1
|
O’Connor JK. Insights into the early evolution of modern avian physiology from fossilized soft tissues from the Mesozoic. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230426. [PMID: 40010392 PMCID: PMC11864835 DOI: 10.1098/rstb.2023.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 02/28/2025] Open
Abstract
Modern birds (Neornithes) are the mostly highly modified group of amniotes, bearing little resemblance to other extant sauropsids. Archaeopteryx, with its nearly modern wings but plesiomorphic skeleton, demonstrated more than 160 years ago that soft tissue specializations preceded skeletal modifications for flight. Soft tissues are thus of great importance for understanding the early evolution of modern avian physiology. Most commonly, traces of the integumentary system are preserved; exceptional discoveries include remnants of organs. Together, these have helped to elucidate the evolution of the lungs, ovaries, plumage and beak in early diverging birds. These fossils reveal that many important adaptations for efficient digestion, high oxygen intake, reduced body mass and improved wing structure, all of which serve to improve aerial capabilities and/or meet the energetic demands of this costly form of locomotion, evolved within the first 20-30 Myr of avian evolution. Soft tissue preservation also provides important clues for understanding the ecology of early diverging birds and may even elucidate the extinction of certain groups. However, the current fossil record of Mesozoic avian soft tissues is almost entirely limited to the Early Cretaceous and thus, discoveries from the Late Cretaceous have the potential to drastically transform our interpretation of the available data.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Jingmai K. O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605, USA
| |
Collapse
|
2
|
Xu X, Barrett PM. The origin and early evolution of feathers: implications, uncertainties and future prospects. Biol Lett 2025; 21:20240517. [PMID: 39969251 PMCID: PMC11837858 DOI: 10.1098/rsbl.2024.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025] Open
Abstract
As a defining feature of the clade, feathers are key to understanding bird biology. Discoveries of spectacular dinosaur and pterosaur fossils preserving feathers and feather-like integumentary appendages demonstrate trends of increasing complexity in gross morphology and microstructure through avemetatarsalian evolution, and the acquisition of complex flight feathers before the origin of birds. Moreover, this material shows some early feathers differed from modern feathers morphologically, ultrastructurally, biochemically and developmentally, revealing integumentary evolutionary pathways absent in modern taxa. These advances have changed conventional understanding of dinosaurs and impacted conceptions of both birds and feathers. However, it remains unknown if 'true' feathers originated at the base of Avemetatarsalia or within Theropoda. The former scenario implies multiple feather losses, the evolutionary and developmental mechanisms of which require investigation; the latter suggests pterosaurs and ornithischians independently evolved filamentous integumentary appendages, which might have shared genetic regulatory networks with theropod feathers. Answering these questions requires additional data on avemetatarsalian integument, particularly for sauropodomorphs, early diverging theropods and dinosaur outgroups, and more information on those taxa with known integumentary features. An integrative approach combining morphological, developmental, biochemical and taphonomic data, including extinct and extant taxa, is essential for a clearer understanding of feather origin and evolution.
Collapse
Affiliation(s)
- Xing Xu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing100044, China
- Centre for Vertebrate Evolutionary Biology, Yunnan University, Kunming, Yunnan650504, China
| | - Paul M. Barrett
- Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, Cromwell Road, LondonSW7 5BD, UK
| |
Collapse
|
3
|
Field DJ, Burton MG, Benito J, Plateau O, Navalón G. Whence the birds: 200 years of dinosaurs, avian antecedents. Biol Lett 2025; 21:20240500. [PMID: 39837495 PMCID: PMC11750382 DOI: 10.1098/rsbl.2024.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 11/12/2024] [Indexed: 01/23/2025] Open
Abstract
Among the most revolutionary insights emerging from 200 years of research on dinosaurs is that the clade Dinosauria is represented by approximately 11 000 living species of birds. Although the origin of birds among dinosaurs has been reviewed extensively, recent years have witnessed tremendous progress in our understanding of the deep evolutionary origins of numerous distinctive avian anatomical systems. These advances have been enabled by exciting new fossil discoveries, leading to an ever-expanding phylogenetic framework with which to pinpoint the origins of characteristic avian features. The present review focuses on four notable avian systems whose Mesozoic evolutionary history has been greatly clarified by recent discoveries: brain, kinetic palate, pectoral girdle and postcranial skeletal pneumaticity.
Collapse
Affiliation(s)
- Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - M. Grace Burton
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Juan Benito
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Olivia Plateau
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Guillermo Navalón
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Yang Z, Jiang B, Xu J, McNamara ME. Cellular structure of dinosaur scales reveals retention of reptile-type skin during the evolutionary transition to feathers. Nat Commun 2024; 15:4063. [PMID: 38773066 PMCID: PMC11109146 DOI: 10.1038/s41467-024-48400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.
Collapse
Affiliation(s)
- Zixiao Yang
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Jiaxin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Falk D, Wings O, Unitt R, Wade J, McNamara ME. Fossilized anuran soft tissues reveal a new taphonomic model for the Eocene Geiseltal Konservat-Lagerstätte, Germany. Sci Rep 2024; 14:7876. [PMID: 38654038 PMCID: PMC11039752 DOI: 10.1038/s41598-024-55822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 04/25/2024] Open
Abstract
The Eocene Geiseltal Konservat-Lagerstätte (Germany) is famous for reports of three dimensionally preserved soft tissues with sub-cellular detail. The proposed mode of preservation, direct replication in silica, is not known in other fossils and has not been verified using modern approaches. Here, we investigated the taphonomy of the Geiseltal anurans using diverse microbeam imaging and chemical analytical techniques. Our analyses confirm the preservation of soft tissues in all body regions but fail to yield evidence for silicified soft tissues. Instead, the anuran soft tissues are preserved as two layers that differ in microstructure and composition. Layer 1 comprises sulfur-rich carbonaceous microbodies interpreted as melanosomes. Layer 2 comprises the mid-dermal Eberth-Katschenko layer, preserved in calcium phosphate. In addition, patches of original aragonite crystals define the former position of the endolymphatic sac. The primary modes of soft tissue preservation are therefore sulfurization of melanosomes and phosphatization of more labile soft tissues, i.e., skin. This is consistent with the taphonomy of vertebrates in many other Konservat-Lagerstätten. These findings emphasize an emerging model for pervasive preservation of vertebrate soft tissues via melanosome films, particularly in stagnation-type deposits, with phosphatization of more labile tissues where tissue biochemistry is favorable.
Collapse
Affiliation(s)
- Daniel Falk
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland.
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland.
| | - Oliver Wings
- Natural History Museum Bamberg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Fleischstraße 2, 96047, Bamberg, Germany
| | - Richard Unitt
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland
- Copper Coast UNESCO Global Geopark, Knockmahon, Bunmahon, X42 T923, Ireland
| | - Jon Wade
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Lee Rd, Cork, T23 XE10, Ireland
| |
Collapse
|
6
|
Kiat Y, O’Connor JK. Functional constraints on the number and shape of flight feathers. Proc Natl Acad Sci U S A 2024; 121:e2306639121. [PMID: 38346196 PMCID: PMC10895369 DOI: 10.1073/pnas.2306639121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
As a fundamental ecological aspect of most organisms, locomotor function significantly constrains morphology. At the same time, the evolution of novel locomotor abilities has produced dramatic morphological transformations, initiating some of the most significant diversifications in life history. Despite significant new fossil evidence, it remains unclear whether volant locomotion had a single or multiple origins in pennaraptoran dinosaurs and the volant abilities of individual taxa are controversial. The evolution of powered flight in modern birds involved exaptation of feathered surfaces extending off the limbs and tail yet most studies concerning flight potential in pennaraptorans do not account for the structure and morphology of the wing feathers themselves. Analysis of the number and shape of remex and rectrix feathers across a large dataset of extant birds indicates that the number of remiges and rectrices and the degree of primary vane asymmetry strongly correlate with locomotor ability revealing important functional constraints. Among these traits, phenotypic flexibility varies reflected by the different rates at which morphological changes evolve, such that some traits reflect the ancestral condition, whereas others reflect current locomotor function. While Mesozoic birds and Microraptor have remex morphologies consistent with extant volant birds, that of anchiornithines deviate significantly providing strong evidence this clade was not volant. The results of these analyses support a single origin of dinosaurian flight and indicate the early stages of feathered wing evolution are not sampled by the currently available fossil record.
Collapse
Affiliation(s)
- Yosef Kiat
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605
| | - Jingmai K. O’Connor
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL60605
| |
Collapse
|
7
|
Urban CA, Legendre LJ, Clarke JA. Description of natal down of the ostrich (Struthio camelus) and comparison with common quail (Coturnix coturnix): Developmental and evolutionary implications. J Anat 2023; 243:1007-1023. [PMID: 37515428 PMCID: PMC10641043 DOI: 10.1111/joa.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Natal down is a feather stage that differs in both form and function from the definitive feathers of adult birds. It has a simpler structure that has been speculated to be similar to the body coverings of non-avian dinosaurs. However, inference of the evolution of natal down has been limited by our understanding of its structural variation in extant birds. Most descriptive work has focused on neognathous birds, limiting our knowledge of the full diversity of feathers in extant taxa. Here, we describe the natal down of a post-hatch ostrich (Struthio camelus) and compare it to that of a post-hatch quail (Coturnix coturnix). We confirm the presence of featherless spaces (apteria) in S. camelus and the lack of barbules on the tips of natal down in both species. We also find differences between dorsal and ventral natal down structures, such as barbule density in S. camelus and the extent of the bare portion of the barb in both species. Surprisingly, we do not find that the neoptiles of either species follow the ideal morphologies for increasing insulation. Finally, we hypothesize that the different barb types present in S. camelus natal down result from a large addition of new barb ridges during development, which is not known except in feathers with a rachis. These results have implications for our understanding of how structure informs function and development in understudied feather types, such as those shared by non-avian dinosaurs.
Collapse
Affiliation(s)
- Carmen A Urban
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lucas J Legendre
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Julia A Clarke
- Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Navalón G, Chiappe LM, Martinelli AG, Nava W, Field DJ. Fossil basicranium clarifies the origin of the avian central nervous system and inner ear. Proc Biol Sci 2022; 289:20221398. [PMID: 36168759 PMCID: PMC9515635 DOI: 10.1098/rspb.2022.1398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among terrestrial vertebrates, only crown birds (Neornithes) rival mammals in terms of relative brain size and behavioural complexity. Relatedly, the anatomy of the avian central nervous system and associated sensory structures, such as the vestibular system of the inner ear, are highly modified with respect to those of other extant reptile lineages. However, a dearth of three-dimensional Mesozoic fossils has limited our knowledge of the origins of the distinctive endocranial structures of crown birds. Traits such as an expanded, flexed brain, a ventral connection between the brain and spinal column, and a modified vestibular system have been regarded as exclusive to Neornithes. Here, we demonstrate all of these ‘advanced’ traits in an undistorted braincase from an Upper Cretaceous enantiornithine bonebed in southeastern Brazil. Our discovery suggests that these crown bird-like endocranial traits may have originated prior to the split between Enantiornithes and the more crownward portion of avian phylogeny over 140 Ma, while coexisting with a remarkably plesiomorphic cranial base and posterior palate region. Altogether, our results support the interpretation that the distinctive endocranial morphologies of crown birds and their Mesozoic relatives are affected by complex trade-offs between spatial constraints during development.
Collapse
Affiliation(s)
- Guillermo Navalón
- Unidad de Paleontología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Luis M Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - Agustín G Martinelli
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales 'Bernardino Rivadavia', Buenos Aires, Argentina
| | - William Nava
- Museu de Paleontologia de Marília, Marília, São Paulo, Brazil
| | - Daniel J Field
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.,Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Kiat Y, Pyle P, Balaban A, O'Connor JK. Reinterpretation of purported molting evidence in the Thermopolis Archaeopteryx. Commun Biol 2021; 4:837. [PMID: 34226661 PMCID: PMC8257594 DOI: 10.1038/s42003-021-02349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yosef Kiat
- Animal Flight Laboratory, Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa, Israel. .,The Nili & David Jerusalem Bird Observatory (JBO), Israel Ornithological Center, Society for the Protection of Nature in Israel, Jerusalem, Israel.
| | - Peter Pyle
- The Institute for Bird Populations, Petaluma, CA, USA
| | - Amir Balaban
- The Nili & David Jerusalem Bird Observatory (JBO), Israel Ornithological Center, Society for the Protection of Nature in Israel, Jerusalem, Israel
| | | |
Collapse
|
10
|
Carney RM, Tischlinger H, Shawkey MD. Evidence corroborates identity of isolated fossil feather as a wing covert of Archaeopteryx. Sci Rep 2020; 10:15593. [PMID: 32999314 PMCID: PMC7528088 DOI: 10.1038/s41598-020-65336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/01/2020] [Indexed: 11/24/2022] Open
Abstract
The historic fossil feather from the Jurassic Solnhofen has played a pivotal but controversial role in our evolutionary understanding of dinosaurs and birds. Recently, a study confirmed the diagnostic morphology of the feather’s original calamus, but nonetheless challenged the proposed identity as an Archaeopteryx covert. However, there are errors in the results and interpretations presented. Here we show that the feather is most likely an upper major primary covert, based on its long calamus (23.3% total length) and eight other anatomical attributes. Critically, this hypothesis is independently supported by evidence of similar primary coverts in multiple specimens of Archaeopteryx–including from the same fossil site and horizon as the isolated feather. We also provide additional insights, such as an updated colour reconstruction of the entire feather as matte black, with 90% probability. Given the isolated nature of the fossil feather, we can never know the anatomical and taxonomic provenance with 100% certainty. However, based on all available evidence, the most empirical and parsimonious conclusion is that this feather represents a primary covert from the ancient wing of Archaeopteryx.
Collapse
Affiliation(s)
- Ryan M Carney
- Department of Integrative Biology, University of South Florida, 33620, Tampa, FL, USA.
| | | | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, 9000, Ghent, Belgium
| |
Collapse
|
11
|
|
12
|
Kaye TG, Pittman M, Marugán-Lobón J, Martín-Abad H, Sanz JL, Buscalioni AD. Fully fledged enantiornithine hatchling revealed by Laser-Stimulated Fluorescence supports precocial nesting behavior. Sci Rep 2019; 9:5006. [PMID: 30899080 PMCID: PMC6428842 DOI: 10.1038/s41598-019-41423-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/08/2019] [Indexed: 11/12/2022] Open
Abstract
Laser-Stimulated Fluorescence (LSF) is used to identify fully fledged feathering in the hatchling enantiornithine bird specimen MPCM-LH-26189, supporting precocial nesting behavior in this extinct group. The LSF results include the detection of a long pennaceous wing feather as well as cover feathers around the body. The LSF technique showed improved detection limits over and above synchrotron and UV imaging which had both been performed on this specimen. The findings underscore the value of using a wide range of analytical techniques.
Collapse
Affiliation(s)
- Thomas G Kaye
- Foundation for Scientific Advancement, Sierra Vista, Arizona, 85650, United States of America.
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jesús Marugán-Lobón
- Facultad de Ciencias, Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Hugo Martín-Abad
- Facultad de Ciencias, Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Luis Sanz
- Facultad de Ciencias, Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Angela D Buscalioni
- Facultad de Ciencias, Departamento de Biología, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
13
|
Wang X, O'Connor JK, Maina JN, Pan Y, Wang M, Wang Y, Zheng X, Zhou Z. Archaeorhynchus preserving significant soft tissue including probable fossilized lungs. Proc Natl Acad Sci U S A 2018; 115:11555-11560. [PMID: 30348768 PMCID: PMC6233124 DOI: 10.1073/pnas.1805803115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a specimen of the basal ornithuromorph Archaeorhynchus spathula from the Lower Cretaceous Jiufotang Formation with extensive soft tissue preservation. Although it is the fifth specimen to be described, unlike the others it preserves significant traces of the plumage, revealing a pintail morphology previously unrecognized among Mesozoic birds, but common in extant neornithines. In addition, this specimen preserves the probable remnants of the paired lungs, an identification supported by topographical and macro- and microscopic anatomical observations. The preserved morphology reveals a lung very similar to that of living birds. It indicates that pulmonary specializations such as exceedingly subdivided parenchyma that allow birds to achieve the oxygen acquisition capacity necessary to support powered flight were present in ornithuromorph birds 120 Mya. Among extant air breathing vertebrates, birds have structurally the most complex and functionally the most efficient respiratory system, which facilitates their highly energetically demanding form of locomotion, even in extremely oxygen-poor environments. Archaeorhynchus is commonly resolved as the most basal known ornithuromorph bird, capturing a stage of avian evolution in which skeletal indicators of respiration remain primitive yet the lung microstructure appears modern. This adds to growing evidence that many physiological modifications of soft tissue systems (e.g., digestive system and respiratory system) that characterize living birds and are key to their current success may have preceded the evolution of obvious skeletal adaptations traditionally tracked through the fossil record.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Jingmai K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China;
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| | - John N Maina
- Department of Zoology, University of Johannesburg, 2006 Johannesburg, South Africa
| | - Yanhong Pan
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 21008 Nanjing, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, 276000 Shandong, China
- Shandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 10010 Beijing, China;
- CAS Center for Excellence in Life and Paleoenvironment, 10010 Beijing, China
| |
Collapse
|
14
|
Abstract
The sequence of decay in fern pinnules was tracked using the species Davallia canariensis. Taphonomic alterations in the sediment–water interface (control tanks) and in subaqueous conditions with microbial mats were compared. The decay sequences were similar in control and mat tanks; in both cases, pinnules preserved the shape throughout the four-month experience. However, the quality and integrity of tissues were greater in mats. In control tanks, in which we detected anoxic and neutral acid conditions, the appearance of a fungal–bacterial biofilm promoted mechanical (cell breakage and tissue distortions) and geochemical changes (infrequent mineralizations) on the external and internal pinnule tissues. In mats, characterized by stable dissolved oxygen and basic pH, pinnules became progressively entombed. These settings, together with the products derived from mat metabolisms (exopolymeric substances, proteins, and rich-Ca nucleation), promoted the integrity of external and internal tissues, and favored massive and diverse mineralization processes. The experience validates that the patterns of taphonomic alterations may be applied in fossil plants.
Collapse
|
15
|
Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. Nat Commun 2018; 9:2072. [PMID: 29802246 PMCID: PMC5970262 DOI: 10.1038/s41467-018-04443-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic. In addition to the evolutionary innovation of feathers, bird skin has complex adaptations. Here, McNamara and colleagues examine exceptionally preserved skin from feathered dinosaurs and ancient birds from the Cretaceous and show the early acquisition of many skin attributes seen in modern species.
Collapse
|
16
|
Knoll F, Chiappe LM, Sanchez S, Garwood RJ, Edwards NP, Wogelius RA, Sellers WI, Manning PL, Ortega F, Serrano FJ, Marugán-Lobón J, Cuesta E, Escaso F, Sanz JL. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds. Nat Commun 2018; 9:937. [PMID: 29507288 PMCID: PMC5838198 DOI: 10.1038/s41467-018-03295-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022] Open
Abstract
Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation. Fossil juvenile Mesozoic birds are exceedingly rare and can provide important insight into the early evolution of avian development. Here, Knoll et al. describe one of the smallest known Mesozoic avians, which indicates a clade-wide asynchronous pattern of osteogenesis and great variation in basal bird hatchling size and skeletal maturation tempo.
Collapse
Affiliation(s)
- Fabien Knoll
- ARAID-Fundación Conjunto Paleontológico de Teruel-Dinopolis, 44002, Teruel, Spain. .,School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.
| | - Luis M Chiappe
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA
| | - Sophie Sanchez
- Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden.,European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Russell J Garwood
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.,Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Nicholas P Edwards
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Roy A Wogelius
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Phillip L Manning
- School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK.,Department of Geology and Environmental Geosciences, College of Charleston, SC, 29424, Charleston, USA
| | - Francisco Ortega
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia, 28040, Madrid, Spain
| | - Francisco J Serrano
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA.,Facultad de Ciencias, Universidad de Málaga, 29010, Málaga, Spain
| | - Jesús Marugán-Lobón
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, 90007, USA.,Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Cuesta
- Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Fernando Escaso
- Facultad de Ciencias, Universidad Nacional de Educación a Distancia, 28040, Madrid, Spain
| | - Jose Luis Sanz
- Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
17
|
Altimiras J, Lindgren I, Giraldo-Deck LM, Matthei A, Garitano-Zavala Á. Aerobic performance in tinamous is limited by their small heart. A novel hypothesis in the evolution of avian flight. Sci Rep 2017; 7:15964. [PMID: 29162941 PMCID: PMC5698454 DOI: 10.1038/s41598-017-16297-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Some biomechanical studies from fossil specimens suggest that sustained flapping flight of birds could have appeared in their Mesozoic ancestors. We challenge this idea because a suitable musculoskeletal anatomy is not the only requirement for sustained flapping flight. We propose the “heart to fly” hypothesis that states that sustained flapping flight in modern birds required an enlargement of the heart for the aerobic performance of the flight muscles and test it experimentally by studying tinamous, the living birds with the smallest hearts. The small ventricular size of tinamous reduces cardiac output without limiting perfusion pressures, but when challenged to fly, the heart is unable to support aerobic metabolism (quick exhaustion, larger lactates and post-exercise oxygen consumption and compromised thermoregulation). At the same time, cardiac growth shows a crocodilian-like pattern and is correlated with differential gene expression in MAPK kinases. We integrate this physiological evidence in a new evolutionary scenario in which the ground-up, short and not sustained flapping flight displayed by tinamous represents an intermediate step in the evolution of the aerobic sustained flapping flight of modern birds.
Collapse
Affiliation(s)
- Jordi Altimiras
- AVIAN Behavioral Genomics and Physiology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| | - Isa Lindgren
- AVIAN Behavioral Genomics and Physiology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
18
|
Liu D, Chiappe LM, Serrano F, Habib M, Zhang Y, Meng Q. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird. PLoS One 2017; 12:e0184637. [PMID: 29020077 PMCID: PMC5636078 DOI: 10.1371/journal.pone.0184637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
We describe an exquisitely preserved new avian fossil (BMNHC-PH-919) from the Lower Cretaceous Yixian Formation of eastern Inner Mongolia, China. Although morphologically similar to Cathayornithidae and other small-sized enantiornithines from China's Jehol Biota, many morphological features indicate that it represents a new species, here named Junornis houi. The new fossil displays most of its plumage including a pair of elongated, rachis-dominated tail feathers similarly present in a variety of other enantiornithines. BMNHC-PH-919 represents the first record of a Jehol enantiornithine from Inner Mongolia, thus extending the known distribution of these birds into the eastern portion of this region. Furthermore, its well-preserved skeleton and wing outline provide insight into the aerodynamic performance of enantiornithines, suggesting that these birds had evolved bounding flight-a flight mode common to passeriforms and other small living birds-as early as 125 million years ago.
Collapse
Affiliation(s)
- Di Liu
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Museum of Natural History, Beijing, China
- * E-mail: (DL); (LC)
| | - Luis M. Chiappe
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California, United States of America
- * E-mail: (DL); (LC)
| | - Francisco Serrano
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California, United States of America
- Universidad de Málaga, Campus Universitario de Teatinos s/n., Málaga, Spain
| | - Michael Habib
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, California, United States of America
- The University of Southern California, Los Angeles, California, United States of America
| | | | - Qinjing Meng
- Beijing Museum of Natural History, Beijing, China
| |
Collapse
|
19
|
Basal paravian functional anatomy illuminated by high-detail body outline. Nat Commun 2017; 8:14576. [PMID: 28248287 PMCID: PMC5339877 DOI: 10.1038/ncomms14576] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/13/2017] [Indexed: 11/08/2022] Open
Abstract
Body shape is a fundamental expression of organismal biology, but its quantitative reconstruction in fossil vertebrates is rare. Due to the absence of fossilized soft tissue evidence, the functional consequences of basal paravian body shape and its implications for the origins of avians and flight are not yet fully understood. Here we reconstruct the quantitative body outline of a fossil paravian Anchiornis based on high-definition images of soft tissues revealed by laser-stimulated fluorescence. This body outline confirms patagia-bearing arms, drumstick-shaped legs and a slender tail, features that were probably widespread among paravians. Finely preserved details also reveal similarities in propatagial and footpad form between basal paravians and modern birds, extending their record to the Late Jurassic. The body outline and soft tissue details suggest significant functional decoupling between the legs and tail in at least some basal paravians. The number of seemingly modern propatagial traits hint that feathering was a significant factor in how basal paravians utilized arm, leg and tail function for aerodynamic benefit. Soft tissues are rarely preserved in the fossil record; therefore, body shape of extinct vertebrates is usually inferred indirectly. Here, the authors use laser-stimulated fluorescence of fossils to detect and reconstruct the body outline of the paravian dinosaur Anchiornis from the Late Jurassic.
Collapse
|
20
|
Zheng X, O’Connor JK, Wang X, Pan Y, Wang Y, Wang M, Zhou Z. Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
We report on an exceptional specimen of Eoconfuciusornis preserving rare soft-tissue traces of the ovary and wing. Ovarian follicles preserve a greater hierarchy than observed in Jeholornis and enantiornithines, suggesting confuciusornithiforms evolved higher rates of yolk deposition in parallel with the neornithine lineage. The preserved soft tissues of the wing indicate the presence of a propatagium and postpatagium, whereas an alular patagium is absent. Preserved remnants of the internal support network of the propatagium bear remarkable similarity to that of living birds. Soft tissue suggests the confuciusornithiform propatagium could maintain a cambered profile and generate lift. The feathers of the wing preserve remnants of their original patterning; however, this is not strongly reflected by observable differences under scanning electron microscopy (SEM). The tail plumage lacks elongate rectrices, suggesting that the earliest known confuciusornithiforms were sexually dimorphic in their plumage.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi 276005, China
- Shandong Tianyu Museum of Nature, Pingyi 273300, China
| | - Jingmai K. O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi 276005, China
- Shandong Tianyu Museum of Nature, Pingyi 273300, China
| | - Yanhong Pan
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi 276005, China
- Shandong Tianyu Museum of Nature, Pingyi 273300, China
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| |
Collapse
|
21
|
Falk AR, Kaye TG, Zhou Z, Burnham DA. Laser Fluorescence Illuminates the Soft Tissue and Life Habits of the Early Cretaceous Bird Confuciusornis. PLoS One 2016; 11:e0167284. [PMID: 27973609 PMCID: PMC5156344 DOI: 10.1371/journal.pone.0167284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/07/2016] [Indexed: 11/18/2022] Open
Abstract
In this paper we report the discovery of non-plumage soft tissues in Confuciusornis, a basal beaked bird from the Early Cretaceous Jehol Biota in northeastern China. Various soft tissues are visualized and interpreted through the use of laser-stimulated fluorescence, providing much novel anatomical information about this early bird, specifically reticulate scales covering the feet, and the well-developed and robust pro- and postpatagium. We also include a direct comparison between the forelimb soft tissues of Confuciusornis and modern avian patagia. Furthermore, apparently large, fleshy phalangeal pads are preserved on the feet. The reticulate scales, robust phalangeal pads as well as the highly recurved pedal claws strongly support Confuciusornis as an arboreal bird. Reticulate scales are more rounded than scutate scales and do not overlap, thus allowing for more flexibility in the toe. The extent of the pro- and postpatagium and the robust primary feather rachises are evidence that Confuciusornis was capable of powered flight, contrary to previous reports suggesting otherwise. A unique avian wing shape is also reconstructed based on plumage preserved. These soft tissues combined indicate an arboreal bird with the capacity for short-term (non-migratory) flight, and suggest that, although primitive, Confuciusornis already possessed many relatively advanced avian anatomical characteristics.
Collapse
Affiliation(s)
- Amanda R. Falk
- Centre College, Department of Biology, Danville, KY, United States of America
- * E-mail:
| | - Thomas G. Kaye
- Burke Museum of History and Culture, Seattle, WA, United States of America
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
| | - David A. Burnham
- University of Kansas Natural History Museum and Biodiversity Institute, Lawrence, KS United States of America
| |
Collapse
|
22
|
Moyer AE, Zheng W, Schweitzer MH. Keratin Durability Has Implications for the Fossil Record: Results from a 10 Year Feather Degradation Experiment. PLoS One 2016; 11:e0157699. [PMID: 27384819 PMCID: PMC4934732 DOI: 10.1371/journal.pone.0157699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
Keratinous ‘soft tissue’ structures (i.e. epidermally derived and originally non-biomineralized), include feathers, skin, claws, beaks, and hair. Despite their relatively common occurrence in the fossil record (second only to bone and teeth), few studies have addressed natural degradation processes that must occur in all organic material, including those keratinous structures that are incorporated into the rock record as fossils. Because feathers have high preservation potential and strong phylogenetic signal, in the current study we examine feathers subjected to different burial environments for a duration of ~10 years, using transmission electron microscopy (TEM) and in situ immunofluorescence (IF). We use morphology and persistence of specific immunoreactivity as indicators of preservation at the molecular and microstructural levels. We show that feather keratin is durable, demonstrates structural and microstructural integrity, and retains epitopes suitable for specific antibody recognition in even the harshest conditions. These data support the hypothesis that keratin antibody reactivity can be used to identify the nature and composition of epidermal structures in the rock record, and to address evolutionary questions by distinguishing between alpha- (widely distributed) and beta- (limited to sauropsids) keratin.
Collapse
Affiliation(s)
- Alison E. Moyer
- Department of Biological Science, North Carolina State University, Raleigh NC 27695, United States of America
- * E-mail:
| | - Wenxia Zheng
- Department of Biological Science, North Carolina State University, Raleigh NC 27695, United States of America
| | - Mary H. Schweitzer
- Department of Biological Science, North Carolina State University, Raleigh NC 27695, United States of America
- North Carolina Museum of Natural Sciences, Raleigh NC 27601, United States of America
| |
Collapse
|
23
|
Xing L, McKellar RC, Wang M, Bai M, O'Connor JK, Benton MJ, Zhang J, Wang Y, Tseng K, Lockley MG, Li G, Zhang W, Xu X. Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 2016; 7:12089. [PMID: 27352215 PMCID: PMC4931330 DOI: 10.1038/ncomms12089] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans.
Collapse
Affiliation(s)
- Lida Xing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.,School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ryan C McKellar
- Palaeontology, Royal Saskatchewan Museum, Regina, Saskatchewan, Canada S4P 2V7.,Biology Department, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingmai K O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Jianping Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi 276000, China
| | - Kuowei Tseng
- Department of Exercise and Health Science, University of Taipei, Taipei 11153, China
| | - Martin G Lockley
- Dinosaur Tracks Museum, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Gang Li
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | | | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| |
Collapse
|