1
|
Liu R, Li X, Yang J, Peng Y, Liu X, Tian C. Risk factors and prediction model for carbapenem-resistant organism infection in sepsis patients. Eur J Med Res 2025; 30:201. [PMID: 40128899 PMCID: PMC11934461 DOI: 10.1186/s40001-025-02448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND It aimed to identify the key risk factors associated with carbapenem-resistant organism (CRO) infections in septic patients, and subsequently develop a nomogram and assess its predictive accuracy. METHODS The study population comprised adult critically ill patients with sepsis, drawn from the MIMIC-IV 2.0 data set. The data were split into a training set and a validation set at a 7:3 ratio. Independent predictors were identified using both univariate and multivariate logistic regression models, followed by the construction of a nomogram. The predictive performance of the model was evaluated using the C-index, receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve. RESULTS We enrolled 8814 patients, with 529 (6%) CRO-infected and 8285 (94%) non-CRO-infected. Using risk factors such as age, gender, laboratory values (WBC_max, Creatinine_max, BUN_max, Hemoglobin_min, Sodium_max), and medical conditions (COPD, hypoimmunity, diabetes), along with medications (meropenem, ceftriaxone), we developed a predictive model for CRO infection in septic patients. The model demonstrated good performance, with AUC values of 0.747 for the training set and 0.725 for the validation set. The calibration curve indicates that predicted outcomes align well with observed outcomes. The clinical decision curve results indicate that the nomogram prediction model has a high net benefit, which is clinically beneficial. CONCLUSIONS The nomogram we have developed for predicting the risk of CRO infection in sepsis patients is reasonably accurate and reliable. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China
| | - Xiang Li
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China
| | - Jie Yang
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China
| | - Yue Peng
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China
| | - Xiaolu Liu
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China
| | - Chanchan Tian
- Department of Laboratory Medicine, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Third Floor, No. 21, Xiling 1st Road, Yichang, 443000, Hubei, China.
- Respiratory and Critical Care Department, The Second People's Hospital of China Three Gorges University, The Second People's Hospital of Yichang, Yichang, 443000, Hubei, China.
| |
Collapse
|
2
|
Sumneang N, Kobroob A, Phungphong S, Boonhoh W, Punsawad C, Kangwan N. Fermented Houttuynia cordata Juice Exerts Cardioprotective Effects by Alleviating Cardiac Inflammation and Apoptosis in Rats with Lipopolysaccharide-Induced Sepsis. Nutrients 2025; 17:501. [PMID: 39940359 PMCID: PMC11820264 DOI: 10.3390/nu17030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sepsis-induced cardiac dysfunction is a major problem that often leads to severe complications and a poor prognosis. Despite the growing awareness of its impact, effective treatment options for sepsis-induced cardiac dysfunction remain limited. To date, fermented products of Houttuynia cordata (HC), known for its rich bioactive properties, have shown potential in modulating inflammatory and oxidative stress pathways. However, treatment with fermented HC juice (FHJ) in lipopolysaccharide (LPS)-induced sepsis in rats has not been investigated. METHODS Rats were pretreated with FHJ at doses of 200 mg/kg and 400 mg/kg for 2 weeks. After that, the rats were injected with a single dose of LPS (10 mg/kg), and 12 h after injection, they developed sepsis-induced cardiac dysfunction. Then, cardiac function, oxidative stress, inflammation, apoptosis, and cardiac injury markers were determined. RESULTS Pretreatment with FHJ at doses of 200 mg/kg and 400 mg/kg prevented LPS-induced cardiac dysfunction in rats by attenuating cardiac inflammation (IL-1β, TLR-4, and NF-κB levels), oxidative stress (MDA levels), and apoptosis (cleaved-caspase 3 and Bax/Bcl-2 expression) and reducing markers of cardiac injury (LDH and CK-MB levels). CONCLUSIONS These results suggest that FHJ could be a potential therapeutic agent for sepsis-induced heart disease.
Collapse
Affiliation(s)
- Natticha Sumneang
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sukanya Phungphong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; (N.S.); (S.P.); (C.P.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
3
|
Engelhardt J, Klawonn A, Dobbelstein AK, Abdelrahman A, Oldenburg J, Brandenburg K, Müller CE, Weindl G. Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release. ACS Pharmacol Transl Sci 2025; 8:136-145. [PMID: 39816791 PMCID: PMC11729421 DOI: 10.1021/acsptsci.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors. Here, we investigated the effects of the synthetic LPS-neutralizing peptide Pep19-2.5 on human P2X receptors in cells of the innate immune system. Pep19-2.5 concentration-dependently triggered Ca2+ influx, interleukin (IL)-1β, and lactate dehydrogenase (LDH) release in Toll-like receptor-stimulated human macrophages and monocytes. Ca2+ influx was mediated at least partially by P2X7 receptors, and IL-1β and LDH release by P2X7 receptors, respectively. Confocal microscopy confirmed the colocalization of Pep19-2.5 with P2X7 receptors. Pep19-2.5-induced IL-1β release in primed cells was dependent on K+ efflux, caspase-1, and the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 inflammasome. In the presence of the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate, Pep19-2.5 reduced IL-1β and LDH release. In 1321N1, astrocytoma cells stably transfected with human P2X receptors, Pep19-2.5 potently modulated P2X7 and P2X4 receptors (IC50 values of 0.346 and 0.146 μM, respectively) but showed less (P2X1, P2X3) or no activity (P2X2) at other P2X receptor subtypes. Our findings underline the potential of LPS-neutralizing peptides as modulators of P2X receptors, thus expanding their applicability beyond the treatment of sepsis to the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jonas Engelhardt
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Anna Klawonn
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Ann-Kathrin Dobbelstein
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Aliaa Abdelrahman
- Pharmaceutical
Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Johannes Oldenburg
- Institute
of Experimental Haematology and Transfusion Medicine, University Clinic
Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Klaus Brandenburg
- Brandenburg
Antiinfektiva GmbH, c/o
Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Christa E. Müller
- Pharmaceutical
Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Günther Weindl
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
4
|
Lazarević M, Kostić M, Džopalić T, Sokolović D, Lazarević Z, Milovanović J, Ničković V, Sokolović D. Melatonin Mediates Cardiac Tissue Damage under Septic Conditions Induced by Lipopolysaccharide. Int J Mol Sci 2024; 25:11088. [PMID: 39456869 PMCID: PMC11508384 DOI: 10.3390/ijms252011088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Lipopolysaccharide (LPS) is known to induce oxidative stress and inflammation, leading to significant damage in cardiac tissues. This study investigates the protective effects of melatonin (MLT) against LPS-induced oxidative damage, inflammation, and apoptosis in rat heart tissue. Rats were divided into four groups (n = 6 per group): control, melatonin-treated, LPS-treated, and LPS + melatonin-treated. Oxidative stress markers, including thiobarbituric acid-reactive substances (TBARSs) and advanced oxidation protein products (AOPPs), were measured. Additionally, inflammatory markers, such as interleukin-6 (IL-6) levels, inducible nitric oxide synthase (iNOS) and nitric oxide (NO) content, and apoptotic markers, caspase-3, caspase-9, and acidic DNase activity, were evaluated. LPS treatment significantly increased TBARS, AOPP, and IL-6 levels, as well as the activity of caspase-3, acidic DNase and iNOS and NO content compared to the control group. Co-treatment with melatonin significantly reduced the levels of TBARS and AOPP levels, and caspase-3 and acidic DNase activities nearly matched those of the control group, while caspse-9 was still slightly increased. Interestingly, IL-6, iNOS and NO levels were significantly decreased but did not fully match the values in the control group. Melatonin mitigates LPS-induced oxidative stress, inflammation, and apoptosis in rat heart tissue by affecting all studied parameters, demonstrating its potential as a therapeutic agent for conditions characterized by oxidative stress and inflammation. Further research is warranted to explore the clinical applications of melatonin in cardiovascular diseases.
Collapse
Affiliation(s)
- Milan Lazarević
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
- Clinic for Cardiovascular and Transplant Surgery, University Clinical Centre of Nis, 18000 Niš, Serbia;
| | - Miloš Kostić
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
| | - Tanja Džopalić
- Department of Immunology, Medical Faculty of Niš, University of Nis, 18000 Niš, Serbia; (M.L.); (M.K.); (T.D.)
| | | | - Zorica Lazarević
- Clinic for Cardiovascular and Transplant Surgery, University Clinical Centre of Nis, 18000 Niš, Serbia;
| | - Jelena Milovanović
- Faculty of Medicine, Unisversity of Priština, 38220 Kosovska Mitrovica, Serbia;
| | - Vanja Ničković
- Clinic of Gastroenterohepatology, University Clinical Centre of Niš, 18000 Niš, Serbia;
| | - Dušan Sokolović
- Institute for Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
5
|
Brandenburg K, Ferrer-Espada R, Martinez-de-Tejada G, Nehls C, Fukuoka S, Mauss K, Weindl G, Garidel P. A Comparison between SARS-CoV-2 and Gram-Negative Bacteria-Induced Hyperinflammation and Sepsis. Int J Mol Sci 2023; 24:15169. [PMID: 37894850 PMCID: PMC10607443 DOI: 10.3390/ijms242015169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Sepsis is a life-threatening condition caused by the body's overwhelming response to an infection, such as pneumonia or urinary tract infection. It occurs when the immune system releases cytokines into the bloodstream, triggering widespread inflammation. If not treated, it can lead to organ failure and death. Unfortunately, sepsis has a high mortality rate, with studies reporting rates ranging from 20% to over 50%, depending on the severity and promptness of treatment. According to the World Health Organization (WHO), the annual death toll in the world is about 11 million. One of the main toxins responsible for inflammation induction are lipopolysaccharides (LPS, endotoxin) from Gram-negative bacteria, which rank among the most potent immunostimulants found in nature. Antibiotics are consistently prescribed as a part of anti-sepsis-therapy. However, antibiotic therapy (i) is increasingly ineffective due to resistance development and (ii) most antibiotics are unable to bind and neutralize LPS, a prerequisite to inhibit the interaction of endotoxin with its cellular receptor complex, namely Toll-like receptor 4 (TLR4)/MD-2, responsible for the intracellular cascade leading to pro-inflammatory cytokine secretion. The pandemic virus SARS-CoV-2 has infected hundreds of millions of humans worldwide since its emergence in 2019. The COVID-19 (Coronavirus disease-19) caused by this virus is associated with high lethality, particularly for elderly and immunocompromised people. As of August 2023, nearly 7 million deaths were reported worldwide due to this disease. According to some reported studies, upregulation of TLR4 and the subsequent inflammatory signaling detected in COVID-19 patients "mimics bacterial sepsis". Furthermore, the immune response to SARS-CoV-2 was described by others as "mirror image of sepsis". Similarly, the cytokine profile in sera from severe COVID-19 patients was very similar to those suffering from the acute respiratory distress syndrome (ARDS) and sepsis. Finally, the severe COVID-19 infection is frequently accompanied by bacterial co-infections, as well as by the presence of significant LPS concentrations. In the present review, we will analyze similarities and differences between COVID-19 and sepsis at the pathophysiological, epidemiological, and molecular levels.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
| | - Raquel Ferrer-Espada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Martinez-de-Tejada
- Department of Microbiology, University of Navarra, IdiSNA (Navarra Institute for Health Research), Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Christian Nehls
- Forschungszentrum Borstel, FG Biophysik, Parkallee 10, 23845 Borstel, Germany;
| | - Satoshi Fukuoka
- National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan;
| | - Karl Mauss
- Brandenburg Antiinfektiva, c/o Forschungszentrum Borstel, Leibniz-Lungenzentrum, Parkallee 10, 23845 Borstel, Germany; (K.B.); (K.M.)
- Sylter Klinik Karl Mauss, Dr.-Nicolas-Strasse 3, 25980 Westerland (Sylt), Germany
| | - Günther Weindl
- Pharmazeutisches Institut, Abteilung Pharmakologie und Toxikologie, Universität Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany;
| | - Patrick Garidel
- Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle (Saale), Germany
| |
Collapse
|
6
|
Chung KM, Nang SC, Tang SS. The Safety of Bacteriophages in Treatment of Diseases Caused by Multidrug-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1347. [PMID: 37895818 PMCID: PMC10610463 DOI: 10.3390/ph16101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/29/2023] Open
Abstract
Given the urgency due to the rapid emergence of multidrug-resistant (MDR) bacteria, bacteriophages (phages), which are viruses that specifically target and kill bacteria, are rising as a potential alternative to antibiotics. In recent years, researchers have begun to elucidate the safety aspects of phage therapy with the aim of ensuring safe and effective clinical applications. While phage therapy has generally been demonstrated to be safe and tolerable among animals and humans, the current research on phage safety monitoring lacks sufficient and consistent data. This emphasizes the critical need for a standardized phage safety assessment to ensure a more reliable evaluation of its safety profile. Therefore, this review aims to bridge the knowledge gap concerning phage safety for treating MDR bacterial infections by covering various aspects involving phage applications, including phage preparation, administration, and the implications for human health and the environment.
Collapse
Affiliation(s)
- Ka Mun Chung
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Sue C Nang
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Swee Seong Tang
- Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Nanoemulsion and Nanogel Containing Cuminum cyminum L Essential Oil: Antioxidant, Anticancer, Antibacterial, and Antilarval Properties. J Trop Med 2023; 2023:5075581. [PMID: 36793773 PMCID: PMC9925266 DOI: 10.1155/2023/5075581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Cuminum cyminum L. is a widespread medicinal plant with a broad spectrum of biological activity. In the present study, the chemical structure of its essential oil was examined utilizing GC-MS analysis (gas chromatography-mass spectrometry). Then, a nanoemulsion dosage form was prepared with a droplet size and droplet size distribution (SPAN) of 121 ± 3 nm and 0.96. After that, the dosage form of the nanogel was prepared; the nanoemulsion was gelified by the addition of 3.0% carboxymethyl cellulose. In addition, the successful loading of the essential oil into the nanoemulsion and nanogel was approved by ATR-FTIR (attenuated total reflection Fourier transform infrared) analysis. The IC50 values (half maximum inhibitory concentration) of the nanoemulsion and nanogel against A-375 human melanoma cells were 369.6 (497-335) and 127.2 (77-210) μg/mL. In addition, they indicated some degrees of an antioxidant activity. Interestingly, after treatment of Pseudomonas aeruginosa with 5000 µg/mL nanogel, bacterial growth was completely (∼100%) inhibited. In addition, the growth of Staphylococcus aureus after treatment with the 5000 μg/ml nanoemulsion was decreased by 80%. In addition, nanoemulsion and nanogel LC50 values for Anopheles stephensi larvae were attained as 43.91 (31-62) and 123.9 (111-137) µg/mL. Given the natural ingredients and promising efficacy, these nanodrugs can be regarded for further research against other pathogens or mosquito larvae.
Collapse
|
8
|
Toxicological and Safety Pharmacological Profiling of the Anti-Infective and Anti-Inflammatory Peptide Pep19-2.5. Microorganisms 2022; 10:microorganisms10122412. [PMID: 36557665 PMCID: PMC9782211 DOI: 10.3390/microorganisms10122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aspidasept (Pep19-2.5) and its derivative Pep19-4LF ("Aspidasept II") are anti-infective and anti-inflammatory synthetic polypeptides currently in development for application against a variety of moderate to severe bacterial infections that could lead to systemic inflammation, as in the case of severe sepsis and septic shock, as well as application to non-systemic diseases in the case of skin and soft tissue infections (SSTI). In the present study, Aspidasept and Aspidasept II and their part structures were analysed with respect to their toxic behavior in different established models against a variety of relevant cells, and in electrophysiological experiments targeting the hERG channel according to ICH S7B. Furthermore, the effects in mouse models of neurobiological behavior and the local lymph node according to OECD test guideline 429 were investigated, as well as a rat model of repeated dose toxicology according to ICH M3. The data provide conclusive information about potential toxic effects, thus specifying a therapeutic window for the application of the peptides. Therefore, these data allow us to define Aspidasept concentrations for their use in clinical studies as parenteral application.
Collapse
|
9
|
El-Dirany R, Fernández-Rubio C, Peña-Guerrero J, Moreno E, Larrea E, Espuelas S, Abdel-Sater F, Brandenburg K, Martínez-de-Tejada G, Nguewa P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2022; 14:pharmaceutics14112528. [PMID: 36432719 PMCID: PMC9697117 DOI: 10.3390/pharmaceutics14112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied. The leishmanicidal activity of two synthetic anti-lipopolysaccharide peptides (SALPs), so-called 19-2.5 and 19-4LF was characterized in Leishmania major. In vitro, both peptides were highly active against intracellular Leishmania major in mouse macrophages without exerting toxicity in host cells. Then, q-PCR-based gene profiling, revealed that this activity was related to the downregulation of several genes involved in drug resistance (yip1), virulence (gp63) and parasite proliferation (Cyclin 1 and Cyclin 6). Importantly, the treatment of BALB/c mice with any of the two AMPs caused a significant reduction in L. major infective burden. This effect was associated with an increase in Th1 cytokine levels (IL-12p35, TNF-α, and iNOS) in the skin lesion and spleen of the L. major infected mice while the Th2-associated genes were downregulated (IL-4 and IL-6). Lastly, we investigated the effect of both peptides in the gene expression profile of the P2X7 purinergic receptor, which has been reported as a therapeutic target in several diseases. The results showed significant repression of P2X7R by both peptides in the skin lesion of L. major infected mice to an extent comparable to that of a common anti-leishmanial drug, Paromomycin. Our in vitro and in vivo studies suggest that the synthetic AMPs 19-2.5 and 19-4LF are promising candidates for leishmaniasis treatment and present P2X7R as a potential therapeutic target in cutaneous leishmaniasis (CL).
Collapse
Affiliation(s)
- Rima El-Dirany
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Moreno
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Fadi Abdel-Sater
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Paul Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Correspondence:
| |
Collapse
|
10
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Pape T, Hunkemöller AM, Kümpers P, Haller H, David S, Stahl K. Targeting the "sweet spot" in septic shock - A perspective on the endothelial glycocalyx regulating proteins Heparanase-1 and -2. Matrix Biol Plus 2021; 12:100095. [PMID: 34917926 PMCID: PMC8669377 DOI: 10.1016/j.mbplus.2021.100095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening syndrome caused by a pathological host response to an infection that eventually, if uncontrolled, leads to septic shock and ultimately, death. In sepsis, a massive aggregation of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) cause a cytokine storm. The endothelial glycocalyx (eGC) is a gel like layer on the luminal side of the endothelium that consists of proteoglycans, glycosaminoglycans (GAG) and plasma proteins. It is synthesized by endothelial cells and plays an active role in the regulation of inflammation, permeability, and coagulation. In sepsis, early and profound injury of the eGC is observed and circulating eGC components correlate directly with clinical severity and outcome. The activity of the heparan sulfate (HS) specific glucuronidase Heparanase-1 (Hpa-1) is elevated in sepsis, resulting in shedding of heparan sulfate (HS), a main GAG of the eGC. HS induces endothelial barrier breakdown and accelerates systemic inflammation. Lipopolysaccharide (LPS), a PAMP mainly found on the surface of gram-negative bacteria, activates TLR-4, which results in cytokine production and further activation of Hpa-1. Hpa-1 shed HS fragments act as DAMPs themselves, leading to a vicious cycle of inflammation and end-organ dysfunction such as septic cardiomyopathy and encephalopathy. Recently, Hpa-1's natural antagonist, Heparanase-2 (Hpa-2) has been identified. It has no intrinsic enzymatic activity but instead acts by reducing inflammation. Hpa-2 levels are reduced in septic mice and patients, leading to an acquired imbalance of Hpa-1 and Hpa-2 paving the road towards a therapeutic intervention. Recently, the synthetic antimicrobial peptide 19-2.5 was described as a promising therapy protecting the eGC by inhibition of Hpa-1 activity and HS shed fragments in animal studies. However, a recombinant Hpa-2 therapy does not exist to the present time. Therapeutic plasma exchange (TPE), a modality already tested in clinical practice, effectively removes injurious mediators, e.g., Hpa-1, while replacing depleted protective molecules, e.g., Hpa-2. In critically ill patients with septic shock, TPE restores the physiological Hpa-1/Hpa-2 ratio and attenuates eGC breakdown. TPE results in a significant improvement in hemodynamic instability including reduced vasopressor requirement. Although promising, further studies are needed to determine the therapeutic impact of TPE in septic shock.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Maria Hunkemöller
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021; 22:ijms222111401. [PMID: 34768832 PMCID: PMC8584040 DOI: 10.3390/ijms222111401] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Collapse
Affiliation(s)
- Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-65939528
| |
Collapse
|
13
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
14
|
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology 2021; 226:152128. [PMID: 34488139 DOI: 10.1016/j.imbio.2021.152128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
Bacterial lipoproteins are membrane proteins derived from both gram-negative and gram-positive bacteria. They seem to have diverse functions not only on bacterial growth, but also play an important role in host's virulence. Bacterial lipoproteins exert their action on host immune cells via TLR2/1 or TLR2/6. Therefore, bacterial lipoproteins also need to be considered while addressing bacterial pathogenicity besides classical bacterial endotoxin like LPS and other microbial associated molecular patterns such as LTA, and peptidoglycans. In this mini-review, we provide an overview of general bacterial lipoprotein biosynthesis and the need to understand the lipoprotein-mediated pathogenicity in diseases like sepsis.
Collapse
Affiliation(s)
- Kandahalli Venkataranganayaka Abhilasha
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India.
| |
Collapse
|
15
|
Mass Spectrometric Quantification of the Antimicrobial Peptide Pep19-2.5 with Stable Isotope Labeling and Acidic Hydrolysis. Pharmaceutics 2021; 13:pharmaceutics13091342. [PMID: 34575418 PMCID: PMC8466825 DOI: 10.3390/pharmaceutics13091342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Sepsis is the number one cause of death in intensive care units. This life-threatening condition is caused by bacterial infections and triggered by endotoxins of Gram-negative bacteria that leads to an overreaction of the immune system. The synthetic anti-lipopolysaccharide peptide Pep19-2.5 is a promising candidate for the treatment of sepsis as it binds sepsis-inducing lipopolysaccharides and thus prevents initiation of septic shock. For clinical evaluation precise quantification of the peptide in blood and tissue is required. As the peptide is not extractable from biological samples by commonly used methods there is a need for a new analysis method that does not rely on extraction of the peptide. In order to quantify the peptide by mass spectrometry, the peptide was synthesized containing 13C9,15N1-labeled phenylalanine residues. This modification offers high stability during acidic hydrolysis. Following acidic hydrolysis of the samples, the concentration of 13C9,15N1-labeled phenylalanine determined by LC-MS could be unambiguously correlated to the content of Pep19-2.5. Further experiments validated the accuracy of the data. Moreover, the quantification of Pep19-2.5 in different tissues (as studied in Wistar rats) was shown to provide comparable results to the results obtained with radioactively-labeled (14C) Pep19-2.5- Radioactive labeling is considered as the gold standard for quantification of compounds that refrain from reliable extraction methods. This novel method represents a valuable procedure for the determination of Pep19-2.5 and sticky peptides with unpredictable extraction properties in general.
Collapse
|
16
|
Modulation of Bovine Endometrial Cell Receptors and Signaling Pathways as a Nanotherapeutic Exploration against Dairy Cow Postpartum Endometritis. Animals (Basel) 2021; 11:ani11061516. [PMID: 34071093 PMCID: PMC8224678 DOI: 10.3390/ani11061516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The provision of updated information on the molecular pathogenesis of bovine endometritis with host-pathogen interactions and the possibility of exploring the cellular sensors mechanism in a nanotechnology-based drug delivery system against persistent endometritis were reported in this review. The mechanism of Gram-negative bacteria and their ligands has been vividly explored, with the paucity of research detail on Gram-positive bacteria in bovine endometritis. The function of cell receptors, biomolecules proteins, and sensors were reportedly essential in transferring signals into cell signaling pathways to induce immuno-inflammatory responses by elevating pro-inflammatory cytokines. Therefore, understanding endometrial cellular components and signaling mechanisms across pathogenesis are essential for nanotherapeutic exploration against bovine endometritis. The nanotherapeutic discovery that could inhibit infectious signals at the various cell receptors and signal transduction levels, interfering with transcription factors activation and pro-inflammatory cytokines and gene expression, significantly halts endometritis. Abstract In order to control and prevent bovine endometritis, there is a need to understand the molecular pathogenesis of the infectious disease. Bovine endometrium is usually invaded by a massive mobilization of microorganisms, especially bacteria, during postpartum dairy cows. Several reports have implicated the Gram-negative bacteria in the pathogenesis of bovine endometritis, with information dearth on the potentials of Gram-positive bacteria and their endotoxins. The invasive bacteria and their ligands pass through cellular receptors such as TLRs, NLRs, and biomolecular proteins of cells activate the specific receptors, which spontaneously stimulates cellular signaling pathways like MAPK, NF-kB and sequentially triggers upregulation of pro-inflammatory cytokines. The cascade of inflammatory induction involves a dual signaling pathway; the transcription factor NF-κB is released from its inhibitory molecule and can bind to various inflammatory genes promoter. The MAPK pathways are concomitantly activated, leading to specific phosphorylation of the NF-κB. The provision of detailed information on the molecular pathomechanism of bovine endometritis with the interaction between host endometrial cells and invasive bacteria in this review would widen the gap of exploring the potential of receptors and signal transduction pathways in nanotechnology-based drug delivery system. The nanotherapeutic discovery of endometrial cell receptors, signal transduction pathway, and cell biomolecules inhibitors could be developed for strategic inhibition of infectious signals at the various cell receptors and signal transduction levels, interfering on transcription factors activation and pro-inflammatory cytokines and genes expression, which may significantly protect endometrium against postpartum microbial invasion.
Collapse
|
17
|
Hassan A, Lip GYH, Harris RV. Atrial fibrillation and cardiac arrhythmia associated with acute dental infection: A systematic literature review and case report. Int J Clin Pract 2021; 75:e13875. [PMID: 33253465 DOI: 10.1111/ijcp.13875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This paper outlines how oral diseases such as periodontitis and periapical periodontitis may be linked to cardiovascular disease, atrial fibrillation and cardiac arrhythmia. We undertake a systematic review of the literature focused on acute dental infection and types of cardiac arrhythmia and also describe an illustrative case where an acute dental infection diagnosed as periapical periodontitis was associated with the occurrence of atrial fibrillation. METHODS An electronic search was undertaken using MEDLINE and SCOPUS from 01 Jan 1970 to 30 June 2020. We also undertook manual searches using forward and backward citation chasing. Inclusion criteria were any primary research studies investigating any acute dental infection, with outcomes of cardiac arrhythmia or atrial fibrillation. RESULTS Over the last fifty years, only two low-quality studies have been investigated in this area. Our illustrative case involved a 58 year-old who was diagnosed with an acute dental infection from an upper canine tooth who then developed atrial fibrillation. CONCLUSIONS Based on the biological plausibility of a link between acute dental infection and types of cardiac arrhythmia such as atrial fibrillation, together with the case report presented, it is evident that further study in this area is needed. If there are possible cardiovascular consequences for patients suffering from acute dental infection, then this will have implications for healthcare staff since they can integrate professional advice relating to oral health with cardiovascular disease and atrial fibrillation. Screening programmes situated in dental settings can facilitate early intervention and prevention producing benefits for patients and savings to the health system.
Collapse
Affiliation(s)
- Amaar Hassan
- Department of Public Health, Policy and Systems, Institute of Population Health, The University of Liverpool, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rebecca V Harris
- Department of Public Health, Policy and Systems, Institute of Population Health, The University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Wesseling CMJ, Wood TM, Slingerland CJ, Bertheussen K, Lok S, Martin NI. Thrombin-Derived Peptides Potentiate the Activity of Gram-Positive-Specific Antibiotics against Gram-Negative Bacteria. Molecules 2021; 26:molecules26071954. [PMID: 33808488 PMCID: PMC8037310 DOI: 10.3390/molecules26071954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
The continued rise of antibiotic resistance threatens to undermine the utility of the world’s current antibiotic arsenal. This problem is particularly troubling when it comes to Gram-negative pathogens for which there are inherently fewer antibiotics available. To address this challenge, recent attention has been focused on finding compounds capable of disrupting the Gram-negative outer membrane as a means of potentiating otherwise Gram-positive-specific antibiotics. In this regard, agents capable of binding to the lipopolysaccharide (LPS) present in the Gram-negative outer membrane are of particular interest as synergists. Recently, thrombin-derived C-terminal peptides (TCPs) were reported to exhibit unique LPS-binding properties. We here describe investigations establishing the capacity of TCPs to act as synergists with the antibiotics erythromycin, rifampicin, novobiocin, and vancomycin against multiple Gram-negative strains including polymyxin-resistant clinical isolates. We further assessed the structural features most important for the observed synergy and characterized the outer membrane permeabilizing activity of the most potent synergists. Our investigations highlight the potential for such peptides in expanding the therapeutic range of antibiotics typically only used to treat Gram-positive infections.
Collapse
Affiliation(s)
- Charlotte M. J. Wesseling
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
| | - Thomas M. Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
| | - Kristine Bertheussen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
- Bio-Organic Synthesis Group, Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - Samantha Lok
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 Leiden, The Netherlands; (C.M.J.W.); (T.M.W.); (C.J.S.); (K.B.); (S.L.)
- Correspondence:
| |
Collapse
|
19
|
Kuhlmann N, Nehls C, Heinbockel L, Correa W, Moll R, Gutsmann T, Hübner C, Englisch U, Brandenburg K. Encapsulation and release of As pidasept peptides in polysaccharide formulation for oral application. Eur J Pharm Sci 2021; 158:105687. [DOI: 10.1016/j.ejps.2020.105687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 01/13/2023]
|
20
|
Stoica C, Cox G. Old problems and new solutions: antibiotic alternatives in food animal production. Can J Microbiol 2021; 67:427-444. [PMID: 33606564 DOI: 10.1139/cjm-2020-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The antimicrobial resistance crisis is a Global Health challenge that impacts humans, animals, and the environment alike. In response to increased demands for animal protein and by-products, there has been a substantial increase in the use of antimicrobial agents in the animal industry. Indeed, they are extensively used to prevent, control, and (or) treat disease in animals. In addition to infection control, in-feed supplementation with antimicrobials became common practice for growth promotion of livestock. Unfortunately, the global overuse of antimicrobials has contributed to the emergence and spread of resistance. As such, many countries have implemented policies and approaches to eliminate the use of antimicrobials as growth promoters in food animals, which necessitates the need for alternate and One Health strategies to maintain animal health and welfare. This review summarizes the antimicrobial resistance crisis from Global Health and One Health perspectives. In addition, we outline examples of potential alternate strategies to circumvent antimicrobial use in animal husbandry practices, including antivirulence agents, bacteriophages, and nutritional measures to control bacterial pathogens. Overall, these alternate strategies require further research and development efforts, including assessment of efficacy and the associated development, manufacturing, and labor costs.
Collapse
Affiliation(s)
- Celine Stoica
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.,Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
21
|
Elesh IF, Marey MA, Zinnah MA, Akthar I, Kawai T, Naim F, Goda W, Rawash ARA, Sasaki M, Shimada M, Miyamoto A. Peptidoglycan Switches Off the TLR2-Mediated Sperm Recognition and Triggers Sperm Localization in the Bovine Endometrium. Front Immunol 2021; 11:619408. [PMID: 33643300 PMCID: PMC7905083 DOI: 10.3389/fimmu.2020.619408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, the uterine mucosal immune system simultaneously recognizes and reacts to most bacteria as well as allogenic sperm mainly through the Toll-like receptors (TLR)2/4 signaling pathway. Here, we characterized the impact of pathogen-derived TLR2/4 ligands (peptidoglycan (PGN)/lipopolysaccharide (LPS)) on the immune crosstalk of sperm with the bovine endometrial epithelium. The real-time PCR analysis showed that the presence of low levels of PGN, but not LPS, blocked the sperm-induced inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. Immunoblotting analysis revealed that PGN prevented the sperm-induced phosphorylation of JNK in BEECs. Activation or blockade of the TLR2 system in the endometrial epithelium verified that TLR2 signaling acts as a commonly-shared pathway for PGN and sperm recognition. The impairment of endometrial sperm recognition, induced by PGN, subsequently inhibited sperm phagocytosis by polymorphonuclear neutrophils (PMNs). Moreover, using an ex vivo endometrial explant that more closely resembles those in vivo conditions, showed that sperm provoked a mild and reversible endometrial tissue injury and triggered PMN recruitment into uterine glands, while PGN inhibited these events. Of note, PGN markedly increased the sperm attachment to uterine glands, and relatively so in the surface epithelium. However, addition of the anti-CD44 antibody into a PGN-sperm-explant co-culture completely blocked sperm attachment into glands and surface epithelia, indicating that the CD44 adhesion molecule is involved in the PGN-triggered sperm attachment to the endometrial epithelium. Together, these findings demonstrate that, the presence of PGN residues disrupts sperm immune recognition and prevents the physiological inflammation induced by sperm in the endometrial epithelium via the MyD88-dependent pathway of TLR2 signaling, possibly leading to impairment of uterine clearance and subsequent embryo receptivity.
Collapse
Affiliation(s)
- Ibrahim Fouad Elesh
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed Ali Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohammed Ali Zinnah
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Microbiology and Public Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Tomoko Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Fayrouz Naim
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Wael Goda
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Abdel Rahman A Rawash
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Motoki Sasaki
- Department of Basic Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
22
|
Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5. Int J Mol Sci 2021; 22:ijms22031465. [PMID: 33540553 PMCID: PMC7867136 DOI: 10.3390/ijms22031465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
The polypeptide Pep19-2.5 (Aspidasept®) has been described to act efficiently against infection-inducing bacteria by binding and neutralizing their most potent toxins, i.e., lipopolysaccharides (LPS) and lipoproteins/peptides (LP), independent of the resistance status of the bacteria. The mode of action was described to consist of a primary Coulomb/polar interaction of the N-terminal region of Pep19-2.5 with the polar region of the toxins followed by a hydrophobic interaction of the C-terminal region of the peptide with the apolar moiety of the toxins. However, clinical development of Aspidasept as an anti-sepsis drug requires an in-depth characterization of the interaction of the peptide with the constituents of the human immune system and with other therapeutically relevant compounds such as antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs). In this contribution, relevant details of primary and secondary pharmacodynamics, off-site targets, and immunogenicity are presented, proving that Pep19-2.5 may be readily applied therapeutically against the deleterious effects of a severe bacterial infection.
Collapse
|
23
|
Brandenburg K, Schromm AB, Weindl G, Heinbockel L, Correa W, Mauss K, Martinez de Tejada G, Garidel P. An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Rev Anti Infect Ther 2020; 19:495-517. [PMID: 33210958 DOI: 10.1080/14787210.2021.1834847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gram-negative bacterial infections represent still a severe problem of human health care, regarding the increase in multi-resistance against classical antibiotics and the lack of newly developed antimicrobials. For the fight against these germs, anti-infective agents must overcome and/or bind to the Gram-negative outer membrane consisting of a lipopolysaccharide (LPS, endotoxin) outer leaflet and an inner leaflet from phospholipids, with additional peripheral or integral membrane proteins (OMP's). AREAS COVERED The current article reviews data of existing therapeutic options and summarizes newer approaches for targeting and neutralizing endotoxins, ranging from in vitro over in vivo animal data to clinical applications by using databases such as Medline. EXPERT OPINION Conventional antibiotic treatment of the bacteria leads to their killing, but not necessary LPS neutralization, which may be a severe problem in particular for the systemic pathway. This is the reason why there is an increasing number of therapeutic approaches, which - besides combating whole bacteria - at the same time try to neutralize endotoxin within or outside the bacterial cells mainly responsible for the high inflammation induction in Gram-negative species.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany
| | - Andra B Schromm
- FG Immunobiophysik, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Günther Weindl
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany.,Universität Bonn, Universität Bonn Pharmazeutisches Institut Pharmakologie Und Toxikologie Bonn, Germany
| | - Lena Heinbockel
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany
| | - Wilmar Correa
- FG Biophysik, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Karl Mauss
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany.,Asklepios-Klinik Hamburg-Altona, Hamburg, Germany
| | - Guillermo Martinez de Tejada
- Department of Microbiology and Parasitology, University of Navarra, E-31008 Pamplona, Spain and Navarra Institute for Health Research (Idisna), Pamplona, Spain.,Department de Microbiologia, Universidad De Navarra, Pamplona, Spain
| | - Patrick Garidel
- Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, Halle/Saale, Germany
| |
Collapse
|
24
|
Subh L, Correa W, Pinkvos T, Behrens P, Brandenburg K, Gutsmann T, Stiesch M, Doll K, Winkel A. Synthetic anti‐endotoxin peptides interfere with Gram‐positive and Gram‐negative bacteria, their adhesion and biofilm formation on titanium. J Appl Microbiol 2020; 129:1272-1286. [DOI: 10.1111/jam.14701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Affiliation(s)
- L. Subh
- Clinic of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical School Hannover Germany
| | - W. Correa
- Division of Biophysics Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - T.‐J. Pinkvos
- Institute for Inorganic Chemistry Leibniz University of Hannover Hannover Germany
| | - P. Behrens
- Institute for Inorganic Chemistry Leibniz University of Hannover Hannover Germany
| | | | - T. Gutsmann
- Division of Biophysics Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - M. Stiesch
- Clinic of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical School Hannover Germany
| | - K. Doll
- Clinic of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical School Hannover Germany
| | - A. Winkel
- Clinic of Prosthetic Dentistry and Biomedical Materials ScienceHannover Medical School Hannover Germany
| |
Collapse
|
25
|
Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods 2019; 8:foods8110582. [PMID: 31744147 PMCID: PMC6915509 DOI: 10.3390/foods8110582] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
Phytosterols, found in many commonly consumed foods, exhibit a broad range of physiological activities including anti-inflammatory effects. In this study, the anti-inflammatory effects of ergosterol, β-sitosterol, stigmasterol, campesterol, and ergosterol acetate were investigated in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Results showed that all phytosterol compounds alleviated the inflammatory reaction in LPS-induced macrophage models; cell phagocytosis, nitric oxide (NO) production, release of tumor necrosis factor-α (TNF-α), and expression and activity of pro-inflammatory mediator cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and phosphorylated extracellular signal-regulated protein kinase (p-ERK) were all inhibited. The anti-inflammatory activity of β-sitosterol was higher than stigmasterol and campesterol, which suggests that phytosterols without a double bond on C-22 and with ethyl on C-24 were more effective. However, inconsistent results were observed upon comparison of ergosterol and ergosterol acetate (hydroxy or ester group on C-3), which suggest that additional research is still needed to ascertain the contribution of structure to their anti-inflammatory effects.
Collapse
|
26
|
Correa W, Brandenburg J, Behrends J, Heinbockel L, Reiling N, Paulowski L, Schwudke D, Stephan K, Martinez-de-Tejada G, Brandenburg K, Gutsmann T. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophys J 2019; 117:1805-1819. [PMID: 31676134 DOI: 10.1016/j.bpj.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022] Open
Abstract
The activity of antimicrobial peptides (AMPs) has been investigated extensively using model membranes composed of phospholipids or lipopolysaccharides in aqueous environments. However, from a biophysical perspective, there is a large scientific interest regarding the direct interaction of membrane-active peptides with whole bacteria. Working with living bacteria limits the usability of experimental setups and the interpretation of the resulting data because of safety risks and the overlap of active and passive effects induced by AMPs. We killed or inactivated metabolic-active bacteria using γ-irradiation or sodium azide, respectively. Microscopy, flow cytometry, and SYTOX green assays showed that the cell envelope remained intact to a high degree at the minimal bactericidal dose. Furthermore, the tumor-necrosis-factor-α-inducing activity of the lipopolysaccharides and the chemical lipid composition was unchanged. Determining the binding capacity of AMPs to the bacterial cell envelope by calorimetry is difficult because of an overlapping of the binding heat and metabolic activities of the bacteria-induced by the AMPs. The inactivation of all active processes helps to decipher the complex thermodynamic information. From the isothermal titration calorimetry (ITC) results, we propose that the bacterial membrane potential (Δψ) is possibly an underestimated modulator of the AMP activity. The negative surface charge of the outer leaflet of the outer membrane of Gram-negative bacteria is already neutralized by peptide concentrations below the minimal inhibitory concentration. This proves that peptide aggregation on the bacterial membrane surface plays a decisive role in the degree of antimicrobial activity. This will not only enable many biophysical approaches for the investigation between bacteria and membrane-active peptides in the future but will also make it possible to compare biophysical parameters of active and inactive bacteria. This opens up new possibilities to better understand the active and passive interaction processes between AMPs and bacteria.
Collapse
Affiliation(s)
- Wilmar Correa
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Department, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Laura Paulowski
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Kerstin Stephan
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
27
|
Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock. Ann Surg 2019; 268:348-356. [PMID: 28288070 DOI: 10.1097/sla.0000000000002186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. BACKGROUND HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. METHODS (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 μg/kg · h (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. RESULTS Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ± 4 vs 54 ± 5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. CONCLUSIONS Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.
Collapse
|
28
|
Jannadi H, Correa W, Zhang Z, Brandenburg K, Oueslati R, Rouabhia M. Antimicrobial peptides Pep19-2.5 and Pep19-4LF inhibit Streptococcus mutans growth and biofilm formation. Microb Pathog 2019; 133:103546. [PMID: 31112769 DOI: 10.1016/j.micpath.2019.103546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/30/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
Abstract
With this study, we investigated the effect of synthetic antimicrobial peptides Pep19-2.5 and Pep194LF alone or in combination with antibiotics on S. mutans growth and biofilm formation/disruption. We also examined the cytotoxic effect of each peptide on monocytes. S. mutans was cultured in the presence of different concentrations of each peptide. We showed that Pep19-2.5 and Pep19-4LF were able to significantly (p ≤ 0.01) inhibit the growth of S. mutans. The synthetic peptides also decreased biofilm formation by S. mutans. Furthermore, both peptides reduced the viability of S. mutans in already formed biofilms. The combination of each peptide with antibiotics (penicillin/streptomycin, P/S) produced additive interactions which inhibited S. mutans growth and biofilm formation. Pep19-2.5 and Pep19-4LF were nontoxic, as they did not decrease monocyte viability and did not increase the lactate dehydrogenase activity of the exposed cells. In conclusion, synthetic peptides Pep19-2.5 and Pep19-4LF did inhibit S. mutans growth and its capacity to form biofilm. Both peptides were found to be nontoxic to monocytes. These data provide new insight into the efficacy of synthetic peptides Pep19-2.5 and Pep19-4LF against S. mutans. These peptides may thus be useful in controlling the adverse effects of this cariogenic bacterium in human.
Collapse
Affiliation(s)
- Hanen Jannadi
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420, rue de la Terrasse, Québec, G1V 0A6, QC, Canada; Unité IMEC, Faculté des Sciences de Bizerte, Unversité de Carthage, Tunisia
| | - Wilmar Correa
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845, Borstel, Germany
| | - Ze Zhang
- Département de Chirurgie, Faculté de Médecine, Université Laval, and L'Axe Médecine régénératrice, Centre de recherche du CHU de Québec, Québec, G1L 3L5, Canada
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, D-23845, Borstel, Germany
| | - Ridha Oueslati
- Unité IMEC, Faculté des Sciences de Bizerte, Unversité de Carthage, Tunisia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420, rue de la Terrasse, Québec, G1V 0A6, QC, Canada.
| |
Collapse
|
29
|
Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:111-129. [DOI: 10.1007/978-981-13-3588-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Correa W, Heinbockel L, Behrends J, Kaconis Y, Barcena-Varela S, Gutsmann T, Mauss K, Schürholz T, Schromm AB, Martinez de Tejada G, Brandenburg K. Antibacterial action of synthetic antilipopolysaccharide peptides (SALP) involves neutralization of both membrane-bound and free toxins. FEBS J 2019; 286:1576-1593. [PMID: 30843356 DOI: 10.1111/febs.14805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
Increasing failure of conventional antibiotics to combat bacterial infections requires the urgent development of new antibacterial drugs; a promising class of new drugs based on antimicrobial peptides. Here, we studied the molecular interaction of polycationic synthetic antilipopolysaccharide peptides (SALPs) with various gram-negative and gram-positive bacteria, including resistant strains. The analysis of antimicrobial activity by conventional techniques and atomic force microscopy showed a strict dependence on amino acid (aa) sequences, with the type of amino acid, its position within the primary structure, and the sequence length being critical parameters. By monitoring lipopolysaccharide (LPS)- or bacteria-induced cytokine production in human mononuclear cells and whole blood, we found a direct link between the binding of the lead compound Pep19-2.5 to Salmonella enterica and the anti-inflammatory activity of the peptide. Thermodynamic analysis of Pep19-2.5 binding to the bacterial cell envelope showed an exothermic reaction with saturation characteristics, whereas small-angle X-ray scattering data indicated a direct attachment of Pep19-2.5 to the bacterial cell envelope. This binding preferentially takes place to the LPS outer monolayer, as evidenced by the change in the LPS acyl chain and phosphate vibrational bands seen by Fourier-transform infrared spectroscopy. We report here that the anti-inflammatory activity of Pep19-2.5 is not only connected with neutralization of cell-free bacterial toxins but also with a direct binding of the peptide to the outer leaflet of the bacterial outer membrane.
Collapse
Affiliation(s)
- Wilmar Correa
- Division of Biophysics, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | | | - Jochen Behrends
- Core Facility Fluorescence Cytometrie, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Yani Kaconis
- Division of Biophysics, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Sergio Barcena-Varela
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Thomas Gutsmann
- Division of Biophysics, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | - Karl Mauss
- Plastic, Aesthetic and Reconstructive Surgery Section, Asklepios-Klinik Altona, Hamburg, Germany
| | - Tobias Schürholz
- Department of Anesthesia and Intensive Care, Universitätsmedizin Rostock, Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Forschungszentrum Borstel, Leibniz Lungenzentrum, Borstel, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Borstel, Germany
| |
Collapse
|
31
|
Christodoulides A, Gupta N, Yacoubian V, Maithel N, Parker J, Kelesidis T. The Role of Lipoproteins in Mycoplasma-Mediated Immunomodulation. Front Microbiol 2018; 9:1682. [PMID: 30108558 PMCID: PMC6080569 DOI: 10.3389/fmicb.2018.01682] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/05/2018] [Indexed: 01/16/2023] Open
Abstract
Mycoplasma infections, such as walking pneumonia or pelvic inflammatory diseases, are a major threat to public health. Despite their relatively small physical and genomic size, mycoplasmas are known to elicit strong host immune responses, generally inflammatory, while also being able to evade the immune system. The mycoplasma membrane is composed of approximately two-thirds protein and one-third lipid and contains several lipoproteins that are known to regulate host immune responses. Herein, the immunomodulatory effects of mycoplasma lipoproteins are reviewed. A better understanding of the immunomodulatory effects, both activating and evasive, of Mycoplasma surface lipoproteins will contribute to understanding mechanisms potentially relevant to mycoplasma disease vaccine development and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Kelesidis
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Heinbockel L, Weindl G, Martinez-de-Tejada G, Correa W, Sanchez-Gomez S, Bárcena-Varela S, Goldmann T, Garidel P, Gutsmann T, Brandenburg K. Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5. Front Immunol 2018; 9:1704. [PMID: 30093904 PMCID: PMC6070603 DOI: 10.3389/fimmu.2018.01704] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/10/2018] [Indexed: 11/15/2022] Open
Abstract
The most potent cell wall-derived inflammatory toxins (“pathogenicity factors”) of Gram-negative and -positive bacteria are lipopolysaccharides (LPS) (endotoxins) and lipoproteins (LP), respectively. Despite the fact that the former signals via toll-like receptor 4 (TLR4) and the latter via TLR2, the physico-chemistry of these compounds exhibits considerable similarity, an amphiphilic molecule with a polar and charged backbone and a lipid moiety. While the exterior portion of the LPS (i.e., the O-chain) represents the serologically relevant structure, the inner part, the lipid A, is responsible for one of the strongest inflammatory activities known. In the last years, we have demonstrated that antimicrobial peptides from the Pep19-2.5 family, which were designed to bind to LPS and LP, act as anti-inflammatory agents against sepsis and endotoxic shock caused by severe bacterial infections. We also showed that this anti-inflammatory activity requires specific interactions of the peptides with LPS and LP leading to exothermic reactions with saturation characteristics in calorimetry assays. Parallel to this, peptide-mediated neutralization of LPS and LP involves changes in various physical parameters, including both the gel to liquid crystalline phase transition of the acyl chains and the three-dimensional aggregate structures of the toxins. Furthermore, the effectivity of neutralization of pathogenicity factors by peptides was demonstrated in several in vivo models together with the finding that a peptide-based therapy sensitizes bacteria (also antimicrobial resistant) to antibiotics. Finally, a significant step in the understanding of the broad anti-inflammatory function of Pep19-2.5 was the demonstration that this compound is able to block the intracellular endotoxin signaling cascade.
Collapse
Affiliation(s)
- Lena Heinbockel
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | | | - Wilmar Correa
- Biophysics, Research Center Borstel, Borstel, Germany
| | - Susana Sanchez-Gomez
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Sergio Bárcena-Varela
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Borstel, Germany
| | | | | | | |
Collapse
|
33
|
Pfalzgraff A, Bárcena-Varela S, Heinbockel L, Gutsmann T, Brandenburg K, Martinez-de-Tejada G, Weindl G. Antimicrobial endotoxin-neutralizing peptides promote keratinocyte migration via P2X7 receptor activation and accelerate wound healing in vivo. Br J Pharmacol 2018; 175:3581-3593. [PMID: 29947028 DOI: 10.1111/bph.14425] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Wound healing is a complex process that is essential to provide skin homeostasis. Infection with pathogenic bacteria such as Staphylococcus aureus can lead to chronic wounds, which are challenging to heal. Previously, we demonstrated that the antimicrobial endotoxin-neutralizing peptide Pep19-2.5 promotes artificial wound closure in keratinocytes. Here, we investigated the mechanism of peptide-induced cell migration and if Pep19-2.5 accelerates wound closure in vivo. EXPERIMENTAL APPROACH Cell migration was examined in HaCaT keratinocytes and P2X7 receptor-overexpressing HEK293 cells using the wound healing scratch assay. The protein expression of phosphorylated ERK1/2, ATP release, calcium influx and mitochondrial ROS were analysed to characterize Pep19-2.5-mediated signalling. For in vivo studies, female BALB/c mice were wounded and infected with methicillin-resistant S. aureus (MRSA) or left non-infected and treated topically with Pep19-2.5 twice daily for 6 days. KEY RESULTS Specific P2X7 receptor antagonists inhibited Pep19-2.5-induced cell migration and ERK1/2 phosphorylation in keratinocytes and P2X7 receptor-transfected HEK293 cells. ATP release was not increased by Pep19-2.5; however, ATP was required for cell migration. Pep19-2.5 increased cytosolic calcium and mitochondrial ROS, which were involved in peptide-induced migration and ERK1/2 phosphorylation. In both non-infected and MRSA-infected wounds, the wound diameter was reduced already at day 2 post-wounding in the Pep19-2.5-treated groups compared to vehicle, and remained decreased until day 6. CONCLUSIONS AND IMPLICATIONS Our data suggest the potential application of Pep19-2.5 in the treatment of non-infected and S. aureus-infected wounds and provide insights into the mechanism involved in Pep19-2.5-induced wound healing.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Sergio Bárcena-Varela
- Department of Microbiology and Parasitology, Universidad de Navarra, Pamplona, Spain
| | - Lena Heinbockel
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | | | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Gao H, Huang L, Ding F, Yang K, Feng Y, Tang H, Xu QM, Feng J, Yang S. Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci Rep 2018. [PMID: 29855534 DOI: 10.1038/s41598-018-26828-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA are major lipid-soluble constituents isolated from Salvia miltiorrhiza Bunge (Danshen). In the present study, a systematic method was developed to simultaneously isolate and purify those compounds using macroporous adsorption resins and semi-preparative HPLC with a dynamic axial compress (DAC) system. The Danshen extract (95% alcohol) was divided into three fractions using different concentrations of alcohol (0%, 45%, and 90%) on D101 column. The content of total tanshinones of 90% alcohol eluent (TTS) was over 97%. Furthermore, the anti-inflammatory effects of those samples were investigated on LPS-stimulated RAW264.7 cells and three animal models. The results showed that the anti-inflammatory effect of TTS in vitro was superior to the one of any other sample including 0% and 45% eluent, and total tanshinones capsules. In addition, TTS exhibited a stronger anti-inflammatory effect than that of dihydrotanshinone, tanshinone IIA, cryptotanshinone, and tanshinone I, respectively. For animal models, TTS could significantly suppress xylene-induced ear oedema and rescue LPS-induced septic death and acute kidney injury in mice. In summary, the separation process developed in the study was high-efficiency, economic, and low-contamination, which was fit to industrial producing. TTS is a potential agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hongwei Gao
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liting Huang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Fang Ding
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Ke Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hongzhen Tang
- Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Qiong-Ming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jianfang Feng
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shilin Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
35
|
Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation. Sci Rep 2018; 8:8460. [PMID: 29855534 PMCID: PMC5981213 DOI: 10.1038/s41598-018-26828-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023] Open
Abstract
Dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA are major lipid-soluble constituents isolated from Salvia miltiorrhiza Bunge (Danshen). In the present study, a systematic method was developed to simultaneously isolate and purify those compounds using macroporous adsorption resins and semi-preparative HPLC with a dynamic axial compress (DAC) system. The Danshen extract (95% alcohol) was divided into three fractions using different concentrations of alcohol (0%, 45%, and 90%) on D101 column. The content of total tanshinones of 90% alcohol eluent (TTS) was over 97%. Furthermore, the anti-inflammatory effects of those samples were investigated on LPS-stimulated RAW264.7 cells and three animal models. The results showed that the anti-inflammatory effect of TTS in vitro was superior to the one of any other sample including 0% and 45% eluent, and total tanshinones capsules. In addition, TTS exhibited a stronger anti-inflammatory effect than that of dihydrotanshinone, tanshinone IIA, cryptotanshinone, and tanshinone I, respectively. For animal models, TTS could significantly suppress xylene-induced ear oedema and rescue LPS-induced septic death and acute kidney injury in mice. In summary, the separation process developed in the study was high-efficiency, economic, and low-contamination, which was fit to industrial producing. TTS is a potential agent for the treatment of inflammatory diseases.
Collapse
|
36
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
37
|
Kuhlmann N, Heinbockel L, Correa W, Gutsmann T, Goldmann T, Englisch U, Brandenburg K. Peptide drug stability: The anti-inflammatory drugs Pep19-2.5 and Pep19-4LF in cream formulation. Eur J Pharm Sci 2018; 115:240-247. [PMID: 29337217 DOI: 10.1016/j.ejps.2018.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
In previous years, we developed anti-infective drugs based on antimicrobial peptides (AMPs), which have been shown to effectively block severe infections and inflammation in vitro as well as in vivo. Besides systemic application, the occurrence of severe local infections necessitates a topical application for example in the case of severe skin and soft tissue infections (SSTI). Recent investigations show that the synthetic anti-lipopolysaccharide peptide (SALP) Pep19-2.5 (Aspidasept® I) and a variant called Pep19-4LF (Aspidasept® II) are able to supress inflammation reactions also in keratinocytes, Langerhans cells, and dendritic cells from the skin. For topical application, a possible formulation represents the drug dispersed into a pharmaceutical cream (DAC base cream). Here, we present investigations on the stability of the peptides using this formulation in dependence on time, which includes the evaluation of the extraction procedure, the quantitative analysis of the peptides after extraction, its sensitivity to protease degradation and its ability to maintain activity against LPS-induced inflammation in vitro. We have developed an extraction procedure for the peptides with an optimum yield and showed that Pep19-2.5 is present as a dimer after extraction from the cream, whereas Pep19-4LF retains its monomeric form. Both peptides show no degradation by chymotrypsin after extraction for at least 1 h, which is indicative for an attachment of constituents of the base cream, inhibiting the cutting into peptidic part structures. The extracted peptides and in particular the dimeric Pep19-2.5 are still able to inhibit the LPS-induced inflammation reaction in human mononuclear cells.
Collapse
Affiliation(s)
- Nicole Kuhlmann
- University of Applied Sciences, Mönkhofer Weg 239, D-23562 Luebeck, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845 Borstel, Germany.
| | - Wilmar Correa
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845 Borstel, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845 Borstel, Germany
| | - Torsten Goldmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845 Borstel, Germany
| | - Uwe Englisch
- University of Applied Sciences, Mönkhofer Weg 239, D-23562 Luebeck, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Parkallee, D-23845 Borstel, Germany
| |
Collapse
|
38
|
Biophysical Analysis of Lipopolysaccharide Formulations for an Understanding of the Low Endotoxin Recovery (LER) Phenomenon. Int J Mol Sci 2017; 18:ijms18122737. [PMID: 29258200 PMCID: PMC5751338 DOI: 10.3390/ijms18122737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharides (LPS, endotoxin) are complex and indispensable components of the outer membrane of most Gram-negative bacteria. They represent stimuli for many biological effects with pathophysiological character. Recombinant therapeutic proteins that are manufactured using biotechnological processes are prone to LPS contaminations due to their ubiquitous occurrence. The maximum endotoxin load of recombinant therapeutic proteins must be below the pyrogenic threshold. Certain matrices that are commonly used for recombinant therapeutic proteins show a phenomenon called “Low Endotoxin Recovery (LER)”. LER is defined as the loss of detectable endotoxin activity over time using compendial Limulus amebocyte lysate (LAL) assays when undiluted products are spiked with known amount of endotoxin standards. Because LER poses potential risks that endotoxin contaminations in products may be underestimated or undetected by the LAL assay, the United States (U.S.) Food and Drug Administration’s (FDA’s) Center for Drug Evaluation and Research (CDER) has recently started requesting that companies conduct endotoxin spike/hold recovery studies to determine whether a given biological product causes LER. Here, we have performed an analysis of different LPS preparations with relevant detergents studying their acyl chain phase transition, their aggregate structures, their size distributions, and binding affinity with a particular anti-endotoxin peptide, and correlating it with the respective data in the macrophage activation test. In this way, we have worked out biophysical parameters that are important for an understanding of LER.
Collapse
|
39
|
Abstract
The innate immune system serves as a first line of defense against microbial pathogens. The host innate immune response can be triggered by recognition of conserved non-self-microbial signature molecules by specific host receptor proteins called Toll-like receptors. For bacteria, many of these molecular triggers reside on or are embedded in the bacterial membrane, the interface exposed to the host environment. Lipids are the most abundant component of membranes, and bacteria possess a unique set of lipids that can initiate or modify the host innate immune response. Bacterial lipoproteins, peptidoglycan, and outer membrane molecules lipoteichoic acid and lipopolysaccharide are key modulators of the host immune system. This review article will highlight some of the research emerging at the crossroads of bacterial membranes and innate immunity.
Collapse
Affiliation(s)
- Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, 8th Floor South, Baltimore, MD, 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, 8th Floor South, Baltimore, MD, 21201, USA
| |
Collapse
|
40
|
Coupling killing to neutralization: combined therapy with ceftriaxone/Pep19-2.5 counteracts sepsis in rabbits. Exp Mol Med 2017; 49:e345. [PMID: 28620220 PMCID: PMC5519016 DOI: 10.1038/emm.2017.75] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Sepsis, which is induced by severe bacterial infections, is a major cause of death worldwide, and therapies combating the disease are urgently needed. Because many drugs have failed in clinical trials despite their efficacy in mouse models, the development of reliable animal models of sepsis is in great demand. Several studies have suggested that rabbits reflect sepsis-related symptoms more accurately than mice. In this study, we evaluated a rabbit model of acute sepsis caused by the intravenous inoculation of Salmonella enterica. The model reproduces numerous symptoms characteristic of human sepsis including hyperlactatemia, hyperglycemia, leukopenia, hypothermia and the hyperproduction of several pro-inflammatory cytokines. Hence, it was chosen to investigate the proposed ability of Pep19-2.5—an anti-endotoxic peptide with high affinity to lipopolysaccharide and lipoprotein—to attenuate sepsis-associated pathologies in combination with an antibiotic (ceftriaxone). We demonstrate that a combination of Pep19-2.5 and ceftriaxone administered intravenously to the rabbits (1) kills bacteria and eliminates bacteremia 30 min post challenge; (2) inhibits Toll-like receptor 4 agonists in serum 90 min post challenge; (3) reduces serum levels of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α); and (4) reverts to hypothermia and gives rise to temperature values indistinguishable from basal levels 330 min post challenge. The two components of the combination displayed synergism in some of these activities, and Pep19-2.5 notably counteracted the endotoxin-inducing potential of ceftriaxone. Thus, the combination therapy of Pep19-2.5 and ceftriaxone holds promise as a candidate for human sepsis therapy.
Collapse
|
41
|
Pfalzgraff A, Heinbockel L, Su Q, Brandenburg K, Weindl G. Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochem Pharmacol 2017; 140:64-72. [PMID: 28539262 DOI: 10.1016/j.bcp.2017.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
Abstract
Toll-like receptor (TLR) 4-independent recognition of lipopolysaccharide (LPS) in the cytosol by inflammatory caspases leads to non-canonical inflammasome activation and induction of IL-1 secretion and pyroptosis. The discovery of this novel mechanism has potential implications for the development of effective drugs to treat sepsis since LPS-mediated hyperactivation of caspases is critically involved in endotoxic shock. Previously, we demonstrated that Pep19-2.5, a synthetic anti-endotoxin peptide, efficiently neutralises pathogenicity factors of Gram-negative and Gram-positive bacteria and protects against sepsis in vivo. Here, we report that Pep19-2.5 inhibits the effects of cytoplasmic LPS in human myeloid cells and keratinocytes. In THP-1 monocytes and macrophages, the peptide strongly reduced secretion of IL-1β and LDH induced by intracellular LPS. In contrast, the TLR4 signaling inhibitor TAK-242 abrogates LPS-induced TNF and IL-1β secretion, but not pyroptotic cell death. Furthermore, Pep19-2.5 suppressed LPS-induced HMGB-1 production and caspase-1 activation in THP-1 monocytes. Consistent with this observation, we found impaired IL-1β and IL-1α release in LPS-stimulated primary monocytes in the presence of Pep19-2.5 and reduced LDH release and IL-1B and IL-1A expression in LPS-transfected HaCaT keratinocytes. Additionally, Pep19-2.5 completely abolished IL-1β release induced by LPS/ATP in macrophages via canonical inflammasome activation. In conclusion, we provide evidence that anti-endotoxin peptides inhibit the inflammasome/IL-1 axis induced by cytoplasmic LPS sensing in myeloid cells and keratinocytes and activation of the classical inflammasome by LPS/ATP which may contribute to the protection against bacterial sepsis and skin infections with intracellular Gram-negative bacteria.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | - Lena Heinbockel
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Divisions of Biophysics, Borstel, Germany
| | - Qi Su
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | - Klaus Brandenburg
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Divisions of Biophysics, Borstel, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany.
| |
Collapse
|
42
|
Anti-inflammatory Properties of Antimicrobial Peptides and Peptidomimetics: LPS and LTA Neutralization. Methods Mol Biol 2017; 1548:369-386. [PMID: 28013519 DOI: 10.1007/978-1-4939-6737-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization constitute potential non-antibiotic treatment strategies for sepsis - a systemic infection-induced inflammatory response. Studies on LPS- and LTA-neutralizing compounds are abundant in literature, and a number of peptides and peptidomimetics appear to display promising activity. However, in this ongoing search for potential antisepsis drug leads, it will be preferable that the assays used by different research groups lead to readily comparable data for the most efficient compounds. Here, we propose and describe standardized methods to be used for testing of novel compounds for their LPS- and LTA-neutralizing capacity with a focus on functional suppression of pro-inflammatory responses in cell-based systems. To best mimic the human in vivo conditions, we suggest the use of freshly isolated human leukocytes combined with an appropriate method for the chosen cytokine (e.g., IL-6 or TNF-α). The described protocols comprise isolation, stimulation, and viability test of the human leukocytes.
Collapse
|
43
|
Martin L, Horst K, Chiazza F, Oggero S, Collino M, Brandenburg K, Hildebrand F, Marx G, Thiemermann C, Schuerholz T. The synthetic antimicrobial peptide 19-2.5 attenuates septic cardiomyopathy and prevents down-regulation of SERCA2 in polymicrobial sepsis. Sci Rep 2016; 6:37277. [PMID: 27853260 PMCID: PMC5112529 DOI: 10.1038/srep37277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
An impairment of cardiac function is a key feature of the cardiovascular failure associated with sepsis. Although there is some evidence that suppression of sarcoplasmic reticulum Ca2+-ATP-ase (SERCA2) contributes to septic cardiomyopathy, it is not known whether prevention of the down-regulation of SERCA2 improves outcome in sepsis. Thus, we investigated whether the administration of the synthetic antimicrobial peptide Pep2.5 may attenuate the cardiac dysfunction in murine polymicrobial sepsis through regulating SERCA2 expression. We show here for the first time that the infusion of Pep2.5 reduces the impaired systolic and diastolic contractility and improves the survival time in polymicrobial sepsis. Preservation of cardiac function in sepsis by Pep2.5 is associated with prevention of the activation of NF-κB and activation of the Akt/eNOS survival pathways. Most notably, Pep2.5 prevented the down-regulation of SERCA2 expression in a) murine heart samples obtained from mice with sepsis and b) in cardiomyocytes exposed to serum from septic shock patients. Thus, we speculate that Pep2.5 may be able to prevent down-regulation of cardiac SERCA2 expression in patients with sepsis, which, in turn, may improve cardiac function and outcome in these patients.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany.,The William Harvey Research Institute, Barts &The London School of Medicine &Dentistry, Queen Mary University of London, London, UK
| | - Klemens Horst
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Fausto Chiazza
- Department of Drug Science &Technology, University of Turin, Turin, Italy
| | - Silvia Oggero
- Department of Drug Science &Technology, University of Turin, Turin, Italy
| | - Massimo Collino
- Department of Drug Science &Technology, University of Turin, Turin, Italy
| | | | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts &The London School of Medicine &Dentistry, Queen Mary University of London, London, UK
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
44
|
Martin L, Peters C, Heinbockel L, Moellmann J, Martincuks A, Brandenburg K, Lehrke M, Müller-Newen G, Marx G, Schuerholz T. The synthetic antimicrobial peptide 19-2.5 attenuates mitochondrial dysfunction in cardiomyocytes stimulated with human sepsis serum. Innate Immun 2016; 22:612-619. [DOI: 10.1177/1753425916667474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Septic cardiomyopathy affects up to 70% of patients with septic shock and the derangement of cardiac mitochondrial function contributes to the likelihood of death. However, at present, there is no specific therapeutic drug available. The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) and coactivator-1β (PGC-1β) modulate members of the PPARs, which regulate mitochondrial energy metabolism and the production of mitochondrial reactive oxygen species in the heart. This study investigated the potential of the newly developed synthetic antimicrobial peptide 19-2.5 (Pep2.5) to attenuate mitochondrial dysfunction in murine cardiomyocytes stimulated with serum from septic shock patients. Pep2.5 treatment attenuated the suppression of PPAR-α, PPAR-γ ( P = 0.0004 and P = 0.0001, respectively) and PGC-1α/β ( P = 0.0008 and P = 0.0147, respectively) in cardiomyocytes stimulated with serum from septic shock patients compared with untreated cells. Pep2.5 treatment enhanced the mitochondrial maximum respiration ( P < 0.0001), increased cellular ATP levels ( P < 0.0001) and reduced the production of mitochondrial reactive oxygen species. Thus, the administration of Pep2.5 may have the potential as a promising therapeutic approach in septic cardiomyopathy by attenuating mitochondrial dysfunction in the septic heart.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Carsten Peters
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Lena Heinbockel
- Clinical and Experimental Pathology, Forschungszentrum Borstel, Borstel, Germany
| | - Julia Moellmann
- Department of Cardiology, Pneumology, Angiology and Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Antons Martincuks
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | - Michael Lehrke
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
45
|
Pfalzgraff A, Heinbockel L, Su Q, Gutsmann T, Brandenburg K, Weindl G. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Sci Rep 2016; 6:31577. [PMID: 27509895 PMCID: PMC4980674 DOI: 10.1038/srep31577] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023] Open
Abstract
The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | - Lena Heinbockel
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Divisions of Biophysics, Borstel, Germany
| | - Qi Su
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Divisions of Biophysics, Borstel, Germany
| | - Klaus Brandenburg
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Divisions of Biophysics, Borstel, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Berlin, Germany
| |
Collapse
|
46
|
Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics. Front Microbiol 2016; 7:1209. [PMID: 27536293 PMCID: PMC4971087 DOI: 10.3389/fmicb.2016.01209] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023] Open
Abstract
The global rise of multi-drug resistant bacteria has resulted in the notion that an "antibiotic apocalypse" is fast approaching. This has led to a number of well publicized calls for global funding initiatives to develop new antibacterial agents. The long clinical history of phage therapy in Eastern Europe, combined with more recent in vitro and in vivo success, demonstrates the potential for whole phage or phage based antibacterial agents. To date, no whole phage or phage derived products are approved for human therapeutic use in the EU or USA. There are at least three reasons for this: (i) phages possess different biological, physical, and pharmacological properties compared to conventional antibiotics. Phages need to replicate in order to achieve a viable antibacterial effect, resulting in complex pharmacodynamics/pharmacokinetics. (ii) The specificity of individual phages requires multiple phages to treat single species infections, often as part of complex cocktails. (iii) The current approval process for antibacterial agents has evolved with the development of chemically based drugs at its core, and is not suitable for phages. Due to similarities with conventional antibiotics, phage derived products such as endolysins are suitable for approval under current processes as biological therapeutic proteins. These criteria render the approval of phages for clinical use theoretically possible but not economically viable. In this review, pitfalls of the current approval process will be discussed for whole phage and phage derived products, in addition to the utilization of alternative approval pathways including adaptive licensing and "Right to try" legislation.
Collapse
Affiliation(s)
- Callum J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Mohammadali Khan Mirzaei
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Anders S Nilsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
47
|
Single Amino Acid Substitutions at Specific Positions of the Heptad Repeat Sequence of Piscidin-1 Yielded Novel Analogs That Show Low Cytotoxicity and In Vitro and In Vivo Antiendotoxin Activity. Antimicrob Agents Chemother 2016; 60:3687-99. [PMID: 27067326 DOI: 10.1128/aac.02341-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/27/2016] [Indexed: 12/16/2022] Open
Abstract
Piscidin-1 possesses significant antimicrobial and cytotoxic activities. To recognize the primary amino acid sequence(s) in piscidin-1 that could be important for its biological activity, a long heptad repeat sequence located in the region from amino acids 2 to 19 was identified. To comprehend the possible role of this motif, six analogs of piscidin-1 were designed by selectively replacing a single isoleucine residue at a d (5th) position or at an a (9th or 16th) position with either an alanine or a valine residue. Two more analogs, namely, I5F,F6A-piscidin-1 and V12I-piscidin-1, were designed for investigating the effect of interchanging an alanine residue at a d position with an adjacent phenylalanine residue and replacing a valine residue with an isoleucine residue at another d position of the heptad repeat of piscidin-1, respectively. Single alanine-substituted analogs exhibited significantly reduced cytotoxicity against mammalian cells compared with that of piscidin-1 but appreciably retained the antibacterial and antiendotoxin activities of piscidin-1. All the single valine-substituted piscidin-1 analogs and I5F,F6A-piscidin-1 showed cytotoxicity greater than that of the corresponding alanine-substituted analogs, antibacterial activity marginally greater than or similar to that of the corresponding alanine-substituted analogs, and also antiendotoxin activity superior to that of the corresponding alanine-substituted analogs. Interestingly, among these peptides, V12I-piscidin-1 showed the highest cytotoxicity and antibacterial and antiendotoxin activities. Lipopolysaccharide (12 mg/kg of body weight)-treated mice, further treated with I16A-piscidin-1, the piscidin-1 analog with the highest therapeutic index, at a single dose of 1 or 2 mg/kg of body weight, showed 80 and 100% survival, respectively. Structural and functional characterization of these peptides revealed the basis of their biological activity and demonstrated that nontoxic piscidin-1 analogs with significant antimicrobial and antiendotoxin activities can be designed by incorporating single alanine substitutions in the piscidin-1 heptad repeat.
Collapse
|
48
|
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:936-46. [DOI: 10.1016/j.bbamem.2015.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
49
|
Diederich AK, Duda KA, Romero-Saavedra F, Engel R, Holst O, Huebner J. Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines. Innate Immun 2016; 22:284-93. [PMID: 27009913 DOI: 10.1177/1753425916639669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the ΔfabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release in vitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence.
Collapse
Affiliation(s)
- Ann-Kristin Diederich
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany Department of Microbiology, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Katarzyna A Duda
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), D-23845 Borstel, Germany
| | - Felipe Romero-Saavedra
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany 2EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Regina Engel
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), D-23845 Borstel, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), D-23845 Borstel, Germany
| | - Johannes Huebner
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Freiburg, Germany Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
50
|
Brandenburg K, Heinbockel L, Correa W, Lohner K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:971-9. [PMID: 26801369 DOI: 10.1016/j.bbamem.2016.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/09/2023]
Abstract
Bacterial infections, with the most severe form being sepsis, can often not be treated adequately leading to high morbidity and lethality of infected patients in critical care units. In particular, the increase in resistant bacterial strains and the lack of new antibiotics are main reasons for the worsening of the current situation, As a new approach, the use of antimicrobial peptides (AMPs) seems to be promising, combining the ability of broad-spectrum bactericidal activity and low potential of induction of resistance. Peptides based on natural defense proteins or polypeptides such as lactoferrin, Limulus anti-lipopolysaccharide factor (LALF), cathelicidins, and granulysins are candidates due to their high affinity to bacteria and to their pathogenicity factors, in first line lipopolysaccharide (LPS, endotoxin) of Gram-negative origin. In this review, we discuss literature with the focus on the use of AMPs from natural sources and their variants as antibacterial as well as anti-endotoxin (anti-inflammatory) drugs. Considerable progress has been made by the design of new AMPs for acting efficiently against the LPS-induced inflammation reaction in vitro as well as in vivo (mouse) models of sepsis. Furthermore, the data indicate that efficient antibacterial compounds are not necessarily equally efficient as anti-endotoxin drugs and vice versa. The most important reason for this may be the different molecular geometry of LPS in bacteria and in free form. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Forschungszentrum Borstel, Div. of Biophysics, Parkallee 10, D-23845 Borstel, Germany.
| | - Lena Heinbockel
- Clinical and Experimental Pathology, Parkallee 10, D-23845 Borstel, Germany
| | - Wilmar Correa
- Forschungszentrum Borstel, Div. of Biophysics, Parkallee 10, D-23845 Borstel, Germany
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, BioTechMed Graz, Humboldtstr. 50/III, Graz, Austria
| |
Collapse
|