1
|
Nair A, Anish RJ, Moorthy SN. A review on the role of functional foods and derivatives for diabetes management. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:799-809. [PMID: 40182674 PMCID: PMC11961806 DOI: 10.1007/s13197-025-06234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/17/2024] [Accepted: 01/27/2025] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus (DM) is a global metabolic disorder affecting the quality of life. The continuous usage of hypoglycaemic agents can control diabetic pathogenesis in patient; however it is challenging to minimize the severe side effects and metabolic contraindications. So, it is necessary to find novel drug candidates or dietary derivatives with minimum side effects, and excellent biological efficacy to meet the demands of the growing population. As a metabolic disorder, DM requires a food based therapy for better recovery. Including various functional foods (legumes, spices and whole grains) in optimal quantity in routine diet can prevent the complications associated with DM. Recent research revealed that the functional foods (FFs) combinations can accelerate the recovery time, promote a clinical total effective rate, and minimize endothelial dysfunction and microvascular episodes, associated with diabetic pathogenesis and provides novel possibilities of cost-effective treatment options for DM management. Innovative technology associated with artificial intelligence (AI), imaging techniques, and metabolic engineering tools help to understand the signalling mechanisms associated with DM and reveal sensitive targets for novel drug interactions, further opening a crucial turning point in DM research. In conclusion, the current review summarized the direct intake of FFs or derivatives, such as food protein and bioactive peptides, can be exploited as promising anti-diabetic agents in the near future. AI's influential role in bioactive peptide design and revealing the newer targets of FFs and FF derivatives (FFDs) in signalling are appraised as promising approaches for DM management. The current findings point to the fact that regulated FFs intake along with health care monitoring can control the complications associated with DM. Graphical abstract
Collapse
Affiliation(s)
- Aswathy Nair
- Department of Biochemistry, University of Kerala, Trivandrum, 695581 India
| | | | - S. Narayana Moorthy
- Division of Crop Utilization, ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
2
|
Huang H, Zeng X, Zhang L, Cheng H, Hu K, Shang X, Yao C. PA1b-like peptides alleviate mitochondrial dysfunction induced by glucose toxicity through interaction with VDAC1 in β-cells. Food Funct 2025. [PMID: 40035617 DOI: 10.1039/d5fo00054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
PA1b-like peptides, which are extracted from the seeds of members of the Fabaceae family, display remarkable hypoglycemic and β-cell-protective activities when administered orally. However, the direct targets and mechanisms of action of these peptides in islet β-cells remain unclear. In this study, we found that PA1b-like peptides were mainly distributed in the cotyledon of soybean, rather than in the germ and seed coat. We also identified a direct interaction between PA1b-like peptides and voltage-dependent anion channels (VDACs), with binding energies less than -7 kcal mol-1. Molecular dynamics simulations demonstrated that hydrogen bonding, hydrophobic interactions, and van der Waals forces assist these peptides in forming stable and tight complexes with VDAC1. Moreover, as a member of the PA1B-like peptide family, vglycin (VG) protected mitochondrial function by maintaining the ROS level, ATP production, mitochondrial membrane potential (ΔΨm), intracellular Ca2+ inflow and insulin secretion in β-cells under high glucose stimulation. All these effects were reliant on the direct interaction between VG and VDAC1 in β-cells. This study provides a new strategy for the restoration of mitochondrial function in β-cells under glucose toxicity and establishes a theoretical basis for the treatment of type 2 diabetes (T2D) by PA1b-like peptides.
Collapse
Affiliation(s)
- Huizhong Huang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Xinyu Zeng
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Liying Zhang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Hongchang Cheng
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Kanghong Hu
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| | - Xiaoke Shang
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Yao
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, 430068 Wuhan, Hubei, China.
| |
Collapse
|
3
|
Nutritional strategies for intervention of diabetes and improvement of β-cell function. Biosci Rep 2023; 43:232518. [PMID: 36714968 PMCID: PMC9939408 DOI: 10.1042/bsr20222151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus, especially Type 2 diabetes (T2D), is caused by multiple factors including genetics, diets, and lifestyles. Diabetes is a chronic condition and is among the top 10 causes of death globally. Nutritional intervention is one of the most important and effective strategies for T2D management. It is well known that most of intervention strategies can lower blood glucose level and improve insulin sensitivity in peripheral tissues. However, the regulation of pancreatic β cells by dietary intervention is not well characterized. In this review, we summarized some of the commonly used nutritional methods for diabetes intervention. We then discussed the effects and the underlying mechanisms of nutritional intervention in improving the cell mass and function of pancreatic islet β cells. With emerging intervention strategies and in-depth investigation, we are expecting to have a better understanding about the effectiveness of dietary interventions in ameliorating T2D in the future.
Collapse
|
4
|
Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023; 15:nu15051096. [PMID: 36904097 PMCID: PMC10005352 DOI: 10.3390/nu15051096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
Collapse
|
5
|
Reconfiguration of Gut Microbiota and Reprogramming of Liver Metabolism with Phycobiliproteins Bioactive Peptides to Rehabilitate Obese Rats. Nutrients 2022; 14:nu14173635. [PMID: 36079890 PMCID: PMC9460120 DOI: 10.3390/nu14173635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Phycobiliproteins (derived from Arthrospira platensis) bioactive peptide extracts (PPE) possess multiple pharmacological effects in the mitigation of human metabolic disorders. The role of PPE in the treatment of diet-induced obesity and the understanding of the underlying mechanism between the gut microbiome and metabolic blood circulation for obese patients remains poorly understood. In this study, we showed that PPE attenuated obesity by reducing body weight, and ameliorated glucose and lipid indexes in serum. In particular, PPE is postulated to mitigate liver steatosis and insulin resistance. On the other hand, dietary treatment with PPE was found to “reconfigure” the gut microbiota in the way that the abundances were elevated for Akkermansia_muciniphila, beneficial Lactobacillus and Romboutsia, SCFA-producing species Faecalibacterium prausnitzii, Lachnospiraceae_bacterium, Clostridiales_bacterium, probiotics Clostridium sp., Enterococcus faecium, and Lactobacillus_johnsonii, while the abundance of Firmicutes was reduced and that of Bacteroidetes was increased to reverse the imbalance of Firmicutes/Bacteroidetes ratio. Finally, the metabolomics of circulating serum using UHPLC-MS/MS illustrated that PPE supplementation indeed promoted lipid metabolism in obese rats. As summary, it was seen that PPE reprogrammed the cell metabolism to prevent the aggravation of obesity. Our findings strongly support that PPE can be regarded as a potential therapeutic dietary supplement for obesity.
Collapse
|
6
|
Das D, Kabir ME, Sarkar S, Wann SB, Kalita J, Manna P. Antidiabetic potential of soy protein/peptide: A therapeutic insight. Int J Biol Macromol 2022; 194:276-288. [PMID: 34848240 DOI: 10.1016/j.ijbiomac.2021.11.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Soybean (Glycine max) harbours high quality proteins which have been evident to exhibit therapeutic properties in alleviating many diseases including but not limited to diabetes and its related metabolic complications. Since diabetes is often manifested with hyperglycemia, impaired energy homeostasis and even low-grade chronic inflammation, plenty of information has raised the suggestion for soy protein supplementation in preventing and controlling these abnormalities. Moreover, clinical intervention studies have established a noteworthy correlation between soy protein intake and lower prevalence of diabetes. Besides soy protein, various soy-derived peptides also have been found to trigger antidiabetic response in different in vitro and in vivo models. Molecular mechanisms underlying the antidiabetic actions of soy protein and peptide have been predicted in many literatures. Results demonstrate that components of soy protein can act in diversified ways and modulate various cell signaling pathways to bring energy homeostasis and to regulate inflammatory parameters associated with diabetic pathophysiology. The main objective of the present review lies in a systemic understanding of antidiabetic role of soy protein and peptide in the context of impaired glucose and lipid metabolism, and inflammation.
Collapse
Affiliation(s)
- Dibyendu Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mir Ekbal Kabir
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| |
Collapse
|
7
|
Bai Y, Mo K, Wang G, Chen W, Zhang W, Guo Y, Sun Z. Intervention of Gastrodin in Type 2 Diabetes Mellitus and Its Mechanism. Front Pharmacol 2021; 12:710722. [PMID: 34603025 PMCID: PMC8481818 DOI: 10.3389/fphar.2021.710722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has become a serious threat to human health in recent years. Gastrodin, as a primary chemical constituent in Gastrodia elata Blume, has antidiabetic effects. However, the possible mechanisms are unclear. The aim of the present study was to investigate the effects and possible mechanisms of gastrodin on the treatment of T2DM. In vivo, after treatment with gastrodin for 6 weeks, fasting blood glucose levels, blood lipid metabolism, and insulin sensitivity index values were remarkably reduced compared with those of the diabetic control group. The values of aspartate aminotransferase and alanine aminotransferase also showed that gastrodin alleviates liver toxicity caused by diabetes. Moreover, gastrodin relieved pathological damage to the pancreas in T2DM rats. In vitro, gastrodin alleviated insulin resistance by increasing glucose consumption, glucose uptake, and glycogen content in dexamethasone-induced HepG2 cells. The Western blotting results showed that gastrodin upregulated the expression of insulin receptors and ubiquitin-specific protease 4 (USP4) and increased the phosphorylation of GATA binding protein 1 (GATA1) and protein kinase B (AKT) in vivo and in vitro. Furthermore, gastrodin decreased the ubiquitin level of the insulin receptor via UPS4 and increased the binding of GATA1 to the USP4 promoter. Additionally, administration of the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway inhibitors MK-2206 and LY294002 abolished the beneficial effects of gastrodin. Our results indicate that gastrodin promotes the phosphorylation of GATA1 via the PI3K/AKT pathway, enhances the transcriptional activity of GATA1, and then increases the expression level of USP4, thereby reducing the ubiquitination and degradation of insulin receptors and ultimately improving insulin resistance. Our study provides scientific evidence for the beneficial actions and underlying mechanism of gastrodin in the treatment of T2DM.
Collapse
Affiliation(s)
- Yu Bai
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Mo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guirong Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Chen
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- Ningqiang Chinese Herbal Medicine Industry Development Center, Hanzhong, China
| | - Yibo Guo
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Sun
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021; 22:9059. [PMID: 34445765 PMCID: PMC8396489 DOI: 10.3390/ijms22169059] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a major public health concern associated with high mortality and reduced life expectancy. The alarming rise in the prevalence of diabetes is linked to several factors including sedentary lifestyle and unhealthy diet. Nutritional intervention and increased physical activity could significantly contribute to bringing this under control. Food-derived bioactive peptides and protein hydrolysates have been associated with a number health benefits. Several peptides with antidiabetic potential have been identified that could decrease blood glucose level, improve insulin uptake and inhibit key enzymes involved in the development and progression of diabetes. Dietary proteins, from a wide range of food, are rich sources of antidiabetic peptides. Thus, there are a number of benefits in studying peptides obtained from food sources to develop nutraceuticals. A deeper understanding of the underlying molecular mechanisms of these peptides will assist in the development of new peptide-based therapeutics. Despite this, a comprehensive analysis of the antidiabetic properties of bioactive peptides derived from various food sources is still lacking. Here, we review the recent literature on food-derived bioactive peptides possessing antidiabetic activity. The focus is on the effectiveness of these peptides as evidenced by in vitro and in vivo studies. Finally, we discuss future prospects of peptide-based drugs for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
9
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
10
|
Hirano H. Basic 7S globulin in plants. J Proteomics 2021; 240:104209. [PMID: 33794343 DOI: 10.1016/j.jprot.2021.104209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Soybean seed basic 7S globulin (Bg7S)-like proteins are found in many plant species. Bg7S was originally thought to be a major seed storage protein but was later found to be multifunctional, with stress response, antibacterial activity, hormone receptor-like activity. Moreover, functional differences between Bg7S proteins from legumes and other plants have been revealed. In non-leguminous plants, Bg7S molecules inhibit the invasion of pathogenic microorganisms. However, although leguminous plants have a peptide called leg-insulin that can bind to Bg7S, non-leguminous plants do not have leginsulin. Bg7S in leguminous plants and other plants may have evolved in functionally different directions. Several homologs of Bg7S in plants are reported, but there is no homolog of this protein in peas, suggesting that the pea evolution might have followed a different route when compared to other leguminous plants. Although the functions of Bg7S are well documented in plants, recent studies suggest that this protein is also important in controlling blood glucose level, blood pressure and plasma cholesterol level, and cancer cell antiproliferative actions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Advanced Medical Science Research Center, Gunma Paz University, Shibukawa 1338-4, Shibukawa, Gunma 377-0008, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Showa 3-39-15, Maebashi 371-8512, Japan.
| |
Collapse
|
11
|
Yao CC, Tong YX, Jiang H, Yang DR, Zhang XJ, Zhang P, Su L, Zhao YY, Chen ZW. Native polypeptide vglycin prevents nonalcoholic fatty liver disease in mice by activating the AMPK pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Zhang C, Ma S, Wu J, Luo L, Qiao S, Li R, Xu W, Wang N, Zhao B, Wang X, Zhang Y, Wang X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol Res 2020; 159:104985. [PMID: 32504839 DOI: 10.1016/j.phrs.2020.104985] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has drawn increasing attention, and the benefits of various treatment strategies, including nutrition, medication and physical exercise, maybe microbially-mediated. Metformin is a widely used hypoglycemic agent, while resistant starch (RS) is a novel dietary fiber that emerges as a nutritional strategy for metabolic disease. However, it remains unclear as to the potential degree and interactions among gut microbial communities, metabolic landscape, and the anti-diabetic effects of metformin and RS, especially for a novel type 3 resistant starch from Canna edulis (Ce-RS3). In the present study, T2DM rats were administered metformin or Ce-RS3, and the changes in gut microbiota and serum metabolic profiles were characterized using 16S-rRNA gene sequencing and metabolomics, respectively. After 11 weeks of treatment, Ce-RS3 exhibited similar anti-diabetic effects to those of metformin, including dramatically reducing blood glucose, ameliorating the response to insulin resistance and glucose tolerance test, and relieving the pathological damage in T2DM rats. Interestingly, the microbial and systemic metabolic dysbiosis in T2DM rats was effectively modulated by both Ce-RS3 and, to a lesser extent, metformin. The two treatments increased the gut bacterial diversity, and supported the restoration of SCFA-producing bacteria, thereby significantly increasing SCFAs levels. Both treatments simultaneously corrected 16 abnormal metabolites in the metabolism of lipids and amino acids, many of which are microbiome-related. PICRUSt analysis and correlation of SCFAs levels with metabolomics data revealed a strong association between gut microbial and host metabolic changes. Strikingly, Ce-RS3 exhibited better efficacy in increasing gut microbiota diversity with a peculiar enrichment of Prevotella genera. The gut microbial properties of Ce-RS3 were tightly associated with the T2DM-related indexes, showing the potential to alleviate diabetic phenotype dysbioses, and possibly explaining the greater efficiency in improving metabolic control. The beneficial effects of Ce-RS3 and metformin might derive from changes in gut microbiota through altering host-microbiota interactions with impact on the host metabolome. Given the complementarity of Ce-RS3 and metformin in regulation of gut microbiota and metabolites, this study also prompted us to suggest possible "Drug-Dietary fiber" combinations for managing T2DM.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Linglong Luo
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ruxin Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine,Beijing, 100029, China
| | - Xiao Wang
- College of Pharmacy, Qilu University of Technology (Shandong Academy of Sciences), Shandong, 250014, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing, 100023
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
13
|
Sun S, Zhang H, Shan K, Sun T, Lin M, Jia L, Chen YQ. Effect of Different Cereal Peptides on the Development of Type 1 Diabetes is Associated with Their Anti‐inflammatory Ability: In Vitro and In Vivo Studies. Mol Nutr Food Res 2019; 63:e1800987. [DOI: 10.1002/mnfr.201800987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Suling Sun
- School of MedicineJiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Kai Shan
- School of MedicineJiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Tianjun Sun
- Department of Biochemistry & Molecular Biology & Center for Blood ResearchUniversity of British Columbia 2350 Health Sciences Mall Vancouver British Columbia V6T 1Z3 Canada
| | - Mengyuan Lin
- Wuxi Maternal and Child Health Hospital P. R. China
| | - Lingling Jia
- School of MedicineJiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
| | - Yong Q. Chen
- School of MedicineJiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- School of Food Science and TechnologyJiangnan University Wuxi 214122 P. R. China
- Departments of Cancer Biology and BiochemistryWake Forest School of Medicine Winston‐Salem NC 27157 USA
| |
Collapse
|
14
|
Sun S, Zhang G, Mu H, Zhang H, Chen YQ. The mixture of corn and wheat peptide prevent diabetes in NOD mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Xiao HT, Wen B, Ning ZW, Zhai LX, Liao CH, Lin CY, Mu HX, Bian ZX. Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Sci Rep 2017; 7:9155. [PMID: 28831132 PMCID: PMC5567240 DOI: 10.1038/s41598-017-09641-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/27/2017] [Indexed: 11/09/2022] Open
Abstract
Leaves of Cyclocarya paliurus are a sweet tea traditionally used to treat obesity and diabetes in China. However, its protective mechanisms against hyperglycemia remains unclear. Here, we demonstrate that the extract of C. paliurus leaves significantly decreased body loss, food intake and blood glucose level, and increased blood insulin level, β-cell number and insulin-producing β cells in high-fat diet-low dose STZ-induced diabetic mice. In vivo and in vitro studies also showed the extract of C. paliurus leaves significantly inhibited pancreatic β cell apoptosis by suppressing the expression of caspase 8, caspase 9 and cleaved caspase-3, as well as Bax/Bcl-2 ratio, down-regulating p38, ERK and JNK phosphorylation, and up-regulating Akt phosphorylation. These effects were significantly enhanced by inhibitor p-38 or ERK or JNK, and counteracted by inhibitor of PI3K. In addition, the extract of C. paliurus leaves also significantly improved hepatic steatosis, nephropathy and cardiac hypertrophy of diabetic mice. Taken together, these results provide the insight into the effects of C. paliurus leaves on pancreatic β cell preservation in standing glucolipotoxicity. Therefore, C. paliurus tea leaves may be used as a new remedy for diabetes through enhancing pancreatic β cell preservation by inhibiting β cell apoptosis.
Collapse
Affiliation(s)
- Hai-Tao Xiao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Bo Wen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zi-Wan Ning
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Li-Xiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Cheng-Hui Liao
- Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Cheng-Yuan Lin
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Huai-Xue Mu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong.,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong. .,Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
16
|
Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L, Zhang H, Chen W, Sun J, Chen YQ. Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep 2017; 7:7046. [PMID: 28765642 PMCID: PMC5539151 DOI: 10.1038/s41598-017-07335-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with type 2 diabetes (T2D) have decreased butyrate-producing bacteria. We hypothesized that supplementation with butyrate-producing bacteria may exert beneficial effects on T2D. The current study investigated the effects of well-characterized butyrate-producing bacteria Clostridium butyricum CGMCC0313.1 (CB0313.1) on hyperglycemia and associated metabolic dysfunction in two diabetic mouse models. CB0313.1 was administered daily by oral gavage to leptindb/db mice for 5 weeks starting from 3 weeks of age, and to HF diabetic mice induced by high fat diet (HFD) plus streptozotocin (STZ) in C57BL/6J mice for 13 weeks starting from 4 weeks of age. CB0313.1 improved diabetic markers (fasting glucose, glucose tolerance, insulin tolerance, GLP-1 and insulin secretion), and decreased blood lipids and inflammatory tone. Furthermore, CB0313.1 reversed hypohepatias and reduced glucose output. We also found that CB0313.1 modulated gut microbiota composition, characterized by a decreased ratio of Firmicutes to Bacteroidetes, reduced Allobaculum bacteria that were abundant in HF diabetic mice and increased butyrate-producing bacteria. Changes in gut microbiota following CB0313.1 treatment were associated with enhanced peroxisome proliferator–activated receptor-γ (PPARγ), insulin signaling molecules and mitochondrial function markers. Together, our study suggests that CB0313.1 may act as a beneficial probiotic for the prevention and treatment of hyperglycemia and associated metabolic dysfunction.
Collapse
Affiliation(s)
- Lingling Jia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China
| | - Dongyao Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.,Wuxi No. 2 Hospital, Jiangsu, P. R. China
| | - Muhammad Shamoon
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenghua Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lei Ding
- Department of Biology and Chemistry, University Bremen. Leobener Str., NW 2, 28359, Bremen, Germany
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, P. R. China. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
17
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|