1
|
Kasprzyk-Pawelec A, Tan M, Rahhal R, McIntosh A, Fernandez HR, Mosaoa RM, Jiang L, Pearson GW, Glasgow E, Vockley J, Albanese C, Avantaggiati ML. Inactivation of the SLC25A1 gene during embryogenesis induces a unique senescence program controlled by p53. Cell Death Differ 2025; 32:818-836. [PMID: 39733217 PMCID: PMC12089371 DOI: 10.1038/s41418-024-01428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024] Open
Abstract
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA. Surprisingly, inactivation of both Slc25a1 alleles results in alterations in the development of multiple organs, and in a severe proliferation defect by activating two senescence programs, oncogene-induced senescence (OIS) and mitochondrial dysfunction-induced senescence (MiDAS), which converge upon the induction of the p53 tumor suppressor. Mechanistically, cells and tissues with dysfunctional SLC25A1 protein undergo metabolic and transcriptional rewiring leading to the accumulation of 2HG via a non-canonical pathway and to the depletion of nicotinamide adenine dinucleotide, NAD+, which trigger senescence. Replenishing the pool of NAD+ or promoting the clearance of 2HG rescues the proliferation defect of cells with dysfunctional SLC25A1 in a cooperative fashion. Further, removal of p53 activity via RNA interference restores proliferation, indicating that p53 acts as a critical barrier to the expansion of cells lacking functional SLC25A1. These findings reveal unexpected pathogenic roles of senescence and of p53 in D/L-2HGA and identify potential therapeutic strategies to correct salient molecular alterations driving this disease.
Collapse
Affiliation(s)
- Anna Kasprzyk-Pawelec
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Mingjun Tan
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
- Penn State College of Medicine, Department of Cellular & Molecular Physiology, Hershey, PA, USA
| | - Raneen Rahhal
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Alec McIntosh
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Harvey R Fernandez
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
- University of Virginia Medical Center, Charlottesville, VA, USA
| | - Rami M Mosaoa
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA, USA
| | - Gray W Pearson
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Eric Glasgow
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher Albanese
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA
| | - Maria Laura Avantaggiati
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
| |
Collapse
|
2
|
Li X, Bo Y, Le L, Yang F. Simultaneous Determination of D and L Enantiomers of 2-Hydroxyglutarate by UHPLC-MS/MS Method in Human Biological Fluids and its Clinical Application. J Chromatogr Sci 2025; 63:bmae013. [PMID: 38553775 DOI: 10.1093/chromsci/bmae013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 01/11/2025]
Abstract
2-hydroxyglutarate has limited abundance in normal tissues but a high level under certain pathologic conditions. To clarify the diagnostic value of two chiral isomers of 2-hydroxyglutarate in plasma and urine of Chinese cancer patients, an ultra-high performance liquid chromatography-tandem mass spectrometric method was developed for simultaneous quantification of D-/L-2-hydroxyglutarate. The selected D-/L-2-hydroxyglutarate-d5 as internal standards were added to samples before the SPE on Waters Oasis® MAX 96-Well plate (30 μm, 60 mg). A derivatization step with (+)-O,O'-diacetyl-L-tartaric anhydride permitted the chromatography separation of D-/L-2-hydroxyglutarate on an ACQUITY UPLC-HSS T3 column (50 × 2.1 mm, i.d. 1.8 μm) with acetonitrile and water (containing 0.1% formic acid and 10 mmol ammonium acetate) as the mobile phase. The calibration curves showed good linearity (R ≥ 0.99) over the concentration ranges of 200-5,000 ng/mL and 500-20,000 ng/mL for analysis of D-/L-2-hydroxyglutarate in plasma and urine samples, respectively. Intra- and inter-run precision were ≤ 12.33%, and the accuracy was within the range of -10.44 to 13.90%. This method was further successfully applied to clinical sample analysis in isocitrate dehydrogenase 1/2 mutated Chinese cancer patients.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Haidian District, Beijing 100142, P. R. China
| | - Yunhai Bo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Haidian District, Beijing 100142, P. R. China
| | - Le Le
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Haidian District, Beijing 100142, P. R. China
| | - Fen Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), National Drug Clinical Trial Center, Peking University Cancer Hospital & Institute, Haidian District, Beijing 100142, P. R. China
| |
Collapse
|
3
|
Xi C, Pang J, Xue W, Cui Y, Jiang N, Zhi W, Shi H, Horuzsko A, Pace BS, Zhu X. Transsulfuration pathway activation attenuates oxidative stress and ferroptosis in sickle primary erythroblasts and transgenic mice. Commun Biol 2025; 8:15. [PMID: 39762627 PMCID: PMC11704341 DOI: 10.1038/s42003-024-07424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD. A vital contribution of the TSS pathway in sustaining cysteine levels is detected only under hemin exposure or physiological but not supraphysiological cystine supplement. Mechanistic studies show that hemin suppresses CBS expression to inhibit the TSS pathway and de novo cysteine biosynthesis. By contrast, the expression of CBS is inducible by dimethyl fumarate (DMF) through nuclear factor erythroid 2-related factor 2 (NRF2) activation and CpG islands DNA hydroxymethylation. DMF induces the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) to downregulate L-2-hydroxyglutarate (L2HG) and increase global and locus-specific DNA hydroxymethylation levels. This DMF-upregulated DNA hydroxymethylation affects CBS locus chromatin structure modifications and upregulates gene expression. Our results suggest that CBS of the TSS pathway plays an important role in maintaining cysteine levels under restricted cystine availability or excess hemin exposure, and CBS upregulation by DMF increases the cellular glutathione levels to protect against ROS and ferroptosis stress in SCD.
Collapse
Affiliation(s)
- Caixia Xi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA
| | - Junfeng Pang
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Weinan Xue
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Yang Cui
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Na Jiang
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Zhi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | | | - Betty S Pace
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA
| | - Xingguo Zhu
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Luo Z, Huang Y, Chen S, Zhang B, Huang H, Dabiri S, Chen Y, Zhang A, Andreas AR, Li S. Delivery of PARP inhibitors through 2HG-incorporated liposomes for synergistically targeting DNA repair in cancer. Cancer Lett 2024; 604:217268. [PMID: 39321912 DOI: 10.1016/j.canlet.2024.217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PARP inhibitors (PARPi) benefit only a small subset of patients with DNA homologous recombination (HR) defects. In addition, long-term administration of a PARPi can lead to the development of drug resistance. 2-Hydroxyglutarate (2HG) has long been known as an oncometabolite but is capable of inducing an HR defect, which makes tumor cells exquisitely sensitive to PARPi. To facilitate the translation of this discovery to the treatment of both HR-deficient and HR-proficient tumors, a liposomal formulation was developed for codelivery of 2HG and veliparib, a PARPi. A sequential loading protocol was developed such that the initial loading of 2HG into liposomes greatly facilitated the subsequent, pH gradient-driven remote loading of veliparib. The liposomes co-loaded with veliparib and 2HG exhibited favorable stability, slow kinetics of drug release, and targeted delivery to the tumor. Furthermore, the veliparib/2HG liposomes demonstrated enhanced anti-tumor activity in both PARPi-resistant BRCA mutant cancer and BRCA wildtype cancer by synergistically enhancing the defect in DNA repair. Moreover, combination of veliparib and 2HG via liposomal co-delivery also augmented the function of cytotoxic T cells by activating the STING pathway and downregulating PD-L1 expression via 2HG-induced hypermethylation.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Shangyu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Sheida Dabiri
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Alexis R Andreas
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Ahn J, Lee JW, Nam SM, Kim DK, Cho SK, Choi HK. Integrative multi-omics analysis reveals ortho-topolin riboside exhibits anticancer activity by regulating metabolic pathways in radio-resistant triple negative breast cancer cells. Chem Biol Interact 2024; 398:111089. [PMID: 38823535 DOI: 10.1016/j.cbi.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Radio-resistant triple negative breast cancer (TNBC) is resistant to conventional drugs and radiation therapy. ortho-topolin riboside (oTR) has been evaluated for its anticancer activity in several types of cancer cells. However, its anti-proliferative activity in radio-resistant TNBC cells has not yet been reported. Therefore, we investigated the anti-proliferative activity of oTR in radio-resistant TNBC cells, and performed metabolome, lipidome, transcriptome, and proteome profiling to reveal the mechanisms of the anticancer activity of oTR. oTR showed cytotoxicity against radio-resistant TNBC cells with an inhibitory concentration (IC50) value of 7.78 μM. Significantly decreased (p value < 0.05) basal and compensatory glycolysis were observed in the oTR-treated group than untreated group. Mitochondrial spare respiratory capacity, which is relevant to cell fitness and flexibility, was significantly decreased (p value < 0.05) in the oTR-treated group. The major metabolic pathways significantly altered by oTR according to metabolome, transcriptome, and proteome profiles were the glycerolipid/glycerophospholipid pathway (log2(FC) of MGLL = -0.13, log2(FC) of acylglycerol lipase = -1.35, log2(FC) of glycerol = -0.81), glycolysis (log2(FC) of EGLN1 = 0.16, log2(FC) of EGLN1 = 0.62, log2(FC) of glucose = -0.76, log2(FC) of lactate = -0.81), and kynurenine pathway (log2(FC) of KYNU = 0.29, log2(FC) of kynureninase = 0.55, log2(FC) of alanine = 0.72). Additionally, proline metabolism (log2(FC) of PYCR1 = -0.17, log2(FC) of proline = -0.73) was significantly altered in the metabolomic and transcriptomic profiles. The MAPK signaling pathway (log2(FC) of CCN1 = -0.15, log2(FC) of CCN family member 1 = -1.02) and Rap 1 signaling pathway (log2(FC) of PARD6B = -0.28, log2(FC) of PAR6B = -3.13) were also significantly altered in transcriptomic and proteomic profiles. The findings of this study revealed that oTR has anticancer activity in radio-resistant TNBC cells by affecting various metabolic pathways, suggesting the potential of oTR as a novel anticancer agent for radio-resistant TNBC patients.
Collapse
Affiliation(s)
- Junyoung Ahn
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Min Nam
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Vallamkonda B, Sethi S, Satti P, Das DK, Yadav S, Vashistha VK. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024; 36:e23705. [PMID: 39105272 DOI: 10.1002/chir.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Chirality plays a crucial role in the drug development process, influencing fundamental chemical and biochemical processes and significantly affecting our daily lives. This review provides a comprehensive examination of mass spectrometric (MS) methods for the enantiomeric analysis of chiral drugs. It thoroughly investigates MS-hyphenated techniques, emphasizing their critical role in achieving enantioselective analysis. Furthermore, it delves into the intricate chiral recognition mechanisms inherent in MS, elucidating the fundamental principles that govern successful chiral separations. By critically assessing the obstacles and potential benefits associated with each MS-based method, this review offers valuable insights for researchers navigating the complexities of chiral analysis. Both qualitative and quantitative approaches are explored, presenting a comparative analysis of their strengths and limitations. This review is aimed at significantly enhancing the understanding of chiral MS methods, serving as a crucial resource for researchers and practitioners engaged in enantioselective studies.
Collapse
Affiliation(s)
- Bhaskar Vallamkonda
- Department of Pharmaceutical Science, VIGNAN'S Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - PhanikumarReddy Satti
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | | | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | |
Collapse
|
8
|
Tong S, Wu J, Song Y, Fu W, Yuan Y, Zhong P, Liu Y, Wang B. IDH1-mutant metabolite D-2-hydroxyglutarate inhibits proliferation and sensitizes glioma to temozolomide via down-regulating ITGB4/PI3K/AKT. Cell Death Discov 2024; 10:317. [PMID: 38982076 PMCID: PMC11233597 DOI: 10.1038/s41420-024-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
The heterogeneous molecular subtypes of gliomas demonstrate varied responses to chemotherapy and distinct prognostic outcomes. Gliomas with Isocitrate dehydrogenase 1 (IDH1) mutation are associated with better outcomes and are more responsive to temozolomide (TMZ) compared to those without IDH1 mutation. IDH1-mutant gliomas elevate D-2-hydroxyglutarate (D-2HG) levels, with potential dual effects on tumor progression. Limited research has explored the potential anti-glioma effects of D-2HG in combination with TMZ. Clinical data from over 2500 glioma patients in our study confirms that those with IDH1 mutations exhibit enhanced responsiveness to TMZ chemotherapy and a significantly better prognosis compared to IDH1 wild-type patients. In subsequent cellular experiments, we found that the IDH1-mutant metabolite D-2HG suppresses Integrin subunit beta 4 (ITGB4) expression, and down-regulate the phosphorylation levels of PI3K and AKT, ultimately inhibiting cell proliferation while promoting apoptosis, thereby improving glioma prognosis. Additionally, we have demonstrated the synergistic effect of D-2HG and TMZ in anti-glioma therapy involved inhibiting the proliferation of glioma cells and promoting apoptosis. Finally, by integrating data from the CGGA and TCGA databases, it was validated that ITGB4 expression was lower in IDH1-mutant gliomas, and patients with lower ITGB4 expression were associated with better prognosis. These findings indicate that ITGB4 may be a promising therapeutic target for gliomas and D-2HG inhibits proliferation and sensitizes glioma to temozolomide via down-regulating ITGB4/PI3K/AKT. These findings drive theoretical innovation and research progress in glioma therapy.
Collapse
Affiliation(s)
- Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Wenhuan Fu
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Pin Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China
| | - Yinlong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
9
|
Feng S, Wang D, Jin Y, Huang S, Liang T, Sun W, Du X, Zhuo L, Shan C, Zhang W, Jing T, Zhao S, Hong R, You L, Liu G, Chen L, Ye D, Li X, Yang Y. Blockage of L2HGDH-mediated S-2HG catabolism orchestrates macrophage polarization to elicit antitumor immunity. Cell Rep 2024; 43:114300. [PMID: 38829739 DOI: 10.1016/j.celrep.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/21/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
The high infiltration of tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment prominently attenuates the efficacy of immune checkpoint blockade (ICB) therapies, yet the underlying mechanisms are not fully understood. Here, we investigate the metabolic profile of TAMs and identify S-2-hydroxyglutarate (S-2HG) as a potential immunometabolite that shapes macrophages into an antitumoral phenotype. Blockage of L-2-hydroxyglutarate dehydrogenase (L2HGDH)-mediated S-2HG catabolism in macrophages promotes tumor regression. Mechanistically, based on its structural similarity to α-ketoglutarate (α-KG), S-2HG has the potential to block the enzymatic activity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), consequently reshaping chromatin accessibility. Moreover, S-2HG-treated macrophages enhance CD8+ T cell-mediated antitumor activity and sensitivity to anti-PD-1 therapy. Overall, our study uncovers the role of blockage of L2HGDH-mediated S-2HG catabolism in orchestrating macrophage antitumoral polarization and, further, provides the potential of repolarizing macrophages by S-2HG to overcome resistance to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Shuang Feng
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Duowei Wang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Yanyan Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Shi Huang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Tong Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wei Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Xiuli Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Luoyi Zhuo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Chun Shan
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Wenbo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Tian Jing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Sen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Ruisi Hong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Linjun You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Leilei Chen
- Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Dan Ye
- Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Xianjing Li
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China.
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China; School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P.R. China.
| |
Collapse
|
10
|
Kasprzyk-Pawelec A, Tan M, Rahhal R, McIntosh A, Fernandez H, Mosaoa R, Jiang L, Pearson GW, Glasgow E, Vockley J, Albanese C, Avantaggiati ML. Loss of the mitochondrial carrier, SLC25A1, during embryogenesis induces a unique senescence program controlled by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549409. [PMID: 37503155 PMCID: PMC10370133 DOI: 10.1101/2023.07.18.549409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Germline inactivating mutations of the SLC25A1 gene contribute to various human developmental disorders, including combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic syndrome characterized by the accumulation of both enantiomers of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 deficiency leads to this disease and the role of 2HG are unclear and no therapies exist. We now show that mice lacking both Slc25a1 alleles display a spectrum of alterations that resemble human D/L-2HGA. Mechanistically, SLC25A1 loss results in a proliferation defect and activates two distinct senescence pathways, oncogene-induced senescence (OIS) and mitochondrial dysfunction-induced senescence (MiDAS), both involving the p53 tumor suppressor and driven by two discernible signals: the accumulation of 2HG, inducing OIS, and mitochondrial dysfunction, triggering MiDAS. Inhibiting these senescence programs or blocking p53 activity reverses the growth defect caused by SLC25A1 dysfunction and restores proliferation. These findings reveal novel pathogenic roles of senescence in human disorders and suggest potential strategies to correct the molecular alterations caused by SLC25A1 loss.
Collapse
|
11
|
Aslani S, Armstrong DW. Fast, sensitive LC-MS resolution of α -hydroxy acid biomarkers via SPP-teicoplanin and an alternative UV detection approach. Anal Bioanal Chem 2024; 416:3007-3017. [PMID: 38565719 DOI: 10.1007/s00216-024-05248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Enantioseparation of α -hydroxy acids is essential since specific enantiomers of these compounds can be used as disease biomarkers for diagnosis and prognosis of cancer, brain diseases, kidney diseases, diabetes, etc., as well as in the food industry to ensure quality. HPLC methods were developed for the enantioselective separation of 11 α -hydroxy acids using a superficially porous particle-based teicoplanin (TeicoShell) chiral stationary phase. The retention behaviors observed for the hydroxy acids were HILIC, reversed phase, and ion-exclusion. While both mass spectrometry and UV spectroscopy detection methods could be used, specific mobile phases containing ammonium formate and potassium dihydrogen phosphate, respectively, were necessary with each approach. The LC-MS mode was approximately two orders of magnitude more sensitive than UV detection. Mobile phase acidity and ionic strength significantly affected enantioresolution and enantioselectivity. Interestingly, higher ionic strength resulted in increased retention and enantioresolution. It was noticed that for formate-containing mobile phases, using acetonitrile as the organic modifier usually resulted in greater enantioresolution compared to methanol. However, sometimes using acetonitrile with high ammonium formate concentrations led to lengthy retention times which could be avoided by using methanol as the organic modifier. Additionally, the enantiomeric purities of single enantiomer standards were determined and it was shown that almost all standards contained some levels of enantiomeric impurities.
Collapse
Affiliation(s)
- Saba Aslani
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76019, USA.
| |
Collapse
|
12
|
Dowdy T, Larion M. Resolving Challenges in Detection and Quantification of D-2-hydroxyglutarate and L-2-hydroxyglutarate via LC/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591335. [PMID: 38903117 PMCID: PMC11188093 DOI: 10.1101/2024.04.26.591335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate (D-2HG/L-2HG) are typically metabolites of non-specific enzymatic reactions that are kept in check by the housekeeping enzymes, D-2HG /L-2HG dehydrogenase (D-2HGDH/L-2HGDH). In certain disease states, such as D-2HG or L-2HG aciduria and cancers, accumulation of these biomarkers interferes with oxoglutarate-dependent enzymes that regulate bioenergetic metabolism, histone methylation, post-translational modification, protein expression and others. D-2HG has a complex role in tumorigenesis that drives metabolomics investigations. Meanwhile, L-2HG is produced by non-specific action of malate dehydrogenase and lactate dehydrogenase under acidic or hypoxic environments. Characterization of divergent effects of D-2HG/L-2HG on the activity of specific enzymes in diseased metabolism depends on their accurate quantification via mass spectrometry. Despite advancements in high-resolution quadrupole time-of-flight mass spectrometry (HR-QTOF-MS), challenges are typically encountered when attempting to resolve of isobaric and isomeric metabolites such as D-2HG/L-2HG for quantitative analysis. Herein, available D-2HG/L-2HG derivatization and liquid chromatography (LC) MS quantification methods were examined. The outcome led to the development of a robust, high-throughput HR-QTOF-LC/MS approach that permits concomitant quantification of the D-2HG and L-2HG enantiomers with the benefit to quantify the dysregulation of other intermediates within interconnecting pathways. Calibration curve was obtained over the linear range of 0.8-104 nmol/mL with r 2 ≥ 0.995 for each enantiomer. The LC/MS-based assay had an overall precision with intra-day CV % ≤ 8.0 and inter-day CV % ≤ 6.3 across the quality control level for commercial standard and pooled biological samples; relative error % ≤ 2.7 for accuracy; and resolution, R s = 1.6 between 2HG enantiomers (m/z 147.030), D-2HG and L-2HG (at retention time of 5.82 min and 4.75 min, respectively) following chiral derivatization with diacetyl-L-tartaric anhydride (DATAN). Our methodology was applied to disease relevant samples to illustrate the implications of proper enantioselective quantification of both D-2HG and L-2HG. The stability of the method allows scaling to large cohorts of clinical samples in the future.
Collapse
|
13
|
ElBeck Z, Hossain MB, Siga H, Oskolkov N, Karlsson F, Lindgren J, Walentinsson A, Koppenhöfer D, Jarvis R, Bürli R, Jamier T, Franssen E, Firth M, Degasperi A, Bendtsen C, Menzies RI, Streckfuss-Bömeke K, Kohlhaas M, Nickel AG, Lund LH, Maack C, Végvári Á, Betsholtz C. Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner. Nat Commun 2024; 15:2358. [PMID: 38509128 PMCID: PMC10954618 DOI: 10.1038/s41467-024-46384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
While excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity. We unveil redox-dependent sex dimorphism, and extensive mutual regulation of the antioxidative activities of IDH2 and NRF2 by a feedforward network that involves 2-oxoglutarate and L-2-hydroxyglutarate and mediated in part through unconventional hydroxy-methylation of cytosine residues present in introns. Consequently, conditional targeting of ROS in a murine model of heart failure improves cardiac function in sex- and phenotype-dependent manners. Together, these insights may explain why previous attempts to treat heart failure with antioxidants have been unsuccessful and open new approaches to personalizing and, thereby, improving such treatment.
Collapse
Affiliation(s)
- Zaher ElBeck
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden.
- Departmenty of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Mohammad Bakhtiar Hossain
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Humam Siga
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dominique Koppenhöfer
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
| | - Rebecca Jarvis
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Roland Bürli
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elske Franssen
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Degasperi
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Claus Bendtsen
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Alexander G Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Lars H Lund
- Department of Medicine Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
- Departmenty of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
15
|
Cai Y, Wang Z, Guo S, Lin C, Yao H, Yang Q, Wang Y, Yu X, He X, Sun W, Qiu S, Guo Y, Tang S, Xie Y, Zhang A. Detection, mechanisms, and therapeutic implications of oncometabolites. Trends Endocrinol Metab 2023; 34:849-861. [PMID: 37739878 DOI: 10.1016/j.tem.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Metabolic abnormalities are a hallmark of cancer cells and are essential to tumor progression. Oncometabolites have pleiotropic effects on cancer biology and affect a plethora of processes, from oncogenesis and metabolism to therapeutic resistance. Targeting oncometabolites, therefore, could offer promising therapeutic avenues against tumor growth and resistance to treatments. Recent advances in characterizing the metabolic profiles of cancer cells are shedding light on the underlying mechanisms and associated metabolic networks. This review summarizes the diverse detection methods, molecular mechanisms, and therapeutic targets of oncometabolites, which may lead to targeting oncometabolism for cancer therapy.
Collapse
Affiliation(s)
- Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaodan Yu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Xiaowen He
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Wanying Sun
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yu Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, International Joint Research Center on Traditional Chinese and Modern Medicine, Hainan Medical University, Haikou 571199, China; Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
16
|
Gao Y, Zimmer JT, Vasic R, Liu C, Gbyli R, Zheng SJ, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao AZ, Slavoff S, Kibbey RG, Flavell RA, Simon MD, Tebaldi T, Li HB, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m 6A modification-mediated RNA stability control. Cell Rep 2023; 42:113163. [PMID: 37742191 PMCID: PMC10636609 DOI: 10.1016/j.celrep.2023.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Radovan Vasic
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine, University of Toronto, Toronto, ON M5S3H2, Canada
| | - Chengyang Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shu-Jian Zheng
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaping Li
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sarah Slavoff
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Riviere-Cazaux C, Carlstrom LP, Rajani K, Munoz-Casabella A, Rahman M, Gharibi-Loron A, Brown DA, Miller KJ, White JJ, Himes BT, Jusue-Torres I, Ikram S, Ransom SC, Hirte R, Oh JH, Elmquist WF, Sarkaria JN, Vaubel RA, Rodriguez M, Warrington AE, Kizilbash SH, Burns TC. Blood-brain barrier disruption defines the extracellular metabolome of live human high-grade gliomas. Commun Biol 2023; 6:653. [PMID: 37340056 PMCID: PMC10281947 DOI: 10.1038/s42003-023-05035-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05-10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour.
Collapse
Affiliation(s)
| | | | - Karishma Rajani
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Desmond A Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kai J Miller
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jaclyn J White
- Department of Neurological Surgery, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | - Samar Ikram
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Seth C Ransom
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Renee Hirte
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Arthur E Warrington
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Liu Y, Wu Z, Armstrong DW, Wolosker H, Zheng Y. Detection and analysis of chiral molecules as disease biomarkers. Nat Rev Chem 2023; 7:355-373. [PMID: 37117811 PMCID: PMC10175202 DOI: 10.1038/s41570-023-00476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 04/30/2023]
Abstract
The chirality of small metabolic molecules is important in controlling physiological processes and indicating the health status of humans. Abnormal enantiomeric ratios of chiral molecules in biofluids and tissues occur in many diseases, including cancers and kidney and brain diseases. Thus, chiral small molecules are promising biomarkers for disease diagnosis, prognosis, adverse drug-effect monitoring, pharmacodynamic studies and personalized medicine. However, it remains difficult to achieve cost-effective and reliable analysis of small chiral molecules in clinical procedures, in part owing to their large variety and low concentration. In this Review, we describe current and emerging techniques that detect and quantify small-molecule enantiomers and their biological importance.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zilong Wu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX, USA.
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Charconnet M, Korsa MT, Petersen S, Plou J, Hanske C, Adam J, Seifert A. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. SMALL METHODS 2023; 7:e2201546. [PMID: 36807876 DOI: 10.1002/smtd.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Matiyas Tsegay Korsa
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Søren Petersen
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
- CIBER-BBN, ISCIII, San Sebastián, 20014, Spain
| | - Christoph Hanske
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Jost Adam
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Andreas Seifert
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
20
|
Afsari F, McIntyre TM. D-2-Hydroxyglutarate Inhibits Calcineurin Phosphatase Activity to Abolish NF-AT Activation and IL-2 Induction in Stimulated Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:504-514. [PMID: 36602551 PMCID: PMC11071645 DOI: 10.4049/jimmunol.2200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Gliomas expressing mutant isocitrate dehydrogenases excessively synthesize d-2-hydroxyglutarate (D2HG), suppressing immune surveillance. A portion of this D2HG is released from these tumor cells, but the way environmental D2HG inhibits lymphocyte function is undefined. We incubated human PBLs or Jurkat T cells with D2HG at concentrations present within and surrounding gliomas or its obverse l-2-hydroxyglutarate (L2HG) stereoisomer. We quantified each 2HG stereoisomer within washed cells by N-(p-toluenesulfonyl)-l-phenylalanyl chloride derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was present in quiescent cells and was twice as abundant as L2HG. Extracellular 2HG rapidly increased intracellular levels of the provided stereoisomer by a stereoselective, concentration-dependent process. IL-2 expression, even when elicited by A23187 and PMA, was abolished by D2HG in a concentration-dependent manner, with significant reduction at just twice its basal level. In contrast, L2HG was only moderately inhibitory. IL-2 expression is regulated by increased intracellular Ca2+ that stimulates calcineurin to dephosphorylate cytoplasmic phospho-NF-AT, enabling its nuclear translocation. D2HG abolished stimulated expression of a stably integrated NF-AT-driven luciferase reporter that precisely paralleled its concentration-dependent inhibition of IL-2. D2HG did not affect intracellular Ca2+. Rather, surface plasmon resonance showed D2HG, but not L2HG, bound calcineurin, and D2HG, but not L2HG, inhibited Ca2+-dependent calcineurin phosphatase activity in stimulated Jurkat extracts. Thus, D2HG is a stereoselective calcineurin phosphatase inhibitor that prevents NF-AT dephosphorylation and so abolishes IL-2 transcription in stimulated lymphocytes. This occurs at D2HG concentrations found within and adjacent to gliomas independent of its metabolic or epigenetic transcriptional regulation.
Collapse
Affiliation(s)
- Faezeh Afsari
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Thomas M. McIntyre
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
21
|
Development and validation of an LC-MS/MS method for D- and L-2-hydroxyglutaric acid measurement in cerebrospinal fluid, urine and plasma: application to glioma. Bioanalysis 2022; 14:1271-1280. [PMID: 36453751 DOI: 10.4155/bio-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: IDH mutations have been identified as frequent molecular lesions in several tumor types, particularly in gliomas. As a putative marker of IDH mutations, elevated D-2-HG has been reported in glioma, acute myeloid leukemia and intrahepatic cholangiocarcinoma. Excessive production of L-2-HG has also been described in renal cell carcinoma and 2-hydroxyaciduria. Materials & methods: The authors present a fully optimized stable isotope dilution multiple reaction monitoring method for quantification of D-/L-2-HG using LC-MS/MS. This is the first method validation study performed on cerebrospinal fluid, plasma and urine demonstrating clinical applicability with samples from glioma patients. Results & conclusion: This method validation study showed high accuracy and precision with low limit of detection and limit of quantification values. The authors believe that the presented approach is highly applicable for basic and clinical research on related pathologies.
Collapse
|
22
|
Lin P, W-M Fan T, Lane AN. NMR-based isotope editing, chemoselection and isotopomer distribution analysis in stable isotope resolved metabolomics. Methods 2022; 206:8-17. [PMID: 35908585 PMCID: PMC9539636 DOI: 10.1016/j.ymeth.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
NMR is a very powerful tool for identifying and quantifying compounds within complex mixtures without the need for individual standards or chromatographic separation. Stable Isotope Resolved Metabolomics (or SIRM) is an approach to following the fate of individual atoms from precursors through metabolic transformation, producing an atom-resolved metabolic fate map. However, extracts of cells or tissue give rise to very complex NMR spectra. While multidimensional NMR experiments may partially overcome the spectral overlap problem, additional tools may be needed to determine site-specific isotopomer distributions. NMR is especially powerful by virtue of its isotope editing capabilities using NMR active nuclei such as 13C, 15N, 19F and 31P to select molecules containing just these atoms in a complex mixture, and provide direct information about which atoms are present in identified compounds and their relative abundances. The isotope-editing capability of NMR can also be employed to select for those compounds that have been selectively derivatized with an NMR-active stable isotope at particular functional groups, leading to considerable spectral simplification. Here we review isotope analysis by NMR, and methods of chemoselection both for spectral simplification, and for enhanced isotopomer analysis.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Lin P, Crooks DR, Linehan WM, Fan TWM, Lane AN. Resolving Enantiomers of 2-Hydroxy Acids by Nuclear Magnetic Resonance. Anal Chem 2022; 94:12286-12291. [PMID: 36040304 PMCID: PMC9539631 DOI: 10.1021/acs.analchem.2c00490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biologically important 2-hydroxy carboxylates such as lactate, malate, and 2-hydroxyglutarate exist in two enantiomeric forms that cannot be distinguished under achiral conditions. The D and L (or R, S) enantiomers have different biological origins and functions, and therefore, there is a need for a simple method for resolving, identifying, and quantifying these enantiomers. We have adapted and improved a chiral derivatization technique for nuclear magnetic resonance (NMR), which needs no chromatography for enantiomer resolution, with greater than 90% overall recovery. This method was developed for 2-hydroxyglutarate (2HG) to produce diastereomers resolvable by column chromatography. We have applied the method to lactate, malate, and 2HG. The limit of quantification was determined to be about 1 nmol for 2HG with coefficients of variation of less than 5%. We also demonstrated the method on an extract of a renal carcinoma bearing an isocitrate dehydrogenase-2 (IDH2) variant that produces copious quantities of 2HG and showed that it is the D enantiomer that was exclusively produced. We also demonstrated in the same experiment that the lactate produced in the same sample was the L enantiomer.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
24
|
Bogos LG, Pralea IE, Moldovan RC, Iuga CA. Indirect Enantioseparations: Recent Advances in Chiral Metabolomics for Biomedical Research. Int J Mol Sci 2022; 23:ijms23137428. [PMID: 35806433 PMCID: PMC9267260 DOI: 10.3390/ijms23137428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
Chiral metabolomics is starting to become a well-defined research field, powered by the recent advances in separation techniques. This review aimed to cover the most relevant advances in indirect enantioseparations of endogenous metabolites that were published over the last 10 years, including improvements and development of new chiral derivatizing agents, along with advances in separation methodologies. Moreover, special emphasis is put on exciting advances in separation techniques combined with mass spectrometry, such as chiral discrimination by ion-mobility mass spectrometry together with untargeted strategies for profiling of chiral metabolites in complex matrices. These advances signify a leap in chiral metabolomics technologies that will surely offer a solid base to better understand the specific roles of enantiomeric metabolites in systems biology.
Collapse
Affiliation(s)
- Luisa-Gabriela Bogos
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Correspondence:
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania; (L.-G.B.); (I.-E.P.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Umino M, Sakamoto T, Onozato M, Fukushima T. Preparation of imidazolidinone compounds as derivatization reagent for diastereomerization and chromatographic separation of chiral organic acids. J Chromatogr A 2022; 1675:463159. [DOI: 10.1016/j.chroma.2022.463159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
26
|
OHTAWA T, TSUNODA M. Enantiomeric Separation of 2-Hydroxyglutarate Using Chiral Mobile Phase Additives. CHROMATOGRAPHY 2022. [DOI: 10.15583/jpchrom.2021.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuma OHTAWA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Makoto TSUNODA
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| |
Collapse
|
27
|
Microenvironmental Metabolites in the Intestine: Messengers between Health and Disease. Metabolites 2022; 12:metabo12010046. [PMID: 35050167 PMCID: PMC8778376 DOI: 10.3390/metabo12010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal mucosa is a highly absorptive organ and simultaneously constitutes the physical barrier between the host and a complex outer ecosystem. Intestinal epithelial cells (IECs) represent a special node that receives signals from the host and the environment and translates them into corresponding responses. Specific molecular communication systems such as metabolites are known to transmit information across the intestinal boundary. The gut microbiota or food-derived metabolites are extrinsic factors that influence the homeostasis of the intestinal epithelium, while mitochondrial and host-derived cellular metabolites determine the identity, fitness, and regenerative capacity of IECs. Little is known, however, about the role of intrinsic and extrinsic metabolites of IECs in the initiation and progression of pathological processes such as inflammatory bowel disease and colorectal cancer as well as about their impact on intestinal immunity. In this review, we will highlight the most recent contributions on the modulatory effects of intestinal metabolites in gut pathophysiology, with a particular focus on metabolites in promoting intestinal inflammation or colorectal tumorigenesis. In addition, we will provide a perspective on the role of newly identified oncometabolites from the commensal and opportunistic microbiota in shaping response and resistance to antitumor therapy.
Collapse
|
28
|
Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted.
Collapse
Affiliation(s)
- Carlos Calderón
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
Williams NC, Ryan DG, Costa ASH, Mills EL, Jedrychowski MP, Cloonan SM, Frezza C, O'Neill LA. Signalling metabolite L-2-hydroxyglutarate activates the transcription factor HIF-1α in lipopolysaccharide-activated macrophages. J Biol Chem 2021; 298:101501. [PMID: 34929172 PMCID: PMC8784330 DOI: 10.1016/j.jbc.2021.101501] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Activated macrophages undergo metabolic reprogramming, which not only supports their energetic demands but also allows for the production of specific metabolites that function as signaling molecules. Several Krebs cycles, or Krebs-cycle-derived metabolites, including succinate, α-ketoglutarate, and itaconate, have recently been shown to modulate macrophage function. The accumulation of 2-hydroxyglutarate (2HG) has also been well documented in transformed cells and more recently shown to play a role in T cell and dendritic cell function. Here we have found that the abundance of both enantiomers of 2HG is increased in LPS-activated macrophages. We show that L-2HG, but not D-2HG, can promote the expression of the proinflammatory cytokine IL-1β and the adoption of an inflammatory, highly glycolytic metabolic state. These changes are likely mediated through activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) by L-2HG, a known inhibitor of the HIF prolyl hydroxylases. Expression of the enzyme responsible for L-2HG degradation, L-2HG dehydrogenase (L-2HGDH), was also found to be decreased in LPS-stimulated macrophages and may therefore also contribute to L-2HG accumulation. Finally, overexpression of L-2HGDH in HEK293 TLR4/MD2/CD14 cells inhibited HIF-1α activation by LPS, while knockdown of L-2HGDH in macrophages boosted the induction of HIF-1α-dependent genes, as well as increasing LPS-induced HIF-1α activity. Taken together, this study therefore identifies L-2HG as a metabolite that can regulate HIF-1α in macrophages.
Collapse
Affiliation(s)
- Niamh C Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin; Tallaght University Hospital, Dublin, Ireland
| | - Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin; Tallaght University Hospital, Dublin, Ireland; Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Yakalı G, Çoban MB, Özen F, Özen LB, Gündüz B, Cin GT. The Importance of Polymorphism Dependent Aggregation Induced Enhanced Emission of the Acrylonitrile Derivative: Helical
J
Type and Antiparallel
H
Type Stacking Modes. ChemistrySelect 2021. [DOI: 10.1002/slct.202102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gül Yakalı
- Department of Engineering Sciences Faculty of Engineering Izmir Katip Celebi University Cigli 35620 Izmir Turkey
| | - Mustafa B. Çoban
- The Center of Science and Technology Application and Research Balıkesir University Bigadiç 10145 Balıkesir Turkey
| | - Furkan Özen
- Department of Mathematics and Science Faculty of Education Akdeniz University Konyaaltı 07058 Antalya Turkey
| | - Leyla B. Özen
- Department of Chemistry Faculty of Science Akdeniz University Konyaaltı 07058 Antalya Turkey
| | - Bayram Gündüz
- Department of Opticians Malatya Turgut Ozal University 44210 Malatya Turkey
| | - Günseli Turgut Cin
- Department of Chemistry Faculty of Science Akdeniz University Konyaaltı 07058 Antalya Turkey
| |
Collapse
|
31
|
Rajani K, Olson I, Jacobs JJ, Riviere-Cazaux C, Burns K, Carlstrom L, Schroeder M, Oh J, Howe CL, Rahman M, Sarkaria JN, Elmquist WF, Burns TC. Methods for intratumoral microdialysis probe targeting and validation in murine brain tumor models. J Neurosci Methods 2021; 363:109321. [PMID: 34390758 PMCID: PMC10703144 DOI: 10.1016/j.jneumeth.2021.109321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/27/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microdialysis is a well validated sampling technique that can be used for pharmacokinetic studies of oncological drugs targeting the central nervous system. This technique has also been applied to evaluate tumor metabolism and identify pharmacodynamic biomarkers of drug activity. Despite the potential utility of microdialysis for therapeutic discovery, variability in tumor size and location hamper routine use of microdialysis as a preclinical tool. Quantitative validation of microdialysis membrane location relative to radiographically evident tumor regions could facilitate rigorous preclinical studies. However, a widely accessible standardized workflow for preclinical catheter placement and validation is needed. NEW METHOD We provide methods for a workflow to yield tailored placement of microdialysis probes within a murine intracranial tumor and illustrate in an IDH1-mutant patient-derived xenograft (PDX) model. This detailed workflow uses a freely available on-line tool built within 3D-slicer freeware to target microdialysis probe placement within the tumor core and validate probe placement fully within the tumor. RESULTS We illustrate use of this workflow to validate microdialysis probe location relative to implanted IDH1-mutant PDXs, using the microdialysis probes to quantify levels of extracellular onco-metabolite D-2 hydroxyglutarate. COMPARISON WITH EXISTING METHODS Previous methods have used 3D slicer to reliably measure tumor volumes. Prior microdialysis studies have targeted expected tumor locations without validation. CONCLUSIONS The new method offers a streamlined and freely available workflow in 3D slicer to optimize and validate microdialysis probe placement within a murine brain tumor.
Collapse
Affiliation(s)
- Karishma Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian Olson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Joshua J Jacobs
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Kirsten Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lucas Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Mark Schroeder
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Juhee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Masum Rahman
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States; Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States; Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, United States
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
32
|
Progress and Challenges in Quantifying Carbonyl-Metabolomic Phenomes with LC-MS/MS. Molecules 2021; 26:molecules26206147. [PMID: 34684729 PMCID: PMC8541004 DOI: 10.3390/molecules26206147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Carbonyl-containing metabolites widely exist in biological samples and have important physiological functions. Thus, accurate and sensitive quantitative analysis of carbonyl-containing metabolites is crucial to provide insight into metabolic pathways as well as disease mechanisms. Although reversed phase liquid chromatography electrospray ionization mass spectrometry (RPLC-ESI-MS) is widely used due to the powerful separation capability of RPLC and high specificity and sensitivity of MS, but it is often challenging to directly analyze carbonyl-containing metabolites using RPLC-ESI-MS due to the poor ionization efficiency of neutral carbonyl groups in ESI. Modification of carbonyl-containing metabolites by a chemical derivatization strategy can overcome the obstacle of sensitivity; however, it is insufficient to achieve accurate quantification due to instrument drift and matrix effects. The emergence of stable isotope-coded derivatization (ICD) provides a good solution to the problems encountered above. Thus, LC-MS methods that utilize ICD have been applied in metabolomics including quantitative targeted analysis and untargeted profiling analysis. In addition, ICD makes multiplex or multichannel submetabolome analysis possible, which not only reduces instrument running time but also avoids the variation of MS response. In this review, representative derivatization reagents and typical applications in absolute quantification and submetabolome profiling are discussed to highlight the superiority of the ICD strategy for detection of carbonyl-containing metabolites.
Collapse
|
33
|
Hua J, Fu Y, Zhou Q, Huang Y, Li H, Chen T, Ma D, Li Z. Three chemosensory proteins from the sweet potato weevil, Cylas formicarius, are involved in the perception of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:4497-4509. [PMID: 34037312 DOI: 10.1002/ps.6484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) play important roles in chemical communication, but their precise physiological functions are still unclear. Cylas formicarius is the most serious pest attacking sweet potato around the world. At present, there is no effective way to control this pest. RESULTS Our results showed that CforCSP1, 5 and 6 genes were highly expressed in the antennae of both sexes of C. formicarius. In addition, results from a fluorescence competitive binding assay showed that the CforCSP1, 5 and 6 proteins had high binding affinities for 17 plant volatiles including eight host plant volatiles. This indicated that the three proteins may be involved in the detection of host plant volatiles. Furthermore, results from four-arm olfactometer bioassays showed that there was a significant tendency for C. formicarius to be attracted to eucalyptol, β-carotene, benzaldehyde, vanillin and phenethyl alcohol, while it was repelled by β-ionone. Finally, the levels of expression of the three CforCSPs in C. formicarius were successfully inhibited by RNA interference (RNAi). Behavioral experiments showed that CforCSP1, 5 and 6-deficient C. formicarius were partly anosmic to β-cyclocitral, benzaldehyde, octyl aldehyde, and β-ionone and exhibited a reduced ability to locate the host plant volatiles β-carotene and vanillin. CONCLUSION Our data suggest that CforCSP1, 5 and 6 likely are involved in the chemical communication between C. formicarius and host plant volatiles, which may play pivotal roles in oviposition and feeding site preferences. More importantly, these results could provide information for the development of monitoring and push-pull strategies for the control of C. formicarius. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinfeng Hua
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yujie Fu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiaoling Zhou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yongmei Huang
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huifeng Li
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianyuan Chen
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Daifu Ma
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
34
|
Zhao J, Yao K, Yu H, Zhang L, Xu Y, Chen L, Sun Z, Zhu Y, Zhang C, Qian Y, Ji S, Pan H, Zhang M, Chen J, Correia C, Weiskittel T, Lin DW, Zhao Y, Chandrasekaran S, Fu X, Zhang D, Fan HY, Xie W, Li H, Hu Z, Zhang J. Metabolic remodelling during early mouse embryo development. Nat Metab 2021; 3:1372-1384. [PMID: 34650276 DOI: 10.1038/s42255-021-00464-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/31/2021] [Indexed: 01/09/2023]
Abstract
During early mammalian embryogenesis, changes in cell growth and proliferation depend on strict genetic and metabolic instructions. However, our understanding of metabolic reprogramming and its influence on epigenetic regulation in early embryo development remains elusive. Here we show a comprehensive metabolomics profiling of key stages in mouse early development and the two-cell and blastocyst embryos, and we reconstructed the metabolic landscape through the transition from totipotency to pluripotency. Our integrated metabolomics and transcriptomics analysis shows that while two-cell embryos favour methionine, polyamine and glutathione metabolism and stay in a more reductive state, blastocyst embryos have higher metabolites related to the mitochondrial tricarboxylic acid cycle, and present a more oxidative state. Moreover, we identify a reciprocal relationship between α-ketoglutarate (α-KG) and the competitive inhibitor of α-KG-dependent dioxygenases, L-2-hydroxyglutarate (L-2-HG), where two-cell embryos inherited from oocytes and one-cell zygotes display higher L-2-HG, whereas blastocysts show higher α-KG. Lastly, increasing 2-HG availability impedes erasure of global histone methylation markers after fertilization. Together, our data demonstrate dynamic and interconnected metabolic, transcriptional and epigenetic network remodelling during early mouse embryo development.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ling Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lang Chen
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Cheng Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yuli Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyan Ji
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jie Chen
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Cristina Correia
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - Taylor Weiskittel
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - Da-Wei Lin
- Center of Computational Medicine and Bioinformatics, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai, China
| | - Sriram Chandrasekaran
- Center of Computational Medicine and Bioinformatics, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xudong Fu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Asensio AF, Alvarez-González E, Rodríguez A, Sierra LM, Blanco-González E. Chromatographic methods coupled to mass spectrometry for the determination of oncometabolites in biological samples-A review. Anal Chim Acta 2021; 1177:338646. [PMID: 34482900 DOI: 10.1016/j.aca.2021.338646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
It is now well-established that dysregulation of the tricarboxylic acid (TCA) cycle enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase leads to the abnormal cellular accumulation of succinate, fumarate, and 2-hydroxyglutarate, respectively, which contribute to the formation and malignant progression of numerous types of cancers. Thus, these metabolites, called oncometabolites, could potentially be useful as tumour-specific biomarkers and as therapeutic targets. For this reason, the development of analytical methodologies for the accurate identification and determination of their levels in biological matrices is an important task in the field of cancer research. Currently, hyphenated gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) techniques are the most powerful analytical tools in what concerns high sensitivity and selectivity to achieve such difficult task. In this review, we first provide a brief description of the biological formation of oncometabolites and their oncogenic properties, and then we present an overview and critical assessment of the GC-MS and LC-MS based analytical approaches that are reported in the literature for the determination of oncometabolites in biological samples, such as biofluids, cells, and tissues. Advantages and drawbacks of these approaches will be comparatively discussed. We believe that the present review represents the first attempt to summarize the applications of these hyphenated techniques in the context of oncometabolite analysis, which may be useful to new and existing researchers in this field.
Collapse
Affiliation(s)
- A Fernández Asensio
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain; Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Alvarez-González
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - A Rodríguez
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - L M Sierra
- Department of Functional Biology (Genetic Area), Oncology University Institute (IUOPA) and Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería s/n, 33006, Oviedo. Spain
| | - E Blanco-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Institute of Sanitary Research of Asturias (ISPA), University of Oviedo. C/ Julian Clavería 8, 33006, Oviedo. Spain.
| |
Collapse
|
36
|
Baek J, Pennathur S. Urinary 2-Hydroxyglutarate Enantiomers Are Markedly Elevated in a Murine Model of Type 2 Diabetic Kidney Disease. Metabolites 2021; 11:metabo11080469. [PMID: 34436410 PMCID: PMC8400583 DOI: 10.3390/metabo11080469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolic reprogramming is a hallmark of diabetic kidney disease (DKD); nutrient overload leads to increased production of metabolic byproducts that may become toxic at high levels. One metabolic byproduct may be 2-hydroxyglutarate (2-HG), a metabolite with many regulatory functions that exists in both enantiomeric forms physiologically. We quantitatively determined the levels of L and D-2HG enantiomers in the urine, plasma, and kidney cortex of db/db mice, a pathophysiologically relevant murine model of type 2 diabetes and DKD. We found increased fractional excretion of both L and D-2HG enantiomers, suggesting increased tubular secretion and/or production of the two metabolites in DKD. Quantitation of TCA cycle metabolites in db/db cortex suggests that TCA cycle overload and an increase in 2-HG precursor substrate, α-ketoglutarate, drive the increased L and D-2HG production in DKD. In conclusion, we demonstrated increased 2-HG enantiomer production and urinary excretion in murine type 2 DKD, which may contribute to metabolic reprogramming and progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Judy Baek
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
37
|
Fukui S, Sugiyama E, Mizuno H, Sakane I, Asakawa D, Saikusa K, Nishiya Y, Amano Y, Takahara K, Higo D, Toyo'oka T, Todoroki K. Rapid chiral discrimination of oncometabolite dl-2-hydroxyglutaric acid using derivatization and field asymmetric waveform ion mobility spectrometry/mass spectrometry. J Sep Sci 2021; 44:3489-3496. [PMID: 34254740 DOI: 10.1002/jssc.202100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023]
Abstract
2-Hydroxyglutaric acid is a chiral metabolite whose enantiomers specifically accumulate in different diseases. An enantiomeric excess of the d-form in biological specimens reflects the existence of various pathogenic mutations in cancer patients, however, conventional methods using gas or liquid chromatography and capillary electrophoresis had not been used for large clinical studies because they require multiple analytical instruments and a long run time to separate the enantiomers. Here, we present a rapid separation method for dl-2-hydroxyglutaric acid using a chiral derivatizing reagent and field asymmetric waveform ion mobility spectrometry/mass spectrometry, which requires a single analytical instrument and <1 s for the separation. We compared three derivatization methods and found that a method using (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine enables the separation. In addition, we were able to detect dl-2-hydroxyglutaric acid in standard solution at lower concentrations than that previously reported for the serum. These results show the potential of the method to be used in clinical analysis.
Collapse
Affiliation(s)
- Serina Fukui
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Eiji Sugiyama
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hajime Mizuno
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Iwao Sakane
- ITO EN Ltd., Central Research Institute, Makinohara, Japan
| | - Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Ibaraki, Japan
| | - Kazumi Saikusa
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Ibaraki, Japan
| | - Yuki Nishiya
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuri Amano
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
38
|
Špačková J, Gotvaldová K, Dvořák A, Urbančoková A, Pospíšilová K, Větvička D, Leguina-Ruzzi A, Tesařová P, Vítek L, Ježek P, Smolková K. Biochemical Background in Mitochondria Affects 2HG Production by IDH2 and ADHFE1 in Breast Carcinoma. Cancers (Basel) 2021; 13:cancers13071709. [PMID: 33916579 PMCID: PMC8038481 DOI: 10.3390/cancers13071709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary 2-hydroxyglutarate (2HG) is a metabolite resembling normal cell metabolite 2-oxoglutarate (2OG), however, its accumulation in cells might lead to amplification of processes in cancer development. R-2HG is a product or bi-product of several metabolic enzymes, including mitochondrial ones. We investigated whether production of mitochondrial 2HG is elevated in breast cancer cell lines and identified active competition for initial substrate, 2OG, between enzymes isocitrate dehydrogenase IDH2 and alcohol dehydrogenase ADHFE1. We have also investigated possible substrate and cofactor NADPH channeling between the two IDH2 molecules within mitochondria. We characterized several situations when either IDH2 and ADHFE1 produce a non-negligible amount of 2HG, which is then actively exported from cells. This can serve as a clinical application of our findings. We have therefore quantified 2HG levels in the urine of breast carcinoma patients after resection of their tumors and showed a positive correlations between cancer stages and 2HG levels. Note that cancer stages I to IV differ by the existence and severity of metastases. Extension of these findings might help to improve diagnostic approaches of breast carcinoma. Abstract Mitochondrial production of 2-hydroxyglutarate (2HG) can be catalyzed by wild-type isocitrate dehydrogenase 2 (IDH2) and alcohol dehydrogenase, iron-containing 1 (ADHFE1). We investigated whether biochemical background and substrate concentration in breast cancer cells promote 2HG production. To estimate its role in 2HG production, we quantified 2HG levels and its enantiomers in breast cancer cells using analytical approaches for metabolomics. By manipulation of mitochondrial substrate fluxes using genetic and pharmacological approaches, we demonstrated the existence of active competition between 2HG producing enzymes, i.e., IDH2 and ADHFE1. Moreover, we showed that distinct fractions of IDH2 enzyme molecules operate in distinct oxido-reductive modes, providing NADPH and producing 2HG simultaneously. We have also detected 2HG release in the urine of breast cancer patients undergoing adjuvant therapy and detected a correlation with stages of breast carcinoma development. In summary, we provide a background for vital mitochondrial production of 2HG in breast cancer cells with outcomes towards cancer biology and possible future diagnosis of breast carcinoma.
Collapse
Affiliation(s)
- Jitka Špačková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
| | - Klára Gotvaldová
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
| | - Aleš Dvořák
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
- Institute of Medical Biochemistry and Laboratory Diagnostics of the General University Hospital and the First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.P.); (L.V.)
| | - Alexandra Urbančoková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
| | - Kateřina Pospíšilová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the General University Hospital and the First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.P.); (L.V.)
| | - David Větvička
- Institute of Biophysics and Informatics, the First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic;
| | - Alberto Leguina-Ruzzi
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
| | - Petra Tesařová
- Department of Oncology, the General University Hospital and The First Faculty of Medicine, 128 08 Prague, Czech Republic;
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics of the General University Hospital and the First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic; (K.P.); (L.V.)
- 4 th Department of Internal Medicine, the General University Hospital and the First Faculty of Medicine, Charles University, 128 08 Prague , Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
| | - Katarína Smolková
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Mitochondrial Physiology, 142 20 Prague, Czech Republic; (J.Š.); (K.G.); (A.D.); (A.U.); (A.L.-R.); (P.J.)
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
39
|
Nalbantoglu S, Karadag A. Metabolomics bridging proteomics along metabolites/oncometabolites and protein modifications: Paving the way toward integrative multiomics. J Pharm Biomed Anal 2021; 199:114031. [PMID: 33857836 DOI: 10.1016/j.jpba.2021.114031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Systems biology adopted functional and integrative multiomics approaches enable to discover the whole set of interacting regulatory components such as genes, transcripts, proteins, metabolites, and metabolite dependent protein modifications. This interactome build up the midpoint of protein-protein/PTM, protein-DNA/RNA, and protein-metabolite network in a cell. As the key drivers in cellular metabolism, metabolites are precursors and regulators of protein post-translational modifications [PTMs] that affect protein diversity and functionality. The precisely orchestrated core pattern of metabolic networks refer to paradigm 'metabolites regulate PTMs, PTMs regulate enzymes, and enzymes modulate metabolites' through a multitude of feedback and feed-forward pathway loops. The concept represents a flawless PTM-metabolite-enzyme(protein) regulomics underlined in reprogramming cancer metabolism. Immense interconnectivity of those biomolecules in their spectacular network of intertwined metabolic pathways makes integrated proteomics and metabolomics an excellent opportunity, and the central component of integrative multiomics framework. It will therefore be of significant interest to integrate global proteome and PTM-based proteomics with metabolomics to achieve disease related altered levels of those molecules. Thereby, present update aims to highlight role and analysis of interacting metabolites/oncometabolites, and metabolite-regulated PTMs loop which may function as translational monitoring biomarkers along the reprogramming continuum of oncometabolism.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey.
| | - Abdullah Karadag
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Molecular, Oncology Laboratory, Gebze, Kocaeli, Turkey
| |
Collapse
|
40
|
Modrzejewska M, Gawronski M, Gackowski D. Normalization of metabolic data to total thymine content and its application to determination of 2-hydroxyglutarate. Anal Biochem 2021; 618:114129. [PMID: 33556332 DOI: 10.1016/j.ab.2021.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Our first objective was to develop an approach useful for reliable normalization of 2-hydroxyglutarate (2-HG) intracellular levels. The second objective was to use our data normalization strategy to verify previously published report on the higher d-2-HG level in tumors of colorectal cancer (CRC) patients than in normal colon fragments. We examined various methods of 2-HG level normalization in cell/tissue extracts (number of cells, mass of tissue, total protein). In order to solve the problems with reliable normalization of the 2-HG levels in colon fragments, we proposed a strategy based on relating the concentrations of 2-HG isomers to total thymine concentrations measured by ultra-performance liquid chromatography (UPLC) with UV detection in acid hydrolysates of the cell/tissue extracts. We used a common method of derivatization with diacetyl-l-tartaric anhydride (DATAN) to separate l- and d-2-HG enantiomers. DATAN-derivatized 2-HG was quantitated by UPLC with tandem mass spectrometry (MS/MS) in the selected reaction monitoring (SRM) mode. We observed a linear dependence of the total amount of thymine released from lymphocytes, HCT 116, K562, and PC-3 by acid hydrolysis on their number of cells. Our results showed a significantly higher level of l- and d-2-HG in cancer-free colon than in tumor.
Collapse
Affiliation(s)
- Martyna Modrzejewska
- Department of Clinical Biochemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092, Bydgoszcz, Poland.
| | - Maciej Gawronski
- Department of Clinical Biochemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092, Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092, Bydgoszcz, Poland.
| |
Collapse
|
41
|
Wang H, Wang L, Zheng Q, Lu Z, Chen Y, Shen D, Xue D, Jiang M, Ding L, Zhang J, Wu H, Xia L, Qian J, Li G, Lu J. Oncometabolite L-2-hydroxyglurate directly induces vasculogenic mimicry through PHLDB2 in renal cell carcinoma. Int J Cancer 2021; 148:1743-1755. [PMID: 33320958 PMCID: PMC7986127 DOI: 10.1002/ijc.33435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Metabolism reprograming is a hallmark of cancer and plays an important role in tumor progression. The aberrant metabolism in renal cell carcinoma (RCC) leads to accumulation of the oncometabolite l‐2‐hydroxyglurate (L‐2HG). L‐2HG has been reported to inhibit the activity of some α‐ketoglutarate‐dependent dioxygenases such as TET enzymes, which mediate epigenetic alteration, including DNA and histone demethylation. However, the detailed functions of L‐2HG in renal cell carcinoma have not been investigated thoroughly. In our study, we found that L‐2HG was significantly elevated in tumor tissues compared to adjacent tissues. Furthermore, we demonstrated that L‐2HG promoted vasculogenic mimicry (VM) in renal cancer cell lines through reducing the expression of PHLDB2. A mechanism study revealed that activation of the ERK1/2 pathway was involved in L‐2HG‐induced VM formation. In conclusion, these findings highlighted the pathogenic link between L‐2HG and VM and suggested a novel therapeutic target for RCC. What's new? Metabolic reprograming, a hallmark of cancer, influences tumor progression. In the case of renal cell carcinoma (RCC) specifically, progression appears to be facilitated by the oncometabolite L‐2‐hydroxyglurate (L‐2HG), though underlying mechanisms remain enigmatic. Here, the authors investigated the ability of L‐2HG in RCC to promote vasculogenic mimicry (VM), in which aggressive cancer cells form vessel‐like networks that support tumor growth. Analyses of RCC patient tissues revealed elevated L‐2HG levels, wherein tumor cells with greater L‐2HG levels exhibited more VM structures. TCGA data and high‐throughput sequencing analyses further show that L‐2HG contributes to VM formation via reduction of PHLDB2 levels.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Urology, The Affiliated Hangzhou First People's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Qian
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Lang F, Jha A, Meuter L, Pacak K, Yang C. Identification of Isocitrate Dehydrogenase 2 (IDH2) Mutation in Carotid Body Paraganglioma. Front Endocrinol (Lausanne) 2021; 12:731096. [PMID: 34616365 PMCID: PMC8488436 DOI: 10.3389/fendo.2021.731096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Carotid body paragangliomas (PGLs) are rare neuroendocrine tumors that develop within the adventitia of the medial aspect of the carotid bifurcation. Carotid body PGLs comprise about 65% of head and neck paragangliomas, however, their genetic background remains elusive. In the present study, we report one case of carotid body PGL with a somatic mutation in the gene encoding isocitrate dehydrogenase 2 (IDH2). The missense mutation in IDH2 resulted in R172G amino acid substitution, which exhibits neomorphic activity and production of D-2-hydroxyglutarate.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Abhishek Jha
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Leah Meuter
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Chunzhang Yang
- Neuro-Oncology Branch Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Chunzhang Yang,
| |
Collapse
|
43
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
44
|
Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules 2020; 25:molecules25214883. [PMID: 33105855 PMCID: PMC7660098 DOI: 10.3390/molecules25214883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Carboxyl-bearing low-molecular-weight compounds such as keto acids, fatty acids, and other organic acids are involved in a myriad of metabolic pathways owing to their high polarity and solubility in biological fluids. Various disease areas such as cancer, myeloid leukemia, heart disease, liver disease, and lifestyle diseases (obesity and diabetes) were found to be related to certain metabolic pathways and changes in the concentrations of the compounds involved in those pathways. Therefore, the quantification of such compounds provides useful information pertaining to diagnosis, pathological conditions, and disease mechanisms, spurring the development of numerous analytical methods for this purpose. This review article addresses analytical methods for the quantification of carboxylic acids, which were classified into fatty acids, tricarboxylic acid cycle and glycolysis-related compounds, amino acid metabolites, perfluorinated carboxylic acids, α-keto acids and their metabolites, thiazole-containing carboxylic acids, and miscellaneous, in biological samples from 2000 to date. Methods involving liquid chromatography coupled with ultraviolet, fluorescence, mass spectrometry, and electrochemical detection were summarized.
Collapse
|
45
|
He Q, Toh JD, Ero R, Qiao Z, Kumar V, Serra A, Tan J, Sze SK, Gao YG. The unusual di-domain structure of Dunaliella salina glycerol-3-phosphate dehydrogenase enables direct conversion of dihydroxyacetone phosphate to glycerol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:153-164. [PMID: 31762135 DOI: 10.1111/tpj.14619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Dunaliella has been extensively studied due to its intriguing adaptation to high salinity. Its di-domain glycerol-3-phosphate dehydrogenase (GPDH) isoform is likely to underlie the rapid production of the osmoprotectant glycerol. Here, we report the structure of the chimeric Dunaliella salina GPDH (DsGPDH) protein featuring a phosphoserine phosphatase-like domain fused to the canonical glycerol-3-phosphate (G3P) dehydrogenase domain. Biochemical assays confirm that DsGPDH can convert dihydroxyacetone phosphate (DHAP) directly to glycerol, whereas a separate phosphatase protein is required for this conversion process in most organisms. The structure of DsGPDH in complex with its substrate DHAP and co-factor nicotinamide adenine dinucleotide (NAD) allows the identification of the residues that form the active sites. Furthermore, the structure reveals an intriguing homotetramer form that likely contributes to the rapid biosynthesis of glycerol.
Collapse
Affiliation(s)
- Qinghua He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Joel Dewei Toh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore City, 138673, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 639798, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 639798, Singapore
| | - Veerendra Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore City, 138673, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Jackie Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore City, 637551, Singapore
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore City, 138673, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore City, 639798, Singapore
| |
Collapse
|
46
|
Mutant IDH1 Depletion Downregulates Integrins and Impairs Chondrosarcoma Growth. Cancers (Basel) 2020; 12:cancers12010141. [PMID: 31935911 PMCID: PMC7017040 DOI: 10.3390/cancers12010141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Chondrosarcomas are a heterogeneous group of malignant bone tumors that produce hyaline cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers, including conventional and dedifferentiated chondrosarcomas. These mutations lead to the inability of IDH to convert isocitrate into α-ketoglutarate (α-KG). Instead, α-KG is reduced into D-2-hydroxyglutarate (D-2HG), an oncometabolite. IDH mutations and D-2HG are thought to contribute to tumorigenesis due to the role of D-2HG as a competitive inhibitor of α-KG-dependent dioxygenases. However, the function of IDH mutations in chondrosarcomas has not been clearly defined. In this study, we knocked out mutant IDH1 (IDH1mut) in two chondrosarcoma cell lines using the CRISPR/Cas9 system. We observed that D-2HG production, anchorage-independent growth, and cell migration were significantly suppressed in the IDH1mut knockout cells. Loss of IDH1mut also led to a marked attenuation of chondrosarcoma formation and D-2HG production in a xenograft model. In addition, RNA-Seq analysis of IDH1mut knockout cells revealed downregulation of several integrin genes, including those of integrin alpha 5 (ITGA5) and integrin beta 5 (ITGB5). We further demonstrated that deregulation of integrin-mediated processes contributed to the tumorigenicity of IDH1-mutant chondrosarcoma cells. Our findings showed that IDH1mut knockout abrogates chondrosarcoma genesis through modulation of integrins. This suggests that integrin molecules are appealing candidates for combinatorial regimens with IDH1mut inhibitors for chondrosarcomas that harbor this mutation.
Collapse
|
47
|
Measurement of 2-hydroxyglutarate enantiomers in serum by chiral gas chromatography-tandem mass spectrometry and its application as a biomarker for IDH mutant gliomas. CLINICAL MASS SPECTROMETRY 2020. [DOI: 10.1016/j.clinms.2019.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Zheng JY, Jiang X, Zhou JL, Shi ZQ, Liu LF, Xin GZ. A readily 16O-/18O-isotopically-paired chiral derivatization approach for the quantification of 2-HG metabolic panel by liquid chromatography-Tandem mass spectrometry. Anal Chim Acta 2019; 1077:174-182. [DOI: 10.1016/j.aca.2019.05.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
|
49
|
Quantitative Profiling of Oncometabolites in Frozen and Formalin-Fixed Paraffin-Embedded Tissue Specimens by Liquid Chromatography Coupled with Tandem Mass Spectrometry. Sci Rep 2019; 9:11238. [PMID: 31375752 PMCID: PMC6677826 DOI: 10.1038/s41598-019-47669-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Given the implications of oncometabolites [succinate, fumarate, and 2-hydroxyglutarate (2HG)] in cancer pathogenesis and therapeutics, quantitative determination of their tissue levels has significant diagnostic, prognostic, and therapeutic values. Here, we developed and validated a multiplex liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) platform that allows simultaneous determination of oncometabolites (including succinate, fumarate and total 2HG) and other tricarboxylic acid cycle metabolites (α-ketoglutarate, malic acid, and glutamate) in frozen and FFPE tissues specimens. In addition, by employing chiral derivatization in the sample preparation, the platform enabled separation and determination of 2HG enantiomers (D- and L-2HG) in frozen and FFPE tissues. Isotope-labeled internal standard method was used for the quantitation. Linear calibration curve ranges in aqueous solution were 0.02-10, 0.2-100, 0.002-10, and 0.002-5 µM for succinate, fumarate, total 2HG, and D/L-2HG, respectively. Intra- and inter-day precision and accuracy for individual oncometabolites were within the generally accepted criteria for bioanalytical method validation (<15%). The recovery of spiked individual oncometabolites from pooled homogenate of FFPE or frozen tissue ranged 86-112%. Method validation indicated the technical feasibility, reliability and reproducibility of the platform. Oncometabolites were notably lost during the routine FFPE process. The ratios of succinate to glutamate, fumarate to α-ketoglutarate, 2HG to glutamate, and D-2HG to L-2HG were reliable surrogate measurements for the detection of altered levels of oncometabolites in FFPE specimens. Our study laid a foundation for the utility of archival FFPE specimens for oncometabolite profiling as a valid technique in clinical research and routine medical care.
Collapse
|
50
|
Ding X, Lin S, Weng H, Liang J. Separation and determination of the enantiomers of lactic acid and 2-hydroxyglutaric acid by chiral derivatization combined with gas chromatography and mass spectrometry. J Sep Sci 2018; 41:2576-2584. [DOI: 10.1002/jssc.201701555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xuemei Ding
- Department of Pharmaceutical Analysis, School of Pharmacy; Fudan University; Shanghai P. R. China
| | - Shuhai Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy; Fudan University; Shanghai P. R. China
| | - Jianying Liang
- Department of Pharmaceutical Analysis, School of Pharmacy; Fudan University; Shanghai P. R. China
| |
Collapse
|