of porcine corneas exposed to S. marcescens, but not B. bacteriovorus was damaged. Using this model, neither pathogen could survive on the rabbit ocular surface for longer than 24 h. M. aeruginosavorus correlated with a more rapid clearance of P. aeruginosa but not S. marcescens from rabbit eyes. This study supports previous evidence that predatory bacteria are well tolerated by the cornea, but suggest that predatory bacteria do not considerably change the ability of the ocular surface to clear the tested Gram-negative bacterial pathogens from the ocular surface.
Collapse
|
11
|
Brothers KM, Harvey SAK, Shanks RMQ. Transcription Factor EepR Is Required for Serratia marcescens Host Proinflammatory Response by Corneal Epithelial Cells. Antibiotics (Basel) 2021; 10:antibiotics10070770. [PMID: 34202642 PMCID: PMC8300729 DOI: 10.3390/antibiotics10070770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Relatively little is known about how the corneal epithelium responds to vision-threatening bacteria from the Enterobacterales order. This study investigates the impact of Serratia marcescens on corneal epithelial cell host responses. We also investigate the role of a bacterial transcription factor EepR, which is a positive regulator of S. marcescens secretion of cytotoxic proteases and a hemolytic surfactant. We treated transcriptomic and metabolomic analysis of human corneal limbal epithelial cells with wild-type bacterial secretomes. Our results show increased expression of proinflammatory and lipid signaling molecules, while this is greatly altered in eepR mutant-treated corneal cells. Together, these data support the model that the S. marcescens transcription factor EepR is a key regulator of host-pathogen interactions, and is necessary to induce proinflammatory chemokines, cytokines, and lipids.
Collapse
|
12
|
Dermal fibroblast cells interactions with single and triple bacterial-species biofilms. Mol Biol Rep 2021; 48:3393-3404. [PMID: 34009564 DOI: 10.1007/s11033-021-06391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Polymicrobial biofilm leads to wound healing delay. We set up an in vitro co-culture model of single- and triple-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis with dermal fibroblast to assess the fibroblast response against to the different biofilms. Scratch and viability assays and biofilm cell quantifications were performed by WST-1, CLSM and plating method, respectively. Quorum sensing-related gene expression levels in P. aeruginosa and E. faecalis were analysed by reverse-transcriptase PCR. The immune responses of cells against S. aureus, P. aeruginosa and E. faecalis biofilms were measured by cytokine and matrix metalloproteinase analyzes. The influence of biofilm soluble factors on fibroblasts was also determined. After 24 h, triple-species biofilm cells caused the removal of the fibroblasts from the surfaces indicating the negative synergistic effect of three species. After co-cultures, twenty-five cytokines were significantly increased in fibroblast cells compared to control. Compared to other strains, the most important cytokine, chemokine and growth factors increased was observed in P. aeruginosa co-cultures with fibroblast. While the expressions of fsrB and gelE genes were significantly upregulated in E. faecalis biofilm cells cultured with fibroblast cells, no significant difference was observed in P. aeruginosa. The wound healing and cell growth of fibroblasts were disrupted more aggressively in the presence of P. aeruginosa and triple-species biofilm cells. P. aeruginosa generally induced a stronger immune response in the fibroblasts than E. faecalis and S. aureus.
Collapse
|
13
|
Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. Int J Pharm 2020; 591:120001. [DOI: 10.1016/j.ijpharm.2020.120001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
|
14
|
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. Corneal Infection Models: Tools to Investigate the Role of Biofilms in Bacterial Keratitis. Cells 2020; 9:E2450. [PMID: 33182687 PMCID: PMC7696224 DOI: 10.3390/cells9112450] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial keratitis is a corneal infection which may cause visual impairment or even loss of the infected eye. It remains a major cause of blindness in the developing world. Staphylococcus aureus and Pseudomonas aeruginosa are common causative agents and these bacterial species are known to colonise the corneal surface as biofilm populations. Biofilms are complex bacterial communities encased in an extracellular polymeric matrix and are notoriously difficult to eradicate once established. Biofilm bacteria exhibit different phenotypic characteristics from their planktonic counterparts, including an increased resistance to antibiotics and the host immune response. Therefore, understanding the role of biofilms will be essential in the development of new ophthalmic antimicrobials. A brief overview of biofilm-specific resistance mechanisms is provided, but this is a highly multifactorial and rapidly expanding field that warrants further research. Progression in this field is dependent on the development of suitable biofilm models that acknowledge the complexity of the ocular environment. Abiotic models of biofilm formation (where biofilms are studied on non-living surfaces) currently dominate the literature, but co-culture infection models are beginning to emerge. In vitro, ex vivo and in vivo corneal infection models have now been reported which use a variety of different experimental techniques and animal models. In this review, we will discuss existing corneal infection models and their application in the study of biofilms and host-pathogen interactions at the corneal surface.
Collapse
Affiliation(s)
- Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Grace Crowther
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (S.R.); (P.G.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; (K.O.); (G.C.); (E.K.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| | - Sheila MacNeil
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Lynda J. Partridge
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK; (L.R.G.); (P.N.M.)
- Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), University of Sheffield, Sheffield S1 3JD, UK; (S.M.); (L.J.P.)
| |
Collapse
|
15
|
Xylose-Inducible Promoter Tools for Pseudomonas Species and Their Use in Implicating a Role for the Type II Secretion System Protein XcpQ in the Inhibition of Corneal Epithelial Wound Closure. Appl Environ Microbiol 2020; 86:AEM.00250-20. [PMID: 32414795 DOI: 10.1128/aem.00250-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Tunable control of gene expression is an invaluable tool for biological experiments. In this study, we describe a new xylose-inducible promoter system and evaluate it in both Pseudomonas aeruginosa and Pseudomonas fluorescens The Pxut promoter, derived from the P. fluorescens xut operon, was incorporated into a broad-host-range pBBR1-based plasmid and was compared to the Escherichia coli-derived PBAD promoter using gfp as a reporter. Green fluorescent protein (GFP) fluorescence from the Pxut promoter was inducible in both Pseudomonas species, but not in E. coli, which may facilitate the cloning of genes toxic to E. coli to generate plasmids. The Pxut promoter was activated at a lower inducer concentration than PBAD in P. fluorescens, and higher gfp levels were achieved using Pxut Flow cytometry analysis indicated that Pxut was leakier than PBAD in the Pseudomonas species tested but was expressed in a higher proportion of cells when induced. d-Xylose as a sole carbon source did not support the growth of P. aeruginosa or P. fluorescens and is less expensive than many other commonly used inducers, which could facilitate large-scale applications. The efficacy of this system was demonstrated by its use to reveal a role for the P. aeruginosa type II secretion system gene xcpQ in bacterial inhibition of corneal epithelial cell wound closure. This study introduces a new inducible promoter system for gene expression for use in Pseudomonas species.IMPORTANCE Pseudomonas species are enormously important in human infections, in biotechnology, and as model systems for investigating basic science questions. In this study, we have developed a xylose-inducible promoter system, evaluated it in P. aeruginosa and P. fluorescens, and found it to be suitable for the strong induction of gene expression. Furthermore, we have demonstrated its efficacy in controlled gene expression to show that a type II secretion system protein from P. aeruginosa, XcpQ, is important for host-pathogen interactions in a corneal wound closure model.
Collapse
|
16
|
Mayandi V, Wen Choong AC, Dhand C, Lim FP, Aung TT, Sriram H, Dwivedi N, Periayah MH, Sridhar S, Fazil MHUT, Goh ETL, Orive G, W Beuerman R, Barkham TMS, Loh XJ, Liang ZX, Barathi VA, Ramakrishna S, Chong SJ, Verma NK, Lakshminarayanan R. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15989-16005. [PMID: 32172559 DOI: 10.1021/acsami.9b21683] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial colonization of acute and chronic wounds is often associated with delayed wound healing and prolonged hospitalization. The rise of multi-drug resistant bacteria and the poor biocompatibility of topical antimicrobials warrant safe and effective antimicrobials. Antimicrobial agents that target microbial membranes without interfering with the mammalian cell proliferation and migration hold great promise in the treatment of traumatic wounds. This article reports the utility of superhydrophilic electrospun gelatin nanofiber dressings (NFDs) containing a broad-spectrum antimicrobial polymer, ε-polylysine (εPL), crosslinked by polydopamine (pDA) for treating second-degree burns. In a porcine model of partial thickness burns, NFDs promoted wound closure and reduced hypertrophic scarring compared to untreated burns. Analysis of NFDs in contact with the burns indicated that the dressings trap early colonizers and elicit bactericidal activity, thus creating a sterile wound bed for fibroblasts migration and re-epithelialization. In support of these observations, in porcine models of Pseudomonas aeruginosa and Staphylococcus aureus colonized partial thickness burns, NFDs decreased bacterial bioburden and promoted wound closure and re-epithelialization. NFDs displayed superior clinical outcome than standard-of-care silver dressings. The excellent biocompatibility and antimicrobial efficacy of the newly developed dressings in pre-clinical models demonstrate its potential for clinical use to manage infected wounds without compromising tissue regeneration.
Collapse
Affiliation(s)
- Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore
| | - Alvin Chua Wen Choong
- Department of Plastic Reconstructive & Aesthetic Surgery, Singapore General Hospital, 20 College Road, 169856 Singapore
- Skin Bank Unit, Singapore General Hospital, 169608 Singapore
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Fui Ping Lim
- Alice Lee Centre for Nursing Studies, National University of Singapore, 117597 Singapore
| | - Thet Tun Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 119077 Singapore
| | - Harini Sriram
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore
| | - Mercy Halleluyah Periayah
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Sreepathy Sridhar
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Mobashar Hussain Urf Turabe Fazil
- Lee Kong Chian School of Medicine, Clinical Sciences Building, Nanyang Technological University Singapore, 11 Mandalay Road, 308232 Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01006, Spain
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | | | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 138634 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, 637551 Singapore
| | - Veluchamy Amutha Barathi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, 119077 Singapore
| | - Si Jack Chong
- Department of Plastic Reconstructive & Aesthetic Surgery, Singapore General Hospital, 20 College Road, 169856 Singapore
- Skin Bank Unit, Singapore General Hospital, 169608 Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Lee Kong Chian School of Medicine, Clinical Sciences Building, Nanyang Technological University Singapore, 11 Mandalay Road, 308232 Singapore
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232 Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, 169856 Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, 169857 Singapore
- Department of Pharmacy, National University of Singapore, 18 Science Drive, 117543 Singapore
| |
Collapse
|
17
|
Brothers KM, Stella NA, Shanks RMQ. Biologically active pigment and ShlA cytolysin of Serratia marcescens induce autophagy in a human ocular surface cell line. BMC Ophthalmol 2020; 20:120. [PMID: 32216768 PMCID: PMC7098141 DOI: 10.1186/s12886-020-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cellular process of autophagy is essential for maintaining the health of ocular tissue. Dysregulation of autophagy is associated with several ocular diseases including keratoconus and macular degeneration. It is known that autophagy can be used to respond to microbial infections and that certain microbes can exploit the autophagic process to their benefit. In this study, a genetic approach was used to identify surface-associated and secreted products generated by the opportunistic pathogen Serratia marcescens involved in activation of autophagy. METHODS A recombinant human corneal limbal epithelial cell line expressing a LC3-GFP fusion protein was challenged with normalized secretomes from wild-type and mutant S. marcescens derivatives. LC3-GFP fluorescence patterns were used to assess the ability of wild-type and mutant bacteria to influence autophagy. Purified prodigiosin was obtained from stationary phase bacteria and used to challenge ocular cells. RESULTS Mutations in the global regulators eepR and gumB genes highly reduced the ability of the bacteria to activate autophagy in corneal cells. This effect was further narrowed down to the secreted cytolysin ShlA and the biologically active pigment prodigiosin. Purified prodigiosin and ShlA from Escherichia coli further supported the role of these factors in activating autophagy in human corneal cells. Additional genetic data indicate a role for flagellin and type I pili, but not the nuclease, S-layer protein, or serratamolide biosurfactant in activation of autophagy. CONCLUSIONS This work identifies specific bacterial components that activate autophagy and give insight into potential host-pathogen interactions or compounds that can be used to therapeutically manipulate autophagy.
Collapse
Affiliation(s)
- Kimberly M Brothers
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA
| | - Nicholas A Stella
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
18
|
Rossos AK, Banti CN, Kalampounias AG, Papachristodoulou C, Kordatos K, Zoumpoulakis P, Mavromoustakos T, Kourkoumelis N, Hadjikakou SK. pHEMA@AGMNA-1: A novel material for the development of antibacterial contact lens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110770. [PMID: 32279741 DOI: 10.1016/j.msec.2020.110770] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/17/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022]
Abstract
The Metal Organic Framework (MOF) of formula {[Ag6(μ3-HMNA)4(μ3-MNA)2]2-·[(Et3NH)+]2·(DMSO)2·(H2O)} (AGMNA), a known efficient antimicrobial compound which contains the anti-metabolite, 2-thio-nicotinic acid (H2MNA), was incorporated in polymer hydrogels using, hydroxyethyl-methacrylate (HEMA). The material pHEMA@AGMNA-1 was characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Thermogravimetric Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry (DTG/DSC), attenuated total reflection spectroscopy (FT-IR-ATR) and Ultrasonic Imaging. The antimicrobial capacity of pHEMA@AGMNA-1 was evaluated against the Gram negative bacterial strain Pseudomonas aeruginosa and the Gram positive ones of the genus of Staphylococcus epidermidis and Staphylococcus aureus, which are the etiology of the microbial keratitis. The % bacterial viability of P. aeruginosa, S. epidermidis and S. aureus upon their incubation with pHEMA@AGMNA-1 discs is significantly low (0.4 ± 0.1%, 1.5 ± 0.4% and 7.7 ± 0.5% respectively). The inhibition zones (IZ) caused by pHEMA@AGMNA-1 discs against P. aeruginosa, S. epidermidis and S. aureus are 14.0 ± 1.1, 11.3 ± 1.3 and 11.8 ± 1.8 mm respectively. Furthermore, pHEMA@AGMNA-1 exhibits low toxicity. Thus, pHEMA@AGMNA-1 might be an efficient candidate for the development of antimicrobial active contact lenses.
Collapse
Affiliation(s)
- A K Rossos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Greece
| | - C N Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Greece.
| | - A G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, Greece
| | | | - K Kordatos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Greece
| | - P Zoumpoulakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - T Mavromoustakos
- Organic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens Greece, Greece
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Greece
| | - S K Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
19
|
Wei SC, Chang L, Huang CC, Chang HT. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomater Sci 2019; 7:4482-4490. [PMID: 31531425 DOI: 10.1039/c9bm00772e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles (Au NPs) are conjugated with the vascular endothelial growth factor-A165 (VEGF-A165) and (11-mercaptoundecyl)-N,N,N-trimethylammonium (11-MTA) cation to form dual-functional gold nanoparticles (11-MTA/VEGF-Au NPs) that possess antimicrobial and proangiogenic activities for wound healing in diabetic (db/db) mice. VEGF-A165 is a popular proangiogenic growth factor that stimulates multiple components in the wound-healing cascade. On the other hand, 11-MTA possesses antibacterial activity and can be bound to Au NPs easily through Au-S bonding. We have found that the surface density of VEGF-A165 plays a vital role in promoting the proliferation, migration, and tube formation of human umbilical vein endothelial cells. 11-MTA tethered on the VEGF-modified Au NPs enables the nanocomposites (i.e., 11-MTA/VEGF-Au NPs) to exhibit a strong antimicrobial activity against multidrug-resistant bacteria [methicillin-resistant S. aureus (MRSA)]. The minimal inhibition concentration of 11-MTA/VEGF-Au NPs is ∼450-fold lower than that of 11-MTA, revealing their high antibacterial efficiency. 11-MTA/VEGF-Au NPs exhibit high biocompatibility. 11-MTA/VEGF-Au NPs as dressing materials to treat MRSA-infected wounds in diabetic mice not only show strong in vivo bactericidal activities but also enhance the healing process of the formation of collagen fibers and epithelialization. Our results show that dual-functional 11-MTA/VEGF-Au NPs are promising agents for clinical applications like treating chronic wound infections.
Collapse
Affiliation(s)
- Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Lung Chang
- Department of Pediatrics, Mackay Memorial Hospital and Mackay Junior College of Medicine, Nursing and Management, Taipei, 10449, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan. and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan. and Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| |
Collapse
|
20
|
Barakat MM, Dallal Bashi YH, Carson L, Graham WG, Gilmore BF, Flynn PB. Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo. Microb Pathog 2019; 136:103679. [PMID: 31437578 DOI: 10.1016/j.micpath.2019.103679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharide (LPS) is an endotoxin composed of a polysaccharide and lipid component. It is intrinsically responsible for the pathogenicity of Gram-negative bacteria and is involved in the development of bacterial sepsis. Atmospheric pressure non-thermal plasma is proposed as a potential new approach for the treatment of infected tissue such as chronic wounds, with both antibacterial and wound-healing activities extensively described. Using both the RAW264.7 murine macrophage cell line in vitro assays and the Galleria mellonella insect in vivo toxicity model, the effect non-thermal plasma exposure on LPS-mediated toxicity has been characterised. Short (60 s) non-thermal plasma exposures of Pseudomonas aeruginosa conditioned growth media, membrane lysates and purified P. aeruginosa LPS, resulted in a substantial detoxification and reduction of LPS-induced cytotoxicity in RAW264.7 murine macrophages. Non-thermal plasma exposure (60 s) of purified P. aeruginosa LPS led to a significant (p < 0.05) improvement in the G. mellonella health index (GHI) score, a measure of in vivo toxicity. These findings demonstrate the ability of short plasma exposures to significantly reduce LPS-induced cytotoxicity both in vitro and in vivo; attenuating the toxicity of this important virulence factor intrinsic to the pathogenicity of Gram-negative bacteria.
Collapse
Affiliation(s)
- Muna M Barakat
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK; School of Pharmacy, Applied Sciences Private University, Amman, 11931, Jordan
| | - Yahya H Dallal Bashi
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - Louise Carson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - William G Graham
- Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, BT7 1NN, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - Padrig B Flynn
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
21
|
Mayandi V, Sridhar S, Fazil MHUT, Goh ETL, Htoon HM, Orive G, Choong YK, Saravanan R, Beuerman RW, Barkham TMS, Yang L, Baskaran M, Jhanji V, Loh XJ, Verma NK, Lakshminarayanan R. Protective Action of Linear Polyethylenimine against Staphylococcus aureus Colonization and Exaggerated Inflammation in Vitro and in Vivo. ACS Infect Dis 2019; 5:1411-1422. [PMID: 31099239 DOI: 10.1021/acsinfecdis.9b00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased evolution of multidrug resistant pathogens necessitates the development of multifunctional antimicrobials. There is a perceived need for developing new antimicrobials that can interfere with acute inflammation after bacterial infections. Here, we investigated the therapeutic potential of linear polyethylenimine (LPEI) in vitro and in vivo. The minimum inhibitory concentration of LPEI ranged from 8 to 32 μg/mL and elicited rapid bactericidal activity against clinical isolates of meticillin-resistant Staphylococcus aureus (MRSA). The polymer was biocompatible for human cultured ocular and dermal cells. Prophylactic addition of LPEI inhibited the bacterial colonization of human primary dermal fibroblasts (hDFs). In a scratch wound cell migration assay, LPEI attenuated the migration inhibitory effects of bacterial secretions. The polymer neutralized the cytokine release by hDFs exposed to bacterial secretions, possibly by blocking their accessibility to host cell receptors. Topical instillation of LPEI (1 mg/mL) was noncytotoxic and did not affect the re-epithelialization of injured porcine cornea. In a prophylactic in vivo model of S. aureus keratitis, LPEI was superior to gatifloxacin in terms of reducing stimulation of cytokines, corneal edema, and overall severity of the infection. These observations demonstrate therapeutic potential of LPEI for antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Venkatesh Mayandi
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sreepathy Sridhar
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Mobashar Hussain Urf Turabe Fazil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Eunice Tze Leng Goh
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Hla Myint Htoon
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Yeu Khai Choong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Rathi Saravanan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
| | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | | | - Liang Yang
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
- Singapore Centre for Environmental Life Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Mani Baskaran
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Vishal Jhanji
- UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Experimental Medicine Building, Singapore 636921, Singapore
- Skin Research Institute of Singapore, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
22
|
Hodgson H, Davidson D, Duncan A, Guthrie J, Henderson E, MacDiarmid M, McGown K, Pollard V, Potter R, Rodgers A, Wilson A, Horner J, Doran M, Simm S, Taylor R, Rogers A, Rippon MG, Colgrave M. A multicentre, clinical evaluation of a hydro-responsive wound dressing: the Glasgow experience. J Wound Care 2019; 26:642-650. [PMID: 29131748 DOI: 10.12968/jowc.2017.26.11.642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Our aim was to assess the effectiveness of hydro-responsive wound dressing (HRWD) in debridement and wound bed preparation of a variety of acute and chronic wounds that presented with devitalised tissue needing removal so that healing may proceed. METHOD This was a non-comparative evaluation of acute and chronic wounds that required debridement as part of their normal treatment regimen. Clinicians recorded wound changes including a subjective assessment level of devitalised tissue and wound bed preparation, presence of pain, wound status (e.g., wound size) and periwound skin condition. Data was also collected from clinicians and patients to provide information on clinical performance of the dressing. RESULTS We recruited 100 patients with a variety of wound types into the study. Over 90% of the clinicians reported removal of devitalised tissue to enable a healing response in both chronic and acute wounds. Specifically, over the course of the evaluation period, levels of devitalised tissue (necrosis and slough) reduced from 85.5% to 26.3%, and this was accompanied by an increase in wound bed granulation from 12.0% to 33.7%. Correspondingly, there was a 40% reduction in wound area, hence a clinically relevant healing response was seen upon treatment with HRWD. It is also noteworthy that this patient population included a significant proportion of chronic wounds (51.4%) that showed no signs of wound progression within <4 weeks before study inclusion. Of these chronic wounds, 93% demonstrated wound progression upon treatment with HRWD. Despite reported pain levels being low pre- and post-dressing change, overall wound pain improved (reduced) in 48% of patients. Periwound skin condition showed a tendency towards improvement, and the fluid management capabilities of the HRWD was reported as good to excellent in the majority of cases. Wound infections were reduced by at least 60% over the evaluation period. A simple cost-effective analysis demonstrated significant savings using HRWD (£6.33) over current standard practice regimens of a four-step debridement process (£8.05), larval therapy (£306.39) and mechanical pad debridement (£11.46). CONCLUSION HRWD was well tolerated and was demonstrated to be an efficient debridement tool providing rapid, effective and pain free debridement in a variety of wound types.
Collapse
Affiliation(s)
- H Hodgson
- Lead Investigator, Lead Nurse Tissue Viability, Tissue Viability Acute and Partnerships, Glasgow
| | - D Davidson
- Vascular Nurse Specialist, Inverclyde Royal Hospital, Greenock
| | - A Duncan
- Vascular Nurse Specialist, Queen Elizabeth University Hospital, Glasgow
| | - J Guthrie
- Tissue Viability Specialist Nurse, Tissue Viability Acute and Partnerships, Glasgow
| | - E Henderson
- Tissue Viability Nurse Specialist, Glasgow Royal Infirmary, Glasgow
| | - M MacDiarmid
- Tissue Viability Clinical Nurse Specialist, Queen Elizabeth University Hospital, Glasgow
| | - K McGown
- Tissue Viability Nurse, Queen Elizabeth University Hospital, Glasgow
| | - V Pollard
- Tissue Viability Nurse, Inverclyde Royal Hospital, Greenock
| | - R Potter
- Tissue Viability Clinical Nurse Specialist, Tissue Viability Specialist Nurses (Partnerships Glasgow)
| | - A Rodgers
- Paediatric Tissue Viability Nurse, Royal Hospital for Children, Glasgow
| | - A Wilson
- Tissue Viability Nurse Specialist, Royal Alexandra Hospital, Paisley
| | - J Horner
- Tissue Viability Personal Assistant, Tissue Viability Acute and Partnerships, Glasgow
| | - M Doran
- Tissue Viability Personal Assistant, Tissue Viability Acute and Partnerships, Glasgow
| | - S Simm
- Clinical Development Manager, Hartmann Wound Care, Haywood, Lancashire
| | - R Taylor
- Nurse Advisor (North), Hartmann Wound Care, Haywood, Lancashire
| | - A Rogers
- Medical Communications, Flintshire, North Wales
| | - M G Rippon
- Visiting Clinical Research Fellow, Huddersfield University, Queensgate, Huddesfield
| | - M Colgrave
- Freelance Medical Writer, Molecular Cell Research, Lincoln
| |
Collapse
|
23
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
24
|
Injectable Scaffolds Enriched with Silver to Inhibit Bacterial Invasion in Tissue Regeneration. MATERIALS 2019; 12:ma12121931. [PMID: 31208032 PMCID: PMC6631215 DOI: 10.3390/ma12121931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
During wound healing, bacterial infections may prolong skin regeneration and tissue repair, causing delayed or incomplete healing. The therapeutic strategies currently used include general therapeutic modes, growth factors, skin substitutes, matrices and/or cell therapy. Among recent technologies, wound dressing materials comprising silver nitrate or silver sulfadiazine as the antimicrobial agent are widespread, despite their known cytotoxicity. The aim of this work was to develop and evaluate the efficacy of gelatinous injectable biomaterials composed of collagen and alginates, enriched with silver against bacterial pathogens commonly involved in wound infections. To reduce cytotoxicity, silver was used as lactate and saccharinated salts. Results show that silver-enriched beads were effective against both Gram-positive and Gram-negative strains in a concentration-dependent manner. Silver addition was more active against Staphylococcusepidermidis than against Pseudomonasaeruginosa. The antibacterial activity was localized only in the area of contact with the beads at concentrations lower than 0.3 mM, whereas at higher concentrations a larger inhibition halo was observed. No cytotoxic effect on eukaryotic cells was seen both testing the materials’ extracts or the Ag-doped beads in contact tests. These results, although preliminary, suggest that these scaffolds are a promising approach for realizing injectable or spreadable functional biomaterials with antibacterial activity for applications in wound management.
Collapse
|
25
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
26
|
Putra I, Rabiee B, Anwar KN, Gidfar S, Shen X, Babalooee M, Ghassemi M, Afsharkhamseh N, Bakhsh S, Missiakas D, Nezamabadi A, Milani B, Eslani M, Djalilian AR. Staphylococcus aureus alpha-hemolysin impairs corneal epithelial wound healing and promotes intracellular bacterial invasion. Exp Eye Res 2019; 181:263-270. [PMID: 30822400 DOI: 10.1016/j.exer.2019.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
Colonization by Staphylococcus aureus (S. aureus) has been implicated in many infectious and wound healing disorders. This study was performed to characterize the pathogenic role of S. aureus alpha-hemolysin (alpha-toxin) in corneal epithelial wound healing and infectious keratitis in the setting of a corneal wound. The effect of wild-type and isogenic Hla mutant (α-hemolysin gene deleted) S. aureus bacteria and conditioned media on corneal epithelial wound healing was tested in vitro using a scratch assay and in vivo using a murine epithelial debridement model. The invasiveness of wild-type and Hla mutant S. aureus was evaluated in vitro in human corneal epithelial cells and in vivo in a murine model of infectious keratitis following total epithelial debridement. S. aureus and its conditioned media significantly delayed epithelial wound closure both in vitro (P < 0.05) and in vivo (P < 0.05). The effect of S. aureus on wound healing was significantly diminished with the Hla mutant strain (P < 0.05). Likewise, compared to the wild-type strain, the Hla mutant strain demonstrated significantly reduced ability to invade corneal epithelial cells in vitro (P < 0.05) and infect murine corneas following total epithelial debridement in vivo (P < 0.05). In conclusion, S. aureus alpha-hemolysin plays a major role in the pathologic modulation of corneal epithelial wound healing and the intracellular invasion of the bacteria. Limiting colonization by S. aureus and/or blocking alpha-hemolysin may provide a therapeutic approach for corneal wound healing and infectious disorders.
Collapse
Affiliation(s)
- Ilham Putra
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Behnam Rabiee
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Khandaker N Anwar
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Sanaz Gidfar
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Xiang Shen
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Mehrdad Babalooee
- Division of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, 808 S. Wood St., Suite 888 (MC 735), Chicago, IL, 60612, United States
| | - Mahmood Ghassemi
- Division of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, 808 S. Wood St., Suite 888 (MC 735), Chicago, IL, 60612, United States
| | - Neda Afsharkhamseh
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Saaquib Bakhsh
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th St., CLSC 1117, Chicago, IL, 60637, United States
| | - Ali Nezamabadi
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Behrad Milani
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Medi Eslani
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Ali R Djalilian
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States.
| |
Collapse
|
27
|
Cavassan NRV, Camargo CC, de Pontes LG, Barraviera B, Ferreira RS, Miot HA, Abbade LPF, Dos Santos LD. Correlation between chronic venous ulcer exudate proteins and clinical profile: A cross-sectional study. J Proteomics 2019; 192:280-290. [PMID: 30261322 DOI: 10.1016/j.jprot.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Chronic venous ulcers affect the quality of life of patients around the world. The aims of this study were to identify the proteins expressed in chronic venous ulcer exudates, to categorize them according to their roles and to correlate them with the clinical and epidemiological aspects of the disease. The study population consisted of 37 ulcers from 28 patients, and the inflammatory exudates of these thirty-seven ulcers were subjected to tryptic digestion and mass spectrometry analysis. Twenty-three patients were female (62.2%), and five (37.8%) were male. The patients had a mean age of 70 (±10.1) years. Of the patients, 73% adhered to compression and rest, 81.1% reported a history of primary varices, 54.1% reported a history of systemic arterial hypertension, 54.1% reported a history of devitalized tissue in the wound bed and 64.9% reported ulcers with more than ten years of evolution. Seventy-six proteins were identified, and they were grouped according to their primary role in the healing process. Eight correlations between clinical and epidemiological data and protein expression were noteworthy: diabetes mellitus vs. Ig gamma-2 and apolipoprotein-A1 and albumin; congestive heart failure vs. Ig lambda-2; colonization vs. actin; compressive therapy vs. Ig kappa; systemic arterial hypertension vs. alpha-2-macroglobulin and apolipoprotein-A1; area of ulcer vs. apolipoprotein-A1; race vs. heavy chain Ig and Ig γ-1 chain; age and race vs. Ig γ-1 chain. These associations may help to elucidate the prognosis and chronicity of chronic venous ulcers based on secreted proteins.
Collapse
Affiliation(s)
- Nayara Rodrigues Vieira Cavassan
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Caio Cavassan Camargo
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Letícia Gomes de Pontes
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Luciana Patrícia Fernandes Abbade
- Department of Dermatology and Radiology, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil; Center for the Study of Venoms and Venomous Animals (CEVAP), Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
28
|
Mytych J, Solek P, Koziorowski M. Klotho modulates ER-mediated signaling crosstalk between prosurvival autophagy and apoptotic cell death during LPS challenge. Apoptosis 2018; 24:95-107. [DOI: 10.1007/s10495-018-1496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Valera FCP, Ruffin M, Adam D, Maillé É, Ibrahim B, Berube J, Rousseau S, Brochiero E, Desrosiers MY. Staphylococcus aureus impairs sinonasal epithelial repair: Effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol 2018; 143:591-603.e3. [PMID: 29935218 DOI: 10.1016/j.jaci.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effect of Staphylococcus aureus on nasal epithelial repair has never been assessed in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). OBJECTIVE This study aimed to determine whether (1) nasal epithelial cell cultures from patients with CRSwNP and control subjects repair differently; (2) S aureus exoproducts compromise nasal epithelial repair; (3) S aureus alters lamellipodial dynamics; and (4) deleterious effects could be counteracted by the Rho-associated coiled-coil kinase inhibitor Y-27632. METHODS Primary nasal epithelial cells (pNECs) collected during surgeries were cultured and injured under 3 conditions: (1) basal conditions, (2) exposed to S aureus exoproducts, and (3) exposed to S aureus exoproducts and Y-27632. Epithelial repair, lamellipodial dynamics, and cytoskeletal organization were assessed. RESULTS Under basal conditions, pNEC cultures from patients with CRSwNP presented significantly lower repair rates and reduced lamellipodial protrusion length and velocity than those from control subjects. S aureus exoproducts significantly decreased repair rates and protrusion dynamics in both control subjects and patients with CRSwNP; however, the effect of S aureus on cell protrusions was more sustained over time in patients with CRSwNP. Under basal conditions, immunofluorescence assays showed significantly reduced percentages of cells with lamellipodia at the wound edge in patients with CRSwNP compared with control subjects. S aureus altered cell polarity and decreased the percentage of cells with lamellipodia in both groups. Finally, Y-27632 prevented the deleterious effects of S aureus exoproducts on CRSwNP repair rates, as well as on lamellipodial dynamics and formation. CONCLUSIONS S aureus exoproducts significantly alter epithelial repair and lamellipodial dynamics on pNECs, and this impairment was more pronounced in patients with CRSwNP. Importantly, Y-27632 restored epithelial repair and lamellipodial dynamics in the presence of S aureus exoproducts.
Collapse
Affiliation(s)
- Fabiana C P Valera
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Division of Otorhinolaryngology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Badr Ibrahim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Stathopoulou MEK, Banti CN, Kourkoumelis N, Hatzidimitriou AG, Kalampounias AG, Hadjikakou SK. Silver complex of salicylic acid and its hydrogel-cream in wound healing chemotherapy. J Inorg Biochem 2018; 181:41-55. [PMID: 29407907 DOI: 10.1016/j.jinorgbio.2018.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 01/07/2018] [Indexed: 01/06/2023]
Abstract
The known metallotherapeutic [Ag(salH)]2 (AGSAL-1) of salicylic acid (salH2), was used for the development of new efficient silver based material for wounds healing. AGSAL-1 was characterized by spectroscopic techniques and X-ray crystallography. The wound healing epithelialization of AGSAL-1 was investigated by the means of scratch assay against immortalized human keratinocytes (HaCaT) cells. The anti-inflammatory activity of AGSAL-1 was evaluated by monitoring the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX). The antibacterial activity of AGSAL-1 was evaluated against bacterial species which colonize wounds, such as: Pseudomonas aeruginosa (PAO1), Staphylococcus epidermidis and Staphylococcus aureus, by the means of Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and their Inhibition Zone (IZ). Moreover, the influence of AGSAL-1 against the formation of biofilm of PAO1 and St. aureus was also evaluated by the mean of Biofilm Elimination Concentration (ΒΕC). A hydrogel material CMC@AGSAL-1, based on the dispersion of AGSAL-1 in to carboxymethyl cellulose (CMC) was tested for its antimicrobial activity. Molecular Docking was performed, to explore the molecular interaction of AGSAL-1 with (i) the transcriptional regulator of PAO1, LasR. (ii) the mevalonate pathway for the biosynthesis of isoprenoids which is essential for gram-positive bacteria St. epidermidis and St. aureus. The toxicity of AGSAL-1 was examined against the HaCaT cells. Its genotoxicity was evaluated using Allium cepa model, in vivo. No genotoxicity was detected, indicating that AGSAL-1 is a candidate towards the development on a new efficient medication of the silver based metallodrugs.
Collapse
Affiliation(s)
| | - Christina N Banti
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | - Sotiris K Hadjikakou
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
31
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
32
|
Brothers KM, Kowalski RP, Tian S, Kinchington PR, Shanks RMQ. Bacteria induce autophagy in a human ocular surface cell line. Exp Eye Res 2017; 168:12-18. [PMID: 29288646 DOI: 10.1016/j.exer.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/24/2017] [Indexed: 12/18/2022]
Abstract
Autophagy protects cells from intracellular pathogens, but can be exploited by some infectious agents to their benefit. Currently it is not known if bacteria induce autohpagy in cells of the cornea. The goal of this study was to develop an ocular surface autophagy reporter cell line and determine whether ocular bacterial pathogens influence host responses through autophagy induction. The cell line was made using lentivirus transduction of an LC3-GFP fusion protein in human corneal limbal epithelial (HCLE) cells. LC3-GFP puncta in HCLEs were induced by rapamycin and ammonium chloride treatments, and prevented by the autophagy inhibitors 3-methyladenine (3'MA) and bafilomycin. Importantly, secretomes from Escherichia coli, Serratia marcescens, Staphylococcus aureus, methicillin sensitive (MSSA) and resistant (MRSA), were found to induce autophagy, whereas other bacteria, including Acinetobacter baumannii, Achromobacter xylosoxidans, Enterococcus faecalis, Klebsiella pneumoniae, Moraxella sp., and Stenotrophomonas maltophilia, did not. Our data indicates differences between tested ocular isolates of MRSA and MSSA in the activation of autophagy. HCLEs treated with 3'MA were slightly more susceptible to cytotoxic factors produced by S. marcescens and MRSA keratitis isolates, by contrast, bafilomycin A1 treatment caused no difference. This work demonstrates the successful development and validation of an autophagy reporter corneal cell line and indicates differences between ocular bacterial isolates in the activation of autophagy.
Collapse
Affiliation(s)
- Kimberly M Brothers
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Regis P Kowalski
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shenghe Tian
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paul R Kinchington
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Griffith GL, Kasus-Jacobi A, Pereira HA. Bioactive Antimicrobial Peptides as Therapeutics for Corneal Wounds and Infections. Adv Wound Care (New Rochelle) 2017; 6:175-190. [PMID: 28616359 PMCID: PMC5467138 DOI: 10.1089/wound.2016.0713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Significance: More than 2 million eye injuries and infections occur each year in the United States that leave civilians and military members with reduced or complete vision loss due to the lack of effective therapeutics. Severe ocular injuries and infections occur in varied settings including the home, workplace, and battlefields. In this review, we discuss the potential of developing antimicrobial peptides (AMPs) as therapeutics for the treatment of corneal wounds and infections for which the current treatment options are inadequate. Recent Advances: Standard-of-care employs the use of fluorescein dye for the diagnosis of ocular defects and is followed by the use of antibiotics and/or steroids to treat the infection and reduce inflammation. Recent advances for treating corneal wounds include the development of amniotic membrane therapies, wound chambers, and drug-loaded hydrogels. In this review, we will discuss an innovative approach using AMPs with the dual effect of promoting corneal wound healing and clearing infections. Critical Issues: An important aspect of treating ocular injuries is that treatments need to be effective and administered expeditiously. This is especially important for injuries that occur during combat and in individuals who demonstrate delayed wound healing. To overcome gaps in current treatment modalities, bioactive peptides based on naturally occurring cationic antimicrobial proteins are being investigated as new therapeutics. Future Directions: The development of new therapeutics that can treat ocular infections and promote corneal wound healing, including the healing of persistent corneal epithelial defects, would be of great clinical benefit.
Collapse
Affiliation(s)
- Gina L. Griffith
- Ocular Trauma and Vision Restoration, United States Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma
| | - H. Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Oklahoma City, Oklahoma
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|
34
|
Cystatin C peptidomimetic derivative with antimicrobial properties as a potential compound against wound infections. Bioorg Med Chem 2017; 25:1431-1439. [PMID: 28110818 DOI: 10.1016/j.bmc.2017.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
A peptidomimetic called A20 (Cystapep 1) structurally based upon the N-terminal fragment of human cystatin C is known to have strong antibacterial properties. A20 is characterized by high activity against several bacterial strains often isolated from infected wounds, including methicillin-resistant S. aureus (MRSA). In this work we wanted to explore the therapeutic potential of A20 in the treatment of wound infections. We examined, cytotoxicity, allergenicity and impact of A20 on the proliferation and viability of human keratinocytes. Furthermore, the previously described antimicrobial action of A20has been confirmed here with reference strains of bacteria and extended by several other species. The A20 was highly active against Gram-positive bacteria with minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) between 8 and 128μg/mL. A20 did not affect proliferation of primary human keratinocytes in concentrations up to 50μg/mL. At the same time, it did not activate Peripheral Blood Mononuclear Cells (PBMCs), including basophils or neutrophils in vitro. Interestingly A20 was found to display immunomodulatory functions as it influences the production of Th2 cytokines (IL-4 and IL-13) by activated PBMCs. It was also resistant to degradation for at least 48h in human plasma. The results indicate that A20 is effective against the multiantibiotic-resistant bacteria and has a high safety profile, which makes it a promising antimicrobial drug candidate.
Collapse
|
35
|
Ousey K, Rogers AA, Rippon MG. Hydro-responsive wound dressings simplify T.I.M.E. wound management framework. Br J Community Nurs 2016; 21:S39-S49. [PMID: 27922787 DOI: 10.12968/bjcn.2016.21.sup12.s39] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of wound management protocols and guidelines such as the T.I.M.E. acronym are useful tools to aid wound care practitioners deliver effective wound care. The tissue, infection/inflammation, moisture balance and edge of wound (T.I.M.E.) framework provides a systematic approach for the assessment and management of the majority of acute and chronic wounds. The debridement of devitalised tissue from the wound bed, the reduction in wound bioburden and effective management of wound exudate - i.e., wound bed preparation - are barriers to wound healing progression that are targeted by T.I.M.E. There are a large number of wound dressings available to experienced wound care practitioners to aid in their goal of healing wounds. Despite the systematic approach of T.I.M.E., the large number of wound dressings available can introduce a level of confusion when dressing choices need to be made. Any simplification in dressing choice, for example by choosing a dressing system comprising of a limited number of dressings that are able to address all aspects of T.I.M.E., would be a valuable resource for delivering effective wound care. This article briefly reviews the principles of T.I.M.E. and describes the evidence for the use of a two-dressing, moisture balance-oriented, dressing-based wound management system.
Collapse
Affiliation(s)
- Karen Ousey
- Professor and Director for the Institute of Skin Integrity and Infection Prevention School of Human and Health Sciences, University of Huddersfield
| | | | - Mark G Rippon
- Visiting Clinical Research Fellow School of Human and Health Sciences, University of Huddersfield
| |
Collapse
|
36
|
Predatory bacteria are nontoxic to the rabbit ocular surface. Sci Rep 2016; 6:30987. [PMID: 27527833 PMCID: PMC4985815 DOI: 10.1038/srep30987] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Given the increasing emergence of antimicrobial resistant microbes and the near absent development of new antibiotic classes, innovative new therapeutic approaches to address this global problem are necessary. The use of predatory bacteria, bacteria that prey upon other bacteria, is gaining interest as an "out of the box" therapeutic treatment for multidrug resistant pathogenic bacterial infections. Before a new antimicrobial agent is used to treat infections, it must be tested for safety. The goal of this study was to test the tolerability of bacteria on the ocular surface using in vitro and in vivo models. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were found to be non-toxic to human corneal stromal keratocytes in vitro; however, they did induce production of the proinflammatory chemokine IL-8 but not IL-1β. Predatory bacteria did not induce inflammation on the ocular surface of rabbit eyes, with and without corneal epithelial abrasions. Unlike a standard of care antibiotic vancomycin, predatory bacteria did not inhibit corneal epithelial wound healing or increase clinical inflammatory signs in vivo. Together these data support the safety of predatory bacteria on the ocular surface, but future studies are warranted regarding the use predatory bacteria in deeper tissues of the eye.
Collapse
|
37
|
Arnold CP, Merryman MS, Harris-Arnold A, McKinney SA, Seidel CW, Loethen S, Proctor KN, Guo L, Sánchez Alvarado A. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38. eLife 2016; 5. [PMID: 27441386 PMCID: PMC4993586 DOI: 10.7554/elife.16793] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration. DOI:http://dx.doi.org/10.7554/eLife.16793.001 Regeneration, the ability to replace missing or damaged tissue, has fascinated biologists for years and has inspired a new direction for the medical field. Figuring out how some animals easily accomplish this while others do not may help us to develop new therapies that enhance regeneration in humans. Previous work has indicated that the immune system, which is normally used to defend the body against bacteria, plays an important but complicated role in regeneration. By studying the relationships between bacteria, the immune system and regeneration in simple systems, it may be possible to see how their interactions either support or prevent the replacement of lost tissues. Flatworms called planaria can regenerate all of their tissues. Arnold et al. have now investigated what bacteria exist in planaria, how the planarian immune system responds to these bacteria, and how this response affects regeneration. The results reveal that the two main types of bacteria that are present in planaria are also found in humans. In fact, conditions that encourage the growth and spread of one of these types of bacteria (called Proteobacteria, many of which can make humans ill) damaged the worms and prevented them from regenerating. Arnold et al. then looked to see if the worms had genes that were similar to human genes that control the key immune process of inflammation, and found evidence of several such genes. Reducing the activity levels of these genes enabled worms that had been infected with Proteobacteria to regenerate again. However, these genes only seem to be responsible for regeneration when the planaria are infected with bacteria. Thus, planaria could be used as a simple model to discover how changes in resident bacteria can be detected by the immune system and affect the ability to regenerate tissues. Future studies could use planaria to identify even more genes that control regeneration during infection. Also, since the main types of bacteria in planaria are similar to those in humans, planaria may help us to learn how animals can properly balance the levels of these bacteria in order to remain healthy. DOI:http://dx.doi.org/10.7554/eLife.16793.002
Collapse
Affiliation(s)
| | - M Shane Merryman
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Sean A McKinney
- Stowers Institute for Medical Research, Kansas City, United States
| | - Chris W Seidel
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Longhua Guo
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
38
|
Veréb Z, Póliska S, Albert R, Olstad OK, Boratkó A, Csortos C, Moe MC, Facskó A, Petrovski G. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing. Sci Rep 2016; 6:26227. [PMID: 27195722 PMCID: PMC4872602 DOI: 10.1038/srep26227] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases.
Collapse
Affiliation(s)
- Zoltán Veréb
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Center for Clinical Genomics and Personalized Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Réka Albert
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ole Kristoffer Olstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anita Boratkó
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Csilla Csortos
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Morten C Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andrea Facskó
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, Hardman MJ. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. J Transl Med 2016; 96:439-49. [PMID: 26855364 DOI: 10.1038/labinvest.2015.160] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Wound infection is a major clinical problem, yet understanding of bacterial host interactions in the skin remains limited. Microbe-derived molecules, known as pathogen-associated molecular patterns, are recognised in barrier tissues by pattern-recognition receptors. In particular, the pathogen-associated molecular pattern, lipopolysaccharide (LPS), a component of microbial cell walls and a specific ligand for Toll-like receptor 4, has been widely used to mimic systemic and local infection across a range of tissues. Here we administered LPS derived from Klebsiella pneumoniae, a species of bacteria that is emerging as a wound-associated pathogen, to full-thickness cutaneous wounds in C57/BL6 mice. Early in healing, LPS-treated wounds displayed increased local apoptosis and reduced proliferation. Subsequent healing progression was delayed with reduced re-epithelialisation, increased proliferation, a heightened inflammatory response and perturbed wound matrix deposition. Our group and others have previously demonstrated the beneficial effects of 17β-estradiol treatment across a range of preclinical wound models. Here we asked whether oestrogen would effectively promote healing in our LPS bacterial infection model. Intriguingly, co-treatment with 17β-estradiol was able to promote re-epithelialisation, dampen inflammation and induce collagen deposition in our LPS-delayed healing model. Collectively, these studies validate K. pneumoniae-derived LPS treatment as a simple yet effective model of bacterial wound infection, while providing the first indication that oestrogen could promote cutaneous healing in the presence of infection, further strengthening the case for its therapeutic use.
Collapse
Affiliation(s)
- Rachel Crompton
- The Healing Foundation Centre, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Helen Williams
- The Healing Foundation Centre, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - David Ansell
- The Healing Foundation Centre, Faculty of Life Sciences, The University of Manchester, Manchester, UK.,The Centre for Dermatology Research, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Laura Campbell
- The Healing Foundation Centre, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | - Matthew J Hardman
- The Healing Foundation Centre, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|