1
|
Huang M, Yu L, Li Z, Wang Y, Yang C. Epimedin C enhances mitochondrial energy supply by regulating the interaction between MIC25 and UBC in rodent model. PLoS One 2025; 20:e0325031. [PMID: 40435285 PMCID: PMC12119004 DOI: 10.1371/journal.pone.0325031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/03/2025] [Indexed: 06/01/2025] Open
Abstract
The study investigates the molecular mechanisms underlying the skeletal muscle-enhancing effects of Epimedin C, a natural flavonoid, focusing on its interaction with the mitochondrial cristae structural protein MIC25. Using C57BL/6 mice, we demonstrate that Epimedin C enhances exercise performance through preservation of mitochondrial function. Proteomic analysis identified MIC25 as a key protein modulated by Epimedin C, whose stability is regulated via ubiquitin-dependent degradation. Functional experiments revealed that Epimedin C disrupts the interaction between MIC25 and ubiquitin-conjugating enzyme C (UBC), preventing MIC25 degradation and maintaining the integrity of the mitochondrial contact site and cristae organizing system (MICOS). This stabilization preserves mitochondrial cristae structure, improves ATP production, and delays muscle fatigue. Notably, MIC25 overexpression mimicked Epimedin C's effects, while its knockdown abolished these benefits. Our findings establish MIC25 as a critical effector of Epimedin C, elucidating a novel pathway through which flavonoids maintain mitochondrial homeostasis to enhance muscle function. These insights hold promise for developing therapies targeting muscle atrophy and metabolic disorders.
Collapse
Affiliation(s)
- Mi Huang
- Orthopedics department, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lei Yu
- Endocrinology department, Wuhan Red Cross Hospital, Wuhan, Hubei, China
| | - Zhong Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, China
| | - Chunlin Yang
- Orthopedics department, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
2
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
3
|
Che W, Guo S, Wang Y, Wan X, Tan B, Li H, Alifu J, Zhu M, Chen Z, Li P, Zhang L, Zhang Z, Wang Y, Huang X, Wang X, Zhu J, Pan X, Zhang F, Wang P, Sui SF, Zhao J, Xu Y, Liu Z. SARS-CoV-2 damages cardiomyocyte mitochondria and implicates long COVID-associated cardiovascular manifestations. J Adv Res 2025:S2090-1232(25)00306-6. [PMID: 40354933 DOI: 10.1016/j.jare.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION With the COVID-19 pandemic becoming endemic, vigilance for Long COVID-related cardiovascular issues remains essential, though their specific pathophysiology is largely unexplored. OBJECTIVES Our study investigates the persistent cardiovascular symptoms observed in individuals long after contracting SARS-CoV-2, a condition commonly referred to as "Long COVID", which has significantly affected millions globally. METHODS We meticulously describe the cardiovascular outcomes in five patients, encompassing a range of severe conditions such as sudden cardiac death during exercise, coronary atherosclerotic heart disease, palpitation, chest tightness, and acute myocarditis. RESULTS All five patients were diagnosed with myocarditis, confirmed through endomyocardial biopsy and histochemical staining, which identified inflammatory cell infiltration in their heart tissue. Crucially, electron microscopy revealed widespread mitochondrial vacuolations and the presence of myofilament degradation within the cardiomyocytes of these patients. These findings were mirrored in SARS-CoV-2-infected mice, suggesting a potential underlying cellular mechanism for the cardiac effects associated with Long COVID. CONCLUSION Our findings demonstrate a profound impact of SARS-CoV-2 on mitochondrial integrity, shedding light on the cardiovascular implications of Long COVID.
Collapse
Affiliation(s)
- Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Guo
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bingyu Tan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiasuer Alifu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengyun Zhu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zesong Chen
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyao Li
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zhang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinsheng Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Sen-Fang Sui
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Shembekar SS, Nikolaus P, Honnert U, Höring M, Attia A, Topp K, Lohmann B, Liebisch G, Bähler M. Regulation of mitochondrial cristae organization by Myo19, Miro1 and Miro2, and metaxin 3. J Cell Sci 2025; 138:JCS263637. [PMID: 39882711 PMCID: PMC11925395 DOI: 10.1242/jcs.263637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
The actin-based motor myosin-19 (Myo19) exerts force on mitochondrial membrane receptors Miro1/2, influencing endoplasmic reticulum (ER)-mitochondria contact sites and mitochondrial cristae structure. The mitochondrial intermembrane bridging (MIB) complex connects the outer and inner mitochondrial membranes at the cristae junction through the mitochondrial contact site and cristae organization system (MICOS). However, the interaction between Myo19, Miro1 and Miro2 (hereafter Miro1/2), and the MIB-MICOS complex in cristae regulation remains unclear. This study investigates the roles of Miro1/2 and metaxin 3 (Mtx3), a MIB complex component, in linking Myo19 to MIB-MICOS. We show that Miro1/2 interact with Myo19 and the MIB complex but not with Mtx3. Their mitochondrial membrane anchors are not essential for MIB interaction or cristae structure. However, Mtx3 is crucial for the connection between MIB-MICOS and the Myo19 and Miro1/2 proteins. Deleting Miro1/2 mimics the effects of Myo19 deficiency on ER-mitochondria contacts and cristae structure, whereas Mtx3 deletion does not. Notably, the loss of Myo19 and Miro1/2 alters mitochondrial lipid composition, reducing cardiolipin and its precursors, suggesting Myo19 and Miro1/2 influence cristae indirectly via lipid transfer at ER-mitochondria contact sites.
Collapse
Affiliation(s)
- Samruddhi S. Shembekar
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Petra Nikolaus
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Ulrike Honnert
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Aya Attia
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Karin Topp
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Fujimoto M, Yasuda H, Arai E, Nakajima M, Takata S, Morikawa K, Tanaka H, Itani H, Honda T, Horiuchi K, Watanabe K, Nakagawa H, Nakahara Y, Seki Y, Bessho A, Takahashi N, Hayashi K, Endo T, Takeyama K, Maekura T, Takigawa N, Kawase A, Endoh M, Nemoto K, Kishi K, Soejima K, Okuma Y, Togashi A, Matsutani N, Seki N, Kanai Y. Plasma cell-free DNA methylation profile before afatinib treatment is associated with progression-free and overall survival of patients with epidermal growth factor receptor gene mutation-positive non-small cell lung cancer. Clin Epigenetics 2025; 17:63. [PMID: 40281631 PMCID: PMC12032777 DOI: 10.1186/s13148-025-01870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The present study aimed to clarify the clinical significance of the cell-free DNA (cfDNA) methylation profile of patients with non-small cell lung cancer (NSCLC) showing the epidermal growth factor receptor (EGFR) gene mutation. METHODS In 103 patients, genome-wide DNA methylation analysis using Infinium Methylation EPIC array was performed using samples of pre-tyrosine kinase inhibitor afatinib-treatment plasma cfDNA (n = 101) and post-afatinib cfDNA (n = 84). RESULTS Principal component analysis indicated that the cfDNA methylation profile was altered after afatinib treatment. Hierarchical clustering using the pre-afatinib cfDNA methylation profile revealed that cases with a fatal outcome were accumulated in specific clusters. Moreover, Kaplan-Meier analysis showed that the pre-afatinib cfDNA methylation profile was significantly associated with both progression-free survival (PFS) and overall survival (OS), whereas the post-afatinib profile was not. The genes for which pre-afatinib cfDNA methylation levels were associated with PFS were accumulated in the cadherin, Wnt, and EGFR signaling pathways. Activation of EGFR-related signaling due to DNA methylation alterations might overturn the effect of afatinib. Pre-afatinib levels of CEP170 and CHCHD6 cfDNA methylation were associated with both PFS and OS. Both pre- and post-afatinib cfDNA methylation levels of SLC9A3R2 and INTS1 were associated with bone metastasis. Using the cfDNA methylation levels at two CpG sites, cg12721600 and cg05905155, patients showing an overall response were predicted with a sensitivity of 96% or more. CONCLUSIONS The non-invasively measurable cfDNA methylation profile may reflect the corresponding profile in cancer cells, and that pre-treatment measurement may provide clinically useful information on EGFR mutation-positive NSCLC.
Collapse
Affiliation(s)
- Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Makoto Nakajima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Saori Takata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kei Morikawa
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hidetoshi Itani
- Department of Respiratory Medicine, Ise Red Cross Hospital, Ise, Mie, Japan
| | - Takeshi Honda
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuya Horiuchi
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Kanagawa, Japan
| | - Kageaki Watanabe
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hideyuki Nakagawa
- Department of Respiratory Medicine, National Hospital Organization Hirosaki Hospital, Aomori, Japan
| | - Yoshiro Nakahara
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshitaka Seki
- Department of Internal Medicine, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Akihiro Bessho
- Department of Respiratory Medicine, Japanese Red Cross Okayama Hospital, Okayama, Japan
| | - Nobumasa Takahashi
- Department of General Thoracic Surgery, Saitama Cardiovascular and Respiratory Center, Saitama, Japan
| | - Kentaro Hayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takeo Endo
- Department of Respiratory Medicine, National Hospital Organization Mito Medical Center, Higashiibaraki, Ibaraki, Japan
| | - Kiyoshi Takeyama
- Department of Respiratory Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Toshiya Maekura
- Department of Respiratory Medicine, Hoshigaoka Medical Center, Osaka, Japan
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Makoto Endoh
- Department of Thoracic Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Kenji Nemoto
- Department of Respiratory Medicine, National Hospital Organization, Ibarakihigashi National Hospital, Naka, Ibaraki, Japan
| | - Kazuma Kishi
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Kenzo Soejima
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | - Noriyuki Matsutani
- Department of Surgery, Teikyo University Hospital, Mizonokuchi, Kanagawa, Japan
| | - Nobuhiko Seki
- Division of Medical Oncology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
6
|
Vázquez-Carrada M, Vilchis-Landeros MM, Vázquez-Meza H, Uribe-Ramírez D, Matuz-Mares D. A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies. Int J Mol Sci 2025; 26:2768. [PMID: 40141413 PMCID: PMC11943459 DOI: 10.3390/ijms26062768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction-relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain's efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies.
Collapse
Affiliation(s)
- Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av, Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
7
|
Brosey CA, Shen R, Tainer JA. NADH-bound AIF activates the mitochondrial CHCHD4/MIA40 chaperone by a substrate-mimicry mechanism. EMBO J 2025; 44:1220-1248. [PMID: 39806100 PMCID: PMC11832770 DOI: 10.1038/s44318-024-00360-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates. NMR and X-ray scattering (SAXS) solution measurements, mutational analyses, and biochemistry show that the substrate-mimicking AIF-interaction domain shields CHCHD4's redox-sensitive active site. Disrupting this shield critically activates CHCHD4 substrate affinity and chaperone activity. Regulatory-domain sequestration by NADH-activated AIF directly stimulates chaperone binding and folding, revealing how AIF mediates CHCHD4 mitochondrial import. These results establish AIF as an integral component of the metazoan disulfide relay and point to NADH-activated dimeric AIF as an organizational import center for CHCHD4 and its substrates. Importantly, AIF regulation of CHCHD4 directly links AIF's cellular NAD(H) sensing to CHCHD4 chaperone function, suggesting a mechanism to balance tissue-specific oxidative phosphorylation (OXPHOS) capacity with NADH availability.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Cheng C, Chen M, Sun J, Xu J, Deng S, Xia J, Han Y, Zhang X, Wang J, Lei L, Zhai R, Wu Q, Fang W, Song H. The MICOS Complex Subunit Mic60 is Hijacked by Intracellular Bacteria to Manipulate Mitochondrial Dynamics and Promote Bacterial Pathogenicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406760. [PMID: 39431455 PMCID: PMC11633497 DOI: 10.1002/advs.202406760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Host mitochondria undergo fission and fusion, which bacteria often exploit for their infections. In this study, the underlying molecular mechanisms are aimed to clarify through which Listeria monocytogenes (L. monocytogenes), a human bacterial pathogen, manipulates mitochondrial dynamics to enhance its pathogenicity. It is demonstrated that L. monocytogenes triggers transient mitochondrial fission through its virulence factor listeriolysin O (LLO), driven by LLO's interaction with Mic60, a core component of the mitochondrial contact site and the cristae organizing system (MICOS). Specifically, Phe251 within LLO is identify as a crucial residue for binding to Mic60, crucial for LLO-induced mitochondrial fragmentation and bacterial pathogenicity. Importantly, it is that Mic60 affect the formation of F-actin tails recruited by L. monocytogenes, thereby contributing to intracellular bacterial infection. Mic60 plays a critical role in mediating changes in mitochondrial morphology, membrane potential, and reactive oxidative species (ROS) production, and L. monocytogenes infection exacerbates these changes by affecting Mic60 expression. These findings unveil a novel mechanism through which intracellular bacteria exploit host mitochondria, shedding light on the complex interplay between hosts and microbes during infections. This knowledge holds promise for developing innovative strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Changyong Cheng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Mianmian Chen
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Simin Deng
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Yue Han
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Xian Zhang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Jing Wang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Ruidong Zhai
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Qin Wu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang ProvinceZhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced TechnologyZhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health ManagementChina‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Veterinary Medicine of Zhejiang A&F University666 Wusu Street, Lin'an DistrictHangzhouZhejiang Province311300China
| |
Collapse
|
9
|
Aqabat HMA, Abouelseoud M, Rafaat SN, Shamel M, Schäfer E, Souza EM, Saber S. Cytocompatibility, Antibacterial, and Anti-Biofilm Efficacy of Grape Seed Extract and Quercetin Hydrogels Against a Mature Endodontic Biofilm Ex Vivo Model. J Clin Med 2024; 13:6464. [PMID: 39518602 PMCID: PMC11547163 DOI: 10.3390/jcm13216464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: To assess the cytocompatibility, antibacterial and anti-biofilm efficacy of grape seed extract (GSE) and quercetin hydrogels versus calcium hydroxide (CH) as intracanal medications (ICMs) against an endodontic ex vivo biofilm model. Methods: Single-rooted teeth (n = 50) were prepared and sterilized before being infected with E. faecalis to develop a mature biofilm. They were divided into five equal groups according to the ICM used: G1: medicated with CH paste, G2: medicated with GSE hydrogel, G3: medicated with quercetin hydrogel, G4: positive control group that was infected and not medicated, and G5: negative control group that was neither infected nor medicated. After 1 week, the ICM was removed, and the root canals were cultured to assess the antibacterial efficacy by counting the colony-forming units and the anti-biofilm efficacy by the crystal violet assay. Dead/live bacterial viability was assessed by CFLSM examination, while the cytocompatibility was assessed using the MTT assay. Results: CH had the best antibacterial efficacy, followed by GSE and quercetin hydrogels (p < 0.001). Regarding the anti-biofilm efficacy, GSE was superior, followed by quercetin and CH (p < 0.001). CFLSM examination showed CH and GSE hydrogel to be highly effective in comparison to the positive control (p < 0.0001), with no statistical difference between them (p > 0.05). CH showed significantly higher cell viability percentages using a 500 μg/mL, while quercetin and GSE started to show cell viability > 70% at concentrations of 125 μg/mL and 62.5 μg/mL. Conclusions: CH fulfilled the ideal requirements of ICM as being both antibacterial and non-cytotoxic compared to the other materials tested.
Collapse
Affiliation(s)
- Huda Mohammed Ahmed Aqabat
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt; (H.M.A.A.); (M.A.)
| | - Mohamed Abouelseoud
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt; (H.M.A.A.); (M.A.)
| | - Shereen N. Rafaat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
| | - Mohamed Shamel
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
- Department of Oral Biology, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance, School of Dentistry, University of Münster, 48149 Münster, Germany
| | - Erick Miranda Souza
- Department of Dentistry II, Federal University of Maranhão, São Luis 65080-805, Brazil;
| | - Shehabeldin Saber
- Department of Endodontics, Faculty of Dentistry, The British University in Egypt (BUE), El Sherouk City 11837, Egypt; (H.M.A.A.); (M.A.)
- Dental Science Research Group, Health Research Centre of Excellence, The British University in Egypt (BUE), El Sherouk City 11837, Egypt;
| |
Collapse
|
10
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
12
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
13
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
14
|
Cai M, Li S, Cai K, Du X, Han J, Hu J. Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism 2024; 152:155787. [PMID: 38215964 DOI: 10.1016/j.metabol.2024.155787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of metabolic syndrome (MetS), affecting various cell types and organs. In MetS animal models, mitochondria exhibit decreased quality control, characterized by abnormal morphological structure, impaired metabolic activity, reduced energy production, disrupted signaling cascades, and oxidative stress. The aberrant changes in mitochondrial function exacerbate the progression of metabolic syndrome, setting in motion a pernicious cycle. From this perspective, reversing mitochondrial dysfunction is likely to become a novel and powerful approach for treating MetS. Unfortunately, there are currently no effective drugs available in clinical practice to improve mitochondrial function. Recently, L-lactate has garnered significant attention as a valuable metabolite due to its ability to regulate mitochondrial metabolic processes and function. It is highly likely that treating MetS and its related complications can be achieved by correcting mitochondrial homeostasis disorders. In this review, we comprehensively discuss the complex relationship between mitochondrial function and MetS and the involvement of L-lactate in regulating mitochondrial metabolism and associated signaling pathways. Furthermore, it highlights recent findings on the involvement of L-lactate in common pathologies of MetS and explores its potential clinical application and further prospects, thus providing new insights into treatment possibilities for MetS.
Collapse
Affiliation(s)
- Ming Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China; Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai 201299, PR China.
| |
Collapse
|
15
|
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
16
|
Vue Z, Garza‐Lopez E, Neikirk K, Katti P, Vang L, Beasley H, Shao J, Marshall AG, Crabtree A, Murphy AC, Jenkins BC, Prasad P, Evans C, Taylor B, Mungai M, Killion M, Stephens D, Christensen TA, Lam J, Rodriguez B, Phillips MA, Daneshgar N, Koh H, Koh A, Davis J, Devine N, Saleem M, Scudese E, Arnold KR, Vanessa Chavarin V, Daniel Robinson R, Chakraborty M, Gaddy JA, Sweetwyne MT, Wilson G, Zaganjor E, Kezos J, Dondi C, Reddy AK, Glancy B, Kirabo A, Quintana AM, Dai D, Ocorr K, Murray SA, Damo SM, Exil V, Riggs B, Mobley BC, Gomez JA, McReynolds MR, Hinton A. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell 2023; 22:e14009. [PMID: 37960952 PMCID: PMC10726809 DOI: 10.1111/acel.14009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/15/2023] Open
Abstract
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
| | - Larry Vang
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Heather Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Jianqiang Shao
- Central Microscopy Research FacilityUniversity of IowaIowaIowa CityUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Amber Crabtree
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Brenita C. Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Chantell Evans
- Department of Cell BiologyDuke University School of MedicineNorth CarolinaDurhamUSA
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaFloridaGainesvilleUSA
| | - Margaret Mungai
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Mason Killion
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Dominique Stephens
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Jacob Lam
- Department of Internal MedicineUniversity of IowaIowaIowa CityUSA
| | | | - Mark A. Phillips
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Nastaran Daneshgar
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Ho‐Jin Koh
- Department of Biological SciencesTennessee State UniversityTennesseeNashvilleUSA
| | - Alice Koh
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and PharmacologyMeharry Medical CollegeTennesseeNashvilleUSA
| | - Nina Devine
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Mohammad Saleem
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
- Sport Sciences and Exercise Laboratory (LaCEE)Catholic University of Petrópolis (UCP)PetrópolisState of Rio de JaneiroBrazil
| | - Kenneth Ryan Arnold
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Valeria Vanessa Chavarin
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Ryan Daniel Robinson
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | | | - Jennifer A. Gaddy
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Medicine Health and SocietyVanderbilt UniversityTennesseeNashvilleUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemsTennesseeNashvilleUSA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and PathologyUniversity of WashingtonWashingtonSeattleUSA
| | - Genesis Wilson
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Elma Zaganjor
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Cristiana Dondi
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | | | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthMarylandBethesdaUSA
| | - Annet Kirabo
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research CenterUniversity of Texas at El PasoTexasEl PasoUSA
| | - Dao‐Fu Dai
- Department of PathologyUniversity of Johns Hopkins School of MedicineMarylandBaltimoreUSA
| | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Sandra A. Murray
- Department of Cell Biology, School of MedicineUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Steven M. Damo
- Department of Life and Physical SciencesFisk UniversityTennesseeNashvilleUSA
- Center for Structural BiologyVanderbilt UniversityTennesseeNashvilleUSA
| | - Vernat Exil
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowaIowa CityUSA
- Department of Pediatrics, Division of CardiologySt. Louis University School of MedicineMissouriSt. LouisUSA
| | - Blake Riggs
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Bret C. Mobley
- Department of PathologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jose A. Gomez
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| |
Collapse
|
17
|
Ratliffe J, Kataura T, Otten EG, Korolchuk VI. The evolution of selective autophagy as a mechanism of oxidative stress response: The evolutionarily acquired ability of selective autophagy receptors to respond to oxidative stress is beneficial for human longevity. Bioessays 2023; 45:e2300076. [PMID: 37603398 PMCID: PMC11475373 DOI: 10.1002/bies.202300076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Ageing is associated with a decline in autophagy and elevated reactive oxygen species (ROS), which can breach the capacity of antioxidant systems. Resulting oxidative stress can cause further cellular damage, including DNA breaks and protein misfolding. This poses a challenge for longevous organisms, including humans. In this review, we hypothesise that in the course of human evolution selective autophagy receptors (SARs) acquired the ability to sense and respond to localised oxidative stress. We posit that in the vicinity of protein aggregates and dysfunctional mitochondria oxidation of key cysteine residues in SARs induces their oligomerisation which initiates autophagy. The degradation of damaged cellular components thus could reduce ROS production and restore redox homeostasis. This evolutionarily acquired function of SARs may represent one of the biological adaptations that contributed to longer lifespan. Inversely, loss of this mechanism can lead to age-related diseases associated with impaired autophagy and oxidative stress.
Collapse
Affiliation(s)
- Joshua Ratliffe
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Tetsushi Kataura
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Elsje G. Otten
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Present address:
Amphista TherapeuticsCambridgeUK
| | - Viktor I. Korolchuk
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
18
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Kadam A, Jadiya P, Tomar D. Post-translational modifications and protein quality control of mitochondrial channels and transporters. Front Cell Dev Biol 2023; 11:1196466. [PMID: 37601094 PMCID: PMC10434574 DOI: 10.3389/fcell.2023.1196466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
20
|
Wang Y, Zeng Z, Zeng Z, Chu G, Shan X. Elevated CHCHD4 orchestrates mitochondrial oxidative phosphorylation to disturb hypoxic pulmonary hypertension. J Transl Med 2023; 21:464. [PMID: 37438854 DOI: 10.1186/s12967-023-04268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a highly prevalent cardiopulmonary disorder characterized by vascular remodeling and increased resistance in pulmonary artery. Mitochondrial coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins have various important pathophysiological roles. However, the functional roles of CHCHD proteins in hypoxic PAH is still ambiguous. Here, we aimed to investigate the role of CHCHD4 in hypoxic PAH and provide new insight into the mechanism driving the development of PAH. METHODS Serotype 1 adeno-associated viral vector (AAV) carrying Chchd4 was intratracheally injected to overexpress CHCHD4 in Sprague Dawley (SD) rats. The Normoxia groups of animals were housed at 21% O2. Hypoxia groups were housed at 10% O2, for 8 h/day for 4 consecutive weeks. Hemodynamic and histological characteristics are investigated in PAH. Primary pulmonary artery smooth muscle cells of rats (PASMCs) are used to assess how CHCHD4 affects proliferation and migration. RESULTS We found CHCHD4 was significantly downregulated among CHCHD proteins in hypoxic PASMCs and lung tissues from hypoxic PAH rats. AAV1-induced CHCHD4 elevation conspicuously alleviates vascular remodeling and pulmonary artery resistance, and orchestrates mitochondrial oxidative phosphorylation in PASMCs. Moreover, we found overexpression of CHCHD4 impeded proliferation and migration of PASMCs. Mechanistically, through lung tissues bulk RNA-sequencing (RNA-seq), we further identified CHCHD4 modulated mitochondrial dynamics by directly interacting with SAM50, a barrel protein on mitochondrial outer membrane surface. Furthermore, knockdown of SAM50 reversed the biological effects of CHCHD4 overexpression in isolated PASMCs. CONCLUSIONS Collectively, our data demonstrated that CHCHD4 elevation orchestrates mitochondrial oxidative phosphorylation and antagonizes aberrant PASMC cell growth and migration, thereby disturbing hypoxic PAH, which could serve as a promising therapeutic target for PAH treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Zhaoxiang Zeng
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guojun Chu
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Xinghua Shan
- Department of Cardiology, Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
21
|
Heritable Risk and Protective Genetic Components of Glaucoma Medication Non-Adherence. Int J Mol Sci 2023; 24:ijms24065636. [PMID: 36982708 PMCID: PMC10058353 DOI: 10.3390/ijms24065636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41–71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients’ glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System’s pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10−3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer’s disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62–5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10–6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11–0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47–58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.
Collapse
|
22
|
Yang Y, Mai Z, Zhang Y, Yu Z, Li W, Zhang Y, Li F, Timashev P, Luan P, Luo D, Liang XJ, Yu Z. A Cascade Targeted and Mitochondrion-Dysfunctional Nanomedicine Capable of Overcoming Drug Resistance in Hepatocellular Carcinoma. ACS NANO 2023; 17:1275-1286. [PMID: 36602608 DOI: 10.1021/acsnano.2c09342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemoresistance is a formidable issue in clinical anticancer therapy and is pertinent to the lowered efficacies of chemotherapeutics and the activated tumor self-repairing proceedings. Herein, bifunctional amphiphiles containing galactose ligands and high-density disulfide are synthesized for encapsulating mitochondrion-targeting tetravalent platinum prodrugs to construct a cascade targeted and mitochondrion-dysfunctional nanomedicine (Gal-NP@TPt). Subsequent investigations verify that Gal-NP@TPt with sequential targeting functions toward tumors and mitochondria improved the spatiotemporal level of platinum. In addition, glutathione depletion by Gal-NP@TPt appear to substantially inhibit the proceedings of platinum detoxification, inducing the susceptibility to the mitochondrial platinum. Moreover, the strategic transportation of platinum to mitochondria lacking DNA repair machinery by Gal-NP@TPt lowers the possibility of platinum deactivation. Eventually, Gal-NP@TPt demonstrates appreciable antitumor effects for the systemic treatment of patient-derived tumor xenografts of hepatocellular carcinoma. Note that these strategies in overcoming drug resistance have also been confirmed to be valid based on genome-wide analysis via RNA-sequencing. Therefore, an intriguing multifunctional nanomedicine capable of resolving formidable chemoresistance is achieved, which should be greatly emphasized in practical applications for the treatment of intractable tumors.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziyi Mai
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanxin Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiyu Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjing Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Ping Luan
- Guangdong Second Provincial General Hospital & Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen 518000, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol 2022; 144:911-938. [PMID: 36104602 PMCID: PMC9547808 DOI: 10.1007/s00401-022-02499-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023]
Abstract
The mechanistic relationship between amyloid-beta precursor protein (APP) processing and mitochondrial dysfunction in Alzheimer's disease (AD) has long eluded the field. Here, we report that coiled-coil-helix-coiled-coil-helix domain containing 6 (CHCHD6), a core protein of the mammalian mitochondrial contact site and cristae organizing system, mechanistically connects these AD features through a circular feedback loop that lowers CHCHD6 and raises APP processing. In cellular and animal AD models and human AD brains, the APP intracellular domain fragment inhibits CHCHD6 transcription by binding its promoter. CHCHD6 and APP bind and stabilize one another. Reduced CHCHD6 enhances APP accumulation on mitochondria-associated ER membranes and accelerates APP processing, and induces mitochondrial dysfunction and neuronal cholesterol accumulation, promoting amyloid pathology. Compensation for CHCHD6 loss in an AD mouse model reduces AD-associated neuropathology and cognitive impairment. Thus, CHCHD6 connects APP processing and mitochondrial dysfunction in AD. This provides a potential new therapeutic target for patients.
Collapse
Affiliation(s)
- Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Xiaoqin Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA
| | - Quanqiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Evan J Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Beachwood High School, Beachwood, OH, 44122, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Geriatric Research Education and Clinical Centers, Case Western Reserve University, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, E516, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
24
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
25
|
SAMM50 Regulates Thermogenesis of Beige Adipocytes Differentiated from Human Adipose-Derived Stem Cells by Balancing Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23126764. [PMID: 35743205 PMCID: PMC9224253 DOI: 10.3390/ijms23126764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Brown/beige adipocyte thermogenesis is a process that is important for energy balance. The thermogenesis of brown/beige adipocytes occurs in the mitochondria, which is modulated by the dynamic balance between mitochondrial fusion and fission. Mitophagy is also involved in mitochondrial dynamics. The sorting and assembly machinery (SAM) complex protein, SAMM50, plays a key role in mitochondrial dynamics and quality control through regulating mitophagy. However, the roles of SAMM50 in the thermogenesis of beige adipocytes remain unknown. Thus, the objective of this study was to conduct functional analyses of SAMM50. The expression of mitochondrial fusion genes was repressed by SAMM50 knockdown but was not altered by SAMM50 overexpression. These results agreed with the distribution of the fluorescence-stained mitochondria and an mtDNA copy number. In contrast, the expression of mitochondrial fission genes showed an opposite outcome. As a result, suppression by the SAMM50 shRNA inhibited the expression of thermogenic genes (UCP1, PPARGC1A, DIO2, ELOVL3, CIDEA, and CIDEC) and mitochondrial-related genes (CYCS, COX7A1, TFAM, CPT1B, and CPT2). Conversely, SAMM50 overexpression promoted the expression of the thermogenic genes and mitochondrial genes. Thus, SAMM50 links the balance between the mitochondrial dynamics and thermogenesis of beige adipocytes.
Collapse
|
26
|
Zhan B, Shen J. Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 2022; 24:479. [PMID: 35761815 PMCID: PMC9214601 DOI: 10.3892/etm.2022.11406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biao Zhan
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
27
|
Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat Commun 2022; 13:2673. [PMID: 35562374 PMCID: PMC9106661 DOI: 10.1038/s41467-022-30431-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2022] [Indexed: 01/02/2023] Open
Abstract
The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions. The structure of the mitochondrial inner membrane, or cristae, is important for functional oxidative phosphorylation and energy production. Here, the authors show that loss of myosin 19 impairs cristae structure as well as energy production, connecting motor activity to membrane potential.
Collapse
|
28
|
CHCHD2 Regulates Mitochondrial Function and Apoptosis of Ectopic Endometrial Stromal Cells in the Pathogenesis of Endometriosis. Reprod Sci 2022; 29:2152-2164. [DOI: 10.1007/s43032-021-00831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
|
29
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Rampelt H, Wollweber F, Licheva M, de Boer R, Perschil I, Steidle L, Becker T, Bohnert M, van der Klei I, Kraft C, van der Laan M, Pfanner N. Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth. Cell Rep 2022; 38:110290. [PMID: 35081352 PMCID: PMC8810396 DOI: 10.1016/j.celrep.2021.110290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F1Fo-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10ATPsynthase, not on Mic10MICOS. We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F1Fo-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. Dual role of Mic10 of mitochondrial contact site and cristae organizing system (MICOS) Mic10 binds to mitochondrial ATP synthase and stabilizes higher order assemblies Oligomerization of Mic10 is required for its function in MICOS, not at ATP synthase Mic10 binding to ATP synthase supports metabolic adaptation and respiratory growth
Collapse
Affiliation(s)
- Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Florian Wollweber
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Inge Perschil
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Liesa Steidle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, Cells in Motion Interfaculty Centre (CiM), University of Münster, 48149 Münster, Germany
| | - Ida van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 Groningen, the Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany.
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
31
|
Morgenstern M, Peikert CD, Lübbert P, Suppanz I, Klemm C, Alka O, Steiert C, Naumenko N, Schendzielorz A, Melchionda L, Mühlhäuser WWD, Knapp B, Busch JD, Stiller SB, Dannenmaier S, Lindau C, Licheva M, Eickhorst C, Galbusera R, Zerbes RM, Ryan MT, Kraft C, Kozjak-Pavlovic V, Drepper F, Dennerlein S, Oeljeklaus S, Pfanner N, Wiedemann N, Warscheid B. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 2021; 33:2464-2483.e18. [PMID: 34800366 PMCID: PMC8664129 DOI: 10.1016/j.cmet.2021.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
Collapse
Affiliation(s)
- Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ida Suppanz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Cinzia Klemm
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Alka
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alexander Schendzielorz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Wignand W D Mühlhäuser
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Dannenmaier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, VIC, Australia
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
32
|
Wang Z, Budhu AS, Shen Y, Wong LL, Hernandez BY, Tiirikainen M, Ma X, Irwin ML, Lu L, Zhao H, Lim JK, Taddei T, Mishra L, Pawlish K, Stroup A, Brown R, Nguyen MH, Koshiol J, Hernandez MO, Forgues M, Yang H, Lee M, Huang Y, Iwasaki M, Goto A, Suzuki S, Matsuda K, Tanikawa C, Kamatani Y, Mann D, Guarnera M, Shetty K, Thomas CE, Yuan J, Khor CC, Koh W, Risch H, Wang XW, Yu H. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study. JGH Open 2021; 5:1363-1372. [PMID: 34950780 PMCID: PMC8674550 DOI: 10.1002/jgh3.12682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). METHODS Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. RESULTS In this GWAS, we found that two SNPs were associated with HCC at P < 5E-8 and six SNPs at P < 5E-6 after adjusting for age, sex, and the top three principal components (PCs). Five of the SNPs in chromosome 22q13.31, three in PNPLA3 (rs2281135, rs2896019, and rs4823173) and two in SAMM50 (rs3761472, rs3827385), were replicated in a small US case-control study and a cohort study in Singapore. The associations remained significant after adjusting for body mass index and HCV infection. Meta-analysis of multiple datasets indicated that these SNPs were significantly associated with HCC. CONCLUSIONS SNPs in PNPLA3 and SAMM50 are known risk loci for nonalcoholic fatty liver disease (NAFLD) and are suspected to be associated with HCC. Our GWAS demonstrated the associations of these SNPs with HCC in a US population. Biological mechanisms underlying the relationship remain to be elucidated.
Collapse
Affiliation(s)
- Zhanwei Wang
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Anuradha S Budhu
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Yi Shen
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | | | | | | | - Xiaomei Ma
- Yale School of Public HealthNew HavenConnecticutUSA
| | | | - Lingeng Lu
- Yale School of Public HealthNew HavenConnecticutUSA
| | - Hongyu Zhao
- Yale School of Public HealthNew HavenConnecticutUSA
| | | | | | - Lopa Mishra
- Center for Translational Medicine, Department of SurgeryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Karen Pawlish
- New Jersey State Cancer Registry, New Jersey Department of HealthTrentonNew JerseyUSA
| | - Antoinette Stroup
- Rutgers Cancer Institute, and Rutgers School of Public HealthNew BrunswickNew JerseyUSA
| | - Robert Brown
- Weill Cornell Medical College, and College of Physicians and Surgeons, Columbia UniversityNew YorkNew YorkUSA
| | - Mindie H Nguyen
- Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA
| | - Jill Koshiol
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Maria O Hernandez
- Laboratory of Human CarcinogenesisCenter for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Marshonna Forgues
- Laboratory of Human CarcinogenesisCenter for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Hwai‐I Yang
- Genomics Research Center, Academia SinicaTaipeiTaiwan
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Mei‐Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Yu‐Han Huang
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Motoki Iwasaki
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Atsushi Goto
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Shiori Suzuki
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Chizu Tanikawa
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Yoichiro Kamatani
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Dean Mann
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Maria Guarnera
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kirti Shetty
- Department of Gastroenterology and HepatologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Claire E Thomas
- Division of Cancer Control and Population SciencesUniversity of Pittsburgh Medical Center (UPMC) Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Jian‐Min Yuan
- Division of Cancer Control and Population SciencesUniversity of Pittsburgh Medical Center (UPMC) Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and ResearchSingaporeSingapore
- Singapore Eye Research InstituteSingaporeSingapore
| | - Woon‐Puay Koh
- Health Systems and Services Research, Duke‐NUS Medical School SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Harvey Risch
- Yale School of Public HealthNew HavenConnecticutUSA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Herbert Yu
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| |
Collapse
|
33
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
34
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
35
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
36
|
Xu R, Kang L, Wei S, Yang C, Fu Y, Ding Z, Zou Y. Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent Mitophagy Signaling in Neonatal Cardiomyocytes. Front Cardiovasc Med 2021; 8:748156. [PMID: 34631840 PMCID: PMC8493082 DOI: 10.3389/fcvm.2021.748156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Pathological cardiac hypertrophy, the adaptive response of the myocardium to various pathological stimuli, is one of the primary predictors and predisposing factors of heart failure. However, its molecular mechanisms underlying pathogenesis remain poorly understood. Here, we studied the function of Samm50 in mitophagy during Ang II-induced cardiomyocyte hypertrophy via lentiviruses mediated knockdown and overexpression of Samm50 protein. We first found that Samm50 is a key positive regulator of cardiac hypertrophy, for western blot and real-time quantitative PCR detection revealed Samm50 was downregulated both in pressure-overload-induced hypertrophic hearts and Ang II-induced cardiomyocyte hypertrophy. Then, Samm50 overexpression exhibits enhanced induction of cardiac hypertrophy marker genes and cell enlargement in primary mouse cardiomyocytes by qPCR and immunofluorescence analysis, respectively. Meanwhile, Samm50 remarkably reduced Ang II-induced autophagy as indicated by decreased mitophagy protein levels and autophagic flux, whereas the opposite phenotype was observed in Samm50 knockdown cardiomyocytes. However, the protective role of Samm50 deficiency against cardiac hypertrophy was abolished by inhibiting mitophagy through Vps34 inhibitor or Pink1 knockdown. Moreover, we further demonstrated that Samm50 interacted with Pink1 and stimulated the accumulation of Parkin on mitochondria to initiate mitophagy by co-immunoprecipitation analysis and immunofluorescence. Thus, these results suggest that Samm50 regulates Pink1-Parkin-mediated mitophagy to promote cardiac hypertrophy, and targeting mitophagy may provide new insights into the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Kang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siang Wei
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanfeng Fu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 2021; 30:R575-R588. [PMID: 32428499 DOI: 10.1016/j.cub.2020.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cristae are infoldings of the mitochondrial inner membrane jutting into the organelle's innermost compartment from narrow stems at their base called crista junctions. They are emblematic of aerobic mitochondria, being the fabric for the molecular machinery driving cellular respiration. Electron microscopy revealed that diverse eukaryotes possess cristae of different shapes. Yet, crista diversity has not been systematically examined in light of our current knowledge about eukaryotic evolution. Since crista form and function are intricately linked, we take a holistic view of factors that may underlie both crista diversity and the adherence of cristae to a recognizable form. Based on electron micrographs of 226 species from all major lineages, we propose a rational crista classification system that postulates cristae as variations of two general morphotypes: flat and tubulo-vesicular. The latter is most prevalent and likely ancestral, but both morphotypes are found interspersed throughout the eukaryotic tree. In contrast, crista junctions are remarkably conserved, supporting their proposed role as diffusion barriers that sequester cristae contents. Since cardiolipin, ATP synthase dimers, the MICOS complex, and dynamin-like Opa1/Mgm1 are known to be involved in shaping cristae, we examined their variation in the context of crista diversity. Moreover, we have identified both commonalities and differences that may collectively be manifested as diverse variations of crista form and function.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
38
|
Liu YT, Huang X, Nguyen D, Shammas MK, Wu BP, Dombi E, Springer DA, Poulton J, Sekine S, Narendra DP. Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae phenocopying patient mutations. Hum Mol Genet 2021; 29:1547-1567. [PMID: 32338760 DOI: 10.1093/hmg/ddaa077] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Dominant mutations in the mitochondrial paralogs coiled-helix-coiled-helix (CHCHD) domain 2 (C2) and CHCHD10 (C10) were recently identified as causing Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia/myopathy, respectively. The mechanism by which they disrupt mitochondrial cristae, however, has been uncertain. Using the first C2/C10 double knockout (DKO) mice, we report that C10 pathogenesis and the normal function of C2/C10 are intimately linked. Similar to patients with C10 mutations, we found that C2/C10 DKO mice have disrupted mitochondrial cristae, because of cleavage of the mitochondrial-shaping protein long form of OPA1 (L-OPA1) by the stress-induced peptidase OMA1. OMA1 was found to be activated similarly in affected tissues of mutant C10 knock-in (KI) mice, demonstrating that L-OPA1 cleavage is a novel mechanism for cristae abnormalities because of both C10 mutation and C2/C10 loss. Using OMA1 activation as a functional assay, we found that C2 and C10 are partially functionally redundant, and some but not all disease-causing mutations have retained activity. Finally, C2/C10 DKO mice partially phenocopied mutant C10 KI mice with the development of cardiomyopathy and activation of the integrated mitochondrial integrated stress response in affected tissues, tying mutant C10 pathogenesis to C2/C10 function.
Collapse
Affiliation(s)
- Yi-Ting Liu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana Nguyen
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly P Wu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eszter Dombi
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci 2021; 284:119876. [PMID: 34389405 DOI: 10.1016/j.lfs.2021.119876] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are biosynthetic, bioenergetic, and signaling organelles which are critical for physiological adaptations and cellular stress responses to the environment. Various endogenous and environmental stress affects critical processes in mitochondrial homeostasis such as oxidative phosphorylation, biogenesis, mitochondrial redox system which leads to the formation of reactive oxygen species (ROS) and free radicals. The state of function of the mitochondrion is particularly dependent on the dynamic balance between mitochondrial biogenesis, fusion and fission, and degradation of damaged mitochondria by mitophagy. Increasing evidence has suggested a prominent role of mitochondrial dysfunction in the onset and progression of various lung pathologies, ranging from acute to chronic disorders. In this comprehensive review, we discuss the emerging findings of multifaceted regulations of mitochondrial dynamics and mitophagy in normal lung homeostasis as well as the prominence of mitochondrial dysfunction as a determining factor in different lung disorders such as lung cancer, COPD, IPF, ALI/ARDS, BPD, and asthma. The review will contribute to the existing understanding of critical molecular machinery regulating mitochondrial dynamic state during these pathological states. Furthermore, we have also highlighted various molecular checkpoints involved in mitochondrial dynamics, which may serve as hopeful therapeutic targets for the development of potential therapies for these lung disorders.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
40
|
The human cytomegalovirus protein pUL13 targets mitochondrial cristae architecture to increase cellular respiration during infection. Proc Natl Acad Sci U S A 2021; 118:2101675118. [PMID: 34344827 DOI: 10.1073/pnas.2101675118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses modulate mitochondrial processes during infection to increase biosynthetic precursors and energy output, fueling virus replication. In a surprising fashion, although it triggers mitochondrial fragmentation, the prevalent pathogen human cytomegalovirus (HCMV) increases mitochondrial metabolism through a yet-unknown mechanism. Here, we integrate molecular virology, metabolic assays, quantitative proteomics, and superresolution confocal microscopy to define this mechanism. We establish that the previously uncharacterized viral protein pUL13 is required for productive HCMV replication, targets the mitochondria, and functions to increase oxidative phosphorylation during infection. We demonstrate that pUL13 forms temporally tuned interactions with the mitochondrial contact site and cristae organizing system (MICOS) complex, a critical regulator of cristae architecture and electron transport chain (ETC) function. Stimulated emission depletion superresolution microscopy shows that expression of pUL13 alters cristae architecture. Indeed, using live-cell Seahorse assays, we establish that pUL13 alone is sufficient to increase cellular respiration, not requiring the presence of other viral proteins. Our findings address the outstanding question of how HCMV targets mitochondria to increase bioenergetic output and expands the knowledge of the intricate connection between mitochondrial architecture and ETC function.
Collapse
|
41
|
Abudu YP, Shrestha BK, Zhang W, Palara A, Brenne HB, Larsen KB, Wolfson DL, Dumitriu G, Øie CI, Ahluwalia BS, Levy G, Behrends C, Tooze SA, Mouilleron S, Lamark T, Johansen T. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J Cell Biol 2021; 220:e202009092. [PMID: 34037656 PMCID: PMC8160579 DOI: 10.1083/jcb.202009092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
Collapse
Affiliation(s)
- Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Birendra Kumar Shrestha
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Wenxin Zhang
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Anthimi Palara
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Hanne Britt Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Deanna Lynn Wolfson
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ionica Øie
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gahl Levy
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University, Munich, Germany
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
42
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
43
|
Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN. Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol 2021; 220:212469. [PMID: 34259807 PMCID: PMC8282663 DOI: 10.1083/jcb.202005193] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Long-lived proteins (LLPs) have recently emerged as vital components of intracellular structures whose function is coupled to long-term stability. Mitochondria are multifaceted organelles, and their function hinges on efficient proteome renewal and replacement. Here, using metabolic stable isotope labeling of mice combined with mass spectrometry (MS)–based proteomic analysis, we demonstrate remarkable longevity for a subset of the mitochondrial proteome. We discovered that mitochondrial LLPs (mt-LLPs) can persist for months in tissues harboring long-lived cells, such as brain and heart. Our analysis revealed enrichment of mt-LLPs within the inner mitochondrial membrane, specifically in the cristae subcompartment, and demonstrates that the mitochondrial proteome is not turned over in bulk. Pioneering cross-linking experiments revealed that mt-LLPs are spatially restricted and copreserved within protein OXPHOS complexes, with limited subunit exchange throughout their lifetimes. This study provides an explanation for the exceptional mitochondrial protein lifetimes and supports the concept that LLPs provide key structural stability to multiple large and dynamic intracellular structures.
Collapse
Affiliation(s)
- Ewa Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seby L Edassery
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Timothy J Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
44
|
The Diversity of the Mitochondrial Outer Membrane Protein Import Channels: Emerging Targets for Modulation. Molecules 2021; 26:molecules26134087. [PMID: 34279427 PMCID: PMC8272145 DOI: 10.3390/molecules26134087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
Collapse
|
45
|
Viana MP, Levytskyy RM, Anand R, Reichert AS, Khalimonchuk O. Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex. iScience 2021; 24:102119. [PMID: 33644718 PMCID: PMC7892988 DOI: 10.1016/j.isci.2021.102119] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
Collapse
Affiliation(s)
| | - Roman M. Levytskyy
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE 68588, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
46
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
47
|
Guo X, Zhang W, Wang C, Zhang B, Li R, Zhang L, Zhao K, Li Y, Tian L, Li B, Cheng H, Li L, Pei C, Xu H. IRGM promotes the PINK1‐mediated mitophagy through the degradation of Mitofilin in SH‐SY5Y cells. FASEB J 2020; 34:14768-14779. [PMID: 32939830 DOI: 10.1096/fj.202000943rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Xize Guo
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Wanping Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Chun Wang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Zhang
- Department of Cardiology The Forth Affiliated Hospital of Harbin Medical University Harbin China
| | - Rui Li
- Department of Neurology University of Pennsylvania Philadelphia PA USA
| | - Lie Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Kai Zhao
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Yu Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Linlu Tian
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Li
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Huakun Cheng
- Department of Neurosurgery Heilongjiang Provincial Hospital Harbin China
| | - Lixian Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Chunying Pei
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Hongwei Xu
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| |
Collapse
|
48
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Khosravi S, Harner ME. The MICOS complex, a structural element of mitochondria with versatile functions. Biol Chem 2020; 401:765-778. [DOI: 10.1515/hsz-2020-0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
AbstractMitochondria perform a plethora of functions in various cells of different tissues. Their architecture differs remarkably, for instance in neurons versus steroidogenic cells. Furthermore, aberrant mitochondrial architecture results in mitochondrial dysfunction. This indicates strongly that mitochondrial architecture and function are intimately linked. Therefore, a deep knowledge about the determinants of mitochondrial architecture and their function on a molecular level is of utmost importance. In the past decades, various proteins and protein complexes essential for formation of mitochondrial architecture have been identified. Here we will review the current knowledge of the MICOS complex, one of the major structural elements of mitochondria. MICOS is a multi-subunit complex present in the inner mitochondrial membrane. Multiple interaction partners in the inner and outer mitochondrial membrane point to participation in a multitude of important processes, such as generation of mitochondrial architecture, lipid metabolism, and protein import into mitochondria. Since the MICOS complex is highly conserved in form and function throughout evolution, we will highlight the importance of MICOS for mammals. We will emphasize in particular the current knowledge of the association of MICOS with severe human diseases, including Charcot–Marie–Tooth disease type 2, Alzheimer's disease, Parkinson's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Siavash Khosravi
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| | - Max E. Harner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| |
Collapse
|
50
|
Schöttl T, Pachl F, Giesbertz P, Daniel H, Kuster B, Fromme T, Klingenspor M. Proteomic and Metabolite Profiling Reveals Profound Structural and Metabolic Reorganization of Adipocyte Mitochondria in Obesity. Obesity (Silver Spring) 2020; 28:590-600. [PMID: 32034895 DOI: 10.1002/oby.22737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Previous studies have revealed decreased mitochondrial respiration in adipocytes of obese mice. This study aimed to identify the molecular underpinnings of altered mitochondrial metabolism in adipocytes. METHODS Untargeted proteomics of mitochondria isolated from adipocytes and metabolite profiling of adipose tissues were conducted in diet-induced obese (DIO) and lean mice. Subcutaneous and intra-abdominal adipose tissues were studied to depict depot-specific alterations. RESULTS In subcutaneous adipocytes of DIO mice, changes in proteins related to mitochondrial structure and function were observed. Mitochondrial proteins of the inner and outer membrane were strongly reduced, whereas proteins of key matrix metabolic pathways were increased in the obese versus lean state, as further substantiated by metabolite profiling. A pronounced decrease in the oxidative phosphorylation (OXPHOS) enzymatic equipment and cristae density of the inner membrane was identified. In intra-abdominal adipocytes, similar systematic downregulation of the OXPHOS machinery in obesity occurred, but there was no regulation of outer membrane or matrix proteins. CONCLUSIONS Protein components of the OXPHOS machinery are systematically downregulated in adipose tissues of DIO mice compared with lean mice. Loss of the mitochondrial OXPHOS capacity in adipocytes may aggravate the development of metabolic disease.
Collapse
Affiliation(s)
- Theresa Schöttl
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Fiona Pachl
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Pieter Giesbertz
- Chair of Nutritional Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|