1
|
Bhattarai SM, Jhawer A, Frampton G, Troyanovskaya E, DeMorrow S, McMillin M. Characterization of hepatic pathology during azoxymethane-induced acute liver failure. World J Gastroenterol 2025; 31:103952. [PMID: 40182596 PMCID: PMC11962848 DOI: 10.3748/wjg.v31.i12.103952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/26/2025] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a loss of liver function due to a severe hepatic insult. Studies utilizing the azoxymethane (AOM) mouse model of ALF, which also generates hepatic encephalopathy, have primarily focused on development of neurological deficits. However, the molecular processes that generate liver damage have not been fully characterized. Therefore, a more comprehensive characterization of the hepatic consequences of AOM toxicity is needed to better understand this disease model. AIM To identify molecular pathology contributing to hepatic injury during the progression of AOM-induced ALF. METHODS C57BL/6 mice were injected with AOM to produce ALF and hepatic encephalopathy. Tissue was collected at defined stages of neurological decline up to coma. Liver injury, CYP2E1 expression, oxidative stress, inflammation, apoptosis, necroptosis, and hepatocellular senescence were assessed. RESULTS Increased hepatic necrosis and exacerbated liver injury were observed after AOM injection as mice progressed towards coma. CYP2E1 expression decreased in AOM-treated mice as liver injury progressed. Malondialdehyde, myeloperoxidase and other measures of oxidative stress were significantly increased during AOM-induced ALF. Hepatic CCL2 and tumor necrosis factor α expression increased as AOM-induced liver injury progressed. Mixed lineage kinase domain-like protein phosphorylation was increased early during the progression of AOM-induced liver injury. Measures of apoptosis and cellular senescence all increased as the time course of AOM progressed. CONCLUSION These data support that necrosis, oxidative stress, inflammation, apoptosis, and senescence were elevated in AOM-treated mice, with inflammation being the earliest significant change.
Collapse
Affiliation(s)
- Shadikchhya Maya Bhattarai
- Department of Internal Medicine, University of Texas at Austin Dell Medical School, Austin, TX 78701, United States
| | - Ashwin Jhawer
- Department of Internal Medicine, University of Texas at Austin Dell Medical School, Austin, TX 78701, United States
| | - Gabriel Frampton
- Department of Internal Medicine, University of Texas at Austin Dell Medical School, Austin, TX 78701, United States
| | - Eleonora Troyanovskaya
- Department of Research, Central Texas Veterans Health Care System, Austin, TX 78701, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, University of Texas at Austin Dell Medical School, Austin, TX 78701, United States
- Department of Research, Central Texas Veterans Health Care System, Austin, TX 78701, United States
- Division of Pharmacology and Toxicology, University of Texas at Austin College of Pharmacy, Austin, TX 78701, United States
| | - Matthew McMillin
- Department of Internal Medicine, University of Texas at Austin Dell Medical School, Austin, TX 78701, United States
- Department of Research, Central Texas Veterans Health Care System, Austin, TX 78701, United States
- Huffington Department of Education, Baylor College of Medicine, Temple, TX 76548, United States
- Department of Medicine, Baylor College of Medicine, Temple, TX 76548, United States
| |
Collapse
|
2
|
Zeiss R, Schönfeldt-Lecuona C, Connemann BJ, Hafner S, Gahr M. Hepatotoxicity of antipsychotics: an exploratory pharmacoepidemiologic and pharmacodynamic study integrating FAERS data and in vitro receptor-binding affinities. Front Psychiatry 2024; 15:1479625. [PMID: 39469476 PMCID: PMC11513306 DOI: 10.3389/fpsyt.2024.1479625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Antipsychotic psychopharmacotherapy is associated with the risk of drug-induced liver injury (DILI). However, understanding specific risk factors remains challenging due to limited data. This study investigates the relationship between receptor binding affinities and occupancies of antipsychotics and their associated hepatotoxic risks. Methods A disproportionality analysis with calculation of the Reporting Odds Ratio (ROR) and the Information Component (IC) was conducted using data from the FDA Adverse Event Reporting System (FAERS) to identify signals related to the Standardised MedDRA Query "drug-related hepatic disorders", which served as a proxy for drug-induced hepatotoxicity. This was followed by a pharmacoepidemiologic-pharmacodynamic approach to investigate the relationship between the ROR and substance-related receptor binding affinities and occupancy, which was estimated based on in vitro receptor-binding profiles. Results Significant signals were identified for several antipsychotics, including chlorpromazine, loxapine, olanzapine, and quetiapine, with chlorpromazine and loxapine showing the highest RORs for DILI. Gender-specific analysis revealed a higher frequency of signals in female patients. Statistically significant negative correlations were identified between the ROR for drug-related hepatic disorders and the affinity for serotonin receptor 5-HT1A (r (17) = -0.68, p = 0.0012), while a positive correlation was observed for cholinergic receptors (r (17) = 0.46, p = 0.048). No significant correlations were found related to other receptors or drug properties. Conclusion Our findings suggest that the serotonin and probably the cholinergic system may play a role in the development of DILI related to antipsychotic medications. The identification of antipsychotics with a higher association with DILI, such as chlorpromazine, underscores the need for careful monitoring in clinical practice. However, our findings need further longitudinal studies to confirm causality. A better understanding of the associations may inform clinical decision-making, particularly in patients with an increased susceptibility to liver damage.
Collapse
Affiliation(s)
- René Zeiss
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | | | | | - Susanne Hafner
- Institute of Experimental and Clinical Pharmacology, Toxicity and Pharmacology of Natural Products, University of Ulm, Ulm, Germany
| | - Maximilian Gahr
- District Hospital for Psychiatry, Psychotherapy and Psychosomatic Medicine Schloss Werneck, Werneck, Germany
| |
Collapse
|
3
|
The activation of M 3 muscarinic receptor reverses liver injuryvia the Sp1/lncRNA Gm2199/miR-212 axis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1257-1267. [PMID: 36111745 PMCID: PMC9827815 DOI: 10.3724/abbs.2022119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors (MRs) play important roles in the regulation of hepatic fibrosis and the receptor agonists and antagonists can affect hepatocyte proliferation. However, little is known about the impact of M 3R subtypes and associated signaling pathways on liver injury. The aim of this study is to explore the function and mechanism of M 3R in the regulation of liver injury. We evaluate liver injury and detect the changes in related indexes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline (HYP), and transforming growth factor-β1 (TGF-β1), after administration of an M 3R agonist. Western blot analysis and qRT-PCR show that the transcription factor Sp1 and long noncoding RNA (lncRNA) Gm2199 are also changed significantly. Rescue assay is performed to further confirm that M 3R contributes to the progression of hepatocyte proliferation through regulating Sp1 and Gm2199. The activated M 3R can specifically regulate Gm2199 by inhibiting the expression of Sp1. Meanwhile, Gm2199 directly regulates miR-212, and ERK is a potential target of miR-212. Collectively, these findings define a novel mechanism for activating M 3R to reverse liver injury, which affects hepatocyte proliferation through the Sp1/Gm 2199/miR-212/ERK axis.
Collapse
|
4
|
Tolaymat M, Sundel MH, Alizadeh M, Xie G, Raufman JP. Potential Role for Combined Subtype-Selective Targeting of M 1 and M 3 Muscarinic Receptors in Gastrointestinal and Liver Diseases. Front Pharmacol 2021; 12:786105. [PMID: 34803723 PMCID: PMC8600121 DOI: 10.3389/fphar.2021.786105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023] Open
Abstract
Despite structural similarity, the five subtypes comprising the cholinergic muscarinic family of G protein-coupled receptors regulate remarkably diverse biological functions. This mini review focuses on the closely related and commonly co-expressed M1R and M3R muscarinic acetylcholine receptor subtypes encoded respectively by CHRM1 and CHRM3. Activated M1R and M3R signal via Gq and downstream initiate phospholipid turnover, changes in cell calcium levels, and activation of protein kinases that alter gene transcription and ultimately cell function. The unexpectedly divergent effects of M1R and M3R activation, despite similar receptor structure, distribution, and signaling, are puzzling. To explore this conundrum, we focus on the gastrointestinal (GI) tract and liver because abundant data identify opposing effects of M1R and M3R activation on the progression of gastric, pancreatic, and colon cancer, and liver injury and fibrosis. Whereas M3R activation promotes GI neoplasia, M1R activation appears protective. In contrast, in murine liver injury models, M3R activation promotes and M1R activation mitigates liver fibrosis. We analyze these findings critically, consider their therapeutic implications, and review the pharmacology and availability for research and therapeutics of M1R and M3R-selective agonists and antagonists. We conclude by considering gaps in knowledge and other factors that hinder the application of these drugs and the development of new agents to treat GI and liver diseases.
Collapse
Affiliation(s)
- Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret H Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States.,VA Maryland Healthcare System, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
6
|
Zhong C, He L, Lee SY, Chang H, Zhang Y, Threadgill DW, Yuan Y, Zhou F, Celniker SE, Xia Y, Snijders AM, Mao JH. Host genetics and gut microbiota cooperatively contribute to azoxymethane-induced acute toxicity in Collaborative Cross mice. Arch Toxicol 2021; 95:949-958. [PMID: 33458792 DOI: 10.1007/s00204-021-02972-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Azoxymethane (AOM) is a widely used carcinogen to study chemical-induced colorectal carcinogenesis and is an agent for studying fulminant hepatic failure. The inter-strain susceptibility to acute toxicity by AOM has been reported, but its association with host genetics or gut microbiota remains largely unexplored. Here a cohort of genetically diverse Collaborative Cross (CC) mice was used to assess the contribution of host genetics and the gut microbiome to AOM-induced acute toxicity. We observed variation in AOM-induced acute liver failure across CC strains. Quantitative trait loci (QTL) analysis revealed three chromosome regions significantly associated with AOM toxicity. Genes located within these QTL, including peroxisome proliferator-activated receptor alpha (Ppara), were enriched for enzyme activator and nucleoside-triphosphatase regulator activity. We further demonstrated that the protein level of PPARα in liver tissues from sensitive strains was remarkably lower compared to levels in resistant strains, consistent with protective role of PPAR family in liver injury. We discovered that the abundance levels of gut microbial families Anaeroplasmataceae, Ruminococcaceae, Lactobacillaceae, Akkermansiaceae and Clostridiaceae were significantly higher in the sensitive strains compared to the resistant strains. Using a random forest classifier method, we determined that the relative abundance levels of these microbial families predicted AOM toxicity with the area under the receiver-operating curve (AUC) of 0.75. Combining the three genetic loci and five microbial families increased the predictive accuracy of AOM toxicity (AUC of 0.99). Moreover, we found that Ruminococcaceae and Lactobacillaceae acted as mediators between host genetics and AOM toxicity. In conclusion, this study shows that host genetics and specific microbiome members play a critical role in AOM-induced acute toxicity, which provides a framework for analysis of the health effects from environmental toxicants.
Collapse
Affiliation(s)
- Chenhan Zhong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Hematology, Zhongnan Hospital, Wuhan University, Donghu road 169, Wuhan, 430079, China
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Donghu road 169, Wuhan, 430079, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020; 11:5666. [PMID: 33168815 PMCID: PMC7653938 DOI: 10.1038/s41467-020-19491-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporin 3 (AQP3) is a transporter of water, glycerol and hydrogen peroxide (H2O2) that is expressed in various epithelial cells and in macrophages. Here, we developed an anti-AQP3 monoclonal antibody (mAb) that inhibited AQP3-facilitated H2O2 and glycerol transport, and prevented liver injury in experimental animal models. Using AQP3 knockout mice in a model of liver injury and fibrosis produced by CCl4, we obtained evidence for involvement of AQP3 expression in nuclear factor-κB (NF-κB) cell signaling, hepatic oxidative stress and inflammation in macrophages during liver injury. The activated macrophages caused stellate cell activation, leading to liver injury, by a mechanism involving AQP3-mediated H2O2 transport. Administration of an anti-AQP3 mAb, which targeted an extracellular epitope on AQP3, prevented liver injury by inhibition of AQP3-mediated H2O2 transport and macrophage activation. These findings implicate the involvement of macrophage AQP3 in liver injury, and provide evidence for mAb inhibition of AQP3-mediated H2O2 transport as therapy for macrophage-dependent liver injury.
Collapse
Affiliation(s)
- Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan.,Keio Global Research Institute, Center for Water Biology and Medicine, Tokyo, Japan
| |
Collapse
|
8
|
M3 muscarinic receptor activation reduces hepatocyte lipid accumulation via CaMKKβ/AMPK pathway. Biochem Pharmacol 2019; 169:113613. [PMID: 31445019 DOI: 10.1016/j.bcp.2019.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Previously, we reported that hepatic muscarinic receptors modulate both acute and chronic liver injury, however, the role of muscarinic receptors in fatty liver disease is unclear. We observed in patients who underwent weight loss surgery, a decrease in hepatic expression of M3 muscarinic receptors (M3R). We also observed that fat loading of hepatocytes, increased M3R expression. Based on these observations, we tested the hypothesis that M3R regulate hepatocyte lipid accumulation. Incubation of AML12 hepatocytes with 1 mM oleic acid resulted in lipid accumulation that was significantly reduced by co-treatment with a muscarinic agonist (pilocarpine or carbachol), an effect blocked by atropine (a muscarinic antagonist). Similar treatment of Hepa 1-6 cells, a mouse hepatoblastoma cell line, showed comparable results. In both, control and fat-loaded AML12 cells, pilocarpine induced time-dependent AMPKα phosphorylation and significantly up-regulated lipolytic genes (ACOX1, CPT1, and PPARα). Compound C, a selective and reversible AMPK inhibitor, significantly blunted pilocarpine-mediated reduction of lipid accumulation and pilocarpine-mediated up-regulation of lipolytic genes. BAPTA-AM, a calcium chelator, and STO-609, a calcium/calmodulin-dependent protein kinase kinase inhibitor, attenuated agonist-induced AMPKα phosphorylation. Finally, M3R siRNA attenuated agonist-induced AMPKα phosphorylation as well as agonist-mediated reduction of hepatocyte steatosis. In conclusion, this proof-of-concept study demonstrates that M3R has protective effects against hepatocyte lipid accumulation by activating AMPK pathway and is a potential therapeutic target for non-alcoholic fatty liver disease.
Collapse
|
9
|
Wang J, Lu Z, Xu Z, Tian P, Miao H, Pan S, Song R, Sun X, Zhao B, Wang D, Ma Y, Song X, Zhang S, Liu L, Jiang H. Reduction of hepatic fibrosis by overexpression of von Hippel-Lindau protein in experimental models of chronic liver disease. Sci Rep 2017; 7:41038. [PMID: 28112200 PMCID: PMC5253623 DOI: 10.1038/srep41038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/15/2016] [Indexed: 02/08/2023] Open
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α play an important role in liver fibrosis. von Hippel-Lindau protein (VHL), a key mediator of HIF-α, regulates fibrosis in an organ- and cell-specific way. In this study, human liver samples were collected from hepatitis C-, alcoholic-, and cholestatic-associated fibrotic and healthy individuals. Two mouse models of liver fibrosis were established: bile duct ligation and carbon tetrachloride injection. We constructed adenovirus vectors to overexpress VHL, normoxia-active HIF-α, and lentiviral vectors to silence HIF-α. The results showed that liver sections from fibrosis patients had a lower level of VHL and higher levels of HIF-1α and HIF-2α compared with healthy sections, a finding which was confirmed in mice. Overexpression of VHL attenuated liver fibrosis, downregulated fibrogenic genes, and inhibited liver inflammation, apoptosis, and angiogenesis. Overexpression of VHL was more successful at inhibiting fibrosis compared with silencing HIF-1α plus HIF-2α. Normoxia-active HIF-1α or HIF-2α prevented the inhibitory effect of VHL on liver fibrosis, indicating that attenuating fibrosis via VHL is HIF-1α- and HIF-2α-dependent to some extent. In addition, overexpression of VHL inhibited mouse hepatic stellate cells activation and proliferation and promoted apoptosis. Taken together, VHL may be considered a new target to inhibit liver fibrosis.
Collapse
Affiliation(s)
- Jizhou Wang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhaoyang Lu
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhilin Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Pei Tian
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hui Miao
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xueying Sun
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Baolei Zhao
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xuan Song
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shugeng Zhang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
10
|
Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Chatzistamou I, Singh UP, Nagarkatti PS, Nagarkatti M, Davis JM, Carson JA, Murphy EA. Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model. Am J Physiol Gastrointest Liver Physiol 2016; 311:G699-G712. [PMID: 27609769 PMCID: PMC5142197 DOI: 10.1152/ajpgi.00207.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Obesity presents a significant public health concern given its association with increased cancer incidence, unfavorable prognosis, and metastasis. However, there is very little literature on the effects of weight loss, following obesity, on risk for colon cancer or liver cancer. Therefore, we sought to study whether intentional weight loss through diet manipulation was capable of mitigating colon and liver cancer in mice. We fed mice with a high-fat diet (HFD) comprised of 47% carbohydrates, 40% fat, and 13% protein for 20 wk to mimic human obesity. Subsequently, azoxymethane (AOM) was used to promote colon and liver carcinogenesis. A subset of obese mice was then switched to a low-fat diet (LFD) containing 67.5% carbohydrate, 12.2% fat, and 20% protein to promote intentional weight loss. Body weight loss and excess fat reduction did not protect mice from colon cancer progression and liver dysplastic lesion in the AOM-chemical-cancer model even though these mice had improved blood glucose and leptin levels. Intentional weight loss in AOM-treated mice actually produced histological changes that resemble dysplastic alterations in the liver and presented a higher percentage of F4/80+CD206+ macrophages and activated T cells (CD4+CD69+) in the spleen and lymph nodes, respectively. In addition, the liver of AOM-treated mice exposed to a HFD during the entire period of the experiment exhibited a marked increase in proliferation and pNF-κB activation. Altogether, these data suggest that intentional weight loss following chemical-induced carcinogenesis does not affect colon tumorigenesis but may in fact negatively impact liver repair mechanisms.
Collapse
Affiliation(s)
- Kandy T. Velázquez
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Reilly T. Enos
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Meredith S. Carson
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Taryn L. Cranford
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Jackie E. Bader
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Udai P. Singh
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Prakash S. Nagarkatti
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - J. Mark Davis
- 2Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - James A. Carson
- 2Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
11
|
Zhao Z, Azad R, Yang JH, Siroky MB, Azadzoi KM. Progressive changes in detrusor function and micturition patterns with chronic bladder ischemia. Investig Clin Urol 2016; 57:249-59. [PMID: 27437534 PMCID: PMC4949689 DOI: 10.4111/icu.2016.57.4.249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022] Open
Abstract
Purpose Lower urinary tract symptoms (LUTS) are bothersome constellation of voiding symptoms in men and women as they age. Multiple factors and comorbidities are attributed to this problem but underlying mechanisms of nonobstructive nonneurogenic detrusor overactivity, detrusor underactivity and LUTS remain largely unknown. Our goal was to characterize detrusor function and voiding patterns in relation to muscarinic receptors expression, nerve fiber density, and neural ultrastructure in chronic bladder ischemia. Materials and Methods Iliac artery atherosclerosis and bladder ischemia were produced in male Sprague-Dawley rats. At 8 and 16 weeks after ischemia, micturition patterns and cystometrograms were recorded in conscious rats then bladder blood flow and nonvoiding spontaneous contractions were measured under general anesthesia. Bladder tissues were processed for Western blotting, immunostaining, and transmission electron microscopy. Results Bladder responses to ischemic insult depended on the duration of ischemia. Micturition patterns and cystometric changes at 8-week ischemia suggested detrusor overactivity, while voiding behavior and cystometrograms at 16-week ischemia implied abnormal detrusor function resembling underactivity. Upregulation of muscarinic M2 receptor was found after 8- and 16 weeks of ischemia. Downregulation of M3 and upregulation of M1 were detected at 16-week ischemia. Neural structural damage and marked neurodegeneration were found after 8 and 16 weeks of ischemia, respectively. Conclusions Prolonged ischemia may be a mediating variable in progression of overactive bladder to dysfunctional patterns similar to detrusor underactivity. The mechanism appears to involve differential expression of M1, M2, and M3 receptors, neural structural injury, and progressive loss of nerve fibers.
Collapse
Affiliation(s)
- Zuohui Zhao
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Roya Azad
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Jing-Hua Yang
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Mike B Siroky
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Kazem M Azadzoi
- Department of Urology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|