1
|
Takashina T, Matsunaga A, Shimizu Y, Sakuma T, Okamura T, Matsuoka K, Yamamoto T, Ishizaka Y. Robust protein-based engineering of hepatocyte-like cells from human mesenchymal stem cells. Hepatol Commun 2023; 7:e0051. [PMID: 36848084 PMCID: PMC9974069 DOI: 10.1097/hc9.0000000000000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Cells of interest can be prepared from somatic cells by forced expression of lineage-specific transcription factors, but it is required to establish a vector-free system for their clinical use. Here, we report a protein-based artificial transcription system for engineering hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells (MSCs). METHODS MSCs were treated for 5 days with 4 artificial transcription factors (4F), which targeted hepatocyte nuclear factor (HNF)1α, HNF3γ, HNF4α, and GATA-binding protein 4 (GATA4). Then, engineered MSCs (4F-Heps) were subjected to epigenetic analysis, biochemical analysis and flow cytometry analysis with antibodies to marker proteins of mature hepatocytes and hepatic progenitors such as delta-like homolog 1 (DLK1) and trophoblast cell surface antigen 2 (TROP2). Functional properties of the cells were also examined by injecting them to mice with lethal hepatic failure. RESULTS Epigenetic analysis revealed that a 5-day treatment of 4F upregulated the expression of genes involved in hepatic differentiation, and repressed genes related to pluripotency of MSCs. Flow cytometry analysis detected that 4F-Heps were composed of small numbers of mature hepatocytes (at most 1%), bile duct cells (~19%) and hepatic progenitors (~50%). Interestingly, ~20% of 4F-Heps were positive for cytochrome P450 3A4, 80% of which were DLK1-positive. Injection of 4F-Heps significantly increased survival of mice with lethal hepatic failure, and transplanted 4F-Heps expanded to more than 50-fold of human albumin-positive cells in the mouse livers, well consistent with the observation that 4F-Heps contained DLK1-positive and/or TROP2-positive cells. CONCLUSION Taken together with observations that 4F-Heps were not tumorigenic in immunocompromised mice for at least 2 years, we propose that this artificial transcription system is a versatile tool for cell therapy for hepatic failures.
Collapse
Affiliation(s)
- Tomoki Takashina
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kunie Matsuoka
- Deafness Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Hywood JD, Sadeghipour S, Clayton ZE, Yuan J, Stubbs C, Wong JWT, Cooke JP, Patel S. Induced endothelial cells from peripheral arterial disease patients and neonatal fibroblasts have comparable angiogenic properties. PLoS One 2021; 16:e0255075. [PMID: 34375370 PMCID: PMC8354451 DOI: 10.1371/journal.pone.0255075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/11/2021] [Indexed: 12/05/2022] Open
Abstract
Induced endothelial cells (iECs) generated from neonatal fibroblasts via transdifferentiation have been shown to have pro-angiogenic properties and are a potential therapy for peripheral arterial disease (PAD). It is unknown if iECs can be generated from fibroblasts collected from PAD patients and whether these cells are pro-angiogenic. In this study fibroblasts were collected from four PAD patients undergoing carotid endarterectomies. These cells, and neonatal fibroblasts, were transdifferentiated into iECs using modified mRNA. Endothelial phenotype and pro-angiogenic cytokine secretion were investigated. NOD-SCID mice underwent surgery to induce hindlimb ischaemia in a murine model of PAD. Mice received intramuscular injections with either control vehicle, or 1 × 106 neonatal-derived or 1 × 106 patient-derived iECs. Recovery in perfusion to the affected limb was measured using laser Doppler scanning. Perfusion recovery was enhanced in mice treated with neonatal-derived iECs and in two of the three patient-derived iEC lines investigated in vivo. Patient-derived iECs can be successfully generated from PAD patients and for specific patients display comparable pro-angiogenic properties to neonatal-derived iECs.
Collapse
Affiliation(s)
- Jack D. Hywood
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | | | - Zoe E. Clayton
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Jun Yuan
- Heart Research Institute, Newtown, NSW, Australia
| | - Colleen Stubbs
- RNACore, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jack W. T. Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Sanjay Patel
- Heart Research Institute, Newtown, NSW, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Ullah I, Shin Y, Kim Y, Oh KB, Hwang S, Kim YI, Lee JW, Hur TY, Lee S, Ock SA. Effect of sex-specific differences on function of induced hepatocyte-like cells generated from male and female mouse embryonic fibroblasts. Stem Cell Res Ther 2021; 12:79. [PMID: 33494802 PMCID: PMC7831237 DOI: 10.1186/s13287-020-02100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is one of the vital organs involved in detoxification and metabolism. The sex-based differences between the functionality of male and female liver have been previously reported, i.e., male's liver are good in alcohol clearance and lipid metabolism, while female's liver are better in cholesterol metabolism. To date, studies on novel drug toxicity have not considered the sex-specific dimorphic nature of the liver. However, the use of hepatocyte-like cells to treat liver diseases has increased recently. METHODS Mouse embryos were isolated from a pregnant female C57BL/6J mouse where mouse embryonic fibroblasts (MEFs) were isolated from back skin tissue of each embryo. MEFs were transduced with human transcription factors hHnf1α, hHnf4α, and hFoxa3 using the lentiviral system. The transduced MEFs were further treated with hepatocyte-conditioned media followed by its analysis through RT-qPCR, immunofluorescence, functional assays, and finally whole-transcriptome RNA sequencing analysis. For in vivo investigation, the mouse hepatocyte-like cells (miHep) were transplanted into CCl4-induced acute liver mouse model. RESULTS In this study, we evaluated the sex-specific effect of miHep induced from male- and female-specific mouse embryonic fibroblasts (MEFs). We observed miHeps with a polygonal cytoplasm and bipolar nucleus and found that male miHeps showed higher mHnf4a, albumin secretion, and polyploidization than female miHeps. Transcriptomes from miHeps were similar to those from the liver, especially for Hnf4a of male miHeps. Male Cyps were normalized to those from females, which revealed Cyp expression differences between liver and miHeps. In both liver and miHeps, Cyp 4a12a and Cyp 4b13a/2b9 predominated in males and females, respectively. After grafting of miHeps, AST/ALT decreased, regardless of mouse sex. CONCLUSION In conclusion, activation of endogenic Hnf4a is important for generation of successful sex-specific miHeps; furthermore, the male-derived miHep exhibits comparatively enhanced hepatic features than those of female miHep.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yurianna Shin
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Yeongji Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Young-Im Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwakhak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
4
|
Yuan ZD, Zhu WN, Liu KZ, Huang ZP, Han YC. Small Molecule Epigenetic Modulators in Pure Chemical Cell Fate Conversion. Stem Cells Int 2020; 2020:8890917. [PMID: 33144865 PMCID: PMC7596432 DOI: 10.1155/2020/8890917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022] Open
Abstract
Although innovative technologies for somatic cell reprogramming and transdifferentiation provide new strategies for the research of translational medicine, including disease modeling, drug screening, artificial organ development, and cell therapy, recipient safety remains a concern due to the use of exogenous transcription factors during induction. To resolve this problem, new induction approaches containing clinically applicable small molecules have been explored. Small molecule epigenetic modulators such as DNA methylation writer inhibitors, histone methylation writer inhibitors, histone acylation reader inhibitors, and histone acetylation eraser inhibitors could overcome epigenetic barriers during cell fate conversion. In the past few years, significant progress has been made in reprogramming and transdifferentiation of somatic cells with small molecule approaches. In the present review, we systematically discuss recent achievements of pure chemical reprogramming and transdifferentiation.
Collapse
Affiliation(s)
- Zhao-Di Yuan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ning Zhu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ke-Zhi Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan-Chuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
5
|
Choi JS, Jeong IS, Park YJ, Kim SW. HGF and IL-10 expressing ALB::GFP reporter cells generated from iPSCs show robust anti-fibrotic property in acute fibrotic liver model. Stem Cell Res Ther 2020; 11:332. [PMID: 32746905 PMCID: PMC7398392 DOI: 10.1186/s13287-020-01745-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/05/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell therapy using hepatocytes derived from stem cells has been regarded as a promising alternate to liver transplantation. However, the heterogeneity of these hepatocytes makes them unsuitable for therapeutic use. To overcome this limitation, we generated homogenous hepatocyte like induced hepatocyte-like (iHep) cells. METHODS iHep cells were generated from induced pluripotent stem cells (iPSCs) integrated with the albumin (ALB) reporter gene. The therapeutic properties of these iHep cells were investigated after transplantation in fibrotic liver tissues of a mouse model. RESULTS The iHep cells expressed hepatocyte specific genes and proteins, and exhibited high levels of hepatocyte growth factor (HGF) and interleukin (IL)-10 expressions. Transplantation of iHep cells significantly decreased thioacetamide (TAA)-induced liver fibrosis, apoptotic cells in the liver, and ameliorated abnormal liver function. Liver tissues engrafted with iHep cells exhibited decreased expression of pro-inflammatory factors such as transforming growth factor (TGF)-β, IL-6, and monocyte chemo attractant protein (MCP)-1. Furthermore, an increased number of proliferating hepatocytes and human albumin-expressing iHep cells were detected in mice liver. CONCLUSIONS This study has investigated and proven the liver regeneration potential of genome-edited iHep cells and promises to be a strong foundation for further studies exploring cell therapy as an alternative therapeutic option for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Ja Sung Choi
- Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Republic of Korea
| | - In Sil Jeong
- Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
| | - Young-Jin Park
- Department of Family Medicine, Dong-A University College of Medicine, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Whan Kim
- Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea. .,International St. Mary's Hospital, 25, Simgok-ro 100 beon-gil, Seo-gu, Incheon, 404-190, South Korea.
| |
Collapse
|
6
|
Orge ID, Gadd VL, Barouh JL, Rossi EA, Carvalho RH, Smith I, Allahdadi KJ, Paredes BD, Silva DN, Damasceno PKF, Sampaio GL, Forbes SJ, Soares MBP, Souza BSDF. Phenotype instability of hepatocyte-like cells produced by direct reprogramming of mesenchymal stromal cells. Stem Cell Res Ther 2020; 11:154. [PMID: 32276654 PMCID: PMC7323614 DOI: 10.1186/s13287-020-01665-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocyte-like cells (iHEPs) generated by transcription factor-mediated direct reprogramming of somatic cells have been studied as potential cell sources for the development of novel therapies targeting liver diseases. The mechanisms involved in direct reprogramming, stability after long-term in vitro expansion, and safety profile of reprogrammed cells in different experimental models, however, still require further investigation. METHODS iHEPs were generated by forced expression of Foxa2/Hnf4a in mouse mesenchymal stromal cells and characterized their phenotype stability by in vitro and in vivo analyses. RESULTS The iHEPs expressed mixed hepatocyte and liver progenitor cell markers, were highly proliferative, and presented metabolic activities in functional assays. A progressive loss of hepatic phenotype, however, was observed after several passages, leading to an increase in alpha-SMA+ fibroblast-like cells, which could be distinguished and sorted from iHEPs by differential mitochondrial content. The resulting purified iHEPs proliferated, maintained liver progenitor cell markers, and, upon stimulation with lineage maturation media, increased expression of either biliary or hepatocyte markers. In vivo functionality was assessed in independent pre-clinical mouse models. Minimal engraftment was observed following transplantation in mice with acute acetaminophen-induced liver injury. In contrast, upon transplantation in a transgenic mouse model presenting host hepatocyte senescence, widespread engraftment and uncontrolled proliferation of iHEPs was observed, forming islands of epithelial-like cells, adipocyte-like cells, or cells presenting both morphologies. CONCLUSION The results have significant implications for cell reprogramming, suggesting that iHEPs generated by Foxa2/Hnf4a expression have an unstable phenotype and depend on transgene expression for maintenance of hepatocyte-like characteristics, showing a tendency to return to the mesenchymal phenotype of origin and a compromised safety profile.
Collapse
Affiliation(s)
- Iasmim Diniz Orge
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | | | - Judah Leão Barouh
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | | | - Ian Smith
- MRC Centre for Regenerative Medicine, Edinburgh, UK
| | - Kyan James Allahdadi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | | | - Gabriela Louise Sampaio
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, CEP: 40296-710, Brazil.
| |
Collapse
|
7
|
Kwak TH, Hali S, Kim S, Kim J, La H, Kim KP, Hong KH, Shin CY, Kim NH, Han DW. Robust and Reproducible Generation of Induced Neural Stem Cells from Human Somatic Cells by Defined Factors. Int J Stem Cells 2020; 13:80-92. [PMID: 32114739 PMCID: PMC7119206 DOI: 10.15283/ijsc19097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies have described direct reprogramming of mouse and human somatic cells into induced neural stem cells (iNSCs) using various combinations of transcription factors. Although iNSC technology holds a great potential for clinical applications, the low conversion efficiency and limited reproducibility of iNSC generation hinder its further translation into the clinic, strongly suggesting the necessity of highly reproducible method for human iNSCs (hiNSCs). Thus, in orderto develop a highly efficient and reproducible protocol for hiNSC generation, we revisited the reprogramming potentials of previously reported hiNSC reprogramming cocktails by comparing the reprogramming efficiency of distinct factor combinations including ours. METHODS We introduced distinct factor combinations, OSKM (OCT4+SOX2+KLF4+C-MYC), OCT4 alone, SOX2 alone, SOX2+HMGA2, BRN4+SKM+SV40LT (BSKMLT), SKLT, SMLT, and SKMLT and performed comparative analysis of reprogramming potentials of distinct factor combinations in hiNSC generation. RESULTS Here we show that ectopic expression of five reprogramming factors, BSKMLT leads the robust hiNSC generation (>80 folds enhanced efficiency) from human somatic cells compared with previously described factor combinations. With our combination, we were able to observe hiNSC conversion within 7 days of transduction. Throughout further optimization steps, we found that both BRN4 and KLF4 are not essential for hiNSC conversion. CONCLUSIONS Our factor combination could robustly and reproducibly generate hiNSCs from human somatic cells with distinct origins. Therefore, our novel reprogramming strategy might serve as a useful tool for hiNSC-based clinical application.
Collapse
Affiliation(s)
- Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Sai Hali
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Sungmin Kim
- School of Cell and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kwon Ho Hong
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul, Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| |
Collapse
|
8
|
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2019; 13:50-56. [PMID: 31566143 DOI: 10.2174/1874467212666190930144349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
The transcription factors (TFs) play a crucial role in the modulation of specific gene transcription networks. One of the hepatocyte nuclear factors (HNFs) family's member, hepatocyte nuclear factor-1α (HNF-1α) has continuously become a principal TF to control the expression of genes. It is involved in the regulation of a variety of functions in various human organs including liver, pancreas, intestine, and kidney. It regulates the expression of enzymes involved in endocrine and xenobiotic activity through various metabolite transporters located in the above organs. Its expression is also required for organ-specific cell fate determination. Despite two decades of its first identification in hepatocytes, a review of its significance was not comprehended. Here, the role of HNF-1α in the above organs at the molecular level to intimate molecular mechanisms for regulating certain gene expression whose malfunctions are attributed to the disease conditions has been specifically encouraged. Moreover, the epigenetic effects of HNF-1α have been discussed here, which could help in advanced technologies for molecular pharmacological intervention and potential clinical implications for targeted therapies. HNF-1α plays an indispensable role in several physiological mechanisms in the liver, pancreas, intestine, and kidney. Loss of its operations leads to the non-functional or abnormal functional state of each organ. Specific molecular agents or epigenetic modifying drugs that reactivate HNF-1α are the current requirements for the medications of the diseases.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
9
|
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T. Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World J Stem Cells 2019; 11:650-665. [PMID: 31616541 PMCID: PMC6789182 DOI: 10.4252/wjsc.v11.i9.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the field of regenerative medicine, generating numerous transplantable functional cells in the laboratory setting on a large scale is a major challenge. However, the in vitro maintenance and expansion of terminally differentiated cells are challenging because of the lack of specific environmental and intercellular signal stimulations, markedly hindering their therapeutic application. Remarkably, the generation of stem/progenitor cells or functional cells with effective proliferative potential is markedly in demand for disease modeling, cell-based transplantation, and drug discovery. Despite the potent genetic manipulation of transcription factors, integration-free chemically defined approaches for the conversion of somatic cell fate have garnered considerable attention in recent years. This review aims to summarize the progress thus far and discuss the advantages, limitations, and challenges of the impact of full chemicals on the stepwise reprogramming of pluripotency, direct lineage conversion, and direct lineage expansion on somatic cells. Owing to the current chemical-mediated induction, reprogrammed pluripotent stem cells with reproducibility difficulties, and direct lineage converted cells with marked functional deficiency, it is imperative to generate the desired cell types directly by chemically inducing their potent proliferation ability through a lineage-committed progenitor state, while upholding the maturation and engraftment capacity posttransplantation in vivo. Together with the comprehensive understanding of the mechanism of chemical drives, as well as the elucidation of specificity and commonalities, the precise manipulation of the expansion for diverse functional cell types could broaden the available cell sources and enhance the cellular function for clinical application in future.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
10
|
Lim MS, Ko SH, Kim MS, Lee B, Jung HS, Kim K, Park CH. Hybrid Nanofiber Scaffold-Based Direct Conversion of Neural Precursor Cells/Dopamine Neurons. Int J Stem Cells 2019; 12:340-346. [PMID: 31023000 PMCID: PMC6657951 DOI: 10.15283/ijsc18123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/18/2019] [Accepted: 03/10/2019] [Indexed: 12/22/2022] Open
Abstract
The concept of cellular reprogramming was developed to generate induced neural precursor cells (iNPCs)/dopaminergic (iDA) neurons using diverse approaches. Here, we investigated the effects of various nanoscale scaffolds (fiber, dot, and line) on iNPC/iDA differentiation by direct reprogramming. The generation and maturation of iDA neurons (microtubule-associated protein 2-positive and tyrosine hydroxylase-positive) and iNPCs (NESTIN-positive and SOX2-positive) increased on fiber and dot scaffolds as compared to that of the flat (control) scaffold. This study demonstrates that nanotopographical environments are suitable for direct differentiation methods and may improve the differentiation efficiency.
Collapse
Affiliation(s)
- Mi-Sun Lim
- Research and Development Center, Jeil Pharmaceutical Company, Yongin, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Min Sung Kim
- School of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Byungjun Lee
- School of Mechanical & Aerospace Engineering, Seoul National University, Seoul, Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Department of Food Science and Biotechnology, Seoul National University, Seoul, Korea
| | - Keesung Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea.,Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
11
|
Hwang SI, Kwak TH, Kang JH, Kim J, Lee H, Kim KP, Ko K, Schöler HR, Han DW. Metastable Reprogramming State of Single Transcription Factor-Derived Induced Hepatocyte-Like Cells. Stem Cells Int 2019; 2019:6937257. [PMID: 31089332 PMCID: PMC6476006 DOI: 10.1155/2019/6937257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
We previously described the generation of induced hepatocyte-like cells (iHeps) using the hepatic transcription factor Hnf1a together with small molecules. These iHeps represent a hepatic state that is more mature compared with iHeps generated with multiple hepatic factors. However, the underlying mechanism of hepatic conversion involving transgene dependence of the established iHeps is largely unknown. Here, we describe the generation of transgene-independent iHeps by inducing the ectopic expression of Hnf1a using both an episomal vector and a doxycycline-inducible lentivirus. In contrast to iHeps with sustained expression of Hnf1a, transgene-independent Hnf1a iHeps lose their typical morphology and in vitro functionality with rapid downregulation of hepatic markers upon withdrawal of small molecules. Taken together, our data indicates that the reprogramming state of single factor Hnf1a-derived iHeps is metastable and that the hepatic identity of these cells could be maintained only by the continuous supply of either small molecules or the master hepatic factor Hnf1a. Our findings emphasize the importance of a factor screening strategy for inducing specific cellular identities with a stable reprogramming state in order to eventually translate direct conversion technology to the clinic.
Collapse
Affiliation(s)
- Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji Hyun Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hans R. Schöler
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
13
|
Lim KT, Kim J, Hwang SI, Zhang L, Han H, Bae D, Kim KP, Hu YP, Schöler HR, Lee I, Hui L, Han DW. Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells. Stem Cell Reports 2018; 10:1522-1536. [PMID: 29606616 PMCID: PMC5995161 DOI: 10.1016/j.stemcr.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
Disorders of the biliary epithelium, known as cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangiocytes with high purity are needed. Previous work has shown that the combination of Hnf1β and Foxa3 could directly convert mouse fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs to the clinic. Here, we describe that the expression of Hnf1α and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably, prolonged in vitro culture of Hnf1α- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholangiocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors.
Collapse
Affiliation(s)
- Kyung Tae Lim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heonjong Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 04056, Republic of Korea
| | - Dasom Bae
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 04056, Republic of Korea
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Yi-Ping Hu
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Hans R Schöler
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 04056, Republic of Korea
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Nakamori D, Akamine H, Takayama K, Sakurai F, Mizuguchi H. Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Sci Rep 2017; 7:16675. [PMID: 29192290 PMCID: PMC5709502 DOI: 10.1038/s41598-017-16856-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/19/2017] [Indexed: 12/27/2022] Open
Abstract
Recently, it has been reported that human hepatocyte-like cells can be generated from fibroblasts by direct reprogramming technology. However, the conversion efficiency of human induced hepatocyte-like cells (hiHeps) is not high enough. In addition, comparative analysis with the existing models of hepatocytes, such as human iPS cell-derived hepatocyte-like cells and primary human hepatocytes, has not been sufficiently carried out. In this study, we screened hepatic transcription factors for efficient direct hepatic reprogramming and compared hepatic functions between hiHeps and other existing hepatocyte models. We found that human fibroblasts were efficiently converted into hiHeps by using a combination of ATF5, PROX1, FOXA2, FOXA3, and HNF4A (albumin+/alpha-1 antitrypsin+ cells = 27%, asialoglycoprotein receptor 1+ cells = 22%). The CYP expression levels and CYP activities in hiHeps were higher than those in human iPS cell-derived hepatocyte-like cells, but lower than those in short-term (4 hr) cultured primary human hepatocytes and primary human hepatocytes collected immediately after thawing. These results suggested that functional hiHeps could be efficiently generated by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. We believe that hiHeps generated by our method will be useful for the drug-discovery activities such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Daiki Nakamori
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroki Akamine
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Project, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan. .,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan. .,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Cho YD, Yoon S, Kang K, Kim Y, Lee SB, Seo D, Ryu K, Jeong J, Choi D. Simple Maturation of Direct-Converted Hepatocytes Derived from Fibroblasts. Tissue Eng Regen Med 2017; 14:579-586. [PMID: 30603511 PMCID: PMC6171619 DOI: 10.1007/s13770-017-0064-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Target cells differentiation techniques from stem cells are developed rapidly. Recently, direct conversion techniques are introduced in various categories. Unlike pluripotent stem cells, this technique enables direct differentiation into the other cell types such as neurons, cardiomyocytes, insulin-producing cells, and hepatocytes without going through the pluripotent stage. However, the function of these converted cells reserve an immature phenotype. Therefore, we modified the culture conditions of mouse direct converted hepatocytes (miHeps) to mature fetal characteristics, such as higher AFP and lower albumin (ALB) expression than primary hepatocytes. First, we generate miHeps from mouse embryonic fibroblasts (MEFs) with two transcription factors HNF4α and Foxa3. These cells indicate typical epithelial morphology and express hepatic proteins. To mature hepatic function, DMSO is treated during culture time for more than 7 days. After maturation, miHeps showed features of maturation such as exhibiting typical hepatocyte-like morphology, increased up-regulated ALB and CYP enzyme gene expression, down-regulated AFP expressions, and acquired hepatic function over time. Thus, our data provides a simple method to mature direct converted hepatocytes functionally and these cells enable them to move closer to generating functional hepatocytes.
Collapse
Affiliation(s)
- Young-duck Cho
- Department of Emergency Medicine, Korea University Guro Hospital, Seoul, 02841 Korea
| | - Sangtae Yoon
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Kyojin Kang
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Yohan Kim
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Science, Seoul, 01812 Korea
| | - Daekwan Seo
- Bioinformatics Department, Macrogen Corp, Rockville, MD 20850 USA
| | - Kiyoung Ryu
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Jaemin Jeong
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| | - Dongho Choi
- HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University College of Medicine, Seoul, 04763 Korea
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763 Korea
| |
Collapse
|
16
|
Kawamata M, Suzuki A. Cell fate modification toward the hepatic lineage by extrinsic factors. J Biochem 2017; 162:11-16. [DOI: 10.1093/jb/mvx028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022] Open
|
17
|
Katayama H, Yasuchika K, Miyauchi Y, Kojima H, Yamaoka R, Kawai T, Yukie Yoshitoshi E, Ogiso S, Kita S, Yasuda K, Sasaki N, Fukumitsu K, Komori J, Ishii T, Uemoto S. Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. Sci Rep 2017; 7:44498. [PMID: 28295042 PMCID: PMC5353749 DOI: 10.1038/srep44498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/08/2017] [Indexed: 12/12/2022] Open
Abstract
Somatic cells can be reprogrammed to induced hepatocyte-like cells (iHeps) by overexpressing certain defined factors in direct reprogramming techniques. Of the various methods to deliver genes into cells, typically used genome-integrating viral vectors are associated with integration-related adverse events such as mutagenesis, whereas non-integrating viral vectors have low efficiency, making viral vectors unsuitable for clinical application. Therefore, we focused on developing a transposon system to establish a non-viral reprogramming method. Transposons are unique DNA elements that can be integrated into and removed from chromosomes. PiggyBac, a type of transposon, has high transduction efficiency and cargo capacity, and the integrated transgene can be precisely excised in the presence of transposase. This feature enables the piggyBac vector to achieve efficient transgene expression and a transgene-free state, thus making it a promising method for cell reprogramming. Here, we attempted to utilize the piggyBac transposon system to generate iHeps by integrating a transgene consisting of Hnf4a and Foxa3, and successfully obtained functional iHeps. We then demonstrated removal of the transgene to obtain transgene-free iHeps, which still maintained hepatocyte functions. This non-viral, transgene-free reprogramming method using the piggyBac vector may facilitate clinical applications of iHeps in upcoming cell therapy.
Collapse
Affiliation(s)
- Hokahiro Katayama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kentaro Yasuchika
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuya Miyauchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenobu Kojima
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoya Yamaoka
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Kawai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Elena Yukie Yoshitoshi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Satoshi Ogiso
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sadahiko Kita
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutaro Yasuda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naoya Sasaki
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Fukumitsu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junji Komori
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Abstract
Reprogramming cell fates towards pluripotent stem cells and other cell types has revolutionized our understanding of cellular plasticity. During the last decade, transcription factors and microRNAs have become powerful reprogramming factors for modulating cell fates. Recently, many efforts are focused on reprogramming cell fates by non-viral and non-integrating chemical approaches. Small molecules not only are useful in generating desired cell types in vitro for various applications, such as disease modeling and cell-based transplantation, but also hold great promise to be further developed as drugs to stimulate patients’ endogenous cells to repair and regenerate in vivo. Here we will focus on chemical approaches for generating induced pluripotent stem cells, neurons, cardiomyocytes, hepatocytes and pancreatic β cells. Significantly, the rapid and exciting advances in cellular reprogramming by small molecules will help us to achieve the long-term goal of curing devastating diseases, injuries, cancers and aging.
Collapse
Affiliation(s)
- Xiaojie Ma
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Linghao Kong
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Saiyong Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Gérard C, Tys J, Lemaigre FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2016; 66:43-50. [PMID: 27979774 DOI: 10.1016/j.semcdb.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022]
Abstract
Liver development proceeds by sequential steps during which gene regulatory networks (GRNs) determine differentiation and maturation of hepatic cells. Characterizing the architecture and dynamics of these networks is essential for understanding how cell fate decisions are made during development, and for recapitulating these processes during in vitro production of liver cells for toxicology studies, disease modelling and regenerative therapy. Here we review the GRNs that control key steps of liver development and lead to differentiation of hepatocytes and cholangiocytes in mammals. We focus on GRNs determining cell fate decisions and analyse subcircuitry motifs that may confer specific dynamic properties to the networks. Finally, we put our analysis in the perspective of recent attempts to directly reprogram cells to hepatocytes by forced expression of transcription factors.
Collapse
Affiliation(s)
- Claude Gérard
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Janne Tys
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Frédéric P Lemaigre
- Université catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
20
|
Rastegar-Pouyani S, Khazaei N, Wee P, Mohammadnia A, Yaqubi M. Role of Hepatic-Specific Transcription Factors and Polycomb Repressive Complex 2 during Induction of Fibroblasts to Hepatic Fate. PLoS One 2016; 11:e0167081. [PMID: 27902735 PMCID: PMC5130264 DOI: 10.1371/journal.pone.0167081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Direct reprogramming using defined sets of transcription factors (TFs) is a recent strategy for generating induced hepatocytes (iHeps) from fibroblasts for use in regenerative medicine and drug development. Comprehensive studies detailing the regulatory role of TFs during this reprogramming process could help increase its efficiency. This study aimed to find the TFs with the greatest influences on the generation of iHeps from fibroblasts, and to further understand their roles in the regulation of the gene expression program. Here, we used systems biology approaches to analyze high quality expression data sets in combination with TF-binding sites data and protein-protein interactions data during the direct reprogramming of fibroblasts to iHeps. Our results revealed two main patterns for differentially expressed genes (DEGs): up-regulated genes were categorized as hepatic-specific pattern, and down-regulated genes were categorized as mesoderm- and fibroblast-specific pattern. Interestingly, hepatic-specific genes co-expressed and were regulated by hepatic-specific TFs, specifically Hnf4a and Foxa2. Conversely, the mesoderm- and fibroblast-specific pattern was mainly silenced by polycomb repressive complex 2 (PRC2) members, including Suz12, Mtf2, Ezh2, and Jarid2. Independent analysis of both the gene and core regulatory network of DE-TFs showed significant roles for Hnf4a, Foxa2, and PRC2 members in the regulation of the gene expression program and in biological processes during the direct conversion process. Altogether, using systems biology approaches, we clarified the role of Hnf4a and Foxa2 as hepatic-specific TFs, and for the first time, introduced the PRC2 complex as the main regulator that favors the direct reprogramming process in cooperation with hepatic-specific factors.
Collapse
Affiliation(s)
- Shima Rastegar-Pouyani
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Niusha Khazaei
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Abdulshakour Mohammadnia
- Department of Human Genetics, Division of Hematology and Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Moein Yaqubi
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming. Cell Rep 2016; 15:814-829. [PMID: 27149847 DOI: 10.1016/j.celrep.2016.03.071] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps). However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK) dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.
Collapse
|