1
|
Influenza B Virus (IBV) Immune-Mediated Disease in C57BL/6 Mice. Vaccines (Basel) 2022; 10:vaccines10091440. [PMID: 36146518 PMCID: PMC9504307 DOI: 10.3390/vaccines10091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza B viruses (IBV) primarily infect humans, causing seasonal epidemics. The absence of an animal reservoir limits pandemic concern, but IBV infections may cause severe respiratory disease, predominantly in young children and the elderly. The IBV disease burden is largely controlled by seasonal influenza vaccination; however, immunity due to vaccination is sometimes incomplete, a feature linked to antigenic mismatches. Thus, understanding the features that contribute to disease pathogenesis is important, particularly immune-mediated versus virus-mediated outcomes. Unexpectedly, C57BL/6 (B6) mice intranasally infected with a low multiplicity of infection of B/Florida/04/2006 developed substantial morbidity and mortality. To address the cause, B6 mice were treated daily with dexamethasone to dampen the immune and pro-inflammatory response to IBV infection, allowing the determination of whether the responses were immune- and/or virus-associated. As expected, dexamethasone (DEX)-treated mice had a lower pro-inflammatory response and reduced lung pathology despite the presence of high viral lung titers, but mortality was comparable to PBS-treated mice, indicating that mortality may be linked to lung virus replication. The results showed that the immune response to IBV is the major cause of morbidity, mortality, lung pathology, and viral clearance. Importantly, the results suggest that a robust lung CTL response and associated leukocyte influx contribute to disease.
Collapse
|
2
|
Pekarek MJ, Petro-Turnquist EM, Rubrum A, Webby RJ, Weaver EA. Expanding Mouse-Adapted Yamagata-like Influenza B Viruses in Eggs Enhances In Vivo Lethality in BALB/c Mice. Viruses 2022; 14:v14061299. [PMID: 35746770 PMCID: PMC9229684 DOI: 10.3390/v14061299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 01/23/2023] Open
Abstract
Despite the yearly global impact of influenza B viruses (IBVs), limited host range has been a hurdle to developing a readily accessible small animal disease model for vaccine studies. Mouse-adapting IBV can produce highly pathogenic viruses through serial lung passaging in mice. Previous studies have highlighted amino acid changes throughout the viral genome correlating with increased pathogenicity, but no consensus mutations have been determined. We aimed to show that growth system can play a role in mouse-adapted IBV lethality. Two Yamagata-lineage IBVs were serially passaged 10 times in mouse lungs before expansion in embryonated eggs or Madin-Darby canine kidney cells (London line) for use in challenge studies. We observed that virus grown in embryonated eggs was significantly more lethal in mice than the same virus grown in cell culture. Ten additional serial lung passages of one strain again showed virus grown in eggs was more lethal than virus grown in cells. Additionally, no mutations in the surface glycoprotein amino acid sequences correlated to differences in lethality. Our results suggest growth system can influence lethality of mouse-adapted IBVs after serial lung passaging. Further research can highlight improved mechanisms for developing animal disease models for IBV vaccine research.
Collapse
Affiliation(s)
- Matthew J. Pekarek
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Erika M. Petro-Turnquist
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.J.W.)
| | - Eric A. Weaver
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.J.P.); (E.M.P.-T.)
- Correspondence:
| |
Collapse
|
3
|
Zhou L, Feng Z, Liu J, Chen Y, Yang L, Liu S, Li X, Gao R, Zhu W, Wang D, Shu Y. A single N342D substitution in Influenza B Virus NA protein determines viral pathogenicity in mice. Emerg Microbes Infect 2021; 9:1853-1863. [PMID: 32746754 PMCID: PMC7473139 DOI: 10.1080/22221751.2020.1806005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Influenza B virus (IBV) is one of the most important human respiratory viruses: it causes approximately one-third of the global influenza-related disease burden each year. However, compared with the several pathogenicity-related molecular markers that have been identified for influenza A virus (IAV), little is known about potential IBV pathogenicity-related markers. Here, although the IBV strain B/Anhui-Tunxi/1528/2014 (AH1528/14) exhibited a more efficient replication ability in vitro and higher pathogenicity in vivo compared with IBV strain B/Anhui-Baohe/127/2015 (AH127/15), only three amino acids differences (HAA390E, NAN342D and PB1V212I) were observed among their full genomes. The contributions of each amino acid difference to the virus pathogenicity were further investigated. Compared with the wild type IBV virus rAH127, the recombinant virus harbouring a single substitution of HAA390E had a similar phenotype, whereas the recombinant virus harbouring PB1V212I replicated to a moderately higher titre in both MDCK cells and in mice. Notably, the virus harbouring NAN342D showed significantly better growth properties in MDCK cells and higher fatality rates in mice. In addition, the presence of NAN342D dramatically enhanced the viral neuraminidase activity. In conclusion, our study identified a novel IBV molecular marker, NAN342D, that could significantly increase the virulence of IBV in mice.
Collapse
Affiliation(s)
- Lijuan Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhaomin Feng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Suli Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
4
|
Kiseleva I, Rekstin A, Al Farroukh M, Bazhenova E, Katelnikova A, Puchkova L, Rudenko L. Non-Mouse-Adapted H1N1pdm09 Virus as a Model for Influenza Research. Viruses 2020; 12:v12060590. [PMID: 32485821 PMCID: PMC7354452 DOI: 10.3390/v12060590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The number of lung-adapted influenza viruses is limited. Most of them are not antigenically related to current circulating viruses. Viruses similar to recent strains are required for screening modern antiviral compounds and studying new vaccine candidates against novel influenza viruses. The process by which an influenza virus adapts to a new host is rather difficult. The aim of this study was to select a non-adapted current virus whose major biological properties correspond to those of classical lab-adapted viruses. Mice were inoculated intranasally with non-lung-adapted influenza viruses of subtype H1N1pdm09. They were monitored closely for body weight loss, mortality outcomes and gross pathology for 14 days following inoculation, as well as viral replication in lung tissue. Lung-adapted PR8 virus was used as a control. The tested viruses multiplied equally well in the lower respiratory tract of mice without prior adaptation but dramatically differed in lethality; the differences in their toxicity and pathogenicity in mice were established. A/South Africa/3626/2013 (H1N1)pdm09 virus was found to be an appropriate candidate to replace PR8 as a model virus for influenza research. No prior adaptation to the animal model is needed to reach the pathogenicity level of the classical mouse-adapted PR8 virus.
Collapse
Affiliation(s)
- Irina Kiseleva
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
- Correspondence:
| | - Andrey Rekstin
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Mohammad Al Farroukh
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 St Petersburg, Russia;
| | - Ludmila Puchkova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| |
Collapse
|
5
|
Influenza and antiviral resistance: an overview. Eur J Clin Microbiol Infect Dis 2020; 39:1201-1208. [PMID: 32056049 PMCID: PMC7223162 DOI: 10.1007/s10096-020-03840-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
Abstract
Influenza affects approximately 1 billion individuals each year resulting in between 290,000 and 650,000 deaths. Young children and immunocompromised individuals are at a particularly high risk of severe illness attributable to influenza and these are also the groups of individuals in which reduced susceptibility to neuraminidase inhibitors is most frequently seen. High levels of resistance emerged with previous adamantane therapy for influenza A and despite no longer being used to treat influenza and therefore lack of selection pressure, high levels of adamantane resistance continue to persist in currently circulating influenza A strains. Resistance to neuraminidase inhibitors has remained at low levels to date and the majority of resistance is seen in influenza A H1N1 pdm09 infected immunocompromised individuals receiving oseltamivir but is also seen less frequently with influenza A H3N2 and B. Rarely, resistance is also seen in the immunocompetent. There is evidence to suggest that these resistant strains (particularly H1N1 pdm09) are able to maintain their replicative fitness and transmissibility, although there is no clear evidence that being infected with a resistant strain is associated with a worse clinical outcome. Should neuraminidase inhibitor resistance become more problematic in the future, there are a small number of alternative novel agents within the anti-influenza armoury with different mechanisms of action to neuraminidase inhibitors and therefore potentially effective against neuraminidase inhibitor resistant strains. Limited data from use of novel agents such as baloxavir marboxil and favipiravir, does however show that resistance variants can also emerge in the presence of these drugs.
Collapse
|
6
|
Oliva J, Mettier J, Sedano L, Delverdier M, Bourgès-Abella N, Hause B, Loupias J, Pardo I, Bleuart C, Bordignon PJ, Meunier E, Le Goffic R, Meyer G, Ducatez MF. Murine Model for the Study of Influenza D Virus. J Virol 2020; 94:e01662-19. [PMID: 31776281 PMCID: PMC6997775 DOI: 10.1128/jvi.01662-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
A novel genus within the Orthomyxoviridae family was identified in the United States and named influenza D virus (IDV). Bovines have been proposed to be the primary host, and three main viral lineages (D/OK-like, D/660-like, and D/Japan-like) have been described. Experimental infections had previously been performed in swine, ferrets, calves, and guinea pigs in order to study IDV pathogenesis. We developed a murine experimental model to facilitate the study of IDV pathogenesis and the immune response. DBA/2 mice were inoculated with 105 50% tissue culture infective dose (TCID50) of D/bovine/France/5920/2014 (D/OK-like). No clinical signs or weight loss were observed. Viral replication was observed mainly in the upper respiratory tract (nasal turbinates) but also in the lower respiratory tract of infected mice, with a peak at 4 days postinfection. Moreover, the virus was also detected in the intestines. All infected mice seroconverted by 14 days postinfection. Transcriptomic analyses demonstrated that IDV induced the activation of proinflammatory genes, such as gamma interferon (IFN-γ) and CCL2. Inoculation of NF-κB-luciferase and Ifnar1-/- mice demonstrated that IDV induced mild inflammation and that a type I interferon response was not necessary in IDV clearance. Adaptation of IDV by serial passages in mice was not sufficient to induce disease or increased pathogenesis. Taken together, present data and comparisons with the calf model show that our mouse model allows for the study of IDV replication and fitness (before selected viruses may be inoculated on calves) and also of the immune response.IMPORTANCE Influenza D virus (IDV), a new genus of Orthomyxoviridae family, presents a large host range and a worldwide circulation. The pathogenicity of this virus has been studied in the calf model. The mouse model is frequently used to enable a first assessment of a pathogen's fitness, replication, and pathogenesis for influenza A and B viruses. We showed that DBA/2 mice are a relevant in vivo model for the study of IDV replication. This model will allow for rapid IDV fitness and replication evaluation and will enable phenotypic comparisons between isolated viruses. It will also allow for a better understanding of the immune response induced after IDV infection.
Collapse
Affiliation(s)
- J Oliva
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J Mettier
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - L Sedano
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - M Delverdier
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - B Hause
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - J Loupias
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - I Pardo
- Université de Toulouse, ENVT, Toulouse, France
| | - C Bleuart
- Université de Toulouse, ENVT, Toulouse, France
| | - P J Bordignon
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - E Meunier
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - R Le Goffic
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - G Meyer
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - M F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
7
|
Yuan B, Yang C, Xia X, Zanin M, Wong SS, Yang F, Chang J, Mai Z, Zhao J, Zhang Y, Li R, Zhong N, Yang Z. The tree shrew is a promising model for the study of influenza B virus infection. Virol J 2019; 16:77. [PMID: 31174549 PMCID: PMC6555921 DOI: 10.1186/s12985-019-1171-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/23/2022] Open
Abstract
Background Influenza B virus is a main causative pathogen of annual influenza epidemics, however, research on influenza B virus in general lags behind that on influenza A viruses, one of the important reasons is studies on influenza B viruses in animal models are limited. Here we investigated the tree shrew as a potential model for influenza B virus studies. Methods Tree shrews and ferrets were inoculated with either a Yamagata or Victoria lineage influenza B virus. Symptoms including nasal discharge and weight loss were observed. Nasal wash and respiratory tissues were collected at 2, 4 and 6 days post inoculation (DPI). Viral titers were measured in nasal washes and tissues were used for pathological examination and extraction of mRNA for measurement of cytokine expression. Results Clinical signs and pathological changes were also evident in the respiratory tracts of tree shrews and ferrets. Although nasal symptoms including sneezing and rhinorrhea were evident in ferrets infected with influenza B virus, tree shrews showed no significant respiratory symptoms, only milder nasal secretions appeared. Weight loss was observed in tree shrews but not ferrets. V0215 and Y12 replicated in all three animal (ferrets, tree shrews and mice) models with peak titers evident on 2DPI. There were no significant differences in peak viral titers in ferrets and tree shrews inoculated with Y12 at 2 and 4DPI, but viral titers were detected at 6DPI in tree shrews. Tree shrews infected with influenza B virus showed similar seroconversion and respiratory tract pathology to ferrets. Elevated levels of cytokines were detected in the tissues isolated from the respiratory tract after infection with either V0215 or Y12 compared to the levels in the uninfected control in both animals. Overall, the tree shrew was sensitive to infection and disease by influenza B virus. Conclusion The tree shrew to be a promising model for influenza B virus research. Electronic supplementary material The online version of this article (10.1186/s12985-019-1171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yuan
- Department of Respiration, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Mark Zanin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Fan Yang
- Medical Faculty, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Jixiang Chang
- Medical Faculty, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Zhitong Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yunhui Zhang
- Department of Respiration, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, People's Republic of China.
| |
Collapse
|
8
|
Kim MH, Kang JO, Kim JY, Jung HE, Lee HK, Chang J. Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus. Antiviral Res 2019; 163:19-28. [PMID: 30639307 DOI: 10.1016/j.antiviral.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
Nucleoprotein is highly conserved among each type of influenza viruses (A and B) and has received significant attention as a good target for universal influenza vaccine. In this study, we determined whether a recombinant adenovirus encoding nucleoprotein of type B influenza virus (rAd/B-NP) confers protection against influenza virus infection in mice. We also identified a cytotoxic T lymphocyte epitope in the nucleoprotein to determine B-NP-specific CD8 T-cell responses. We found that B-NP-specific CD8 T cells induced by rAd/B-NP immunization played a major role in protection following influenza B virus infection using CD8 knockout mice. To assess the effects of the administration routes on protective immunity, we immunized mice with rAd/B-NP via intranasal or intramuscular routes. Both groups showed strong NP-specific humoral and CD8 T-cell responses, but only intranasal immunization provided complete protection against both lineages of influenza B virus challenge. Intranasal but not intramuscular administration established resident memory CD8 T cells in the airway and lung parenchyma, which were required for efficient protection. Furthermore, rAd/B-NP in combination with rAd/A-NP protected mice against lethal infection with both influenza A and B viruses. These findings demonstrate that rAd/B-NP could be further developed as a universal vaccine against influenza.
Collapse
Affiliation(s)
- Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jung-Ok Kang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Joo-Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Fage C, Abed Y, Checkmahomed L, Venable MC, Boivin G. In Vitro Properties and Virulence of Contemporary Recombinant Influenza B Viruses Harboring Mutations of Cross-Resistance to Neuraminidase Inhibitors. Viruses 2018; 11:v11010006. [PMID: 30583488 PMCID: PMC6357004 DOI: 10.3390/v11010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Three neuraminidase inhibitors (NAIs: Oseltamivir, zanamivir and peramivir) are currently approved in many countries for the treatment of influenza A and B infections. The emergence of influenza B viruses (IBVs) containing mutations of cross-resistance to these NAIs constitutes a serious clinical threat. Herein, we used a reverse genetics system for the current B/Phuket/3073/2013 vaccine strain to investigate the impact on in vitro properties and virulence of H136N, R152K, D198E/N, I222T and N294S NA substitutions (N2 numbering), reported by the World Health Organization (WHO) as clinical markers of reduced or highly-reduced inhibition (RI/HRI) to multiple NAIs. Recombinant viruses were tested by NA inhibition assays. Their replicative capacity and virulence were evaluated in ST6GalI-MDCK cells and BALB/c mice, respectively. All NA mutants (excepted D198E/N) showed RI/HRI phenotypes against ≥ 2 NAIs. These mutants grew to comparable titers of the recombinant wild-type (WT) IBV in vitro, and some of them (H136N, I222T and N294S mutants) induced more weight loss and mortality in BALB/c mice in comparison to the recombinant WT IBV. These results demonstrate that, in contemporary IBVs, some NA mutations may confer RI/HRI phenotypes to existing NAIs without altering the viral fitness. This reinforces the need for development of novel antiviral strategies with different mechanisms of action.
Collapse
Affiliation(s)
- Clément Fage
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada.
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada.
| | - Liva Checkmahomed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada.
| | - Marie-Christine Venable
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada.
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada.
| |
Collapse
|
10
|
Farrukee R, Zarebski AE, McCaw JM, Bloom JD, Reading PC, Hurt AC. Characterization of Influenza B Virus Variants with Reduced Neuraminidase Inhibitor Susceptibility. Antimicrob Agents Chemother 2018; 62:e01081-18. [PMID: 30201817 PMCID: PMC6201084 DOI: 10.1128/aac.01081-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
Treatment options for influenza B virus infections are limited to neuraminidase inhibitors (NAIs), which block the neuraminidase (NA) glycoprotein on the virion surface. The development of NAI resistance would therefore result in a loss of antiviral treatment options for influenza B virus infections. This study characterized two contemporary influenza B viruses with known resistance-conferring NA amino acid substitutions, D197N and H273Y, detected during routine surveillance. The D197N and H273Y variants were characterized in vitro by assessing NA enzyme activity and affinity, as well as replication in cell culture compared to those of NAI-sensitive wild-type viruses. In vivo studies were also performed in ferrets to assess the replication and transmissibility of each variant. Mathematical models were used to analyze within-host and between-host fitness of variants relative to wild-type viruses. The data revealed that the H273Y variant had NA enzyme function similar to that of its wild type but had slightly reduced replication and transmission efficiency in vivo The D197N variant had impaired NA enzyme function, but there was no evidence of reduction in replication or transmission efficiency in ferrets. Our data suggest that the influenza B virus variant with the H273Y NA substitution had a more notable reduction in fitness compared to wild-type viruses than the influenza B variant with the D197N NA substitution. Although a D197N variant is yet to become widespread, it is the most commonly detected NAI-resistant influenza B virus in surveillance studies. Our results highlight the need to carefully monitor circulating viruses for the spread of influenza B viruses with the D197N NA substitution.
Collapse
Affiliation(s)
- R Farrukee
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A E Zarebski
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - J M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Infection and Immunity theme, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - J D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - P C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
White KM, Ayllon J, Mena I, Potenski A, Krammer F, García-Sastre A. Influenza B virus reverse genetic backbones with improved growth properties in the EB66® cell line as basis for vaccine seed virus generation. Vaccine 2018; 36:1146-1153. [PMID: 29395518 DOI: 10.1016/j.vaccine.2018.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Vaccination remains the best available prophylaxis to prevent influenza virus infections, yet current inadequacies in influenza virus vaccine manufacturing often lead to vaccine shortages at times when the vaccine is most needed, as it was the case during the last influenza virus pandemic. Novel influenza virus vaccine production systems will be crucial to improve public health and safety. Here we report the optimization of influenza B virus growth in the proprietary EB66® cell line, currently in use for human vaccine production. To this end, we collected, curated and sequenced 71 influenza B viruses selected for high diversity in date of isolation and lineage. This viral collection was tested for ability to enter and replicate within EB66® cells in a single cycle assay and appears to readily infect these cells. When the collection was tested for viral progeny production in a multi-cycle assay, we found a large variation from strain to strain. The strains with the top growth characteristics from the B/Victoria and B/Yamagata lineages were selected for vaccine backbone generation using a reverse genetics system. We then showed that these backbones maintain their desirable growth within EB66® cells when the HA and NA from poorly growing strains were substituted for the parental segments, indicating that the selected backbones are viable options for vaccine production in EB66®. Finally, we show that compounds previously reported to enhance influenza virus growth in cell culture also increase virus production in the EB66® cell line.
Collapse
Affiliation(s)
- Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA.
| | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Anna Potenski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
12
|
Sadewasser A, Saenger S, Paki K, Schwecke T, Wolff T. Disruption of Src homology 3-binding motif within non-structural protein 1 of influenza B virus unexpectedly enhances viral replication in human cells. J Gen Virol 2016; 97:2856-2867. [PMID: 27654951 DOI: 10.1099/jgv.0.000604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The influenza virus non-structural protein 1 (NS1) is a multifunctional virulence factor that plays a crucial role during infection by blocking the innate antiviral immune response of infected cells. In contrast to the well-studied NS1 protein of influenza A virus, knowledge about structure and functions of the influenza B virus homologue B/NS1, which shares less than 25 % sequence identity, is still limited. Here, we report on a reverse genetic analysis to study the role of a highly conserved class II Src homology 3 domain-binding motif matching the consensus PxxPx(K/R) that we identified at positions 122-127 of the B/NS1 protein. Surprisingly, glycine substitutions in the Src homology 3 domain-binding motif increased virus replication up to three orders of magnitude in human lung cells. Enhanced mutant virus propagation was accompanied by increased gene expression and apoptosis induction linking this motif to the control of programmed cell death. A MS-based interactome study revealed that the glycine substitutions facilitate binding of B/NS1 to heat shock protein 90-beta (HSP90β). Moreover, recruitment of the viral polymerase basic protein 2 to the B/NS1-HSP90β complex was observed. Pharmacological inhibition of HSP90 reduced mutant virus propagation suggesting that the mutation-induced involvement of HSP90β enhanced viral replication. This study not only functionally characterizes a conserved motif within the B/NS1 protein, but also illustrates a rare example in which mutation of a highly conserved sequence within a viral protein does not result in high fitness costs, but rather increases viral replication via recruitment of a host factor.
Collapse
Affiliation(s)
- Anne Sadewasser
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Sandra Saenger
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Katharina Paki
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Torsten Schwecke
- ZBS 6 - Proteomics and Spectroscopy, Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, Seestr. 10, Berlin 13353, Germany
| |
Collapse
|
13
|
Yoon S, Kim ED, Song MS, Han SJ, Park TK, Choi KS, Choi YK, Seo KY. Eyedrop Vaccination Induced Systemic and Mucosal Immunity against Influenza Virus in Ferrets. PLoS One 2016; 11:e0157634. [PMID: 27333331 PMCID: PMC4917170 DOI: 10.1371/journal.pone.0157634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/02/2016] [Indexed: 11/30/2022] Open
Abstract
We investigated eyedrop vaccination (EDV) in pre-clinical development for immunological protection against influenza and for potential side effects involving ocular inflammation and the central nervous system (CNS). Live attenuated influenza EDV, CA07 (H1N1), PZ-4 (H1N2) and Uruguay (H3N2), induced both systemic and mucosal virus-specific antibody responses in ferrets. In addition, EDV resulted in a clinically significant protection against viral challenge, and suppression of viral replication in nasal secretion and lung tissue. Regarding safety, we found that administered EDV flow through the tear duct to reach the base of nasal cavity, and thus do not contact the olfactory bulb. All analyses for potential adverse effects due to EDV, including histological and functional examinations, did not reveal significant side effects. On the basis of these findings, we propose that EDV as effective, while being a safe administration route with minimum local side effects, CNS invasion, or visual function disturbance.
Collapse
Affiliation(s)
- Sangchul Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Ophthalmology, National Medical Center, Seoul, 04564, Republic of Korea
| | - Eun-Do Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Soo Jung Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University College of Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, 14584, Republic of Korea
| | - Kyoung Sub Choi
- Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyounggi-do, 10444, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- * E-mail:
| |
Collapse
|
14
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
15
|
Elderfield RA, Koutsakos M, Frise R, Bradley K, Ashcroft J, Miah S, Lackenby A, Barclay WS. NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets. J Gen Virol 2015; 97:593-601. [PMID: 26703440 DOI: 10.1099/jgv.0.000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The influenza B virus encodes a unique protein, NB, a membrane protein whose function in the replication cycle is not, as yet, understood. We engineered a recombinant influenza B virus lacking NB expression, with no concomitant difference in expression or activity of viral neuraminidase (NA) protein, an important caveat since NA is encoded on the same segment and initiated from a start codon just 4 nt downstream of NB. Replication of the virus lacking NB was not different to wild-type virus with full-length NB in clonal immortalized or complex primary cell cultures. In the mouse model, virus lacking NB induced slightly lower IFN-α levels in infected lungs, but this did not affect virus titres or weight loss. In ferrets infected with a mixture of viruses that did or did not express NB, there was no fitness advantage for the virus that retained NB. Moreover, virus lacking NB protein was transmitted following respiratory droplet exposure of sentinel animals. These data suggest no role for NB in supporting replication or transmission in vivo in this animal model. The role of NB and the nature of selection to retain it in all natural influenza B viruses remain unclear.
Collapse
Affiliation(s)
- Ruth A Elderfield
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Marios Koutsakos
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Rebecca Frise
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Konrad Bradley
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Jonathan Ashcroft
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Shanhjahan Miah
- Public Health England, Centre for Infections, Colindale, London, UK
| | - Angie Lackenby
- Public Health England, Centre for Infections, Colindale, London, UK
| | - Wendy S Barclay
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| |
Collapse
|