1
|
Wang X, Chen X, Zhou T, Dai W, Zhang C. NADPH-cytochrome P450 reductase mediates resistance to neonicotinoid insecticides in Bradysia odoriphaga. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106406. [PMID: 40350226 DOI: 10.1016/j.pestbp.2025.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Abstract
As a crucial electron transfer partner of the P450 system, NADPH-cytochrome P450 reductase (CPR) plays an influential role in P450-mediated detoxification metabolism of xenobiotics. CPR has been found to be associated with insecticide resistance in several insects. However, the role of CPR in the cross-resistance of Bradysia odoriphaga to clothianidin and neonicotinoid insecticides remains to be elucidated. In this study, the CPR gene (BoCPR) of B. odoriphaga was cloned and characterized. The expression of BoCPR was more abundant in the adult stage and in the midgut and Malpighian tubules of larvae, and BoCPR was significantly overexpressed in the clothianidin-resistant (CL-R) strain compared to the susceptible (SS) strain. Exposure to clothianidin significantly increased BoCPR expression in both the SS and CL-R strains. In addition, knockdown of BoCPR in SS and CL-R strains significantly reduced CPR and P450 enzyme activities, and resulted in a significant increase in larval susceptibility to clothianidin, imidacloprid, and thiamethoxam. These results suggest that BoCPR plays an important role in B. odoriphaga resistance to clothianidin and cross-resistance to neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xinxiang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xianglong Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Hao G, Chen Q, Liu Y, Wu C, An X, Gregory IO, Liang X. Characterization of a uridine diphosphate (UDP)-glycosyltransferase gene associated with abamectin resistance in two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:53. [PMID: 40329102 DOI: 10.1007/s10493-025-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025]
Abstract
Uridine diphosphate (UDP)-glycosyltransferase (UGT) belongs to detoxification enzyme glycosylating lipophilic xenobiotic compounds in various living organisms. Tetranychus urticae is a notorious pest due to its significant threat to crop production and serious resistance problem worldwide. However, the function of UGT gene in contributing to pesticide resistance in T. urticae remained largely unknown. In this study, it was found that the laboratory selected abamectin-resistant (AbR) strain had developed over 20,000-fold resistance compared with the susceptible strain (SS). After being treated with abamectin, the activities of UGTs, and the transcription of TuUGT201D3 in the AbR strain were significantly higher than those in SS. Molecular docking indicated that the UGT201D3 protein exhibited high binding capacity with abamectin, suggesting the potential interaction between them. Furthermore, knock-down the transcription of TuUGT201D3 led to the decrease of activities of UGTs, in addition, the mortalities of AbR strain (58.4%) will significantly increase compared to control (41.1%) under 48 h of abamectin treatment. Those findings elucidated that TuUGT201D3 was correlated with abamectin resistance in T. urticae.
Collapse
Affiliation(s)
- Guifeng Hao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya, 572000, China
| | - Qing Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Ying Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chunling Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xingkui An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ijiti Oluwole Gregory
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xiao Liang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571000, China.
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Lei L, Yang C, Du J, Liu Z, Wang Y, Wang H, Chi X, Xu B. Functional analysis of AccCPR in Apis cerana cerana under pesticide and heavy metal stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106296. [PMID: 40015888 DOI: 10.1016/j.pestbp.2025.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays important roles in the metabolism of both endogenous and exogenous compounds through cytochrome P450, and is also involved in the detoxification of insecticides mediated by cytochrome P450. However, the CPR from Apis cerana cerana has not been well characterized and its function is still undescribed. This study isolated the CPR gene from Apis cerana cerana and investigated its functional role in the resistance to pesticide and heavy metal stress. Bioinformatic analysis revealed significant homology between the gene and its counterparts in other species. Functional investigations demonstrated diverse expression and localization patterns of this gene, with AccCPR primarily expressed in muscular tissues and the gut, suggesting its potential roles in flight activities and intestinal barrier function of bees. Furthermore, the expression levels of this gene were significantly modulated under pesticide and heavy metal stress. Notably, the overexpression of AccCPR led to a marked alteration the tolerance to external stressors in E. coli. Additionally, the silencing of the AccCPR gene resulted in a significant decrease in antioxidant enzyme activity and the expression levels of genes associated with antioxidant functions. Consequently, the mortality rate of Apis cerana cerana under imidacloprid stress was significantly elevated. Taken together, our findings suggest that AccCPR may play a pivotal role in the resistance of Apis cerana cerana to abiotic stresses such as pesticides and heavy metals by regulating antioxidant pathways.
Collapse
Affiliation(s)
- Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chunyu Yang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Jing Du
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
4
|
Liu M, Wang Q, Lai B, Chen Y, Ge R, Yan S, Bu C. RNA interference targeting β-N-acetylhexosaminidase genes impairs molting and development of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106259. [PMID: 40015851 DOI: 10.1016/j.pestbp.2024.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
β-N-acetylhexosaminidases (HEXs) are key chitin-degrading enzymes in insects. Here, we identified TuHex1 and TuHex2 using insect orthologous genes by searching Tetranychus urticae genome and transcriptome database to investigate their roles in mite molting. TuHex1 and TuHex2 expression was induced by 20-hydroxyecdysone (20E), and inhibition of TuHex1 and TuHex2 expression by RNAi resulted in wrinkled cuticle or an inability to shed the old cuticle in nymphs, which may be due to a reduction in particle deposition in the exocuticle and lamellar structure in the endocuticle as revealed by scanning electron microscopy and transmission electron microscopy. The results suggest that the TuHex1 and TuHex2 genes play an essential role in the molting and developmental process of the mite. TuHex2, with a mortality rate of 67.41 % in the leaf disc assay, was a potential RNAi target by oral feeding. Spraying of nanocarrier-delivered bacteria expressing dsTuHex2 at 500 ng/μL kept spider mites at a consistently low level throughout the 14 days and showed good mite control comparable to that of matrine. In addition, nanocarrier-delivered dsTuHex2 is safe for Neoseiulus californicus in our experiments, providing its potential for green mite management.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Qianwen Wang
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Bin Lai
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Rongchumu Ge
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
5
|
Zhen C, Wu R, Tan Y, Zhang A, Zhang L. NADPH-cytochrome P450 reductase involved in the lambda-cyhalothrin susceptibility on the green mirid bug Apolygus lucorum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:699-706. [PMID: 39354867 DOI: 10.1017/s0007485324000488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
NADPH-cytochrome P450 reductase (CPR) is crucial for the detoxification process catalysed by cytochrome P450, which targets various exogenous xenobiotics, as well as pesticides. In our research, we successfully obtained the complete cDNA sequence of Apolygus lucorum's CPR (AlCPR) using reverse transcription PCR along with rapid amplification of cDNA ends technology. Bioinformatics analysis exhibited that the inferred amino acid sequence of AlCPR is characteristic of standard CPRs, featuring an N-terminal membrane anchor and three conserved FMN, FAD and NADP binding sites. Phylogenetic result revealed that AlCPR was positioned within the Hemiptera cluster, showing a close evolutionary relationship with the CPR of Cimex lectularius. The real-time quantitative PCR results demonstrated widespread expression of AlCPR across various life stages and tissues of A. lucorum, with the most prominent expression in adults and the abdominal region. Injecting double-stranded RNA of AlCPR only significantly increased the lambda-cyhalothrin susceptibility in lambda-cyhalothrin-resistant strain rather than the susceptible strain. These findings suggest a potential link between AlCPR and the P450-dependent defence mechanism against lambda-cyhalothrin in A. lucorum.
Collapse
Affiliation(s)
- Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| | - Rui Wu
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Ansheng Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Plant Virology, Jinan 250100, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, P.R. of China
| |
Collapse
|
6
|
Zhou H, Ning Y, Jian Y, Zhang M, Klakong M, Guo F, Shao Q, Li Y, Yang P, Li Z, Yang L, Li S, Ding W. Functional analysis of a down-regulated transcription factor-SoxNeuroA gene involved in the acaricidal mechanism of scopoletin against spider mites. PEST MANAGEMENT SCIENCE 2024; 80:1593-1606. [PMID: 37986233 DOI: 10.1002/ps.7892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Insight into the mode of action of plant-derived acaricides will help in the development of sustainable control strategies for mite pests. Scopoletin, a promising plant-derived bioactive compound, displays prominent acaricidal activity against Tetranychus cinnabarinus. The transcription factor SoxNeuroA plays a vital role in maintaining calcium ion (Ca2+ ) homeostasis. Down-regulation of SoxNeuroA gene expression occurs in scopoletin-exposed mites, but the functional role of this gene remains unknown. RESULTS A SoxNeuroA gene from T. cinnabarinus (TcSoxNeuroA) was first cloned and identified. Reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time polymerase chain reaction (qPCR), and Western blotting assays all confirmed that the gene expression and protein levels of TcSoxNeuroA were significantly reduced under scopoletin exposure. Furthermore, RNA interference silencing of the weakly expressed SoxNeuroA gene significantly enhanced the susceptibility of mites to scopoletin, suggesting that the acaricidal mechanism of scopoletin was mediated by the weakly expressed SoxNeuroA gene. Additionally, yeast one-hybrid (Y1H) and dual-luciferase reporter assays revealed that TcSoxNeuroA was a repressor of Orai1 Ca2+ channel gene transcription, and the key binding sequence was ATCAAAG (positions -361 to -368 of the Orai1 promoter). Importantly, site-directed mutagenesis and microscale thermophoresis assays further indicated that ASP185, ARG189, and LYS217, which were key predicted hydrogen-bonding sites in the molecular docking model, may be the vital binding sites for scopoletin in TcSoxNeuroA. CONCLUSION These results demonstrate that the acaricidal mechanism of scopoletin involves inhibition of the transcription factor SoxNeuroA, thus inducing the activation of the Orai1 Ca2+ channel, eventually leading to Ca2+ overload and lethality. Elucidation of the transcription factor-targeted mechanism for this potent plant-derived acaricide has vital implications for the design of next-generation green acaricides with novel targets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yeshuang Ning
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Matthana Klakong
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Qingyi Shao
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yanhong Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Pinglong Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Zongquan Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
7
|
Tang Q, Li X, He Y, Ma K. RNA interference of NADPH-cytochrome P450 reductase increases the susceptibility of Aphis gossypii Glover to sulfoxaflor. Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109745. [PMID: 37717675 DOI: 10.1016/j.cbpc.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
NADPH-cytochrome P450 reductase (CPR) is essential for the detoxification of endogenous and exogenous substances mediated by cytochrome P450. While several insect CPRs have been found to be associated with insecticide resistance, the CPR of Aphis gossypii has not been characterized, and its functional role in insecticide resistance remains undefined. In this study, we cloned and characterized the full-length sequence of A. gossypii CPR (AgCPR). The deduced amino acid sequence of AgCPR contains all conserved domains of CPR, which shows high similarity to other insect CPRs and was clustered into a same branch of aphids according to phylogenetic analysis. The transcript of AgCPR was present in all developmental stages, with the highest expression in the adult stage. Furthermore, the expression of AgCPR could be induced by sulfoxaflor, a commonly used insecticide, in a time- and dose-dependent manner. Further silencing of AgCPR by feeding dsRNA significantly increased the susceptibility of A. gossypii to this insecticide. These findings suggest that AgCPR may play a significant role in the susceptibility of A. gossypii to sulfoxaflor and in the development of P450-mediated resistance to sulfoxaflor.
Collapse
Affiliation(s)
- Qiuling Tang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xuchao Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanping He
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
8
|
Wu M, Zhang Y, Tian T, Xu D, Wu Q, Xie W, Zhang Y, Crickmore N, Guo Z, Wang S. Assessment of the role of an ABCC transporter TuMRP1 in the toxicity of abamectin to Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105543. [PMID: 37666614 DOI: 10.1016/j.pestbp.2023.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
The rapid evolution of pest resistance threatens the sustainable utilization of bioinsecticides such as abamectin, and so deciphering the molecular mechanisms affecting toxicity and resistance is essential for their long-term application. Historical studies of abamectin resistance in arthropods have mainly focused on mechanisms involving the glutamate-gated chloride channel (GluCl) targets, with the role of metabolic processes less clear. The two-spotted spider mite, Tetranychus urticae, is a generalist herbivore notorious for rapidly developing resistance to pesticides worldwide, and abamectin has been widely used for its control in the field. After reanalyzing previous transcriptome and RNA-seq data, we here identified an ABC transporter subfamily C gene in T. urticae named multidrug resistance-associated protein 1 (TuMRP1), whose expression differed between susceptible and resistant populations. Synergism bioassays with the inhibitor MK-571, the existence of a genetic association between TuMRP1 expression and susceptibility to abamectin, and the effect of RNA interference mediated silencing of TuMRP1 were all consistent with a direct role of this transporter protein in the toxicity of abamectin. Although ABC transporters are often involved in removing insecticidal compounds from cells, our data suggest either an alternative role for these proteins in the mechanism of action of abamectin or highlight an indirect association between their expression and abamectin toxicity.
Collapse
Affiliation(s)
- Mingmei Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yan Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Tian
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Agriculture, Yangtze University, Hubei, Jingzhou 434025, China.
| | - Dandan Xu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China.
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
He M, Zhao X, Chen X, Shi Y, Wu S, Xia F, Li R, Li M, Wan H, Li J, Liao X. Overexpression of NADPH-cytochrome P450 reductase is associated with sulfoxaflor resistance and neonicotinoid cross-resistance in Nilaparvata lugens (Stål). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105467. [PMID: 37532343 DOI: 10.1016/j.pestbp.2023.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 08/04/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR), a crucial electron-transfer partner of P450 systems, is required for various biological reactions catalyzed by P450 monooxygenase. Our previous study indicated that enhanced P450 enzyme detoxification and CYP6ER1 overexpression contributed to sulfoxaflor resistance in Nilaparvata lugens. However, the association between CPR, sulfoxaflor resistance, and neonicotinoid cross-resistance in N. lugens remains unclear. In this study, the sulfoxaflor-resistant (SFX-SEL) (RR = 254.04-fold), resistance-decline (DESEL) (RR = 18.99-fold), and susceptible unselected (UNSEL) strains of N. lugens with the same genetic background were established. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that the N. lugens CPR (NlCPR) expression level in the SFX-SEL strain was 6.85-fold and 6.07-fold higher than in UNSEL and DESEL strains, respectively. NlCPR expression was significantly higher in the abdomens of UNSEL, DESEL, and SFX-SEL fourth-instar nymphs than in other tissues (thoraxes, heads, and legs). Additionally, sulfoxaflor stress significantly increased NlCPR mRNA levels in the UNSEL, SFX-SEL and DESEL strains. NlCPR silencing by RNA interference (RNAi) dramatically increased the susceptibility of the UNSEL, DESEL, and SFX-SEL strains to sulfoxaflor, but the recovery of SFX-SEL was more obvious. Furthermore, NlCPR silencing led to a significant recovery in susceptibility to nitenpyram, dinotefuran, clothianidin, and thiamethoxam across all strains (UNSEL, DESEL, and SFX-SEL), with the greatest degree of recovery in the sulfoxaflor-resistant strain (SFX-SEL). Our findings suggest that NlCPR overexpression contributes to sulfoxaflor resistance and neonicotinoid cross-resistance in N. lugens. This will aid in elucidating the significance of CPR in the evolution of P450-mediated metabolic resistance in N. lugens.
Collapse
Affiliation(s)
- Minrong He
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Xueyi Zhao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Xingyu Chen
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Yiyan Shi
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Shuai Wu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Fujin Xia
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Rongyu Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Ming Li
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xun Liao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, PR China; The Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
10
|
Fadahunsi AI, Kumm C, Graham K, de León AAP, Guerrero F, Sparagano OAE, Finn RD. Biochemical characterisation of Cytochrome P450 oxidoreductase from the cattle tick, Rhipicephalus microplus, highlights potential new acaricide target. Ticks Tick Borne Dis 2023; 14:102148. [PMID: 36905815 DOI: 10.1016/j.ttbdis.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Management of the cattle tick, Rhipicephalus microplus, presents a challenge because some populations of this cosmopolitan and economically important ectoparasite are resistant to multiple classes of acaricides. Cytochrome P450 oxidoreductase (CPR) is part of the cytochrome P450 (CYP450) monooxygenases that are involved in metabolic resistance by their ability to detoxify acaricides. Inhibiting CPR, the sole redox partner that transfers electrons to CYP450s, could overcome this type of metabolic resistance. This report represents the biochemical characterisation of a CPR from ticks. Recombinant CPR of R. microplus (RmCPR), minus its N-terminal transmembrane domain, was produced in a bacterial expression system and subjected to biochemical analyses. RmCPR displayed a characteristic dual flavin oxidoreductase spectrum. Incubation with nicotinamide adenine dinucleotide phosphate (NADPH) lead to an increase in absorbance between 500 and 600 nm with a corresponding appearance of a peak absorbance at 340-350 nm indicating functional transfer of electrons between NADPH and the bound flavin cofactors. Using the pseudoredox partner, kinetic parameters for both cytochrome c and NADPH binding were calculated as 26.6 ± 11.4 µM and 7.03 ± 1.8 µM, respectively. The turnover, Kcat, for RmCPR for cytochrome c was calculated as 0.08 s-1 which is significantly lower than the CPR homologues of other species. IC50 (Half maximal Inhibitory Concentration) values obtained for the adenosine analogues 2', 5' ADP, 2'- AMP, NADP+and the reductase inhibitor diphenyliodonium were: 140, 82.2, 24.5, and 75.3 µM, respectively. Biochemically, RmCPR resembles CPRs of hematophagous arthropods more so than mammalian CPRs. These findings highlight the potential of RmCPR as a target for the rational design of safer and potent acaricides against R. microplus.
Collapse
Affiliation(s)
- Adeyinka I Fadahunsi
- Department of Biological Sciences, Biotechnology Programme, Elizade University, Ondo State, Nigeria
| | - Christopher Kumm
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Kirsty Graham
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Felix Guerrero
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Oliver A E Sparagano
- Department of Public Health and Infectious Diseases, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Robert D Finn
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK; Department of Biochemistry & Genetics, Faculty of Health & Life Sciences, St George's International School of Medicine, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
11
|
Ruma YN, Keniya MV, Monk BC. Exploring Cryptococcus neoformans CYP51 and Its Cognate Reductase as a Drug Target. J Fungi (Basel) 2022; 8:jof8121256. [PMID: 36547589 PMCID: PMC9785471 DOI: 10.3390/jof8121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus remains a leading cause of invasive fungal infections in immunocompromised people. Resistance to azole drugs has imposed a further challenge to the effective treatment of such infections. In this study, the functional expression of full-length hexahistidine-tagged Cryptococcus neoformans CYP51 (CnCYP51-6×His), with or without its cognate hexahistidine-tagged NADPH-cytochrome P450 reductase (CnCPR-6×His), in a Saccharomyces cerevisiae host system has been used to characterise these enzymes. The heterologous expression of CnCYP51-6×His complemented deletion of the host CYP51 and conferred increased susceptibility to both short-tailed and long-tailed azole drugs. In addition, co-expression of CnCPR-6×His decreased susceptibility 2- to 4-fold for short-tailed but not long-tailed azoles. Type 2 binding of azoles to CnCYP51-6×His and assay of NADPH cytochrome P450 reductase activity confirmed that the heterologously expressed CnCYP51 and CnCPR are functional. The constructs have potential as screening tools and use in structure-directed antifungal discovery.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V. Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Brian C. Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
12
|
Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. INSECT SCIENCE 2022; 29:1105-1119. [PMID: 34723412 DOI: 10.1111/1744-7917.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ying-Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Shen GM, Ou SY, Li CZ, Feng KY, Niu JZ, Adang MJ, He L. Transcription factors CncC and Maf connect the molecular network between pesticide resistance and resurgence of pest mites. INSECT SCIENCE 2022; 29:801-816. [PMID: 34586709 DOI: 10.1111/1744-7917.12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.
Collapse
Affiliation(s)
- Guang-Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Kai-Yang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| |
Collapse
|
14
|
The adult horn fly transcriptome and its complement of transcripts encoding cytochrome P450s, glutathione S-transferases, and esterases. Vet Parasitol 2022; 304:109699. [DOI: 10.1016/j.vetpar.2022.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
|
15
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
16
|
Siddiqui JA, Zhang Y, Luo Y, Bamisile BS, Rehman NU, Islam W, Qasim M, Jiang Q, Xu Y. Comprehensive Detoxification Mechanism Assessment of Red Imported Fire Ant ( Solenopsis invicta) against Indoxacarb. Molecules 2022; 27:870. [PMID: 35164134 PMCID: PMC8839056 DOI: 10.3390/molecules27030870] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
The red imported fire ant (Solenopsis invicta) is one of the deadliest invasive ant species that threatens the world by disrupting biodiversity, important functions within a natural ecosystem, and community structure. They are responsible for huge economic losses in the infested countries every year. Synthetic insecticides, especially indoxacarb, have been broadly used to control S. invicta for many years. However, the biochemical response of S. invicta to indoxacarb remains largely undiscovered. Here, we used the sublethal doses of indoxacarb on the S. invicta collected from the eight different cities of Southern China. The alteration in the transcriptome profile of S. invicta following sublethal dosages of indoxacarb was characterized using high-throughput RNA-seq technology. We created 2 libraries, with 50.93 million and 47.44 million clean reads for indoxacarb treatment and control, respectively. A total of 2018 unigenes were regulated after insecticide treatment. Results indicated that a total of 158 differentially expressed genes (DEGs) were identified in the indoxacarb-treated group, of which 100 were significantly upregulated and 58 were downregulated, mostly belonging to the detoxification enzymes, such as AChE, CarE, and GSTs. Furthermore, results showed that most of these DEGs were found in several KEGG pathways, including steroid biosynthesis, other drug metabolizing enzymes, glycerolipid metabolism, chemical carcinogenesis, drug-metabolizing cytochrome P450, glutathione metabolism, glycerophospholipid metabolism, glycolysis/gluconeogenesis, and metabolism of xenobiotics. Together, these findings indicated that indoxacarb causes significant alteration in the transcriptome profile and signaling pathways of S. invicta, providing a foundation for further molecular inquiry.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China or (J.A.S.); (B.S.B.); (Q.J.)
| | - Yuping Zhang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuanyuan Luo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China or (J.A.S.); (B.S.B.); (Q.J.)
| | - Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong, Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Murree 47150, Pakistan;
| | - Qiuying Jiang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China or (J.A.S.); (B.S.B.); (Q.J.)
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China or (J.A.S.); (B.S.B.); (Q.J.)
| |
Collapse
|
17
|
Wei P, Wang C, Li C, Chen M, Sun J, Van Leeuwen T, He L. Comparing the efficiency of RNAi after feeding and injection of dsRNA in spider mites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104966. [PMID: 34802516 DOI: 10.1016/j.pestbp.2021.104966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Pesticide resistance in spider mites drives the development of acaricides with novel mode of action, which could benefit from RNAi as a screening tool in search of new molecular targets. RNAi via oral delivery of dsRNA has been frequently reported in spider mites, but injection of dsRNA is rarely reported. We compare here the efficiency of oral delivery versus injection of dsRNA in female adult mites. When comparing silencing efficiency, oral delivery of dsRNAs silenced 40.6 ± 8.9% of CPR, 63.8 ± 6.9% of CHMP2A, and 37.7 ± 5.7% of CHMP3 genes. Similar silencing efficiencies were found for injection (48.6 ± 3.7% of CPR, 70.2 ± 4.1% of CHMP2A, 59.8 ± 2.2% of CHMP3), but with much lower quantities of dsRNAs. Oral delivery of dsRNA failed to silence the expression of the CHMP4B gene, but this could be accomplished by injection of dsRNA (23.1 ± 1.0%). When scoring the phenotypic effects of silencing, both oral delivery and injection of CHMP2A- and CHMP3-dsRNA influenced the locomotion speed of mites significantly. For CPR, silencing could only be accomplished by dsRNA injection, not by feeding. CPR silencing significantly impacted the toxicity of a typical acaricide, pyridaben, as the susceptibility of mites raised 2.75-fold. Last, injection of Eya-dsRNA in adults produced transgenerational phenotypic effects on 3.59% of offspring, as quantified by an observed deviation in eye development, while oral delivery of Eya-dsRNA did not. In conclusion, injection of dsRNA is superior to oral delivery in silencing the expression of the selected genes in this study and could be considered the method of choice to study gene function in reverse genetic approaches.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Chunji Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ming Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jingyu Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Song L, Chen Y, An X, Ding C, Bu C. Chitin deacetylase 2 is essential for molting and survival of Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104962. [PMID: 34802539 DOI: 10.1016/j.pestbp.2021.104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Chitin metabolism has long been considered promising targets for development of biorational pesticides. Considering the increasing challenges of controlling the twospotted spider mite, Tetranychus urticae Koch, the roles of chitin deacetylases (CDAs) during molting process and mite development are explored. TuCDA1 and TuCDA2 differ in expression patterns during the development process. Feeding of double-strand RNA (dsRNA) against TuCDA1 or TuCDA2 has lethal effects on the mites. Especially TuCDA2 displays a much stronger phenotype than TuCDA1 (p = 0.0003). The treated mites fail to shed the old cuticle and are trapped within exuviate until they die. The aberrant cuticle structure observed by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM) may be responsible for the lethal phenotype of TuCDA1 and TuCDA2 knocked down mites. However, treatment with both dsRNA-CDA1 and dsRNA-CDA2 cannot significantly enhance the lethal effects of dsRNA-CDA2, which indicates partially redundant function of TuCDA1 and TuCDA2. TuCDA2 may play a key role during the molting and development process. Chitin-modifying enzyme such as TuCDA2 is potential target of RNA interference through feeding.
Collapse
Affiliation(s)
- Lihong Song
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Chen
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangshun An
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chao Ding
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Chunya Bu
- Key Laboratory of Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
19
|
Zhan L, Guo S, Kangas J, Shao Q, Shiao M, Khosla K, Low WC, McAlpine MC, Bischof J. Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004605. [PMID: 34141523 PMCID: PMC8188207 DOI: 10.1002/advs.202004605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Indexed: 05/28/2023]
Abstract
Droplet vitrification has emerged as a promising ice-free cryopreservation approach to provide a supply chain for off-the-shelf cell products in cell therapy and regenerative medicine applications. Translation of this approach requires the use of low concentration (i.e., low toxicity) permeable cryoprotectant agents (CPA) and high post cryopreservation viability (>90%), thereby demanding fast cooling and warming rates. Unfortunately, with traditional approaches using convective heat transfer, the droplet volumes that can be successfully vitrified and rewarmed are impractically small (i.e., 180 picoliter) for <2.5 m permeable CPA. Herein, a novel approach to achieve 90-95% viability in micro-liter size droplets with 2 m permeable CPA, is presented. Droplets with plasmonic gold nanorods (GNRs) are printed onto a cryogenic copper substrate for improved cooling rates via conduction, while plasmonic laser heating yields >400-fold improvement in warming rates over traditional convective approach. High viability cryopreservation is then demonstrated in a model cell line (human dermal fibroblasts) and an important regenerative medicine cell line (human umbilical cord blood stem cells). This approach opens a new paradigm for cryopreservation and rewarming of dramatically larger volume droplets at lower CPA concentration for cell therapy and other regenerative medicine applications.
Collapse
Affiliation(s)
- Li Zhan
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Shuang‐Zhuang Guo
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- School of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Joseph Kangas
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Qi Shao
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Maple Shiao
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Kanav Khosla
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - Walter C. Low
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMN55455USA
- Stem Cell InstituteUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
| | - John Bischof
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Center for Advanced Technologies for the Preservation of Biological Systems (ATP‐Bio)University of MinnesotaMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
20
|
Shi L, Li W, Dong Y, Shi Y, Zhou Y, Liao X. NADPH-cytochrome P450 reductase potentially involved in indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104775. [PMID: 33771254 DOI: 10.1016/j.pestbp.2021.104775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays a central role in the metabolism of insecticides. Numerous studies have shown that CPR is associated with insecticide resistance in insect. In this study, two transcripts of Spodoptera litura CPR (SlCPR-X1 and SlCPR-X2) were identified and cloned, and the deduced protein of SlCPR-X1 contains all the conserved CPR structural features (N-terminal membrane anchor, FMN, FAD and NADP binding domains, FAD binding motif, and catalytic residues). However, no N-terminal member anchor and a shorter FMN binding region have been identified in the deduced protein of SlCPR-X2. The specific expression patterns showed that SlCPR-X1 and SlCPR-X2 were detected in all tested developmental stages and tissues, but highly expressed in third-, fourth-, and fifth-instar larvae, and in midgut and fat body. In addition, compared with the susceptible strain, SlCPR-X1 and SlCPR-X2 were up-regulated and more inducible when treated with indoxacarb in the indoxacarb-resistant strain. However, the relative expression, up-regulation and induction of SlCPR-X1 were all higher than those of SlCPR-X2 in the indoxacarb-resistant strain. Furthermore, RNA interference and baculovirus expression system combined with MTT cytotoxicity assay demonstrated that only SlCPR-X1 with the N-terminal membrane anchor as the major CPR potentially involved in S. litura indoxacarb resistance. The outcome of this study further expands our understanding of the important role of insect CPR in xenobiotics detoxification and resistance development, and CPR could be a potential target for insecticide resistance management mediated by RNAi or CRISPR/Cas.
Collapse
Affiliation(s)
- Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China.
| | - Wenlin Li
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China
| | - Yating Dong
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China
| | - Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China
| | - Yuliang Zhou
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China
| | - Xiaolan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha 410128, China.
| |
Collapse
|
21
|
Yuan CY, Jing TX, Li W, Liu XQ, Liu TY, Liu Y, Chen ML, Jiang RX, Yuan GR, Dou W, Wang JJ. NADPH-cytochrome P450 reductase mediates the susceptibility of Asian citrus psyllid Diaphorina citri to imidacloprid and thiamethoxam. PEST MANAGEMENT SCIENCE 2021; 77:677-685. [PMID: 33073914 DOI: 10.1002/ps.6143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Asian citrus psyllid Diaphorina citri has developed high levels of resistance to many insecticides, and understanding its resistance mechanism will aid in the chemical control of this species. Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is crucial in cytochrome P450 function, and in some insects CPR knockdown has increased their susceptibility to insecticides. However, the CPR from D. citri has not been characterized and its function is undescribed. RESULTS The CPR gene of D. citri (DcCPR) was cloned and sequenced. The expression level of DcCPR, determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analysis, was highest in the midgut and in nymphs. After feeding on double-stranded RNA for 72 h, the DcCPR messenger RNA level in D. citri adults decreased by 68.4%, and the susceptibility of D. citri to imidacloprid and thiamethoxam significantly increased. Meanwhile, after DcCPR silencing, the specific activities of DcCPR protein and P450s were significantly reduced by 41.6% and 44.7%, respectively. The subsequent western blot analysis and quantification of band intensity also showed that DcCPR content significantly decreased, consistent with the results of the specific activity test. In a eukaryotic expression assay, the viability of cells expressing DcCPR was significantly higher than the viability of cells expressing green fluorescent protein (GFP) when cells were exposed to imidacloprid or thiamethoxam. CONCLUSION These results indicate that DcCPR contributes to D. citri susceptibility to imidacloprid and thiamethoxam.
Collapse
Affiliation(s)
- Chen-Yang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Yuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Rui-Xu Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Environmental RNA interference in two-spotted spider mite, Tetranychus urticae, reveals dsRNA processing requirements for efficient RNAi response. Sci Rep 2020; 10:19126. [PMID: 33154461 PMCID: PMC7644771 DOI: 10.1038/s41598-020-75682-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive understanding of pleiotropic roles of RNAi machinery highlighted the conserved chromosomal functions of RNA interference. The consequences of the evolutionary variation in the core RNAi pathway genes are mostly unknown, but may lead to the species-specific functions associated with gene silencing. The two-spotted spider mite, Tetranychus urticae, is a major polyphagous chelicerate pest capable of feeding on over 1100 plant species and developing resistance to pesticides used for its control. A well annotated genome, susceptibility to RNAi and economic importance, make T. urticae an excellent candidate for development of an RNAi protocol that enables high-throughput genetic screens and RNAi-based pest control. Here, we show that the length of the exogenous dsRNA critically determines its processivity and ability to induce RNAi in vivo. A combination of the long dsRNAs and the use of dye to trace the ingestion of dsRNA enabled the identification of genes involved in membrane transport and 26S proteasome degradation as sensitive RNAi targets. Our data demonstrate that environmental RNAi can be an efficient reverse genetics and pest control tool in T. urticae. In addition, the species-specific properties together with the variation in the components of the RNAi machinery make T. urticae a potent experimental system to study the evolution of RNAi pathways.
Collapse
|
23
|
Ghazy NA, Okamura M, Sai K, Yamakawa S, Hamdi FA, Grbic V, Suzuki T. A Leaf-Mimicking Method for Oral Delivery of Bioactive Substances Into Sucking Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2020; 11:1218. [PMID: 32849754 PMCID: PMC7431704 DOI: 10.3389/fpls.2020.01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 05/22/2023]
Abstract
Spider mites (Acari: Tetranychidae) are pests of a wide range of agricultural crops, vegetables, and ornamental plants. Their ability to rapidly develop resistance to synthetic pesticides has prompted the development of new strategies for their control. Evaluation of synthetic pesticides and bio-pesticides-and more recently the identification of RNA interference (RNAi) target genes-requires an ability to deliver test compounds efficiently. Here we describe a novel method that uses a sheet-like structure mimicking plant leaves and allows for oral delivery of liquid test compounds to a large number of individuals in a limited area simultaneously (~100 mites cm-2). The main component is a fine nylon mesh sheet that holds the liquid within each pore, much like a plant cell, and consequently allows for greater distribution of specific surface area even in small amounts (10 µl cm-2 for 100-µm mesh opening size). The nylon mesh sheet is placed on a solid plane (e.g., the undersurface of a Petri dish), a solution or suspension of test compounds is pipetted into the mesh sheet, and finally a piece of paraffin wax film is gently stretched above the mesh so that the test mites can feed through it. We demonstrate the use of the method for oral delivery of a tracer dye (Brilliant Blue FCF), pesticides (abamectin and bifenazate), dsRNA targeting the Vacuolar-type H+-VATPase gene, or fluorescent nanoparticles to three species of Tetranychus spider mites (Acari: Tetranychidae) and to the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). The method is fast, easy, and highly reproducible and can be adapted to facilitate several aspects of bioassays.
Collapse
Affiliation(s)
- Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
- Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Mayo Okamura
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kanae Sai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Faten Abdelsalam Hamdi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, ON, Canada
- Instituto de Ciencias de la Vid y el Vino, Logrono, Spain
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
24
|
Adesanya AW, Cardenas A, Lavine MD, Walsh DB, Lavine LC, Zhu F. RNA interference of NADPH-cytochrome P450 reductase increases susceptibilities to multiple acaricides in Tetranychus urticae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104550. [PMID: 32359548 DOI: 10.1016/j.pestbp.2020.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae, is a polyphagous pest feeding on over 1100 plant species, including numerous highly valued economic crops. The control of T. urticae largely depends on the use of acaricides, which leads to pervasive development of acaricide resistance. Cytochrome P450-mediated metabolic detoxification is one of the major mechanisms of acaricide resistance in T. urticae. NADPH-cytochrome P450 reductase (CPR) plays as a crucial co-factor protein that donates electron(s) to microsomal cytochrome P450s to complete their catalytic cycle. This study seeks to understand the involvement of CPR/P450 in acaricide resistance in T. urticae. The full-length cDNA sequence of T. urticae's CPR (TuCPR) was cloned and characterized. TuCPR was ubiquitously transcribed in different life stages of T. urticae and the highest transcription was observed in the nymph and adult stages. TuCPR was constitutively over-expressed in six acaricide resistant populations compared to a susceptible one. TuCPR transcriptional expression was also induced by multiple acaricides in a time-dependent manner. Down-regulation of TuCPR via RNA interference (RNAi) in T. urticae led to reduced enzymatic activities of TuCPR and cytochrome P450s, as well as a reduction of resistance to multiple acaricides, abamectin, bifenthrin, and fenpyroximate. The outcome of this study highlights CPR as a potential novel target for eco-friendly control of T. urticae and other related plant-feeding pests.
Collapse
Affiliation(s)
- Adekunle W Adesanya
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; Department of Entomology, Washington State University, Pullman, WA 99164, USA.
| | - Antonio Cardenas
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Mark D Lavine
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Douglas B Walsh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA; Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
25
|
Wang M, Liu X, Shi L, Liu J, Shen G, Zhang P, Lu W, He L. Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval). INSECT SCIENCE 2020; 27:276-291. [PMID: 30136378 PMCID: PMC7379272 DOI: 10.1111/1744-7917.12637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 05/30/2023]
Abstract
Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are widely distributed within living organisms and share roles in biotransformation of various lipophilic endo- and xenobiotics with activated UDP sugars. In this study, it was found that the activity of UGTs in abamectin-resistant (AbR) strain was significantly higher (2.35-fold) than that in susceptible strain (SS) of Tetranychus cinnabarinus. Further analysis showed that 5-nitrouracil, the inhibitor of UGTs, could enhance the lethal effect of abamectin on mites. From the previous microarray results, we found an UGT gene (UGT201D3) overexpressed in AbR strain. Quantitative PCR analysis showed that UGT201D3 was highly expressed and more inducible with abamectin exposure in the AbR strain. After silencing the transcription of UGT201D3, the activity of UGTs was decreased and the susceptibility to abamectin was increased in AbR strain whereas it was not in SS. Furthermore, UGT201D3 gene was then successfully expressed in Escherichia coli. The recombinant UGT201D3 exhibited α-naphthol activity (2.81 ± 0.43 nmol/mg protein/min), and the enzyme activity could be inhibited by abamectin (inhibitory concentration at 50%: 57.50 ± 3.54 μmol/L). High-performance liquid chromatography analysis demonstrated that the recombinant UGT201D3 could effectively deplete abamectin (15.77% ± 3.72%) incubating with 150 μg protein for 6 h. These results provided direct evidence that UGT201D3 was involved in abamectin resistance in T. cinnabarinus.
Collapse
Affiliation(s)
- Meng‐Yao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Xin‐Yang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Li Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Jia‐Lu Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Guang‐Mao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Wen‐Cai Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant ProtectionSouthwest UniversityChongqingChina
- Academy of Agricultural SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
26
|
He C, Liang J, Liu S, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: Potential involvement in susceptibility to imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:29-35. [PMID: 31836051 DOI: 10.1016/j.pestbp.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
NADPH cytochrome P450 reductase (CPR) is an integral component of cytochrome P450-mediated biological reactions, such as the metabolism of xenobiotics, including insecticides. CPR has been reported to be associated with insecticide tolerance in several insects. However, the biochemical characteristics and biological function of CPR in Bemisia tabaci Q (BtCPR) remain undefined. In this study, BtCPR was cloned, and bioinformatic analysis showed that BtCPR is a transmembrane protein with a molecular weight (MW) of 76.73 kDa and contains conserved binding domains (FMN, FAD, and NADPH). Tissue- and developmental stage-dependent expression indicated that the highest expression levels of BtCPR occurred in head tissue and in male adults. Transcripts of BtCPR in the field B. tabaci Q strain were 1.62-fold higher than those of the laboratory B. tabaci Q strain. In both field and laboratory adults, the susceptibility of BtCPR-knockdown B. tabaci Q to imidacloprid substantially increased compared to that of the B. tabaci Q control group. Furthermore, the heterologous expression of BtCPR in Sf9 cells exhibited catalytic activity for cytochrome c reduction, following Michaelis-Menten kinetics. Sf9 cells overexpressing BtCPR had greater viability than the control cells when treated with imidacloprid. The results suggest that BtCPR could affect the susceptibility of B. tabaci Q to imidacloprid and could also be considered a novel target for pest control.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
27
|
Huang Y, Liao M, Yang Q, Shi S, Xiao J, Cao H. Knockdown of NADPH-cytochrome P450 reductase and CYP6MS1 increases the susceptibility of Sitophilus zeamais to terpinen-4-ol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:15-22. [PMID: 31836049 DOI: 10.1016/j.pestbp.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Terpinen-4-ol showed highly insecticidal activity to stored-grain pest Sitophilus zeamais, and cytochrome P450s were strongly induced in response to terpinen-4-ol fumigation. Understanding of the function of P450 enzyme system in the susceptibility to terpinen-4-ol in S. zeamais will benefit the potential application of terpinen-4-ol in controlling stored-grain pests. In the present study, the synergist piperonyl butoxide increased the toxicity of terpinen-4-ol to S. zeamais, with a synergism ratio of 3.5-fold. Two isoforms of NADPH-cytochrome P450 reductase (SzCPR) were identified, with the difference at the N-terminal. SzCPR contained an N-terminal membrane anchor, FMN, FAD, and NADP binding domains. Expression levels of SzCPR were upregulated by tea tree oil (TTO) and its main constituent terpinen-4-ol under different concentrations and time periods. RNAi was generated for S. zeamais by feeding adults dsRNA and the knockdown of SzCPR increased the susceptibility of S. zeamais to terpinen-4-ol, with higher mortality of adults than control under terpinen-4-ol fumigation. Further RNAi analysis showed that P450 gene CYP6MS1 mediated the susceptibility of S. zeamais to terpinen-4-ol. These results revealed that cytochrome P450 enzyme system, especially CYP6MS1 participated in the susceptibility of S. zeamais to terpinen-4-ol. The findings provided a foundation to clarify the metabolic mechanisms of terpinen-4-ol in stored-grain pests.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qianqian Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
28
|
A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Sci Rep 2019; 9:14997. [PMID: 31628365 PMCID: PMC6802196 DOI: 10.1038/s41598-019-51234-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022] Open
Abstract
The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.
Collapse
|
29
|
Shen GM, Chen W, Li CZ, Ou SY, He L. RNAi targeting ecdysone receptor blocks the larva to adult development of Tetranychus cinnabarinus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:85-90. [PMID: 31400788 DOI: 10.1016/j.pestbp.2019.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi) is a potentially useful pest control method because of its high specificity. Silencing the expression of important RNAi target genes of pests will block important biological processes and reduce pest damage. Ecdysone is a unique arthropod hormone and the ecdysone receptor (EcR) is a key factor in molting pathway. We investigated the possibility that dsRNA targeting of the EcR of Tetranychus cinnabarinus (TcEcR) could effectively block development from larvae to adults. The mRNA level of TcEcR was highest in the larva stage, and 73.1% of the mites failed to survive the larva stage when TcEcR expression was silenced. Only 11.7% of T. cinnabarinus ingesting dsRNA successfully developed into adults, while 86.7% in the control succeeded in molting across each stage. RNAi significantly increased the developmental intervals of T. cinnabarinus. Under the effects of dsRNA, development times for the larva and first nymph doubled. Phenotype of body size change and death were observed during the development of T. cinnabarinus ingesting dsRNA. These findings suggest that RNAi is a potential means for the control of T. cinnabarinus. Genes in hormone pathways such as EcR are possible RNAi targets.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chuan-Zhen Li
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shi-Yuan Ou
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
30
|
Xiangshun A, Qiang Z, Shuyang D, Xiao H, Bu C. Comparative characterization of putative chitin deacetylases from Tetranychus cinnabarinus. Biosci Biotechnol Biochem 2019; 83:1306-1309. [DOI: 10.1080/09168451.2019.1591264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Considering the challenges of controlling carmine spider mite and protecting pollinators, chitin deacetylase genes (TecCDA1 and TecCDA2) of spider mite were characterized as group I, and were expressed in stage-specific pattern, which imply their role during development. The differences in sequences and structures between T. cinnabarinus and honeybee CDAs offer possibilities to design new selective pesticides protecting pollinator honeybees.
Collapse
Affiliation(s)
- An Xiangshun
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Zhong Qiang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Deng Shuyang
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Hu Xiao
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Chunya Bu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
31
|
Yang R, Niu D, Zhao Y, Gong X, Hu L, Ai L. Function of heat shock protein 70 in the thermal stress response of Dermatophagoides farinae and establishment of an RNA interference method. Gene 2019; 705:82-89. [DOI: 10.1016/j.gene.2019.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/25/2022]
|
32
|
Sun Z, Xu C, Chen S, Shi Q, Wang H, Wang R, Song Y, Zeng R. Exposure to Herbicides Prime P450-Mediated Detoxification of Helicoverpa armigera against Insecticide and Fungal Toxin. INSECTS 2019; 10:insects10010028. [PMID: 30641934 PMCID: PMC6359087 DOI: 10.3390/insects10010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
With the long-term and large-scale use, herbicides have been well known to influence tritrophic interactions, particularly natural enemies of pests in agro-ecosystems. On the other hand, herbivorous insects, especially the generalist pests, have developed antagonistic interaction to different insecticides, toxic plant secondary metabolites, and even heavy metals. However, whether exposure to herbicides would affect resistance of insects against insecticides is largely unknown, especially in agricultural pests. Here, we first reported that pre-exposure to two widely used herbicides butachlor and haloxyfop-methyl for 48 h can prime the resistance of a generalist agricultural pest Helicoverpa armigera Hübner against insecticide methomyl and fungal toxin aflatoxin B1. In addition, there were no significant differences between control and herbicides-treated caterpillars on weight gain, pupal weight, and pupation rates, suggesting that exposure to herbicides induces resistance of H. armigera accompanied with no fitness cost. Moreover, by determining detoxifying enzyme activities and toxicity bioassay with additional inhibitor of cytochrome P450 piperonyl butoxide (PBO), we showed that exposure to herbicides might prime P450-mediated detoxification of H. armigera against insecticide. Based on these results, we propose that exposure to herbicides prime resistance of H. armigera against insecticide and fungal toxin by eliciting a clear elevation of predominantly P450 monooxygenase activities in the midgut and fat body.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China.
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shi Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
33
|
Abouelmaaty HG, Fukushi M, Abouelmaaty AG, Ghazy NA, Suzuki T. Leaf disc-mediated oral delivery of small molecules in the absence of surfactant to the two-spotted spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:1-10. [PMID: 30604195 DOI: 10.1007/s10493-018-0335-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/12/2018] [Indexed: 05/12/2023]
Abstract
The two-spotted spider mite (TSSM), Tetranychus urticae, is a chelicerate herbivore with a wide host range and strong ability to develop pesticide resistance. Experimental TSSM populations are easy to maintain, and the recent publication of the complete TSSM genome sequence and development of RNA interference-based reverse genetics protocols make this species an ideal chelicerate model for the study of pesticide resistance and plant-herbivore interactions. In such studies, treated leaf discs are often used for oral delivery of test compounds. When preparing these leaf discs, the organosilicone surfactant Silwet L-77 is used to promote wetting of the leaf surface and distribution of the test compound across the entire leaf surface. Here, we examined the toxicity of Silwet L-77 and found it to be toxic to TSSMs. We then developed a novel means of preparing leaf discs in which a polypropylene sheet rather than Silwet L-77 was used to ensure distribution of a tracer dye across the entire leaf surface. These leaf discs were then successfully used to deliver the tracer dye into the midgut of TSSMs. No significant differences were observed in the survival, fecundity, or feeding activity of TSSMs fed on leaf discs treated with water via our novel method compared with those fed on untreated leaf discs. Thus, our novel method of preparing leaf discs eliminates concerns regarding the bioactivity of surfactants in TSSMs, and we anticipate that it will be useful for improving oral delivery-based bioassays that use TSSMs.
Collapse
Affiliation(s)
- Hebatallah Galal Abouelmaaty
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
- Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, 12311, Egypt
| | - Mimoe Fukushi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Ayatallah Galal Abouelmaaty
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Noureldin Abuelfadl Ghazy
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
- Agriculture Zoology Department, Faculty of Agriculture, Mansoura University, El-Mansoura, 35516, Egypt
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
34
|
Niu J, Shen G, Christiaens O, Smagghe G, He L, Wang J. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. PEST MANAGEMENT SCIENCE 2018; 74:2680-2687. [PMID: 29749092 DOI: 10.1002/ps.5071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 05/28/2023]
Abstract
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows great potential for insect pest control. Here, we review the literature regarding RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program using RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and current understanding of systemic movement of double-stranded RNA (dsRNA). On the basis of this evidence, we can conclude that there is clear potential for application of RNAi-based mite control, but further research on several aspects of RNAi in mites is needed, including: (i) the factors influencing RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, which should be considered during RNAi target selection. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Jing TX, Tan Y, Ding BY, Dou W, Wei DD, Wang JJ. NADPH-Cytochrome P450 Reductase Mediates the Resistance of Aphis ( Toxoptera) citricidus (Kirkaldy) to Abamectin. Front Physiol 2018; 9:986. [PMID: 30158872 PMCID: PMC6104490 DOI: 10.3389/fphys.2018.00986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 11/13/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) plays an essential role in the cytochrome P450 enzyme system, which aids in the metabolism of endogenous and exogenous compounds including the detoxification of insecticides. In this study, the CPR transcript in Aphis (Toxoptera) citricidus (Kirkaldy) was cloned, and the deduced amino acid sequence contained an N-terminal membrane anchor, three conserved binding domains (flavin mononucleotide, flavin adeninedinucleotide, and nicotinamide adenine dinucleotide phosphate), a flavin adeninedinucleotide-binding motif, and catalytic residues. Based on phylogenetic analysis, AcCPR was grouped in the hemipteran branch. AcCPR was ubiquitously expressed at all developmental stages and was most abundant in the adults and least abundant in third instar nymphs. Compared with other tested tissues of adults, the expression level of AcCPR was significantly high in the gut. Feeding double-stranded RNA of AcCPR reduced the AcCPR mRNA level and the activity of AcCPR in aphids, and the treated insects exhibited higher susceptibility to abamectin than the control group. Furthermore, the heterologous overexpression of AcCPR in Sf9 cells resulted in a greater viability than control cells when treated with abamectin. All results demonstrated that AcCPR may contribute to the resistance of A.citricidus to abamectin, and CPR may be a potential target for novel insecticide design or a new factor in the development of insecticide resistance.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yang Tan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Yang R, Zhang Y, Xu H. Synthesis of novel isoxazoline-containing podophyllotoxin/2′(2′,6′)-(di)halogenopodophyllotoxin derivatives and their insecticidal/acaricidal activities. Bioorg Med Chem Lett 2018; 28:1410-1416. [DOI: 10.1016/j.bmcl.2018.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
|
37
|
Synthesis of andrographolide-related esters as insecticidal and acaricidal agents. Bioorg Med Chem Lett 2018; 28:360-364. [DOI: 10.1016/j.bmcl.2017.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
|
38
|
Xu H, Lv M, Zhang B, Yu M. Synthesis Of 2′(2′,6′)-(Di)Halogenoisoxazolopodophyllic Acids-Based Amides Derived from a Naturally Occurring Lignan Podophyllotoxin and Their Acaricidal Activity. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Zhang X, Wang J, Liu J, Li Y, Liu X, Wu H, Ma E, Zhang J. Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria. CHEMOSPHERE 2017; 188:517-524. [PMID: 28910726 DOI: 10.1016/j.chemosphere.2017.08.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND NADPH-cytochrome P450 reductase (CPR) plays important roles in cytochrome P450-mediated metabolism of endogenous and exogenous compounds, and participates in cytochrome P450-related detoxification of insecticides. However, the CPR from Locusta migratoria has not been well characterized and its function is still undescribed. RESULTS The full-length of CPR gene from Locusta migratoria (LmCPR) was cloned by RT-PCR based on transcriptome information. The membrane anchor region, and 3 conserved domains (FMN binding domain, connecting domain, FAD/NADPH binding domain) were analyzed by bioinformatics analysis. Phylogenetic analysis showed that LmCPR was grouped in the Orthoptera branch and was more closely related to the CPRs from hemimetabolous insects. The LmCPR gene was ubiquitously expressed at all developmental stages and was the most abundant in the fourth-instar nymphs and the lowest in the egg stage. Tissue-specific expression analysis showed that LmCPR was higher expressed in ovary, hindgut, and integument. The CPR activity was relatively higher in Malpighian tubules and integument. Silencing of LmCPR obviously reduced the enzymatic activity of LmCPR, and enhanced the susceptibility of Locusta migratoria to carbaryl. CONCLUSION These results suggest that LmCPR contributes to the susceptibility of L. migratoria to carbaryl and could be considered as a novel target for pest control.
Collapse
Affiliation(s)
- Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Junxiu Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jiao Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Yahong Li
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Xiaojian Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
40
|
Peng L, Zhao Y, Wang H, Song C, Shangguan X, Ma Y, Zhu L, He G. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper ( Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice. Front Physiol 2017; 8:972. [PMID: 29249980 PMCID: PMC5714877 DOI: 10.3389/fphys.2017.00972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/14/2017] [Indexed: 12/04/2022] Open
Abstract
Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.
Collapse
Affiliation(s)
- Lei Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengpan Song
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Huang X, Zhang B, Xu H. Synthesis of some monosaccharide-related ester derivatives as insecticidal and acaricidal agents. Bioorg Med Chem Lett 2017; 27:4336-4340. [DOI: 10.1016/j.bmcl.2017.08.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
|
42
|
Shen GM, Song CG, Ao YQY, Xiao YH, Zhang YJ, Pan Y, He L. Transgenic cotton expressing CYP392A4 double-stranded RNA decreases the reproductive ability of Tetranychus cinnabarinus. INSECT SCIENCE 2017; 24:559-568. [PMID: 27064066 DOI: 10.1111/1744-7917.12346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
As a polyphagous pest, Tetranychus cinnabarinus has the ability to overcome the defense of various hosts, and causes severe losses to various economically important crops. Since the interaction between pest and host plants is a valuable clue to investigate potential ways for pest management, we intend to identify the key genes of T. cinnabarinus for its adaption on cotton, then, with RNA interference (RNAi) and transgenic technology, construct a transgenic cotton strain to interfere with this process, and evaluate the effect of this method on the management of the mites. The difference of gene expression of T. cinnabarinus was analyzed when it was transferred to a new host (from cowpea to cotton) through high-throughput sequencing, and a number of differentially expressed genes involved in detoxification, digestion and specific processes during the development were classified. From them, a P450 gene CYP392A4 with high abundance and prominent over-expression on the cotton was selected as a candidate. With transgenic technology, cotton plants expressing double-stranded RNA of CYP392A4 were constructed. Feeding experiments showed that it can decrease the expression of the target gene, result in the reduction of reproductive ability of the mites, and the population of T. cinnabarinus showed an apparent fitness cost on the transgenic cotton. These results provide a new approach to restrict the development of mite population on the host. It is also a useful attempt to control piercing sucking pests through RNAi and transgenic technology.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chang-Gui Song
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yi-Qian-Yun Ao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yue-Hua Xiao
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yong-Jun Zhang
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Zhang Y, Cheng J, Yang S, Liang F, Qu X. Enhanced acaricidal activity of ricinine achieved by the construction of nano-formulation using amphiphilic block copolymer. RSC Adv 2017. [DOI: 10.1039/c6ra26743b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphiphilic block copolymer PEO–PCL improves the encapsulation of ricinine and enhances the acaricidal efficiency of the pesticide on V. unguiculata (L.) when compared to the formulations made by surfactants.
Collapse
Affiliation(s)
- Yingqiang Zhang
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Jun Cheng
- College of Biological Science and Engineering
- Beijing University of Agriculture
- Beijing 102206
- China
| | - Saina Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Fuxin Liang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaozhong Qu
- College of Materials Science and Opto-Electronic Technology
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
44
|
Xu Z, Wu Q, Xu Q, He L. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite. Toxicol Sci 2016; 155:258-269. [DOI: 10.1093/toxsci/kfw210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Shi L, Zhang J, Shen G, Xu Z, Xu Q, He L. Collaborative contribution of six cytochrome P450 monooxygenase genes to fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). INSECT MOLECULAR BIOLOGY 2016; 25:653-665. [PMID: 27351452 DOI: 10.1111/imb.12251] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cytochrome P450 monooxygenases (P450s), as an important family of detoxification enzymes, participate in the metabolism of agrochemicals in almost all agricultural pests and play important roles in the development of insecticide resistance. Two P450 genes (CYP389B1 and CYP392A26) were identified and their expression patterns were investigated in our previous study. In this study, four more P450 gene sequences (CYP391A1, CYP384A1, CYP392D11 and CYP392A28) from the Clan 2, Clan 3 and Clan 4 families were identified and characterized. Quantitative PCR analysis showed that these four P450 genes were highly expressed in a fenpropathrin-resistant (FeR) strain of Tetranychus cinnabarinus. In addition, their expressions were much more sensitive to fenpropathrin induction in the FeR strain than the susceptible strain. Gene-silencing experiments via double-stranded RNA feeding were carried out. The results showed that mRNA levels of these six P450 genes were reduced in the FeR strain and the activities of P450s were decreased. Consequently mite susceptibilities to fenpropathrin were increased. Interestingly, silencing all six P450 genes simultaneously had an even greater effect on resistance than silencing them individually. This study increases our understanding of the molecular mechanisms of insecticide detoxification, suggesting that the overexpression of these six P450 genes might play important roles in fenpropathrin resistance in T. cinnabarinus collaboratively.
Collapse
Affiliation(s)
- L Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - J Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - G Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Z Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Q Xu
- Department of Biology, Abilene Christian University, Abilene, TX, USA
| | - L He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Wu Z, Zhang H, Bin S, Chen L, Han Q, Lin J. Antennal and Abdominal Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, Diaphorina citri. PLoS One 2016; 11:e0159372. [PMID: 27441376 PMCID: PMC4956155 DOI: 10.1371/journal.pone.0159372] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri is the principal vector of the highly destructive citrus disease called Huanglongbing (HLB) or citrus greening, which is a major threat to citrus cultivation worldwide. More effective pest control strategies against this pest entail the identification of potential chemosensory proteins that could be used in the development of attractants or repellents. However, the molecular basis of olfaction in the Asian citrus psyllid is not completely understood. Therefore, we performed this study to analyze the antennal and abdominal transcriptome of the Asian citrus psyllid. We identified a large number of transcripts belonging to nine chemoreception-related gene families and compared their expression in male and female adult antennae and terminal abdomen. In total, 9 odorant binding proteins (OBPs), 12 chemosensory proteins (CSPs), 46 odorant receptors (ORs), 20 gustatory receptors (GRs), 35 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs) and 4 different gene families encoding odorant-degrading enzymes (ODEs): 80 cytochrome P450s (CYPs), 12 esterase (ESTs), and 5 aldehyde dehydrogenases (ADE) were annotated in the D. citri antennal and abdominal transcriptomes. Our results revealed that a large proportion of chemosensory genes exhibited no distinct differences in their expression patterns in the antennae and terminal abdominal tissues. Notably, RNA sequencing (RNA-seq) data and quantitative real time-PCR (qPCR) analyses showed that 4 DictOBPs, 4 DictCSPs, 4 DictIRs, 1 DictSNMP, and 2 DictCYPs were upregulated in the antennae relative to that in terminal abdominal tissues. Furthermore, 2 DictOBPs (DictOBP8 and DictOBP9), 2 DictCSPs (DictOBP8 and DictOBP12), 4 DictIRs (DictIR3, DictIR6, DictIR10, and DictIR35), and 1 DictCYP (DictCYP57) were expressed at higher levels in the male antennae than in the female antennae. Our study provides the first insights into the molecular basis of chemoreception in this insect pest. Further studies on the identified differentially expressed genes would facilitate the understanding of insect olfaction and their role in the interactions between olfactory system and biological processes.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - He Zhang
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Shuying Bin
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Lei Chen
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Qunxin Han
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| | - Jintian Lin
- Institute for Management of Invasive Alien Species, Zhongkai University of Agriculture and Engineering, Guangzhou, PR China
| |
Collapse
|