1
|
Jia H, Chen X, Zhang L, Chen M. Cancer associated fibroblasts in cancer development and therapy. J Hematol Oncol 2025; 18:36. [PMID: 40156055 PMCID: PMC11954198 DOI: 10.1186/s13045-025-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key players in cancer development and therapy, and they exhibit multifaceted roles in the tumor microenvironment (TME). From their diverse cellular origins, CAFs undergo phenotypic and functional transformation upon interacting with tumor cells and their presence can adversely influence treatment outcomes and the severity of the cancer. Emerging evidence from single-cell RNA sequencing (scRNA-seq) studies have highlighted the heterogeneity and plasticity of CAFs, with subtypes identifiable through distinct gene expression profiles and functional properties. CAFs influence cancer development through multiple mechanisms, including regulation of extracellular matrix (ECM) remodeling, direct promotion of tumor growth through provision of metabolic support, promoting epithelial-mesenchymal transition (EMT) to enhance cancer invasiveness and growth, as well as stimulating cancer stem cell properties within the tumor. Moreover, CAFs can induce an immunosuppressive TME and contribute to therapeutic resistance. In this review, we summarize the fundamental knowledge and recent advances regarding CAFs, focusing on their sophisticated roles in cancer development and potential as therapeutic targets. We discuss various strategies to target CAFs, including ECM modulation, direct elimination, interruption of CAF-TME crosstalk, and CAF normalization, as approaches to developing more effective treatments. An improved understanding of the complex interplay between CAFs and TME is crucial for developing new and effective targeted therapies for cancer.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingmin Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| | - Meihua Chen
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Amosu MM, Jankowski AM, McCright JC, Yang BE, Grano de Oro Fernandez J, Moore KA, Gadde HS, Donthi M, Kaluzienski ML, Maisel K. Plasmacytoid Dendritic Cells Mediate CpG-ODN-induced Increase in Survival in a Mouse Model of Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 2024; 71:519-533. [PMID: 38990702 PMCID: PMC11568470 DOI: 10.1165/rcmb.2023-0410oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also reactivate immunity, and the TLR9 agonist CpG oligodeoxynucleotide (CpG-ODN) has been effective in treating lung cancer in animal models. In this study, we investigated the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor anti-PD1 and standard of care rapamycin, and determined the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival, likely because of fewer local side effects, but increased LAM nodule count and size compared with the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of T-helper type 17 cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells because depletion of plasmacytoid dendritic cells reduces survival and abrogates T-helper type 17 cell response. Finally, we found that CpG-ODN treatment is effective in early-stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.
Collapse
Affiliation(s)
- Mayowa M Amosu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Ashleigh M Jankowski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacob C McCright
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Bennett E Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | | | - Kaitlyn A Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Havish S Gadde
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Mehul Donthi
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Michele L Kaluzienski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
3
|
Hong J, Yu J, Buratto D, Chen W, Zhou R, Ling S, Xu X. Unveiling the Role of Mechanical Microenvironment in Hepatocellular Carcinoma: Molecular Mechanisms and Implications for Therapeutic Strategies. Int J Biol Sci 2024; 20:5239-5253. [PMID: 39430235 PMCID: PMC11489173 DOI: 10.7150/ijbs.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer deaths globally. More than 80% of HCC patients have a background of fibrosis or cirrhosis, which leads to changes in physical factors in tumor microenvironment (TME), such as increased stiffness, solid stress, fluid stresses and structural alterations in the extracellular matrix (ECM). In the past, the focus of cancer research has predominantly been on genetic and biochemical factors in the TME, and the critical role of physical factors has often been overlooked. Recent discoveries suggest these unique physical signals are converted into biochemical signals through a mechanotransduction process that influences the biological behavior of tumor cells and stromal cells. This process facilitates the occurrence and progression of tumors. This review delves into the alterations in the mechanical microenvironment during the progression of liver fibrosis to HCC, the signaling pathways activated by physical signals, and the effects on both tumor and mesenchymal stromal cells. Furthermore, this paper summarizes and discusses the therapeutic options for targeting the mechanical aspects of the TME, offering valuable insights for future research into novel therapeutic avenues against HCC and other solid tumors.
Collapse
Affiliation(s)
- Jiachen Hong
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiongjie Yu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Damiano Buratto
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
- The Second Clinical College of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Milosevic V, Östman A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J Med Sci 2024; 129:10710. [PMID: 38863724 PMCID: PMC11165253 DOI: 10.48101/ujms.v129.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. Cancer-associated fibroblasts have several ways by which they can affect the tumour's immune microenvironment (TIME). For example, their interactions with macrophages and dendritic cells (DCs) create an immunosuppressive milieu that can indirectly affect T-cell anticancer immunity and enable immune evasion. In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vladan Milosevic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Arne Östman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Zhang Z, Tao J, Qiu J, Cao Z, Huang H, Xiao J, Zhang T. From basic research to clinical application: targeting fibroblast activation protein for cancer diagnosis and treatment. Cell Oncol (Dordr) 2024; 47:361-381. [PMID: 37726505 DOI: 10.1007/s13402-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE This study aims to review the multifaceted roles of a membrane protein named Fibroblast Activation Protein (FAP) expressed in tumor tissue, including its molecular functionalities, regulatory mechanisms governing its expression, prognostic significance, and its crucial role in cancer diagnosis and treatment. METHODS Articles that have uncovered the regulatory role of FAP in tumor, as well as its potential utility within clinical realms, spanning diagnosis to therapeutic intervention has been screened for a comprehensive review. RESULTS Our review reveals that FAP plays a pivotal role in solid tumor progression by undertaking a multitude of enzymatic and nonenzymatic roles within the tumor stroma. The exclusive presence of FAP within tumor tissues highlights its potential as a diagnostic marker and therapeutic target. The review also emphasizes the prognostic significance of FAP in predicting tumor progression and patient outcomes. Furthermore, the emerging strategies involving FAPI inhibitor (FAPI) in cancer research and clinical trials for PET/CT diagnosis are discussed. And targeted therapy utilizing FAP including FAPI, chimeric antigen receptor (CAR) T cell therapy, tumor vaccine, antibody-drug conjugates, bispecific T-cell engagers, FAP cleavable prodrugs, and drug delivery system are also introduced. CONCLUSION FAP's intricate interactions with tumor cells and the tumor microenvironment make it a promising target for diagnosis and treatment. Promising strategies such as FAPI offer potential avenues for accurate tumor diagnosis, while multiple therapeutic strategies highlight the prospects of FAP targeting treatments which needs further clinical evaluation.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hua Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianchun Xiao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Avgoustakis K, Angelopoulou A. Biomaterial-Based Responsive Nanomedicines for Targeting Solid Tumor Microenvironments. Pharmaceutics 2024; 16:179. [PMID: 38399240 PMCID: PMC10892652 DOI: 10.3390/pharmaceutics16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.
Collapse
Affiliation(s)
- Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Clinical Studies Unit, Biomedical Research Foundation Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece
| | - Athina Angelopoulou
- Department of Chemical Engineering, Polytechnic School, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Tan Y, Chen H, Gou X, Fan Q, Chen J. Tumor vaccines: Toward multidimensional anti-tumor therapies. Hum Vaccin Immunother 2023; 19:2271334. [PMID: 37905395 PMCID: PMC10760370 DOI: 10.1080/21645515.2023.2271334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
For decades, immunotherapies have offered hope for patients with advanced cancer. However, they show distinct benefits and limited clinical effects. Tumor vaccines have the potential to prime tumor-antigen-specific T cells and induce broad subsets of immune responses, ultimately eradicating tumor cells. Here, we classify tumor vaccines by their anti-tumor mechanisms, which include boosting the immune system, overcoming tumor immunosuppression, and modulating tumor angiogenesis. We focus on multidimensional tumor vaccine strategies using combinations of two or three of the above mechanisms, as these are superior to single-dimensional treatments. This review offers a perspective on tumor vaccine strategies and the future role of vaccine therapies in cancer treatment.
Collapse
Affiliation(s)
- Yuanfang Tan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiyuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Chen M, Xiao L, Jia H, Wang S, Jiang X, Lei X, Zhai Q, Lang J. Stereotactic ablative radiotherapy and FAPα-based cancer vaccine suppresses metastatic tumor growth in 4T1 mouse breast cancer. Radiother Oncol 2023; 189:109946. [PMID: 37806560 DOI: 10.1016/j.radonc.2023.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND PURPOSE This study tested the hypothesis that a novel combination of stereotactic ablation radiotherapy (SABR) and a cancer vaccine against fibroblast activation protein-alpha (FAPα) can suppress established tumor growth and impede potential metastasis. METHODS The poorly immunogenic metastatic mouse mammary carcinoma 4T1 was used as a model. Mice were randomly assigned to five treatment groups: (1) untreated control, (2) FAPα-based cancer vaccine, (3) SABR, (4) SABR + pCDH (lentiviral control vector), (5) SABR + FAPα-based cancer vaccine (SABR/FAPα-Vax). FAPα-based cancer vaccine were administered subcutaneously every week for a total of three treatments. SABR was delivered to the primary tumor by 3 × 8 Gy after the first vaccination. RESULTS Consistent with the poorly immunogenic nature of 4T1, tumor-bearing mice receiving FAPα-based cancer vaccine or SABR monotherapy showed a modest reduction in tumor volume and increased animal lifespan. In contrast, SABR/FAPα-Vax was well-tolerated, significantly reduced tumor burden, and increased survival compared to monotherapy. The increased survival correlated with inhibition of extracellular matrix (ECM) production, tumor vascularization and lymphangiogenesis. SABR/FAPα-Vax also resulted in an abscopal effect capable of eliminating lung metastases. SABR/FAPα-Vax recruited and activated CD8 + T cells to attack tumor cells and FAPα + stromal cells, and initiated suppressor cell reprogramming, including facilitating macrophage polarization toward an anti-tumor (M1) state, as well as depleting myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). CONCLUSION These findings provide a novel therapeutic combination of radiation and FAPα-based cancer vaccine with promising results against poorly immunogenic metastatic cancer. This study may pave the way to overcome the therapeutic resistance caused by FAPα + CAFs.
Collapse
Affiliation(s)
- Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ling Xiao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hongyuan Jia
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Shubin Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiao Jiang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Institute of Isotope, China Institute of Atomic Energy, Beijing, China.
| | - Xudan Lei
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Munkácsy G, Santarpia L, Győrffy B. Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24086945. [PMID: 37108109 PMCID: PMC10138520 DOI: 10.3390/ijms24086945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell-cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC.
Collapse
Affiliation(s)
- Gyöngyi Munkácsy
- National Laboratory for Drug Research and Development, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
- Oncology Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| | | | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
- Department of Pediatrics, Semmelweis University, Tűzoltó u. 5-7, 1094 Budapest, Hungary
| |
Collapse
|
10
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Kendal JK, Shehata MS, Lofftus SY, Crompton JG. Cancer-Associated B Cells in Sarcoma. Cancers (Basel) 2023; 15:cancers15030622. [PMID: 36765578 PMCID: PMC9913500 DOI: 10.3390/cancers15030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Despite being one of the first types of cancers studied that hinted at a major role of the immune system in pro- and anti-tumor biology, little is known about the immune microenvironment in sarcoma. Few types of sarcoma have shown major responses to immunotherapy, and its rarity and heterogeneity makes it challenging to study. With limited systemic treatment options, further understanding of the underlying mechanisms in sarcoma immunity may prove crucial in advancing sarcoma care. While great strides have been made in the field of immunotherapy over the last few decades, most of these efforts have focused on harnessing the T cell response, with little attention on the role B cells may play in the tumor microenvironment. A growing body of evidence suggests that B cells have both pro- and anti-tumoral effects in a large variety of cancers, and in the age of bioinformatics and multi-omic analysis, the complexity of the humoral response is just being appreciated. This review explores what is currently known about the role of B cells in sarcoma, including understanding the various B cell populations associated with sarcoma, the organization of intra-tumoral B cells in tertiary lymphoid structures, recent trials in immunotherapy in sarcoma, intra-tumoral immunoglobulin, the pro-tumor effects of B cells, and exciting future areas for research.
Collapse
Affiliation(s)
- Joseph K. Kendal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90404, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael S. Shehata
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Serena Y. Lofftus
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-2644
| |
Collapse
|
12
|
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022; 22:491-517. [PMID: 36330160 PMCID: PMC9619151 DOI: 10.1016/j.bioactmat.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging. Whole tumor cells can produce comprehensive antigens that trigger extensive tumor-specific immune responses. Therefore, tumor cells are an ideal source of antigens for tumor vaccines. A better understanding of tumor cell-derived vaccines and their characteristics, along with the development of new technologies for antigen delivery, can help improve vaccine design. In this review, we summarize the recent advances in tumor cell-derived vaccines in cancer immunotherapy and highlight the different types of engineered approaches, mechanisms, administration methods, and future perspectives. We discuss tumor cell-derived vaccines, including whole tumor cell components, extracellular vesicles, and cell membrane-encapsulated nanoparticles. Tumor cell-derived vaccines contain multiple tumor antigens and can induce extensive and potent tumor immune responses. However, they should be engineered to overcome limitations such as insufficient immunogenicity and weak targeting. The genetic and chemical engineering of tumor cell-derived vaccines can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor immunotherapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of tumor cell-derived vaccines.
Collapse
Affiliation(s)
- Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Corresponding author. Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Corresponding author. Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2255-2271. [PMID: 35913663 DOI: 10.1007/s12094-022-02888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy (RT), unlike chemotherapy, is one of the most routinely used and effective genotoxic and immune response inducing cancer therapies with an advantage of reduced side effects. However, cancer can relapse after RT owing to multiple factors, including acquired tumor resistance, immune suppressive microenvironment buildup, increased DNA repair, thus favoring tumor metastasis. Efforts to mitigate these undesirable effects have drawn interest in combining RT with immunotherapy, particularly the use of immune checkpoint inhibitors, to tilt the pre-existing tumor stromal microenvironment into long-lasting therapy-induced antitumor immunity at multiple metastatic sites (abscopal effects). This multimodal therapeutic strategy can alleviate the increased T cell priming and decrease tumor growth and metastasis, thus emerging as a significant approach to sustain as long-term antitumor immunity. To understand more about this synergism, a detailed cellular mechanism underlying the dynamic interaction between tumor and immune cells within the irradiated tumor microenvironment needs to be explored. Hence, in the present review, we have attempted to evaluate various RT-inducible immune factors, which can be targeted by immunotherapy and provide detailed explanation to optimally maximize their synergy with immunotherapy for long-lasting antitumor immunity. Moreover, we have critically assessed various combinatorial approaches along with their challenges and described strategies to modify them in addition to providing approaches for optimal synergistic effects of the combination.
Collapse
|
14
|
Koppensteiner L, Mathieson L, O’Connor RA, Akram AR. Cancer Associated Fibroblasts - An Impediment to Effective Anti-Cancer T Cell Immunity. Front Immunol 2022; 13:887380. [PMID: 35479076 PMCID: PMC9035846 DOI: 10.3389/fimmu.2022.887380] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
The presence of functionally efficient cytotoxic T lymphocytes (CTL) in the Tumour nest is crucial in mediating a successful immune response to cancer. The detection and elimination of cancer cells by CTL can be impaired by cancer-mediated immune evasion. In recent years, it has become increasingly clear that not only neoplastic cells themselves, but also cells of the tumour microenvironment (TME) exert immunosuppressive functions and thereby play an integral part in the immune escape of cancer. The most abundant stromal cells of the TME, cancer associated fibroblasts (CAFs), promote tumour progression via multiple pathways and play a role in dampening the immune response to cancer. Recent research indicates that T cells react to CAF signalling and establish bidirectional crosstalk that plays a significant role in the tumour immune response. This review discusses the various mechanisms by which the CAF/T cell crosstalk may impede anti-cancer immunity.
Collapse
Affiliation(s)
- Lilian Koppensteiner
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Hu X, Zhou W, Pi R, Zhao X, Wang W. Genetically modified cancer vaccines: Current status and future prospects. Med Res Rev 2022; 42:1492-1517. [PMID: 35235212 DOI: 10.1002/med.21882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 12/13/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Vaccines can stimulate the immune system to protect individuals from infectious diseases. Moreover, vaccines have also been applied to the prevention and treatment of cancers. Due to advances in genetic engineering technology, cancer vaccines could be genetically modified to increase antitumor efficacy. Various genes could be inserted into cells to boost the immune response, such as cytokines, T cell costimulatory molecules, tumor-associated antigens, and tumor-specific antigens. Genetically modified cancer vaccines utilize innate and adaptive immune responses to induce durable antineoplastic capacity and prevent the recurrence. This review will discuss the major approaches used to develop genetically modified cancer vaccines and explore recent advances to increase the understanding of engineered cancer vaccines.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
16
|
Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater 2021; 135:567-581. [PMID: 34506976 DOI: 10.1016/j.actbio.2021.09.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023]
Abstract
Tumor vaccines that induce effective and sustained antitumor immunity are highly promising for cancer therapy. However, the antitumor potential of these vaccines is weakened due to the immunosuppressive characteristics of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the TME; they play an important role in tumor growth, metastasis, immunosuppression, and drug resistance. Fibroblast activation protein-α (FAP) is overexpressed in CAFs in more than 90% of human tumor tissues. Further, FAP+CAFs are an ideal interstitial target for the immunotherapy of solid tumors. Exosomes derived from tumor cells contain many tumor antigens, which can be used as the basis of tumor vaccines that elicit strong antitumor immunity. Almost all exosome-based cancer vaccines have been designed and developed for tumor parenchymal cells. Moreover, the exosome production is very low and the purification is very difficult, limiting their clinical application as tumor vaccines. In this study, we developed FAP gene-engineered tumor cell-derived exosome-like nanovesicles (eNVs-FAP) as a tumor vaccine that can be prepared easily and in large quantities. The eNVs-FAP vaccine inhibited tumor growth by inducing strong and specific cytotoxic T lymphocyte (CTL) immune responses against tumor cells and FAP+CAFs and reprogramming the immunosuppressive TME in the colon, melanoma, lung, and breast cancer models. Moreover, eNVs-FAP vaccine-activated cellular immune responses could promote tumor ferroptosis by releasing interferon-gamma (IFN-γ) from CTLs and depleting FAP+CAFs. Thus, eNVs-FAP is a candidate tumor vaccine targeting both the tumor parenchyma and the stroma. STATEMENT OF SIGNIFICANCE: Nanovaccines can activate immune cells and promote an antitumor immune response. In this study, we developed the fibroblast activation protein-α (FAP) gene-engineered tumor cell-derived exosome-like vesicle vaccines (eNVs-FAP). A large number of eNVs-FAP were obtained by continuously squeezing FAP gene-engineered tumor cells. eNVs-FAP showed excellent antitumor effects in a variety of tumor-bearing mouse models. The mechanistic analysis showed that eNVs-FAP promoted the maturation of dendritic cells (DCs), increased the infiltration of effector T cells into target tumor cells and FAP-positive cancer-associated fibroblasts (FAP+CAFs), and reduced the proportion of immunosuppressive cells, including M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), in the tumor microenvironment (TME). Moreover, the clearance of FAP+CAFs helped enhance interferon-gamma-induced tumor cell ferroptosis.
Collapse
|
17
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1213] [Impact Index Per Article: 303.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Pfeifer E, Burchell JM, Dazzi F, Sarker D, Beatson R. Apoptosis in the Pancreatic Cancer Tumor Microenvironment-The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells 2021; 10:cells10071653. [PMID: 34359823 PMCID: PMC8305815 DOI: 10.3390/cells10071653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. This is attributed to the disease already being advanced at presentation and having a particularly aggressive tumor biology. The PDAC tumor microenvironment (TME) is characterized by a dense desmoplastic stroma, dominated by cancer-associated fibroblasts (CAF), extracellular matrix (ECM) and immune cells displaying immunosuppressive phenotypes. Due to the advanced stage at diagnosis, the depletion of immune effector cells and lack of actionable genomic targets, the standard treatment is still apoptosis-inducing regimens such as chemotherapy. Paradoxically, it has emerged that the direct induction of apoptosis of cancer cells may fuel oncogenic processes in the TME, including education of CAF and immune cells towards pro-tumorigenic phenotypes. The direct effect of cytotoxic therapies on CAF may also enhance tumorigenesis. With the awareness that CAF are the predominant cell type in PDAC driving tumorigenesis with various tumor supportive functions, efforts have been made to try to target them. However, efforts to target CAF have, to date, shown disappointing results in clinical trials. With the help of sophisticated single cell analyses it is now appreciated that CAF in PDAC are a heterogenous population with both tumor supportive and tumor suppressive functions. Hence, there remains a debate whether targeting CAF in PDAC is a valid therapeutic strategy. In this review we discuss how cytotoxic therapies and the induction of apoptosis in PDAC fuels oncogenesis by the education of surrounding stromal cells, with a particular focus on the potential pro-tumorigenic outcomes arising from targeting CAF. In addition, we explore therapeutic avenues to potentially avoid the oncogenic effects of apoptosis in PDAC CAF.
Collapse
|
19
|
Dzobo K, Dandara C. Broadening Drug Design and Targets to Tumor Microenvironment? Cancer-Associated Fibroblast Marker Expression in Cancers and Relevance for Survival Outcomes. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:340-351. [PMID: 32496971 DOI: 10.1089/omi.2020.0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid tumors have complex biology and structure comprising cancer cells, stromal cells, and the extracellular matrix. While most therapeutics target the cancer cells, recent data suggest that cancer cell behavior and response to treatment are markedly influenced by the tumor microenvironment (TME). In particular, the cancer-associated fibroblasts (CAFs) are the most abundant stromal cells, and play a significant contextual role in shaping tumor initiation, progression, and metastasis. CAFs have therefore emerged as part of the next-generation cancer drug design and discovery innovation strategy. We report here new findings on differential expression and prognostic significance of CAF markers in several cancers. We utilized two publicly available resources: The Cancer Genomic Atlas and Gene Expression Profiling Interactive Analysis. We examined the expression of CAF markers, ACTA2, S100A4, platelet-derived growth factor receptor-beta [PDGFR-β], CD10, and fibroblast activation protein-alpha (FAP-α), in tumor tissues versus the adjacent normal tissues. We found that CAF markers were differentially expressed in various different tumors such as colon, breast, and esophageal cancers and melanoma. No CAF marker is expressed in the same pattern in all cancers, however. Importantly, we report that patients with colon adenocarcinoma and esophageal carcinoma expressing high FAP-α and CD10, respectively, had significantly shorter overall survival, compared with those with low levels of these CAF markers (p < 0.05). We call for continued research on TME biology and clinical evaluation of the CAF markers ACTA2, S100A4, PDGFR-β, CD10, and FAP-α in relation to prognosis of solid cancers in large population samples. An effective cancer drug design and discovery roadmap in the 21st century ought to be broadly framed, and include molecular targets informed by both cancer cell and TME variations.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells 2021; 10:cells10051142. [PMID: 34068501 PMCID: PMC8151573 DOI: 10.3390/cells10051142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, glioblastoma (GBM) is the most common malignant tumor of the central nervous system in adults. Fibroblast activation protein (FAP) is a member of the dipeptidyl peptidase family, which has catalytic activity and is engaged in protein recruitment and scaffolds. Recent studies have found that FAP expression in different types of cells within the GBM microenvironment is typically upregulated compared with that in lower grade glioma and is most pronounced in the mesenchymal subtype of GBM. As a marker of cancer-associated fibroblasts (CAFs) with tumorigenic activity, FAP has been proven to promote tumor growth and invasion via hydrolysis of molecules such as brevican in the extracellular matrix and targeting of downstream pathways and substrates, such as fibroblast growth factor 21 (FGF21). In addition, based on its ability to suppress antitumor immunity in GBM and induce temozolomide resistance, FAP may be a potential target for immunotherapy and reversing temozolomide resistance; however, current studies on therapies targeting FAP are still limited. In this review, we summarized recent progress in FAP expression profiling and the understanding of the biological function of FAP in GBM and raised the possibility of FAP as an imaging biomarker and therapeutic target.
Collapse
|
21
|
Li Q, Li J, Song S, Chen W, Shen X, Li S, Xing D. Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens in vivo or ex vivo? J Mater Chem B 2021; 9:2352-2366. [PMID: 33659970 DOI: 10.1039/d0tb02915g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tumor vaccines, focusing on tailoring individual tumor antigens, have gained much attention in personalized tumor therapy. Recently, breakthroughs have been made in the development of tumor vaccines thanks to the progress in nanotechnology. We will summarize nanoparticle-mediated tumor vaccines for personalized therapy in this review. ROS/heat generating nanoparticles and molecules could induce immunogenic cell death and tumor antigen release in vivo. This strategy often includes chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, magneto-thermal therapy, etc. On the other hand, ex vivo technologies have been applied for processing of tumor cells/tissues to form effective tumor antigens, in which nanotechnology has shown very good prospects in delivering tumor antigens. In in vivo and ex vivo strategies, nanotechnology also could improve the immune effect through enhancing the uptake by targeting cells, reducing therapeutic drugs/agents, further encapsulating immuno-modulatory molecules or combining with other therapy treatments. Thus, therapeutic vaccines based on nanoparticles have the potential to enhance the immune response and reduce the side effects.
Collapse
Affiliation(s)
- Qian Li
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, 266071, China and Qingdao Cancer Institute, Qingdao, 266071, China
| | - Jia Li
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Sha Song
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Wujun Chen
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xin Shen
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, 266071, China and CP Pharmaceutical (Qingdao) Co., Ltd, Qingdao, 266426, China.
| | - Suming Li
- Institut Européen des Membranes, IEM-UMR 5635, Univ Montpellier, ENSCM,CNRS, 34095 Montpellier, France.
| | - Dongming Xing
- Cancer Institute, Affiliated Hospital of Qingdao University, Qingdao, 266071, China and Qingdao Cancer Institute, Qingdao, 266071, China and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Abstract
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP's role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Collapse
Affiliation(s)
- Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3870 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
23
|
Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. eLife 2020; 9:57243. [PMID: 33370234 PMCID: PMC7769568 DOI: 10.7554/elife.57243] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts play an essential role in organogenesis and the integrity of tissue architecture and function. Growth in most solid tumors is dependent upon remodeling 'stroma', composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which plays a critical role in tumor initiation, progression, metastasis, and therapeutic resistance. Recent studies have clearly established that the potent immunosuppressive activity of stroma is a major mechanism by which stroma can promote tumor progression and confer resistance to immune-based therapies. Herein, we review recent advances in identifying the stroma-dependent mechanisms that regulate cancer-associated inflammation and antitumor immunity, in particular, the interactions between fibroblasts and immune cells. We also review the potential mechanisms by which stroma can confer resistance to immune-based therapies for solid tumors and current advancements in stroma-targeted therapies.
Collapse
Affiliation(s)
| | - Ellen Puré
- University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
24
|
Cancer-associated fibroblasts: key determinants of tumor immunity and immunotherapy. Curr Opin Immunol 2020; 64:80-87. [PMID: 32402828 PMCID: PMC8228400 DOI: 10.1016/j.coi.2020.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/19/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
Immune-targeted approaches are rapidly changing the therapeutic landscape for cancer. In spite of that, most patients show resistance or acquire resistance to these therapies. Increasing work describing the tumor microenvironment (TME) has highlighted this space as one of the key determinants in tumor immune response and immunotherapeutic success. Frequently overlooked within this space, cancer-associated fibroblasts (CAFs) within the TME have surfaced as an important dictator of the tumor immune response. Herein, we review recent advances in defining the role of CAF-immune cell interactions in solid tumors and prospects for targeting stroma to overcome resistance to immunotherapy.
Collapse
|
25
|
Zhou L, Lu M, Zhong W, Yang J, Yin Y, Li M, Li D, Zhang S, Xu M. Low-dose docetaxel enhances the anti-tumour efficacy of a human umbilical vein endothelial cell vaccine. Eur J Pharm Sci 2019; 142:105163. [PMID: 31756447 DOI: 10.1016/j.ejps.2019.105163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Our previous studies have indicated that human umbilical vein endothelial cell (HUVEC) vaccination appears to be a potentially promising anti-angiogenesis therapy, but the modest therapeutic anti-tumour efficiency limits its clinical use. This highlights the importance of identifying more potent therapeutic HUVEC vaccine strategies for clinical testing. In the present study, the immune-modulating doses of docetaxel (DOC) was combined with 1 × 106 viable HUVECs as a means to enhance the therapeutic anti-tumour efficiency of the HUVEC vaccine. Our results demonstrated that 5 mg/kg DOC administrated prior to HUVEC vaccine could most effectively assist HUVEC vaccine to display a remarkable suppression of tumour growth and metastasis as wells as a prolongation of survival time in a therapeutic procedure. CD31 immunohistochemical analysis of the excised tumours confirmed a significant reduction in vessel density after treatment with the HUVEC vaccine with 5 mg/kg DOC. Additionally, an increased HUVEC-specific antibody level, activated CTLs and an elevated IFN-γ level in cultured splenocytes were revealed after treatment with HUVEC vaccine with 5 mg/kg DOC. Finally, 5 mg/kg DOC coupled with the HUVEC vaccine led to induction of significant increases in CD8+T cells and decrease in Tregs in the tumour microenvironment. Taken together, all the results verified that 5 mg/kg DOC could assist HUVEC vaccine to elicit strong HUVEC specific humoral and cellular responses, which could facilitate the HUVEC vaccine-mediated inhibition of cancer growth and metastasis. These findings provide the immunological rationale for the combined use of immune-modulating doses of DOC and HUVEC vaccines in patients with cancer.
Collapse
Affiliation(s)
- Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Meiyu Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weilan Zhong
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Junhou Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yancun Yin
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Minjing Li
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Defang Li
- Collega of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
26
|
Chen M, Xu G, Fan M, Jia H, Xiao L, Lang J. Anti-tumour effects of a xenogeneic fibroblast activation protein-based whole cell tumour vaccine in murine tumour models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4182-4193. [PMID: 31722575 DOI: 10.1080/21691401.2019.1687498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical benefit of cancer immunotherapy, including tumour vaccines, is influenced by immunosuppressive factors in the tumour microenvironment. Among these factors, cancer-associated fibroblasts (CAFs) and their products, such as fibroblast activation protein-α (FAPα), greatly affect tumourigenesis, development, metastasis and treatment tolerance, which make them promising immunotherapy targets for cancer patients. Our previous study reported that a whole cell tumour vaccine (WCTV) expressing FAPα inhibited tumour growth by simultaneously attacking cancer cells and CAFs. This study aimed to improve WCTVs with xenoantigens to end immune tolerance and to further activate the adaptive immune system. In the present study, we designed a WCTV by transducing a vector encoding human FAPα (hFAPα) into murine tumour cells and evaluated its efficacy in multiple solid tumour models. Immunotherapy with this WCTV effectively delayed tumour growth and prevented recurrence. The anti-tumour responses were clearly linked to antigen-specific cytotoxic T cells, whereas CD4(+) T lymphocytes also played a role. Humoural immune responses were activated because the adoptive transfer of immunoglobulins induced abscopal anti-tumour effects, and autoantibodies against FAPα were specifically detected in the sera of immunized mice. Moreover, an increased number of apoptotic tumour cells along with a reduced number of CAFs within the tumours suggest that xenogeneic FAPα-based WCTV has the potential to drive T cell and antibody responses against cancer cells and CAFs. This finding could offer an advanced strategy to treat multiple solid tumours with individualized cancer immunotherapy techniques.
Collapse
Affiliation(s)
- Meihua Chen
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Guangchao Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ming Fan
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongyuan Jia
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Ling Xiao
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
27
|
Tumour-stroma ratio and 5-year mortality in gastric adenocarcinoma: a systematic review and meta-analysis. Sci Rep 2019; 9:16018. [PMID: 31690815 PMCID: PMC6831590 DOI: 10.1038/s41598-019-52606-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/12/2019] [Indexed: 12/18/2022] Open
Abstract
Tumour-stroma ratio (TSR) is a novel potential prognostic factor in cancers and based on the proportions of stroma and tumour area. The prognostic value of TSR in gastric cancer is incompletely known. The aim of this study was to estimate prognostic significance of TSR in gastric adenocarcinoma. A search of PubMed (MEDLINE), Web of Science, EMBASE, Cochrane and Scopus databases was performed. A meta-analysis was conducted on five-year survival in gastric cancer patients using inverse variance random-effects methods. The literature search yielded 5329 potential titles, of which a total of seven studies were eligible. Results of six studies including a total of 1779 patients were pooled in the meta-analysis. Only 23 (1.3%) of the patients received neoadjuvant therapy. All six studies had a cut-off of 50% for the proportion of stroma when dividing the patients into low- and high stroma groups. Low TSR (high amount of stroma) was strongly associated with increased five-year mortality (hazard ratio 2.19, 95% CI 1.69–2.85). In conclusion, TSR is a strong prognostic factor in gastric cancer. It could be used to estimate prognosis of gastric cancer patients not receiving neoadjuvant chemotherapy. Further studies including patients receiving neoadjuvant therapy are recommended.
Collapse
|
28
|
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. NANOSCALE 2019; 11:17157-17178. [PMID: 31531445 PMCID: PMC6778734 DOI: 10.1039/c9nr05371a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy is emerging as a promising treatment modality that suppresses and eliminates tumors by re-activating and maintaining the tumor-immune cycle, and further enhancing the body's anti-tumor immune response. Despite the impressive therapeutic potential of immunotherapy approaches such as immune checkpoint inhibitors and tumor vaccines in pre-clinical and clinical applications, the effective response is limited by insufficient accumulation in tumor tissues and severe side-effects. Recent years have witnessed the rise of nanotechnology as a solution to improve these technical weaknesses due to its inherent biophysical properties and multifunctional modifying potential. In this review, we summarized and discussed the current status of nanoparticle-enhanced cancer immunotherapy strategies, including intensified delivery of tumor vaccines and immune adjuvants, immune checkpoint inhibitor vehicles, targeting capacity to tumor-draining lymph nodes and immune cells, triggered releasing and regulating specific tumor microenvironments, and adoptive cell therapy enhancement effects.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ciceron Ayala-Orozco
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Pradipta Ranjan Rauta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
30
|
Geng F, Guo J, Guo QQ, Xie Y, Dong L, Zhou Y, Liu CL, Yu B, Wu H, Wu JX, Zhang HH, Kong W, Yu XH. A DNA vaccine expressing an optimized secreted FAPα induces enhanced anti-tumor activity by altering the tumor microenvironment in a murine model of breast cancer. Vaccine 2019; 37:4382-4391. [PMID: 31202521 DOI: 10.1016/j.vaccine.2019.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022]
Abstract
Cancer-associated fibroblasts (CAFs), major components of the tumor microenvironment (TME), promote tumor growth and metastasis and inhibit the anti-tumor immune response. We previously constructed a DNA vaccine expressing human FAPα, which is highly expressed by CAFs, to target these cells in the TME, and observed limited anti-tumor effects in the 4T1 breast cancer model. When the treatment time was delayed until tumor nodes formed, the anti-tumor effect of the vaccine completely disappeared. In this study, to improve the safety and efficacy, we constructed a new FAPα-targeted vaccine containing only the extracellular domain of human FAPα with a tissue plasminogen activator signal sequence for enhanced antigen secretion and immunogenicity. The number of CAFs was more effectively reduced by CD8+ T cells induced by the new vaccine. This resulted in decreases in CCL2 and CXCL12 expression, leading to a significant decrease in the ratio of myeloid-derived suppressor cells in the TME. Moreover, when mice were treated after the establishment of tumors, the vaccine could still delay tumor growth. To facilitate the future application of the vaccine in clinical trials, we further optimized the gene codons and reduced the homology between the vaccine and the original sequence, which may be convenient for evaluating the vaccine distribution in the human body. These results indicated that the new FAPα-targeted vaccine expressing an optimized secreted human FAPα induced enhanced anti-tumor activity by reducing the number of FAPα+ CAFs and enhancing the recruitment of effector T cells in the 4T1 tumor model mice.
Collapse
Affiliation(s)
- Fei Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Qian-Qian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Yu Xie
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Chen-Lu Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Jia-Xin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Hai-Hong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| | - Xiang-Hui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, PR China
| |
Collapse
|
31
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
32
|
Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 2018; 37:4343-4357. [PMID: 29720723 PMCID: PMC6092565 DOI: 10.1038/s41388-018-0275-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease that acts on various hormones and extracellular matrix components. FAP is highly upregulated in a wide variety of cancers, and is often used as a marker for pro-tumorigenic stroma. It has also been proposed as a molecular target of cancer therapies, and, especially in recent years, a great deal of research has gone into design and testing of diverse FAP-targeted treatments. Yet despite this growing field of research, our knowledge of FAP's basic biology and functional roles in various cancers has lagged behind its use as a tumor-stromal marker. In this review, we summarize and analyze recent advances in understanding the functions of FAP in cancer, most notably its prognostic value in various tumor types, cellular effects on various cell types, and potential as a therapeutic target. We highlight outstanding questions in the field, the answers to which could shape preclinical and clinical studies of FAP.
Collapse
Affiliation(s)
- Ellen Puré
- University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
33
|
Costa D, Venè R, Benelli R, Romairone E, Scabini S, Catellani S, Rebesco B, Mastracci L, Grillo F, Minghelli S, Loiacono F, Zocchi MR, Poggi A. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts. Front Immunol 2018; 9:1150. [PMID: 29910806 PMCID: PMC5992415 DOI: 10.3389/fimmu.2018.01150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/07/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3- NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3- cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.
Collapse
Affiliation(s)
- Delfina Costa
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Benelli
- Immunology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Stefano Scabini
- Oncological Surgery, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Catellani
- Clinical Hematology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Rebesco
- Antiblastic Drug Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Unit of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Unit of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Minghelli
- Clinical and Experimental Immunology Laboratory, Ospedale G. Gaslini, Genoa, Italy
| | | | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
34
|
da Silva AC, Jammal MP, Etchebehere RM, Murta EFC, Nomelini RS. Role of Alpha-Smooth Muscle Actin and Fibroblast Activation Protein Alpha in Ovarian Neoplasms. Gynecol Obstet Invest 2018; 83:381-387. [PMID: 29621774 DOI: 10.1159/000488088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Studies show that tumor growth is not just determined by the presence of malignant cells, since interactions between cancer cells and stromal microenvironment have important impacts on the cancer growth and progression. Cancer-associated fibroblasts play a prominent role in this process. The aims of the study were to investigate 2 cancer-associated fibroblasts markers, alpha-smooth muscle actin (α-SMA), and fibroblast activation protein alpha (FAP) in the stromal microenvironment of benign and malignant ovarian epithelial neoplasms, and to relate their tissue expression with prognostic factors in ovarian cancer. METHODS α-SMA and FAP were evaluated by immunohistochemistry in malignant (n = 28) and benign (n = 28) ovarian neoplasms. Fisher's exact test was used with a significance level lower than 0.05. RESULTS FAP immunostaining was stronger in ovarian cancer when compared to benign neoplasms (p = 0.0366). There was no significant difference in relation to α-SMA expression between malignant and benign ovarian neoplasms as well as prognostic factors. In ovarian cancer, FAP stainings 2/3 was significantly related to histological grades 2 and 3 (p = 0.0183). CONCLUSION FAP immunostaining is more intense in malignant neoplasms than in benign ovarian neoplasms, as well as in moderately differentiated and undifferentiated ovarian carcinomas compared to well-differentiated neoplasms, thus indicating that it can be used as a marker of worse prognosis.
Collapse
Affiliation(s)
- Ana Carolinne da Silva
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Uberaba, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Uberaba, Brazil
| | | | | | | |
Collapse
|
35
|
Avery D, Govindaraju P, Jacob M, Todd L, Monslow J, Puré E. Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biol 2018; 67:90-106. [PMID: 29248556 PMCID: PMC5910258 DOI: 10.1016/j.matbio.2017.12.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts are key players in the injury response, tumorigenesis, fibrosis, and inflammation. Dichotomous outcomes in response to varied stroma-targeted therapies in cancer emphasize the need to disentangle the roles of heterogeneous fibroblast subsets in physiological and pathophysiological settings. In wound healing, fibrosis, and myriad tumor types, fibroblast activation protein (FAP) and alpha-smooth muscle actin (αSMA) identify distinct, yet overlapping, activated fibroblast subsets. Prior studies established that FAPHi reactive fibroblasts and αSMAHi myofibroblasts can exert opposing influences in tumorigenesis. However, the factors that drive this phenotypic heterogeneity and the unique functional roles of these subsets have not been defined. We demonstrate that a convergence of ECM composition, elasticity, and transforming growth factor beta (TGF-β) signaling governs activated fibroblast phenotypic heterogeneity. Furthermore, FAPHi reactive fibroblasts and αSMAHi myofibroblasts exhibited distinct gene expression signatures and functionality in vitro, illuminating potentially unique roles of activated fibroblast subsets in tissue remodeling. These insights into activated fibroblast heterogeneity will inform the rational design of stroma-targeted therapies for cancer and fibrosis.
Collapse
Affiliation(s)
- Diana Avery
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, United States; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, United States; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States
| | - Michele Jacob
- Envision Pharma Group, Philadelphia, PA, United States
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, United States; Pharmacology Graduate Group of the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Ziani L, Chouaib S, Thiery J. Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Front Immunol 2018; 9:414. [PMID: 29545811 PMCID: PMC5837994 DOI: 10.3389/fimmu.2018.00414] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Salem Chouaib
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Jerome Thiery
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
37
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
38
|
Yi Y, Wang Z, Sun Y, Chen J, Zhang B, Wu M, Li T, Hu L, Zeng J. The EMT-related transcription factor snail up-regulates FAPα in malignant melanoma cells. Exp Cell Res 2018; 364:160-167. [PMID: 29410133 DOI: 10.1016/j.yexcr.2018.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
FAPα is a cell surface serine protease, mainly expressed in tumor stromal fibroblasts in more than 90% of human epithelial carcinomas. Due to its almost no expression in normal tissues and its tumor-promoting effects, FAPα has been studied as a novel potential target for antitumor therapy. However, the regulation mechanism on FAPα expression is poorly understood. In this study, we found that overexpression of snail significantly increased the mRNA and protein expression levels of FAPα in malignant melanoma B16 and SK-MEL-28 cells. Overexpression of snail increased FAPα promoter activity remarkably. Snail could directly bind to FAPα promoter to regulate FAPα expression. Moreover, snail expression was positively correlated to FAPα expression in human cutaneous malignant melanoma. Furthermore, knockdown of FAPα markedly reduced snail-induced cell migration. Overall, our findings provide a novel regulation mechanism on FAPα expression and highlight the role of snail/FAPα axis as a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Zhaotong Wang
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Junhu Chen
- Department of Biological Products Surveillance and Evaluation, Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong, China
| | - Biao Zhang
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Tianyu Li
- Department of Surgery, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jun Zeng
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
39
|
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, Liu ZG, Liu SQ, Xie WY, Liu HF, Liu JS, Wu BP. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2017; 7:33472-82. [PMID: 26985769 PMCID: PMC5078111 DOI: 10.18632/oncotarget.8098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Wei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuang-Quan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wan-Ying Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Shi Liu
- Department of Anesthesia, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bai-Ping Wu
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Han Q, Wang Y, Pang M, Zhang J. STAT3-blocked whole-cell hepatoma vaccine induces cellular and humoral immune response against HCC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:156. [PMID: 29115974 PMCID: PMC5688805 DOI: 10.1186/s13046-017-0623-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
Background Whole-cell tumor vaccines have shown much promise; however, only limited success has been achieved for the goal of eliciting robust tumor-specific T-cell responses. Methods Hepatocellular carcinoma (HCC) cells, H22 and Hepa1–6, were modified by blocking the STAT3 signaling pathway with a STAT3 decoy oligodeoxynucleotide, and the immunogenicity and possibility of using these cell lysates as a vaccine were evaluated. Results STAT3-blocked whole HCC cell lysates inhibited tumor growth and tumorigenesis, and prolonged the survival of tumor-bearing mice. In addition, STAT3-blocked whole HCC cell lysates stimulated the activation of T cells and natural killer (NK) cells, and enhanced the infiltration of cytotoxic CD8+ T cells in the tumor tissues. In addition, the maturation of dendritic cells (DCs) was enhanced, which promoted the generation of immunological memory against HCC. Furthermore, secondary immune responses could be primed as soon as these immunized mice were challenged with HCC cells, accompanied by T cell and NK cell activation and infiltration. Additionally, immunization with this vaccine decreased the generation of Tregs and the production of TGF-β and IL-10. Importantly, STAT3-blocked whole HCC cell lysates prevented HCC-mediated exhaustion of T cells and NK cells, showing low expression of checkpoint molecules such as PD-1 and TIGIT on T cells and NK cells in the immunized mice. Conclusions The newly generated STAT3-blocked whole-cell HCC vaccine has potential for cancer cell vaccination. Electronic supplementary material The online version of this article (10.1186/s13046-017-0623-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yaqun Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Min Pang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
41
|
Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017; 13:1633-1647. [PMID: 28829193 DOI: 10.2217/fon-2017-0145] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol Immunother 2017; 66:1037-1048. [PMID: 28451791 DOI: 10.1007/s00262-017-2003-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Tumor-associated fibrosis is characterized by unchecked pro-fibrotic and pro-inflammatory signaling. The components of fibrosis including significant numbers of cancer-associated fibroblasts, dense collagen deposition, and extracellular matrix stiffness, are well appreciated regulators of tumor progression but may also be critical regulators of immune surveillance. While this suggests that the efficacy of immunotherapy may be limited in highly fibrotic cancers like pancreas, it also suggests a therapeutic opportunity to target fibrosis in these tumor types to reawaken anti-tumor immunity. This review discusses the mechanisms by which fibrosis might subvert tumor immunity and how to overcome these mechanisms.
Collapse
|
43
|
Xia Q, Geng F, Zhang FF, Liu CL, Xu P, Lu ZZ, Xie Y, Sun B, Wu H, Yu B, Kong W, Yu XH, Zhang HH. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol 2016; 39:37-44. [PMID: 28004985 DOI: 10.1080/08923973.2016.1269337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclophosphamide (CY) is a DNA alkylating agent, which is widely used with other chemotherapy drugs in the treatment of various types of cancer. It can be used not only as a chemotherapeutic but also as an immunomodulatory agent to inhibit IL-10 expression and T regulatory cells (Tregs). Fibroblast activation protein α (FAPα) is expressed in cancer-associated fibroblasts in the tumor microenvironment. Immunotherapy based on FAPα, as a tumor stromal antigen, typically induces specific immune response targeting the tumor microenvironment. This study evaluated the efficacy of a previously unreported CY combination strategy to enhance the limited anti-tumor effect of a DNA vaccine targeting FAPα. The results suggested CY administration could promote the percentage of splenic CD8+ T cells and decrease the proportion of CD4 + CD25 + Foxp3+ Tregs in spleen. In tumor tissues, levels of immunosuppressive cytokines including IL-10 and CXCL-12 were also reduced. Meanwhile, the CY combination did not impair the FAPα-specific immunity induced by the DNA vaccine and further reduced tumor stromal factors. Most importantly, FAP-vaccinated mice also treated with CY chemotherapy showed a marked suppression of tumor growth (inhibition ratio =80%) and a prolongation of survival time. Thus, the combination of FAPα immunotherapy and chemotherapy with CY offers new insights into improving cancer therapies.
Collapse
Affiliation(s)
- Qiu Xia
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fei Geng
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Fang-Fang Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Chen-Lu Liu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Ping Xu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Zhen-Zhen Lu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Yu Xie
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bo Sun
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hui Wu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Bin Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Wei Kong
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Xiang-Hui Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| | - Hai-Hong Zhang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Science , Jilin University , Changchun , P. R. China
| |
Collapse
|
44
|
Poggi A, Giuliani M. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment. Vaccines (Basel) 2016; 4:41. [PMID: 27834810 PMCID: PMC5192361 DOI: 10.3390/vaccines4040041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/01/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells' growth and expansion can influence neighboring cells' behavior, leading to a modulation of mesenchymal stromal cell (MSC) activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT), a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy.
| | - Massimo Giuliani
- Laboratory of Experimental Cancer Research, Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg.
| |
Collapse
|
45
|
Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L, Wang Y, Wang F, Shi G, Li Y, Yang Q, Cui X, Liu Y, Wang H, Zhang S, Yang Y, Xiang R, Li J, Yu D, Wei Y, Deng H. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2131-44. [PMID: 27527600 DOI: 10.4049/jimmunol.1600446] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023]
Abstract
IL-35 downregulates Th17 cell development and suppresses certain types of autoimmune inflammation such as collagen-induced arthritis and experimental autoimmune uveitis. Psoriasis is thought to be initiated by abnormal interactions between cutaneous keratinocytes and systemic immune cells. However, the role of IL-35 in psoriasis remains unclear. In this study, we assessed IL-35 in three well-known psoriasis models: a human keratinocyte cell line (HaCaT), a keratin 14 (K14)-vascular endothelial growth factor A (VEGF-A)-transgenic (Tg) mouse model, and an imiquimod-induced psoriasis mouse model. First, we found that IL-35 suppressed the expression of IL-6, CXCL8, and S100A7, which are highly upregulated by a mixture of five proinflammatory cytokines in HaCaT. Second, a plasmid coding for the human IL-35 sequence coated with cationic liposomes showed potent immunosuppressive effects on K14-VEGF-A-Tg and imiquimod-induced psoriasis mouse models. In the K14-VEGF-A-Tg model, our results showed that several types of proinflammatory cytokines were significantly reduced, whereas IL-10 was remarkably induced by IL-35. Compared with pcDNA3.1, there was a small number of CD4(+)IL-17(+) T cells and a large number of CD4(+)IL-10(+) and CD4(+)CD25(+)Foxp3(+) T cells in the IL-35 group. Most importantly, we found that IL-35 decreased the total number of macrophages and ratio of M1/M2 macrophages, which has not been reported previously. In addition, compared with dexamethasone, IL-35 showed long-term therapeutic efficacy. In summary, our results strongly indicate that IL-35 plays a potent immunosuppressive role in psoriasis. Thus, IL-35 has potential for development as a new therapeutic strategy for patients with chronic psoriasis and other cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Junfeng Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Provincial Key Discipline of Medical Immunology, Jining Medical University, Jining 272067, Shandong, China
| | - Yi Lin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunlei Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Biochemistry, Faculty of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 400715, China
| | - Xiaomei Zhang
- Laboratory Animal Center, Sichuan University, Chengdu 610040, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Youcui Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangfang Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; and
| | - Gang Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueliang Cui
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Xiang
- Department of Immunology, College of Medicine, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiong Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China;
| |
Collapse
|
46
|
Enhancement of fibroblast activation protein α-based vaccines and adenovirus boost immunity by cyclophosphamide through inhibiting IL-10 expression in 4T1 tumor bearing mice. Vaccine 2016; 34:4526-4535. [DOI: 10.1016/j.vaccine.2016.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/23/2016] [Accepted: 07/28/2016] [Indexed: 01/21/2023]
|
47
|
Zhang Y, Ertl HC. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget 2016; 7:23282-99. [PMID: 26943036 PMCID: PMC5029626 DOI: 10.18632/oncotarget.7818] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/14/2016] [Indexed: 11/25/2022] Open
Abstract
The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Ying Zhang
- Gene Therapy and Vaccines Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|