1
|
Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S, Zhang Z. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectron 2022; 202:114025. [DOI: 10.1016/j.bios.2022.114025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
2
|
Kumar R, Llewellyn S, Vasantham SK, Nie K, Sekula-Neuner S, Vijayaraghavan A, Hirtz M. Protein spot arrays on graphene oxide coatings for efficient single-cell capture. Sci Rep 2022; 12:3895. [PMID: 35273174 PMCID: PMC8913813 DOI: 10.1038/s41598-022-06225-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Biomedical applications such as cell screening or cell-cell interaction studies require placement and adhesion of cells on surfaces with controlled numbers and location. In particular, single-cell arraying and positioning has come into focus as a basis of such applications. An ideal substrate would combine biocompatibility with favorable attributes such as pattern stability and easy processing. Here, we present a simple yet effective approach to single-cell arraying based on a graphene oxide (GO) surface carrying protein (fibronectin) microarrays to define cell adhesion points. These capture NIH-3T3 cells, resulting in cell arrays, which are benchmarked against analogous arrays on silanized glass samples. We reveal significant improvement in cell-capture performance by the GO coating with regards to overall cell adhesion and single-cell feature occupancy. This overall improvement of cell-arraying combined with retained transparency of substrate for microscopy and good biocompatibility makes this graphene-based approach attractive for single-cell experiments.
Collapse
Affiliation(s)
- R Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - S Llewellyn
- Department of Materials, The University of Manchester, Manchester, UK
- Blond McIndoe Laboratories, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S K Vasantham
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kaiwen Nie
- Department of Materials, The University of Manchester, Manchester, UK
| | | | - A Vijayaraghavan
- Department of Materials, The University of Manchester, Manchester, UK.
| | - M Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
3
|
Liu H, Kumar R, Zhong C, Gorji S, Paniushkina L, Masood R, Wittel UA, Fuchs H, Nazarenko I, Hirtz M. Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008493. [PMID: 34309083 PMCID: PMC11468818 DOI: 10.1002/adma.202008493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.g., blood). Here, a novel EV-capture strategy based on dip-pen nanolithography generated microarrays of supported lipid membranes is presented. These arrays carry specific antibodies recognizing EV- and cancer-specific surface biomarkers, enabling highly selective and efficient capture. Importantly, it is shown that the nucleic acid cargo of captured EVs is retained on the lipid array, providing the potential for downstream analysis. Finally, the feasibility of EV capture from patient sera is demonstrated. The demonstrated platform offers rapid capture, high specificity, and sensitivity, with only a small need in analyte volume and without additional purification steps. The platform is applied in context of cancer-associated EVs, but it can easily be adapted to other diagnostic EV targets by use of corresponding antibodies.
Collapse
Affiliation(s)
- Hui‐Yu Liu
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Chunting Zhong
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Saleh Gorji
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD)Jovanka‐Bontschits‐Str. 264287DarmstadtGermany
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Ramsha Masood
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Uwe A. Wittel
- Department of General and Visceral SurgeryCentre of SurgeryMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Str. 8679110FreiburgGermany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Physikalisches Institut & Center for Nanotechnology (CeNTech)Westfälische Wilhelms‐UniversitätWilhelm‐Klemm‐Straße 1048149MünsterGermany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
4
|
Dip-Pen Nanolithography(DPN): from Micro/Nano-patterns to Biosensing. Chem Res Chin Univ 2021; 37:846-854. [PMID: 34376961 PMCID: PMC8339700 DOI: 10.1007/s40242-021-1197-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 02/02/2023]
Abstract
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates. The superior throughput, resolution, and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level. Herein, we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing. Benefitting from uniform, reproducible, and large-area array patterns, DPN-based biosensors have shown high sensitivity, excellent selectivity, and fast response in target analyte detection and specific cellular recognition. We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed, programmable, and commercial array-based sensing biochips.
Collapse
|
5
|
Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects. ACTUATORS 2020. [DOI: 10.3390/act9040137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
While many natural instances of adhesion between cells and biological macromolecules have been elucidated, understanding how to mimic these adhesion events remains to be a challenge. Discovering new biointerface materials that can provide an appropriate environment, and in some cases, also providing function similar to the body’s own extracellular matrix, would be highly beneficial to multiple existing applications in biomedical and biological engineering, and provide the necessary insight for the advancement of new technology. Such examples of current applications that would benefit include biosensors, high-throughput screening and tissue engineering. From a mechanical perspective, these biointerfaces would function as bioactuators that apply focal adhesion points onto cells, allowing them to move and migrate along a surface, making biointerfaces a very relevant application in the field of actuators. While it is evident that great strides in progress have been made in the area of synthetic biointerfaces, we must also acknowledge their current limitations as described in the literature, leading to an inability to completely function and dynamically respond like natural biointerfaces. In this review, we discuss the methods, materials and, possible applications of biointerface materials used in the current literature, and the trends for future research in this area.
Collapse
|
6
|
Striebel J, Vorobii M, Kumar R, Liu HY, Yang B, Weishaupt C, Rodriguez-Emmenegger C, Fuchs H, Hirtz M, Riehemann K. Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Striebel
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Mariia Vorobii
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Hui-Yu Liu
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Carsten Weishaupt
- Department of Dermatology University Hospital of Münster Von-Esmarch-Straße 58 48149 Münster Germany
| | - Cesar Rodriguez-Emmenegger
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Harald Fuchs
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| |
Collapse
|
7
|
Xie Z, Gan T, Fang L, Zhou X. Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. SOFT MATTER 2020; 16:8736-8759. [PMID: 32969442 DOI: 10.1039/d0sm01043j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface-grafted macromolecules, including polymers, DNA, peptides, etc., are versatile modifications to tailor the interfacial functions in a wide range of fields. In this review, we aim to provide an overview of the most recent progress in engineering surface-grafted chains for the creation of complex and multiplexed surface architectures over micro- to macro-scopic areas. A brief introduction to surface grafting is given first. Then the fabrication of complex surface architectures is summarized with a focus on controlled chain conformations, grafting densities and three-dimensional structures. Furthermore, recent advances are highlighted for the generation of multiplexed arrays with designed chemical composition in both horizontal and vertical dimensions. The applications of such complicated macromolecular architectures are then briefly discussed. Finally, some perspective outlooks for future studies and challenges are suggested. We hope that this review will be helpful to those just entering this field and those in the field requiring quick access to useful reference information about the progress in the properties, processing, performance, and applications of functional surface-grafted architectures.
Collapse
Affiliation(s)
- Zhuang Xie
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| | - Lvye Fang
- School of Materials Science and Engineering, and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Xingangxi Road No. 135, Guangzhou, Guangdong Province 510275, P. R. China.
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Shenzhen, Guangdong Province 518055, P. R. China.
| |
Collapse
|
8
|
Li X, Cui T, Zhang W, Zhai Z, Wu F, Zhang Y, Yang M, Zhong W, Yue W. Dopamine-functionalized hyaluronic acid microspheres for effective capture of CD44-overexpressing circulating tumor cells. Colloids Surf B Biointerfaces 2020; 196:111281. [PMID: 32768983 DOI: 10.1016/j.colsurfb.2020.111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
As one of the biomarkers of liquid biopsy, circulating tumor cells (CTCs) provides important clinical information for cancer diagnosis. However, accurate separation and identification of CTCs remains a great deal of challenge. In present work, we developed novel dopamine-functionalized hyaluronic acid microspheres (HA-DA microspheres) to capture CD44-overexpressing CTCs. The dopamine was grafted onto the hyaluronic acid chain, which was polymerized and cross-linked by oxidation of the catechol groups. Afterwards, a facile microfluidic chip was designed and developed to fabricate the HA-DA microspheres with a diameter of about 45 μm. Our results showed that the CD44+ cells (i.e., HeLa, HepG2, A549, MCF-7 and DU-145 cells) could be selectively captured. Then a double-layer microfluidic filter (DLMF) was fabricated for dynamic isolation and detection of CTCs in blood samples. Many slit openings with 15 μm in height were designed to allow white blood cells to clear away, while the microspheres with CTCs were intercepted in the DLMF, which achieved effective separation of CTCs from blood cells. The approach exhibited high capture efficiency even at the cell density as low as 10 cells/mL. We believe the DLMF integrated with HA-DA microspheres could be a promising approach for isolation and detection of CD44-overexpressing CTCs, which is useful for prognosis and early metastasis of cancer patients.
Collapse
Affiliation(s)
- Xiuping Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tianyu Cui
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenxian Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziran Zhai
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Feixuan Wu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuwei Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Wenying Zhong
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Liu G, Petrosko SH, Zheng Z, Mirkin CA. Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chem Rev 2020; 120:6009-6047. [DOI: 10.1021/acs.chemrev.9b00725] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guoqiang Liu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textile and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Mu HY, Ou YC, Chuang HN, Lu TJ, Jhan PP, Hsiao TH, Huang JH. Triple Selection Strategy for In Situ Labeling of Circulating Tumor Cells with High Purity and Viability toward Preclinical Personalized Drug Sensitivity Analysis. ACTA ACUST UNITED AC 2020; 4:e2000013. [PMID: 32529799 DOI: 10.1002/adbi.202000013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Ex vivo culture of viable circulating tumor cells (CTCs) from individual patients has recently become an emerging liquid biopsy technology to investigate drug sensitivity and genomic analysis in cancer. However, it remains challenging to retrieve the CTCs with high viability and purity from cancer patients' blood using a rapid process. Here, a triple selection strategy that combines immunonegative enrichment, density gradient, and microfluidic-based size-exclusion methods is developed for in situ drug sensitivity testing. The CTC isolation chip consists of 4 independent microchannels that can evenly distribute the captured CTCs, allowing for independent in situ analysis event. The cancer cells are retrieved within 5 min with high viability (>95%), captured efficiency (78%), and high purity (99%) from 7.5 mL of blood cell mixed samples. Furthermore, the CTCs can be isolated from prostate cancer patients' blood samples and verified in situ using cancer-specific markers within 1.5 h, demonstrating the possibility to be applied to clinical practice. In situ drug sensitivity analysis demonstrates that the captured CTCs without and with cisplatin treatment for 1 day have survival rates of 87.5% and 0%, respectively. It is envisioned that this strategy may become a potential tool to identify suitable therapies prior to the treatment.
Collapse
Affiliation(s)
- Hsuan-Yo Mu
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, 43304, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
11
|
Cheng Y, Shen J, Yuan L, Yang Y, Shen X, Qian H, Yu L, Li R, Lv X, Yan T, Li Y, Wang L, Liu B. A novel device to capture circulating tumor cells: Quantification and molecular analysis in lung cancer patients. J Biomater Appl 2020; 35:49-58. [PMID: 32223499 DOI: 10.1177/0885328220914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here, we describe a novel microfilter device to capture circulating tumor cells in an efficient and low-cost manner. Then, we validated the safety and clinical utility of the novel microfilter device. We next performed mutation analysis from circulating tumor cells collected from lung cancer patients using this new device. Our results indicate that this microfilter system can be used to investigate the genome landscape of circulating tumor cells collected from lung cancer patients. Further, our results highlight a proof-of-concept demonstration indicating that circulating tumor cell can be used for mutation profiling during tumor evolution, therapy prediction, and monitoring, with immediate clinical applicability.
Collapse
Affiliation(s)
- Yuxin Cheng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jie Shen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ling Yuan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yan Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaoyan Shen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xin Lv
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Tingting Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yan Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Wang S, Yang X, Wu F, Min L, Chen X, Hou X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905318. [PMID: 31793747 DOI: 10.1002/smll.201905318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Indexed: 05/05/2023]
Abstract
Fluidic flow behaviors in microfluidics are dominated by the interfaces created between the fluids and the inner surface walls of microchannels. Microchannel inner surface designs, including the surface chemical modification, and the construction of micro-/nanostructures, are good examples of manipulating those interfaces between liquids and surfaces through tuning the chemical and physical properties of the inner walls of the microchannel. Therefore, the microchannel inner surface design plays critical roles in regulating microflows to enhance the capabilities of microfluidic systems for various applications. Most recently, the rapid progresses in micro-/nanofabrication technologies and fundamental materials have also made it possible to integrate increasingly complex chemical and physical surface modification strategies with the preparation of microchannels in microfluidics. Besides, a wave of researches focusing on the ideas of using liquids as dynamic surface materials is identified, and the unique characteristics endowed with liquid-liquid interfaces have revealed that the interesting phenomena can extend the scope of interfacial interactions determining microflow behaviors. This review extensively discusses the microchannel inner surface designs for microflow control, especially evaluates them from the perspectives of the interfaces resulting from the inner surface designs. In addition, prospective opportunities for the development of surface designs of microchannels, and their applications are provided with the potential to attract scientific interest in areas related to the rapid development and applications of various microchannel systems.
Collapse
Affiliation(s)
- Shuli Wang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
| | - Xian Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Feng Wu
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Lingli Min
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Liu H, Koch C, Haller A, Joosse SA, Kumar R, Vellekoop MJ, Horst LJ, Keller L, Babayan A, Failla AV, Jensen J, Peine S, Keplinger F, Fuchs H, Pantel K, Hirtz M. Evaluation of Microfluidic Ceiling Designs for the Capture of Circulating Tumor Cells on a Microarray Platform. ACTA ACUST UNITED AC 2019; 4:e1900162. [DOI: 10.1002/adbi.201900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hui‐Yu Liu
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
| | - Claudia Koch
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Anna Haller
- Institute of Sensor and Actuator SystemsTU Wien 1040 Vienna Austria
| | - Simon A. Joosse
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
| | - Michael J. Vellekoop
- Institute for MicrosensorsMicroactuators and Microsystems (IMSAS)Microsystems Center Bremen MCBUniversity of Bremen 28359 Bremen Germany
| | - Ludwig J. Horst
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Laura Keller
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Anna Babayan
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Antonio Virgilio Failla
- Microscopy Imaging Facility (UMIF)University Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Jana Jensen
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Sven Peine
- Department of Transfusion MedicineUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Franz Keplinger
- Institute of Sensor and Actuator SystemsTU Wien 1040 Vienna Austria
| | - Harald Fuchs
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
- Physical Institute and Center for Nanotechnology (CeNTech)University of Münster 48149 Münster Germany
| | - Klaus Pantel
- Department of Tumor BiologyUniversity Medical Center Hamburg‐Eppendorf 20246 Hamburg Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
14
|
Chen SL, Chen CY, Hsieh JCH, Yu ZY, Cheng SJ, Hsieh KY, Yang JW, Kumar PV, Lin SF, Chen GY. Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1725. [PMID: 31816919 PMCID: PMC6956293 DOI: 10.3390/nano9121725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Liquid biopsies use blood or urine as test samples, which are able to be continuously collected in a non-invasive manner. The analysis of cancer-related biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA, and exosomes provides important information in early cancer diagnosis, tumor metastasis detection, and postoperative recurrence monitoring assist with clinical diagnosis. However, low concentrations of some tumor markers, such as CTCs, ctDNA, and microRNA, in the blood limit its applications in clinical detection and analysis. Nanomaterials based on graphene oxide have good physicochemical properties and are now widely used in biomedical detection technologies. These materials have properties including good hydrophilicity, mechanical flexibility, electrical conductivity, biocompatibility, and optical performance. Moreover, utilizing graphene oxide as a biosensor interface has effectively improved the sensitivity and specificity of biosensors for cancer detection. In this review, we discuss various cancer detection technologies regarding graphene oxide and discuss the prospects and challenges of this technology.
Collapse
Affiliation(s)
- Shiue-Luen Chen
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chong-You Chen
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital (Linkou), Taoyuan 333, Taiwan;
| | - Zih-Yu Yu
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
| | - Sheng-Jen Cheng
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuan Yu Hsieh
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Wei Yang
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Shien-Fong Lin
- Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan; (S.-L.C.); (C.-Y.C.); (Z.-Y.Y.); (S.-J.C.); (K.Y.H.); (J.-W.Y.); (S.-F.L.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Li Y, Fang Q, Miao X, Zhang X, Zhao Y, Yan J, Zhang Y, Wu R, Nie B, Hirtz M, Liu J. Aptamer Conformation-Cooperated Enzyme-Assisted Surface-Enhanced Raman Scattering Enabling Ultrasensitive Detection of Cell Surface Protein Biomarkers in Blood Samples. ACS Sens 2019; 4:2605-2614. [PMID: 31514496 DOI: 10.1021/acssensors.9b00604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Developing novel strategies for sensitive and specific detection of protein biomarkers is a field of active research. Here, we report an ultrasensitive biosensor to detect protein tyrosine kinase-7 (PTK7), an important protein biomarker on the cell surface, by aptamer conformation-cooperated enzyme-assisted surface-enhanced Raman scattering (SERS) (ACCESS) technology. Our approach features a synergistic combination of the conformational alteration of the anglerfish aptamer triggered by the recognition of the membrane protein (PTK7) and Exo III enzyme-assisted nucleic acid amplification. It transduces the specific binding events between the aptamer and PTK7 protein into dramatically improved SERS signals. Sensitive and specific detection of PTK7 protein has been demonstrated both in the solution and directly on the surface of live CCRF-CEM cells, with a limit of detection better than the commercial enzyme-linked immunosorbent assay method by nearly 5 orders of magnitude. As a flexible, ultrasensitive, and specific approach, ACCESS promises important applications in clinical diagnostics, where only a very limited amount of the biological sample is available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baoqing Nie
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | | |
Collapse
|
16
|
Dahotre SN, Chang YM, Romanov AM, Kwong GA. DNA-Barcoded pMHC Tetramers for Detection of Single Antigen-Specific T Cells by Digital PCR. Anal Chem 2019; 91:2695-2700. [PMID: 30656939 PMCID: PMC6399736 DOI: 10.1021/acs.analchem.8b04153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antigen-specific T cells are found at low frequencies in circulation but carry important diagnostic information as liquid biomarkers in numerous biomedical settings, such as monitoring the efficacy of vaccines and cancer immunotherapies. To enable detection of antigen-specific T cells with high sensitivity, we develop peptide-MHC (pMHC) tetramers labeled with DNA barcodes to detect single T cells by droplet digital PCR (ddPCR). We show that site-specific conjugation of DNA via photocleavable linkers allows barcoded tetramers to stain T cells with similar avidity compared to conventional fluorescent tetramers and efficient recovery of barcodes by light with no loss in cell viability. We design an orthogonal panel of DNA-barcoded tetramers to simultaneously detect multiple antigen-specific T cell populations, including from a mouse model of viral infection, and discriminate single cancer-specific T cells with high diagnostic sensitivity and specificity. This approach of DNA-barcoding can be broadened to encompass additional rare cells for monitoring immunological health at the single cell level.
Collapse
Affiliation(s)
- Shreyas N. Dahotre
- Department of Biomedical Engineering, Wallace H. Coulter, Georgia Tech and Emory School of Medicine, Atlanta, GA 30332, United States
| | - Yun Min Chang
- Department of Biomedical Engineering, Wallace H. Coulter, Georgia Tech and Emory School of Medicine, Atlanta, GA 30332, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Anna M. Romanov
- Department of Biomedical Engineering, Wallace H. Coulter, Georgia Tech and Emory School of Medicine, Atlanta, GA 30332, United States
| | - Gabriel A. Kwong
- Department of Biomedical Engineering, Wallace H. Coulter, Georgia Tech and Emory School of Medicine, Atlanta, GA 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Tech, Atlanta, GA 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, 30332, United States
- Integrated Cancer Research Center, Georgia Tech, Atlanta, GA, 30332, United States
- Georgia ImmunoEngineering Consortium, Georgia Tech and Emory University, Atlanta, GA 30332, United States
| |
Collapse
|
17
|
Yu CC, Chen YW, Yeh PY, Hsiao YS, Lin WT, Kuo CW, Chueh DY, You YW, Shyue JJ, Chang YC, Chen P. Random and aligned electrospun PLGA nanofibers embedded in microfluidic chips for cancer cell isolation and integration with air foam technology for cell release. J Nanobiotechnology 2019; 17:31. [PMID: 30782169 PMCID: PMC6379968 DOI: 10.1186/s12951-019-0466-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine. METHODS We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips. We then fabricated poly(methyl methacrylate) (PMMA)-based microfluidic chips embedding the PLGA nanofiber arrays and modified their surfaces through sequential coating with using biotin-(PEG)7-amine through EDC/NHS activation, streptavidin (SA), and biotinylated epithelial-cell adhesion-molecule antibody (biotin-anti-EpCAM) to achieve highly efficient CTC capture. When combined with an air foam technology that induced a high shear stress and, thereby, nondestructive release of the captured cells from the PLGA surfaces, the proposed device system operated with a high cell recovery rate. RESULTS The morphologies and average diameters of the electrospun PLGA nanofibers were characterized using scanning electron microscopy (SEM) and confocal Raman imaging. The surface chemistry of the PLGA nanofibers conjugated with the biotin-(PEG)7-amine was confirmed through time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. The chip system was studied for the effects of the surface modification density of biotin-(PEG)7-amine, the flow rates, and the diameters of the PLGA nanofibers on the capture efficiency of EpCAM-positive HCT116 cells from the spiked liquid samples. To assess their CTC capture efficiencies in whole blood samples, the aligned and random PLGA nanofiber arrays were tested for their abilities to capture HCT116 cells, providing cancer cell capture efficiencies of 66 and 80%, respectively. With the continuous injection of air foam into the microfluidic devices, the cell release efficiency on the aligned PLGA fibers was 74% (recovery rate: 49%), while it was 90% (recovery rate: 73%) on the random PLGA fibers, from tests of 200 spiked cells in 2 mL of whole blood from healthy individuals. Our study suggests that integrated PMMA microfluidic chips embedding random PLGA nanofiber arrays may be suitable devices for the efficient capture and recovery of CTCs from whole blood samples.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Wen Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ying Yeh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan.
| | - Wei-Ting Lin
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan
| | - Chiung-Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Wen You
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
18
|
Brown KA, Hedrick JL, Eichelsdoerfer DJ, Mirkin CA. Nanocombinatorics with Cantilever-Free Scanning Probe Arrays. ACS NANO 2019; 13:8-17. [PMID: 30561191 DOI: 10.1021/acsnano.8b08185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effectiveness of combinatorial experiments is determined by the rate at which distinct experimental conditions can be prepared and interrogated. This has been particularly limiting at the intersection of nanotechnology and soft materials research, where structures are difficult to reliably prepare and materials are incompatible with conventional lithographic techniques. For example, studying nanoparticle-based heterogeneous catalysis or the interaction between biological cells and abiotic surfaces requires precise tuning of materials composition on the nanometer scale. Scanning probe techniques are poised to be major players in the combinatorial nanoscience arena because they allow one to directly deposit materials at high resolution without any harsh processing steps that limit material compatibility. The chief limitation of scanning probe techniques is throughput, as patterning with single probes is prohibitively slow in the context of large-scale combinatorial experiments. A recent paradigm shift circumvents this problem by fundamentally altering the architecture of scanning probes by replacing the conventionally used cantilever with a soft compliant film on a rigid substrate, a substitution that allows a densely packed array of probes to function in parallel in an inexpensive format. This is a major lithographic advance in terms of scalability, throughput, and versatility that, when combined with the development of approaches to actuate individual probes in cantilever-free arrays, sets the stage for scanning-probe-based tools to address scientific questions through nanocombinatorial studies in biology and materials science. In this review, we outline the development of cantilever-free scanning probe lithography and prospects for nanocombinatorial studies enabled by these tools.
Collapse
Affiliation(s)
- Keith A Brown
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| | | | | | - Chad A Mirkin
- Department of Mechanical Engineering, Division of Materials Science & Engineering, and Physics Department , Boston University , 110 Cummington Mall , Boston , Massachusetts 02215 , United States
| |
Collapse
|
19
|
Neoh KH, Hassan AA, Chen A, Sun Y, Liu P, Xu KF, Wong AS, Han RP. Rethinking liquid biopsy: Microfluidic assays for mobile tumor cells in human body fluids. Biomaterials 2018; 150:112-124. [DOI: 10.1016/j.biomaterials.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022]
|
20
|
Grimmer A, Chen X, Hamidović M, Haselmayr W, Ren CL, Wille R. Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv 2018; 8:34733-34742. [PMID: 35548635 PMCID: PMC9086924 DOI: 10.1039/c8ra05531a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/30/2018] [Indexed: 11/21/2022] Open
Abstract
The functional performance of passively operated droplet microfluidics is sensitive with respect to the dimensions of the channel network, the fabrication precision as well as the applied pressure because the entire network is coupled together. Especially, the local and global hydrodynamic resistance changes caused by droplets make the task to develop a robust microfluidic design challenging as plenty of interdependencies which all affect the intended behavior have to be considered by the designer. After the design, its functionality is usually validated by fabricating a prototype and testing it with physical experiments. In case that the functionality is not implemented as desired, the designer has to go back, revise the design, and repeat the fabrication as well as experiments. This current design process based on multiple iterations of refining and testing the design produces high costs (financially as well as in terms of time). In this work, we show how a significant amount of those costs can be avoided when applying simulation before fabrication. To this end, we demonstrate how simulations on the 1D circuit analysis model can help in the design process by means of a case study. Therefore, we compare the design process with and without using simulation. As a case study, we use a microfluidic network which is capable of trapping and merging droplets with different content on demand. The case study demonstrates how simulation can help to validate the derived design by considering all local and global hydrodynamic resistance changes. Moreover, the simulations even allow further exploration of different designs which have not been considered before due to the high costs. Simulating microfluidic networks allows to check a design even before first prototypes are realized.![]()
Collapse
Affiliation(s)
- Andreas Grimmer
- Institute for Integrated Circuits
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Xiaoming Chen
- Department of Mechanical and Mechatronics Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Medina Hamidović
- Institute for Communications Engineering and RF-Systems
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Werner Haselmayr
- Institute for Communications Engineering and RF-Systems
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| | - Carolyn L. Ren
- Department of Mechanical and Mechatronics Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Robert Wille
- Institute for Integrated Circuits
- Johannes Kepler University Linz
- 4040 Linz
- Austria
| |
Collapse
|
21
|
Caballero D, Kaushik S, Correlo V, Oliveira J, Reis R, Kundu S. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials 2017; 149:98-115. [DOI: 10.1016/j.biomaterials.2017.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/09/2023]
|
22
|
Chiodi I, Scovassi AI, Mondello C. Circulating Molecular and Cellular Biomarkers in Cancer. TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:607-656. [DOI: 10.1002/9781119023647.ch16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-Definition Medicine. Cell 2017; 170:828-843. [PMID: 28841416 DOI: 10.1016/j.cell.2017.08.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Abstract
The foundation for a new era of data-driven medicine has been set by recent technological advances that enable the assessment and management of human health at an unprecedented level of resolution-what we refer to as high-definition medicine. Our ability to assess human health in high definition is enabled, in part, by advances in DNA sequencing, physiological and environmental monitoring, advanced imaging, and behavioral tracking. Our ability to understand and act upon these observations at equally high precision is driven by advances in genome editing, cellular reprogramming, tissue engineering, and information technologies, especially artificial intelligence. In this review, we will examine the core disciplines that enable high-definition medicine and project how these technologies will alter the future of medicine.
Collapse
Affiliation(s)
- Ali Torkamani
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kristian G Andersen
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R Steinhubl
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric J Topol
- The Scripps Translational Science Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Cai P, Leow WR, Wang X, Wu YL, Chen X. Programmable Nano-Bio Interfaces for Functional Biointegrated Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605529. [PMID: 28397302 DOI: 10.1002/adma.201605529] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/07/2017] [Indexed: 05/24/2023]
Abstract
A large amount of evidence has demonstrated the revolutionary role of nanosystems in the screening and shielding of biological systems. The explosive development of interfacing bioentities with programmable nanomaterials has conveyed the intriguing concept of nano-bio interfaces. Here, recent advances in functional biointegrated devices through the precise programming of nano-bio interactions are outlined, especially with regard to the rational assembly of constituent nanomaterials on multiple dimension scales (e.g., nanoparticles, nanowires, layered nanomaterials, and 3D-architectured nanomaterials), in order to leverage their respective intrinsic merits for different functions. Emerging nanotechnological strategies at nano-bio interfaces are also highlighted, such as multimodal diagnosis or "theragnostics", synergistic and sequential therapeutics delivery, and stretchable and flexible nanoelectronic devices, and their implementation into a broad range of biointegrated devices (e.g., implantable, minimally invasive, and wearable devices). When utilized as functional modules of biointegrated devices, these programmable nano-bio interfaces will open up a new chapter for precision nanomedicine.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wan Ru Leow
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
25
|
Schneider AK, Nikolov PM, Giselbrecht S, Niemeyer CM. DNA-SMART: Biopatterned Polymer Film Microchannels for Selective Immobilization of Proteins and Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603923. [PMID: 28224757 DOI: 10.1002/smll.201603923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Indexed: 06/06/2023]
Abstract
A novel SMART module, dubbed "DNA-SMART" (DNA substrate modification and replication by thermoforming) is reported, where polymer films are premodified with single-stranded DNA capture strands, microthermoformed into 3D structures, and postmodified with complementary DNA-protein conjugates to realize complex biologically active surfaces within microfluidic devices. As a proof of feasibility, it is demonstrated that microchannels presenting three different proteins on their inner curvilinear surface can be used for selective capture of cells under flow conditions.
Collapse
Affiliation(s)
- Ann-Kathrin Schneider
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Pavel M Nikolov
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40 6229, ER Maastricht, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
26
|
Antfolk M, Laurell T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – A review. Anal Chim Acta 2017; 965:9-35. [DOI: 10.1016/j.aca.2017.02.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
27
|
Zhu W, Zhang XY, Marjani SL, Zhang J, Zhang W, Wu S, Pan X. Next-generation molecular diagnosis: single-cell sequencing from bench to bedside. Cell Mol Life Sci 2017; 74:869-880. [PMID: 27738745 PMCID: PMC11107533 DOI: 10.1007/s00018-016-2368-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
Single-cell sequencing (SCS) is a fast-growing, exciting field in genomic medicine. It enables the high-resolution study of cellular heterogeneity, and reveals the molecular basis of complicated systems, which facilitates the identification of new biomarkers for diagnosis and for targeting therapies. It also directly promotes the next generation of genomic medicine because of its ultra-high resolution and sensitivity that allows for the non-invasive and early detection of abnormalities, such as aneuploidy, chromosomal translocation, and single-gene disorders. This review provides an overview of the current progress and prospects for the diagnostic applications of SCS, specifically in pre-implantation genetic diagnosis/screening, non-invasive prenatal diagnosis, and analysis of circulating tumor cells. These analyses will accelerate the early and precise control of germline- or somatic-mutation-based diseases, particularly single-gene disorders, chromosome abnormalities, and cancers.
Collapse
Affiliation(s)
- Wanjun Zhu
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
- College of Veterinary Medicine, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
| | - Xiao-Yan Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, People's Republic of China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, 06050, USA
| | - Jialing Zhang
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Wengeng Zhang
- Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, 310002, Zhejiang, People's Republic of China.
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Province Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
29
|
Kumar R, Bonicelli A, Sekula-Neuner S, Cato ACB, Hirtz M, Fuchs H. Click-Chemistry Based Allergen Arrays Generated by Polymer Pen Lithography for Mast Cell Activation Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5330-5338. [PMID: 27511293 DOI: 10.1002/smll.201601623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The profiling of allergic responses is a powerful tool in biomedical research and in judging therapeutic outcome in patients suffering from allergy. Novel insights into the signaling cascades and easier readouts can be achieved by shifting activation studies of bulk immune cells to the single cell level on patterned surfaces. The functionality of dinitrophenol (DNP) as a hapten in the induction of allergic reactions has allowed the activation process of single mast cells seeded on patterned surfaces to be studied following treatment with allergen specific Immunoglobulin E antibodies. Here, a click-chemistry approach is applied in combination with polymer pen lithography (PPL) to pattern DNP-azide on alkyne-terminated surfaces to generate arrays of allergen. The large area functionalization offered by PPL allows an easy incorporation of such arrays into microfluidic chips. In such a setup, easy handling of cell suspension, incubation process, and read-out by fluorescence microscopy will allow immune cell activation screening to be easily adapted for diagnostics and biomedical research.
Collapse
Affiliation(s)
- Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
- Physical Institute & Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| | - Alice Bonicelli
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Sylwia Sekula-Neuner
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany.
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76201, Karlsruhe, Germany
- Physical Institute & Center for Nanotechnology (CeNTech), University of Münster, Münster, 48149, Germany
| |
Collapse
|
30
|
Recent insights into the development of nanotechnology to detect circulating tumor cells. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|