1
|
Sullivan MA, Lane S, Volkerling A, Engel M, Werry EL, Kassiou M. Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnol Bioeng 2023; 120:3079-3091. [PMID: 37395340 PMCID: PMC10953436 DOI: 10.1002/bit.28470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Current research tools for preclinical drug development such as rodent models and two-dimensional immortalized monocultures have failed to serve as effective translational models for human central nervous system (CNS) disorders. Recent advancements in the development of induced pluripotent stem cells (iPSCs) and three-dimensional (3D) culturing can improve the in vivo-relevance of preclinical models, while generating 3D cultures though novel bioprinting technologies can offer increased scalability and replicability. As such, there is a need to develop platforms that combine iPSC-derived cells with 3D bioprinting to produce scalable, tunable, and biomimetic cultures for preclinical drug discovery applications. We report a biocompatible poly(ethylene glycol)-based matrix which incorporates Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg peptide motifs and full-length collagen IV at a stiffness similar to the human brain (1.5 kPa). Using a high-throughput commercial bioprinter we report the viable culture and morphological development of monocultured iPSC-derived astrocytes, brain microvascular endothelial-like cells, neural progenitors, and neurons in our novel matrix. We also show that this system supports endothelial-like vasculogenesis and enhances neural differentiation and spontaneous activity. This platform forms a foundation for more complex, multicellular models to facilitate high-throughput translational drug discovery for CNS disorders.
Collapse
Affiliation(s)
- Michael A. Sullivan
- School of Medical Sciences, The Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samuel Lane
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| | | | - Martin Engel
- Inventia Life Science Operations Pty Ltd.AlexandriaNew South WalesAustralia
| | - Eryn L. Werry
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
- Central Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Michael Kassiou
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int J Mol Sci 2023; 24:13642. [PMID: 37686446 PMCID: PMC10488158 DOI: 10.3390/ijms241713642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Tissue engineering for spinal cord injury (SCI) remains a complex and challenging task. Biomaterial scaffolds have been suggested as a potential solution for supporting cell survival and differentiation at the injury site. However, different biomaterials display multiple properties that significantly impact neural tissue at a cellular level. Here, we evaluated the behavior of different cell lines seeded on chitosan (CHI), poly (ε-caprolactone) (PCL), and poly (L-lactic acid) (PLLA) scaffolds. We demonstrated that the surface properties of a material play a crucial role in cell morphology and differentiation. While the direct contact of a polymer with the cells did not cause cytotoxicity or inhibit the spread of neural progenitor cells derived from neurospheres (NPCdn), neonatal rat spinal cord cells (SCC) and NPCdn only attached and matured on PCL and PLLA surfaces. Scanning electron microscopy and computational analysis suggested that cells attached to the material's surface emerged into distinct morphological populations. Flow cytometry revealed a higher differentiation of neural progenitor cells derived from human induced pluripotent stem cells (hiPSC-NPC) into glial cells on all biomaterials. Immunofluorescence assays demonstrated that PCL and PLLA guided neuronal differentiation and network development in SCC. Our data emphasize the importance of selecting appropriate biomaterials for tissue engineering in SCI treatment.
Collapse
Affiliation(s)
- Victor A. da Silva
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Bianca C. Bobotis
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Felipe F. Correia
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Théo H. Lima-Vasconcellos
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Gabrielly M. D. Chiarantin
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Laura De La Vega
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christiane B. Lombello
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sônia M. Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Alexandre H. Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
3
|
Rasetti-Escargueil C, Popoff MR. Recent Developments in Botulinum Neurotoxins Detection. Microorganisms 2022; 10:microorganisms10051001. [PMID: 35630444 PMCID: PMC9145529 DOI: 10.3390/microorganisms10051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced as protein complexes by bacteria of the genus Clostridium that are Gram-positive, anaerobic and spore forming (Clostridium botulinum, C. butyricum, C. baratii and C. argentinense spp.). BoNTs show a high immunological and genetic diversity. Therefore, fast, precise, and more reliable detection methods are still required to monitor outbreaks and ensure surveillance of botulism. The botulinum toxin field also comprises therapeutic uses, basic research studies and biodefense issues. This review presents currently available detection methods, and new methods offering the potential of enhanced precision and reproducibility. While the immunological methods offer a range of benefits, such as rapid analysis time, reproducibility and high sensitivity, their implementation is subject to the availability of suitable tools and reagents, such as specific antibodies. Currently, the mass spectrometry approach is the most sensitive in vitro method for a rapid detection of active or inactive forms of BoNTs. However, these methods require inter-laboratory validation before they can be more widely implemented in reference laboratories. In addition, these surrogate in vitro models also require full validation before they can be used as replacement bioassays of potency. Cell-based assays using neuronal cells in culture recapitulate all functional steps of toxin activity, but are still at various stages of development; they are not yet sufficiently robust, due to high batch-to-batch cell variability. Cell-based assays have a strong potential to replace the mouse bioassay (MBA) in terms of BoNT potency determination in pharmaceutical formulations; they can also help to identify suitable inhibitors while reducing the number of animals used. However, the development of safe countermeasures still requires the use of in vivo studies to complement in vitro immunological or cell-based approaches.
Collapse
|
4
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
5
|
Lamotte JDD, Roqueviere S, Gautier H, Raban E, Bouré C, Fonfria E, Krupp J, Nicoleau C. hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant In Vitro Platform to Test Botulinum Neurotoxins. Front Pharmacol 2021; 11:617867. [PMID: 33519485 PMCID: PMC7840483 DOI: 10.3389/fphar.2020.617867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc metalloproteases that block neurotransmitter release at the neuromuscular junction (NMJ). Their high affinity for motor neurons combined with a high potency have made them extremely effective drugs for the treatment of a variety of neurological diseases as well as for aesthetic applications. Current in vitro assays used for testing and developing BoNT therapeutics include primary rodent cells and immortalized cell lines. Both models have limitations concerning accuracy and physiological relevance. In order to improve the translational value of preclinical data there is a clear need to use more accurate models such as human induced Pluripotent Stem Cells (hiPSC)-derived neuronal models. In this study we have assessed the potential of four different human iPSC-derived neuronal models including Motor Neurons for BoNT testing. We have characterized these models in detail and found that all models express all proteins needed for BoNT intoxication and showed that all four hiPSC-derived neuronal models are sensitive to both serotype A and E BoNT with Motor Neurons being the most sensitive. We showed that hiPSC-derived Motor Neurons expressed authentic markers after only 7 days of culture, are functional and able to form active synapses. When cultivated with myotubes, we demonstrated that they can innervate myotubes and induce contraction, generating an in vitro model of NMJ showing dose-responsive sensitivity BoNT intoxication. Together, these data demonstrate the promise of hiPSC-derived neurons, especially Motor Neurons, for pharmaceutical BoNT testing and development.
Collapse
|
6
|
Weingart OG, Eyer K, Lüchtenborg C, Sachsenheimer T, Brügger B, van Oostrum M, Wollscheid B, Dittrich PS, Loessner MJ. In vitro quantification of botulinum neurotoxin type A1 using immobilized nerve cell-mimicking nanoreactors in a microfluidic platform. Analyst 2019; 144:5755-5765. [PMID: 31433410 DOI: 10.1039/c9an00817a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bacterial toxin botulinum neurotoxin A (BoNT/A) is not only an extremely toxic substance but also a potent pharmaceutical compound that is used in a wide spectrum of neurological disorders and cosmetic applications. The quantification of the toxin is extremely challenging due to its extraordinary high physiological potency and is further complicated by the toxin's three key functionalities that are necessary for its activity: receptor binding, internalization-translocation, and catalytic activity. So far, the industrial standard to measure the active toxin has been the mouse bioassay (MBA) that is considered today as outdated due to ethical issues. Therefore, recent introductions of cell-based assays were highly anticipated; their impact however remains limited due to their labor-intensive implementation. This report describes a new in vitro approach that combines a nanosensor based on the use of nerve cell-mimicking nanoreactors (NMN) with microfluidic technology. The nanosensor was able to measure all three key functionalities, and therefore suitable to quantify the amount of physiologically active BoNT/A. The integration of such a sensor in a microfluidic device allowed the detection and quantification of BoNT/A amounts in a much shorter time than the MBA (<10 h vs. 2-4 days). Lastly, the system was also able to reliably quantify physiologically active BoNT/A within a simple final pharmaceutical formulation. This complete in vitro testing system and its unique combination of a highly sensitive nanosensor and microfluidic technology represent a significant ethical advancement over in vivo measures and a possible alternative to cell-based in vitro detection methods.
Collapse
Affiliation(s)
- Oliver G Weingart
- Institute for Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2019; 165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.
Collapse
Affiliation(s)
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| |
Collapse
|
8
|
Pellett S, Tepp WH, Johnson EA. Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations. FEBS Lett 2019; 593:2675-2685. [PMID: 31240706 PMCID: PMC7751886 DOI: 10.1002/1873-3468.13508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived neurons can be exquisitely sensitive to botulinum neurotoxins (BoNTs), exceeding sensitivity of the traditionally used mouse bioassay. In this report, four defined hiPSC-derived neuronal populations including primarily GABAergic, glutamatergic, dopaminergic, and motor neurons were examined for BoNT/A, B, C, D, E, and F sensitivity. The data indicate that sensitivity varies markedly for the BoNTs tested. Motor neurons are significantly more sensitive than other neuron types for all BoNTs except BoNT/D. Examination of SNARE protein levels and BoNT-specific cell surface protein receptors reveals few differences between the cell types except greater expression levels of the receptor protein SV2C and synapsin-IIa in motor neurons. This indicates that differential toxicity of BoNTs for motor neurons compared to other neuronal cell types involves multiple mechanisms.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
9
|
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM. iPSC-Derived Brain Endothelium Exhibits Stable, Long-Term Barrier Function in Perfused Hydrogel Scaffolds. Stem Cell Reports 2019; 12:474-487. [PMID: 30773484 PMCID: PMC6409430 DOI: 10.1016/j.stemcr.2019.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.
Collapse
Affiliation(s)
- Shannon L Faley
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Jason X Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Kylie M Balotin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University Medical School, Nashville, TN 37232, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Shen X, Yeung HT, Lai KO. Application of Human-Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Dev Neurobiol 2018; 79:20-35. [PMID: 30304570 DOI: 10.1002/dneu.22644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Synapses are the basic structural and functional units for information processing and storage in the brain. Their diverse properties and functions ultimately underlie the complexity of human behavior. Proper development and maintenance of synapses are essential for normal functioning of the nervous system. Disruption in synaptogenesis and the consequent alteration in synaptic function have been strongly implicated to cause neurodevelopmental disorders such as autism spectrum disorders (ASDs) and schizophrenia (SCZ). The introduction of human-induced pluripotent stem cells (hiPSCs) provides a new path to elucidate disease mechanisms and potential therapies. In this review, we will discuss the advantages and limitations of using hiPSC-derived neurons to study synaptic disorders. Many mutations in genes encoding for proteins that regulate synaptogenesis have been identified in patients with ASDs and SCZ. We use Methyl-CpG binding protein 2 (MECP2), SH3 and multiple ankyrin repeat domains 3 (SHANK3) and Disrupted in schizophrenia 1 (DISC1) as examples to illustrate the promise of using hiPSCs as cellular models to elucidate the mechanisms underlying disease-related synaptopathy.
Collapse
Affiliation(s)
- Xuting Shen
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Hoi Ting Yeung
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Kwok-On Lai
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
11
|
Mei-Ling Liu J, Fair SR, Kaya B, Zuniga JN, Mostafa HR, Alves MJ, Stephens JA, Jones M, Aslan MT, Czeisler C, Otero JJ. Development of a Novel FIJI-Based Method to Investigate Neuronal Circuitry in Neonatal Mice. Dev Neurobiol 2018; 78:1146-1167. [PMID: 30136762 DOI: 10.1002/dneu.22636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.
Collapse
Affiliation(s)
- Jillian Mei-Ling Liu
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Summer Rose Fair
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jessica Nabile Zuniga
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hasnaa Rashad Mostafa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - M Tahir Aslan
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
12
|
Goetzke R, Sechi A, De Laporte L, Neuss S, Wagner W. Why the impact of mechanical stimuli on stem cells remains a challenge. Cell Mol Life Sci 2018; 75:3297-3312. [PMID: 29728714 PMCID: PMC11105618 DOI: 10.1007/s00018-018-2830-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Ovadia EM, Colby DW, Kloxin AM. Designing well-defined photopolymerized synthetic matrices for three-dimensional culture and differentiation of induced pluripotent stem cells. Biomater Sci 2018; 6:1358-1370. [PMID: 29675520 PMCID: PMC6126667 DOI: 10.1039/c8bm00099a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are of interest for the study of disease, where these cells can be derived from patients and have the potential to be differentiated into any cell type; however, three-dimensional (3D) culture and differentiation of iPSCs within well-defined synthetic matrices for these applications remains limited. Here, we aimed to establish synthetic cell-degradable hydrogels that allow precise presentation of specific biochemical cues for 3D culture of iPSCs with relevance for hypothesis testing and lineage-specific differentiation. We synthesized poly(ethylene glycol)-(PEG)-peptide-based hydrogels by photoinitiated step growth polymerization and used them to test the hypothesis that the viability of iPSCs within these matrices could be rescued with appropriate biochemical cues inspired by proteins and integrins important for iPSC culture on Matrigel. Specifically, we selected a range of motifs inspired by iPSC binding to Matrigel, including laminin-derived IKVAV and YIGSR, α5β1-binding PHSRNG10RGDS, αvβ5-binding KKQRFRHRNRKG, and RGDS that is known to bind a variety of integrins for generally promoting cell adhesion. YIGSR and PHSRNG10RGDS resulted in the highest iPSC viability, where binding of β1 integrin was key, and these permissive compositions also allowed iPSC differentiation into neural progenitor cells (NPCs) (decreased oct4 expression and increased pax6 expression) in response to soluble factors. The resulting NPCs formed clusters of different sizes in response to each peptide, suggesting that matrix biochemical cues affect iPSC proliferation and clustering in 3D culture. In summary, we have established photopolymerizable synthetic matrices for the encapsulation, culture, and differentiation of iPSCs for studies of cell-matrix interactions and deployment in disease models.
Collapse
Affiliation(s)
- Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
14
|
Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neurosci Lett 2018; 670:75-82. [DOI: 10.1016/j.neulet.2018.01.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/05/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
|
15
|
Bosworth AM, Faley SL, Bellan LM, Lippmann ES. Modeling Neurovascular Disorders and Therapeutic Outcomes with Human-Induced Pluripotent Stem Cells. Front Bioeng Biotechnol 2018; 5:87. [PMID: 29441348 PMCID: PMC5797533 DOI: 10.3389/fbioe.2017.00087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, astrocytes, pericytes, and endothelial cells that form the blood-brain barrier (BBB). The NVU regulates material exchange between the bloodstream and the brain parenchyma, and its dysfunction is a primary or secondary cause of many cerebrovascular and neurodegenerative disorders. As such, there are substantial research thrusts in academia and industry toward building NVU models that mimic endogenous organization and function, which could be used to better understand disease mechanisms and assess drug efficacy. Human pluripotent stem cells, which can self-renew indefinitely and differentiate to almost any cell type in the body, are attractive for these models because they can provide a limitless source of individual cells from the NVU. In addition, human-induced pluripotent stem cells (iPSCs) offer the opportunity to build NVU models with an explicit genetic background and in the context of disease susceptibility. Herein, we review how iPSCs are being used to model neurovascular and neurodegenerative diseases, with particular focus on contributions of the BBB, and discuss existing technologies and emerging opportunities to merge these iPSC progenies with biomaterials platforms to create complex NVU systems that recreate the in vivo microenvironment.
Collapse
Affiliation(s)
- Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Shannon L Faley
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
Buzanska L, Zychowicz M, Kinsner-Ovaskainen A. Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results Probl Cell Differ 2018; 66:207-230. [PMID: 30209661 DOI: 10.1007/978-3-319-93485-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human neural stem/progenitor cells of the developing and adult organisms are surrounded by the microenvironment, so-called neurogenic niche. The developmental processes of stem cells, such as survival, proliferation, differentiation, and fate decisions, are controlled by the mutual interactions between cells and the niche components. Such interactions are tissue specific and determined by the biochemical and biophysical properties of the niche constituencies and the presence of other cell types. This dynamic approach of the stem cell niche, when translated into in vitro settings, requires building up "biomimetic" microenvironments resembling natural conditions, where the stem/progenitor cell is provided with diverse extracellular signals exerted by soluble and structural cues, mimicking those found in vivo. The neural stem cell niche is characterized by a unique composition of soluble components including neurotransmitters and trophic factors as well as insoluble extracellular matrix proteins and proteoglycans. Biotechnological innovations provide tools such as a new generation of tunable biomaterials capable of releasing specific signals in a spatially and temporally controlled manner, thus creating in vitro nature-like conditions and, when combined with stem cell-derived tissue specific progenitors, producing differentiated neuronal tissue structures. In addition, substantial progress has been made on the protocols to obtain stem cell-derived cell aggregates such as neurospheres and self-assembled organoids.In this chapter, we have assessed the application of bioengineered human neural stem cell microenvironments to produce in vitro models of different levels of biological complexity for the efficient control of stem cell fate. Examples of biomaterial-supported two-dimensional and three-dimensional (2D and 3D) complex culture systems that provide artificial neural stem cell niches are discussed in the context of their application for basic research and neurotoxicity testing.
Collapse
Affiliation(s)
- Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Marzena Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kinsner-Ovaskainen
- European Commission, Joint Research Centre, Directorate for Health Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
17
|
Barry C, Schmitz MT, Propson NE, Hou Z, Zhang J, Nguyen BK, Bolin JM, Jiang P, McIntosh BE, Probasco MD, Swanson S, Stewart R, Thomson JA, Schwartz MP, Murphy WL. Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Exp Biol Med (Maywood) 2017; 242:1679-1689. [PMID: 28599598 PMCID: PMC5786368 DOI: 10.1177/1535370217715028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to test sample reproducibility for model neural tissues formed on synthetic hydrogels. Human embryonic stem (ES) cell-derived precursor cells were cultured on synthetic poly(ethylene glycol) (PEG) hydrogels to promote differentiation and self-organization into model neural tissue constructs. Neural progenitor, vascular, and microglial precursor cells were combined on PEG hydrogels to mimic developmental timing, which produced multicomponent neural constructs with 3D neuronal and glial organization, organized vascular networks, and microglia with ramified morphologies. Spearman's rank correlation analysis of global gene expression profiles and a comparison of coefficient of variation for expressed genes demonstrated that replicate neural constructs were highly uniform to at least day 21 for samples from independent experiments. We also demonstrate that model neural tissues formed on PEG hydrogels using a simplified neural differentiation protocol correlated more strongly to in vivo brain development than samples cultured on tissue culture polystyrene surfaces alone. These results provide a proof-of-concept demonstration that 3D cellular models that mimic aspects of human brain development can be produced from human pluripotent stem cells with high sample uniformity between experiments by using standard culture techniques, cryopreserved cell stocks, and a synthetic extracellular matrix. Impact statement Pluripotent stem (PS) cells have been characterized by an inherent ability to self-organize into 3D "organoids" resembling stomach, intestine, liver, kidney, and brain tissues, offering a potentially powerful tool for modeling human development and disease. However, organoid formation must be quantitatively reproducible for applications such as drug and toxicity screening. Here, we report a strategy to produce uniform neural tissue constructs with reproducible global gene expression profiles for replicate samples from multiple experiments.
Collapse
Affiliation(s)
| | | | | | - Zhonggang Hou
- Morgridge Institute for Research, Madison, WI 53705, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA (current address)
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53705, USA
| | - Bao K Nguyen
- Morgridge Institute for Research, Madison, WI 53705, USA
| | | | - Peng Jiang
- Morgridge Institute for Research, Madison, WI 53705, USA
| | | | | | - Scott Swanson
- Morgridge Institute for Research, Madison, WI 53705, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53705, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53705, USA
- Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Michael P Schwartz
- Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Materials Science Program, University of Wisconsin-Madison, WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
18
|
Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods 2017; 451:90-99. [PMID: 28943257 DOI: 10.1016/j.jim.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
Botulinum toxin type A is a causative agent of human botulism. Due to high toxicity and ease of production it is classified by the Centres for Disease Control and Prevention as a category A bioterrorism agent. The same serotype, BoNT/A, is also the most widely used in pharmaceutical preparations for treatment of a diverse range of neuromuscular disorders. Traditionally, animals are used to confirm the presence and activity of toxin and to establish neutralizing capabilities of countermeasures in toxin neutralization tests. Cell based assays for BoNT/A have been reported as the most viable alternative to animal models, since they are capable of reflecting all key steps (binding, translocation, internalization and cleavage of intracellular substrate) involved in toxin activity. In this paper we report preliminary development of a simple immunochemical method for specifically detecting BoNT/A cleaved intracellular substrate, SNAP-25, in cell lysates of neurons derived from mouse embryonic stem cells. The assay offers sensitivity of better than 0.1LD50/ml (3fM) which is not matched by other functional assays, including the mouse bioassay, and provides serotype specificity for quantitative detection of BoNT/A and anti-BoNT/A antitoxin. Subject to formal validation, the method described here could potentially be used as a substitute for the mouse bioassay to measure potency and consistency of therapeutic products.
Collapse
Affiliation(s)
- G Yadirgi
- Division of Bacteriology, National Institute for Biological Standards and Control, a center of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - P Stickings
- Division of Bacteriology, National Institute for Biological Standards and Control, a center of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - S Rajagopal
- Division of Bacteriology, National Institute for Biological Standards and Control, a center of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - Y Liu
- Division of Bacteriology, National Institute for Biological Standards and Control, a center of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| | - D Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, a center of the Medicines and Healthcare Products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
19
|
Pellett S, Tepp WH, Johnson EA, Sesardic D. Assessment of ELISA as endpoint in neuronal cell-based assay for BoNT detection using hiPSC derived neurons. J Pharmacol Toxicol Methods 2017; 88:1-6. [PMID: 28465161 DOI: 10.1016/j.vascn.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Botulinum neurotoxins (BoNTs), the causative agents of botulism, are widely used as powerful bio-pharmaceuticals to treat neuro-muscular disorders. Due to the high potency and potential lethality of BoNTs, careful monitoring of the biologic activity of BoNT-based pharmaceuticals is required to ensure safe usage. For decades, the only approved method for potency determination of pharmaceutical BoNTs was the mouse bioassay (MBA), but in recent years improvements in cell-assay technologies have enabled MBA replacement by cell-based assays for specific product evaluations. This project details a method for quantitative and sensitive detection of biologic activity of BoNT/A1 in human induced pluripotent stem cell (hiPSC) derived neurons using an ELISA as a method to determine SNAP-25 cleavage by BoNT/A1 following toxin exposure. METHODS HiPSC derived neurons from two different sources were exposed to serial dilutions of BoNT/A1, and quantitative detection of toxin activity was evaluated and optimized in cell lysates using ELISA to detect cleaved SNAP-25. RESULTS The results from this study indicate that an ELISA using ultra TMB as a substrate quantitatively detects cleaved SNAP-25 in cell lysates of BoNT/A1 exposed hiPSC-derived neuronal cells with similar or greater sensitivity as Western blot (EC50~0.3U/well). DISCUSSION This study demonstrates a human specific and sensitive cell-based detection platform of BoNT/A1 activity using ELISA as an endpoint for quantitative detection of the SNAP-25 cleavage product. This assay is applicable to moderate to high-throughput formats and importantly employs non-cancerous human-specific neuronal cells for potency evaluation of a bio-pharmaceutical for human use.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, United States.
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, United States.
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, 1550 Linden Dr., Madison, WI 53706, United States.
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), A centre of Medicines and Healthcare products Regulatory Agency; Hertfordshire EN6 3QG, UK.
| |
Collapse
|
20
|
Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Mol Neurodegener 2016; 11:75. [PMID: 27938410 PMCID: PMC5148918 DOI: 10.1186/s13024-016-0139-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, 363-883, Republic of Korea
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| |
Collapse
|