1
|
Lei H, Shawki A, Santos AN, Canale V, Manz S, Crawford MS, Chatterjee P, Spalinger MR, Scharl M, McCole DF. PTPN2 Regulates Iron Handling Protein Expression in Inflammatory Bowel Disease Patients and Prevents Iron Deficiency in Mice. Int J Mol Sci 2025; 26:3356. [PMID: 40244226 PMCID: PMC11989999 DOI: 10.3390/ijms26073356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Anemia is the most common extraintestinal manifestation of inflammatory bowel disease (IBD). Iron deficiency is the most frequent cause of anemia in IBD; however, the mechanisms involved are still poorly understood. Here, we investigated the role of the IBD risk gene, protein tyrosine phosphatase non-receptor type 2 (PTPN2), in regulating iron homeostasis. Proteomic analyses were performed on serum from IBD patients genotyped for the IBD-associated loss-of-function rs1893217 PTPN2 variant. Constitutive Ptpn2 wild type (WT), heterozygous (Het), and knockout (KO) mice were analyzed for iron content, blood parameters, and expression of iron handling proteins. Iron absorption was assessed through radiotracer assays. Serum proteomic analyses revealed that the "iron homeostasis signaling pathway" was the main pathway downregulated in Crohn's disease (CD) patients carrying the PTPN2 risk allele, independent of disease activity. Ptpn2-KO mice showed characteristics of anemia, including reduced hemoglobin concentrations along with serum and tissue iron deficiency and elevated serum hepcidin levels vs. Ptpn2-WT and Het mice. 55Fe absorption via oral gavage was significantly impaired in Ptpn2-KO mice. Correspondingly, Ptpn2-KO mice showed reduced apical membrane expression of the iron transporter DMT1. CD patients with the PTPN2 loss-of-function rs1893217 variant display alterations in serum iron handling proteins. Loss of Ptpn2 in mice caused features of anemia, including iron deficiency associated with reduced apical membrane expression of DMT1. These findings identify an important role for PTPN2 in regulating systemic iron homeostasis.
Collapse
Affiliation(s)
- Hillmin Lei
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Ali Shawki
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Alina N. Santos
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Vinicius Canale
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Salomon Manz
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Meli’sa S. Crawford
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Pritha Chatterjee
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| | - Marianne R. Spalinger
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology & Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Declan F. McCole
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA; (H.L.)
| |
Collapse
|
2
|
Cui J, Li H, Hu C, Zhang F, Li Y, Weng Y, Yang L, Li Y, Yao M, Li H, Luo X, Hao Y. Unraveling pathogenesis and potential biomarkers for autism spectrum disorder associated with HIF1A pathway based on machine learning and experiment validation. Neurobiol Dis 2025; 204:106763. [PMID: 39657846 DOI: 10.1016/j.nbd.2024.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/05/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a high social burden and limited treatments. Hypoxic condition of the brain is considered an important pathological mechanism of ASD. HIF1A is a key participant in brain hypoxia, but its contribution to the pathophysiological landscape of ASD remains unclear. METHODS ASD-related datasets were obtained from GEO database, and HIF1A-related genes from GeneCards. Co-expression module analysis identified module genes, which were intersected with HIF1A-related genes to identify common genes. Machine learning identified hub genes from intersection genes and PPI networks were constructed to explore relationships among hub and HIF1A. Single-cell RNA sequencing analyzed hub gene distribution across cell clusters. ASD mouse model was created by inducing maternal immune activation (MIA) with poly(I:C) injections, verified through behavioral tests. Validation of HIF1A pathway and hub genes was confirmed through Western Blot, qPCR, and immunofluorescence in ASD mice and microglia BV-2 cells. RESULTS Using CEMiTool and GeneCards, 45 genes associated with ASD and HIF1A pathway were identified. Machine learning identified CDKN1A, ETS2, LYN, and SLC16A3 as potential ASD diagnostic markers. Single-cell sequencing pinpointed activated microglia as key immune cells. Behavioral tests showed MIA offspring mice exhibited typical ASD-like behaviors. Immunofluorescence confirmed the activation of microglia and HIF1A pathway in frontal cortex of ASD mice. Additionally, IL-6 contributed to ASD by activating JUN/HIF1A pathway, affecting CDKN1A, LYN, and SLC16A3 expression in microglia. CONCLUSIONS HIF1A-related genes CDKN1A, ETS2, LYN, and SLC16A3 are strong diagnostic markers for ASD and the activation of IL-6/JUN/HIF1A pathway in microglia contributes to the pathogenesis of ASD.
Collapse
Affiliation(s)
- Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyan Zhang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunjie Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Yang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingying Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minglan Yao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Ma C, Guo Q, Chen Y, Huang X, Hou L, Li D, Chen X, Chen F, Ma W. Pomegranate Juice and Its Bioactive Compounds: Promising Therapeutic Agents for Iron Deficiency Anemia. FOOD REVIEWS INTERNATIONAL 2024:1-23. [DOI: 10.1080/87559129.2024.2397514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Cuiping Ma
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Guo
- Department of Hematology, Inner Mongolia International Mongolian Hospital, Inner Mongolia, China
| | - Yuhan Chen
- Department of Oncology and Hematology, Shenzhen Luohu District Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Xiaohua Huang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Hou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dongyun Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Ma
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Calcaterra V, Mameli C, Rossi V, Magenes VC, Massini G, Perazzi C, Verduci E, Zuccotti G. What we know about the relationship between autoimmune thyroid diseases and gut microbiota: a perspective on the role of probiotics on pediatric endocrinology. Minerva Pediatr (Torino) 2022; 74:650-671. [PMID: 36149093 DOI: 10.23736/s2724-5276.22.06873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Autoimmune diseases account for a cumulative overall prevalence of about 3-5% worldwide. Among them, autoimmune thyroid diseases (ATDs) are the most common and comprise two main entities: Hashimoto's thyroiditis (HT) and Graves-Basedow disease (GD). The pathogenesis of ATDs remains not fully elucidated, however the role of microbioma has been proposed. Gut microbiota exert an important influence on the intestinal barrier, nutrient metabolism and immune system development and functions. EVIDENCE ACQUISITION In this review, we describe on the main features of ATDs in pediatrics, focusing on the reciprocal influence between gut microbiota, thyroid hormone metabolism and thyroid autoimmunity and consider the role of probiotics and other microbiota-targeted therapies in thyroid diseases with a perspective on pediatric endocrinology. EVIDENCE SYNTHESIS Microbiome affects both endogenous and exogenous thyroid hormone metabolism and influences the absorption of minerals important to the thyroid function, which are iodine, selenium, zinc and iron. The alteration of the gut microbiota, with the consequent modifications in the barrier function and the increased gut permeability, seems involved in the development of autoimmune and chronic inflammatory diseases, including ATDs. The supplementation with probiotics showed beneficial effects on the thyroid hormone and thyroid function because this strategy could restore the intestinal eubiosis and the good strain microorganism proliferation. CONCLUSIONS Even though the evidence about the interaction between microbiota and ATDs in pediatric patients is limited, the promising results obtained in the adult population, and in other autoimmune disorders affecting children, highlight the need of for further research in the pediatric field.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy - .,Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy -
| | - Chiara Mameli
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Virginia Rossi
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | | | - Giulia Massini
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Chiara Perazzi
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Hepcidin and Iron Deficiency in Women One Year after Sleeve Gastrectomy: A Prospective Cohort Study. Nutrients 2021; 13:nu13082516. [PMID: 34444676 PMCID: PMC8398210 DOI: 10.3390/nu13082516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Iron deficiency with or without anemia, needing continuous iron supplementation, is very common in obese patients, particularly those requiring bariatric surgery. The aim of this study was to address the impact of weight loss on the rescue of iron balance in patients who underwent sleeve gastrectomy (SG), a procedure that preserves the duodenum, the main site of iron absorption. The cohort included 88 obese women; sampling of blood and duodenal biopsies of 35 patients were performed before and one year after SG. An analysis of the 35 patients consisted in evaluating iron homeostasis including hepcidin, markers of erythroid iron deficiency (soluble transferrin receptor (sTfR) and erythrocyte protoporphyrin (PPIX)), expression of duodenal iron transporters (DMT1 and ferroportin) and inflammatory markers. After surgery, sTfR and PPIX were decreased. Serum hepcidin levels were increased despite the significant reduction in inflammation. DMT1 abundance was negatively correlated with higher level of serum hepcidin. Ferroportin abundance was not modified. This study shed a new light in effective iron recovery pathways after SG involving suppression of inflammation, improvement of iron absorption, iron supply and efficiency of erythropoiesis, and finally beneficial control of iron homeostasis by hepcidin. Thus, recommendations for iron supplementation of patients after SG should take into account these new parameters of iron status assessment.
Collapse
|
6
|
Competitors versus Collaborators: Micronutrient Processing by Pathogenic and Commensal Human-Associated Gut Bacteria. Mol Cell 2020; 78:570-576. [PMID: 32442503 DOI: 10.1016/j.molcel.2020.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
Co-evolution of gut commensal bacteria and humans has ensured that the micronutrient needs of both parties are met. This minireview summarizes the known molecular mechanisms of iron, zinc, and B vitamin processing by human-associated bacteria, comparing gut pathogens and commensals, and highlights the tension between their roles as competitors versus collaborators with the human host.
Collapse
|
7
|
Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020; 12:E1769. [PMID: 32545596 PMCID: PMC7353203 DOI: 10.3390/nu12061769] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.
Collapse
Affiliation(s)
- Jovana Knezevic
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Christina Starchl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| | - Adelina Tmava Berisha
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Karin Amrein
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (J.K.); (K.A.)
| |
Collapse
|
8
|
Anti-TNF- α Monoclonal Antibody Therapy Improves Anemia through Downregulating Hepatocyte Hepcidin Expression in Inflammatory Bowel Disease. Mediators Inflamm 2019; 2019:4038619. [PMID: 31814801 PMCID: PMC6878771 DOI: 10.1155/2019/4038619] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Anemia is one of the most common complications in patients with inflammatory bowel disease (IBD). Hepcidin as a key regulator of iron metabolism is pivotal in mediating the occurrence of anemia of chronic disease. Herein, we analyzed the levels of hepcidin in sera from IBD patients by enzyme-linked immunosorbent assay and investigated its potential role in regulating the anemia in IBD. We observed that the levels of serum hepcidin were increased in active IBD patients compared with those in remitted IBD patients and healthy controls and that serum hepcidin was associated with disease activity, CRP, and ESR, respectively. Importantly, we found that the increased levels of serum hepcidin were positively correlated with the severity of anemia and the imbalance of iron metabolism in anemic UC and CD patients. Proinflammatory factors (e.g., IL-6, IL-17, and TNF-α) were positively correlated with the concentrations of serum hepcidin in IBD patients. Interestingly, hepcidin was found to be decreased in patients with Crohn's disease after successful therapy with anti-TNF-α mAb (i.e., infliximab), indicating the underlying association between TNF-α and hepcidin expression. To investigate the specific mechanisms involved, we cultured LO2 and HepG2 cell lines in vitro under stimulation with TNF-α and observed that the levels of hepcidin mRNA were markedly upregulated in caspase-3/8- and NF-κB-dependent manners. Therefore, our data suggest that TNF-α stimulates the expression of hepcidin in IBD patients, resulting in aggravated anemia and that blockage of TNF-α or the caspase-3/8 and NF-κB pathways could downregulate hepcidin expression. This study provides inspiration for the therapy and management of anemia in IBD.
Collapse
|
9
|
Minor EA, Kupec JT, Nickerson AJ, Narayanan K, Rajendran VM. Increased DMT1 and FPN1 expression with enhanced iron absorption in ulcerative colitis human colon. Am J Physiol Cell Physiol 2019; 318:C263-C271. [PMID: 31721611 DOI: 10.1152/ajpcell.00128.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.
Collapse
Affiliation(s)
- Emily A Minor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Justin T Kupec
- Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew J Nickerson
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Karthikeyan Narayanan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
10
|
Jiang S, Fang X, Liu M, Ni Y, Ma W, Zhao R. MiR-20b Down-Regulates Intestinal Ferroportin Expression In Vitro and In Vivo. Cells 2019; 8:cells8101135. [PMID: 31554201 PMCID: PMC6829237 DOI: 10.3390/cells8101135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ferroportin (FPN) is the only known cellular iron exporter in mammalian. However, post-transcriptional regulation of intestinal FPN has not yet been completely understood. In this study, bioinformatics algorithms (TargetScan, PicTar, PITA, and miRanda) were applied to predict, screen and obtain microRNA-17 family members (miR-17, miR-20a, miR-20b, and miR-106a) targeting FPN, ‘seed sequence’ and responding binding sites on the 3′untranslated region (3′UTR) region of FPN. Dual-luciferase reporter assays revealed miRNA-17 family members’ mimics decreased the luciferase activity, whereas their inhibitors increased the luciferase activity. Compared with the FPN 3′UTR wild type reporter, co-transfection of a miRNA-17 family members’ over-expression plasmids and FPN 3′UTR mutant reporters enhanced the luciferase activity in HCT116 cells. Transfection with miR-20b overexpression plasmid significantly enhanced its expression, and it inhibited endogenous FPN protein expression in Caco-2 cells. Additionally, tail-vein injection of miR-20b resulted in increasing duodenal miR-20b expression, decreasing duodenal FPN protein expression, which was closely related to lower plasma iron level in mice. Taken together, these data suggest that the miR-20b is identified to regulate intestinal FPN expression in vitro and in vivo, which will provide a potential target for intestinal iron exportation.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xi Fang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Mingni Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
11
|
Stochel-Gaudyn A, Fyderek K, Kościelniak P. Serum trace elements profile in the pediatric inflammatory bowel disease progress evaluation. J Trace Elem Med Biol 2019; 55:121-126. [PMID: 31345349 DOI: 10.1016/j.jtemb.2019.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), a chronic inflammatory disorder of gastrointestinal tract, arises from complex interaction between genetics, environment, gut microbiota and mucosal immune response. Along with clinical, endoscopic and radiological evaluation various biomarkers are needed as an additional diagnostic tool, as well as to predict disease course and therapeutic outcomes. AIM The aim of this study was to evaluate clinical value of essential trace elements (ETEs) serum concentration profile in the assessment of pediatric IBD diseases development. MATERIALS AND METHODS Concentration of five ETEs: iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and selenium (Se) in serum of 41 children with newly diagnosed IBD (27 CD and 14 UC) and 20 healthy controls were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) at the moment of diagnosis and after one year of treatment. RESULTS The obtained results revealed significant differences in serum concentration profile of studied ETEs' for IBD pediatric patients and healthy controls. Decrease of iron, zinc and selenium and increase of copper and manganese serum concentration were observed in IBD patients at the time of diagnosis. The changes were reversible and after one year of treatment the studied ETEs serum concentration profile resembled much more that observed for healthy controls. Correlations between studied ETEs levels within cases (IBD, CD, UC) were also found to be different from those in healthy controls (HC). CONCLUSION Although much more studies are required on the subject our results demonstrate a clinical value of ETEs serum concentration profile in pediatric IBD patients regarding disease development.
Collapse
Affiliation(s)
- Anna Stochel-Gaudyn
- Department of Pediatrics, Gastroenterology and Nutrition, Polish-American Children's Hospital, Jagiellonian University Medical College, Wielicka 265, Krakow 30-663, Poland.
| | - Krzysztof Fyderek
- Department of Pediatrics, Gastroenterology and Nutrition, Polish-American Children's Hospital, Jagiellonian University Medical College, Wielicka 265, Krakow 30-663, Poland
| | - Paweł Kościelniak
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| |
Collapse
|
12
|
Mangan A, Le Roux CW, Miller NG, Docherty NG. Iron and Vitamin D/Calcium Deficiency after Gastric Bypass: Mechanisms Involved and Strategies to Improve Oral Supplement Disposition. Curr Drug Metab 2019; 20:244-252. [DOI: 10.2174/1389200219666181026160242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Background:Nutritional deficiencies are common following Roux-en-Y Gastric Bypass (RYGB). Aetiology is diverse; including non-compliance, altered diet, unresolved preoperative deficiency and differential degrees of post-operative malabsorption occurring as function of length of bypassed intestine. Iron and calcium/vitamin D deficiency occur in up to 50% of patients following RYGB. Currently, treatment strategies recommend the prescription of oral supplements for those who become deficient. Meanwhile, debate exists regarding the absorption capacity of these post-operatively and their efficacy in treating deficiency.Objective:To examine the disposition of oral iron and calcium/vitamin D supplementation following RYGB. Methods: A literature review was carried out using PubMed and Embase. Data from the key interventional studies investigating iron and calcium/vitamin D oral supplement absorption and efficacy following RYGB was summarized.Results:Absorption of both iron and vitamin D/calcium is adversely affected following RYGB. Distribution and metabolism may be altered by the predominance of paracellular absorption pathways which promote unregulated influx into the circulatory system. Overall, studies indicate that current supplementation strategies are efficacious to a degree in treating deficiency following RYGB, generally restoration of optimal status is not achieved.Conclusion:Oral supplement disposition is altered following RYGB. As a result, patients are required to take regimens of oral supplementation indefinitely. The dosage which confers optimum health benefit while avoiding potential toxicity and tolerability issues remains unknown. Novel preparations with improved disposition could help limit the extent of post-RYGB nutritional deficiencies.
Collapse
Affiliation(s)
- Aisling Mangan
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | - Carel W. Le Roux
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Neil G. Docherty
- Diabetes Complications Research Center, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Amos-Kroohs RM, Usach V, Piñero G, Vorhees CV, Vivot RM, Soto PA, Williams MT, Setton-Avruj P. Metal bashing: iron deficiency and manganese overexposure impact on peripheral nerves. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:99-112. [PMID: 30652531 PMCID: PMC6397089 DOI: 10.1080/15287394.2019.1566105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Iron (Fe) deficiency (FeD) and manganese (Mn) overexposure (MnOE) may result in several neurological alterations in the nervous system. Iron deficiency produces unique neurological deficits due to its elemental role in central nervous system (CNS) development and myelination, which might persist after normalization of Fe in the diet. Conversely, MnOE is associated with diverse neurocognitive deficits. Despite these well-known neurotoxic effects on the CNS, the influence of FeD and MnOE on the peripheral nervous system (PNS) remains poorly understood. The aim of the present investigation was to examine the effects of developmental FeD and MnOE or their combination on the sciatic nerve of young and adult rats. The parameters measured included divalent metal transporter 1 (DMT1), transferrin receptor (TfR), myelin basic protein (MBP) and peripheral myelin protein 22 (PMP22) expression, as well as Fe levels in the nerve. Our results showed that FeD produced a significant reduction in MBP and PMP22 content at P29, which persisted at P60 after Fe-sufficient diet replenishment regardless of Mn exposure levels. At P60 MnOE significantly increased sciatic nerve Fe content and DMT1 expression. However, the combination of FeD and MnOE produced no marked motor skill impairment. Evidence indicates that FeD appears to hinder developmental peripheral myelination, while MnOE may directly alter Fe homeostasis. Further studies are required to elucidate the interplay between these pathological conditions.
Collapse
Affiliation(s)
- Robyn M. Amos-Kroohs
- University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC 28081
| | - Vanina Usach
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Gonzalo Piñero
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Rocío Martinez Vivot
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati OH 45229
- Cincinnati Children’s Research Foundation, Div. of Neurology, Cincinnati OH 45229
| | - Patricia Setton-Avruj
- Departamento de Química Biológica, Facultad de Farmacia y Bíoquímica, Universidad de Buenos Aires. Instituto de Química y Físicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires. Argentina
| |
Collapse
|
14
|
Yan JK, Zhang T, Dai LN, Gu BL, Zhu J, Yan WH, Cai W, Wang Y. CELF1/p53 axis: a sustained antiproliferative signal leading to villus atrophy under total parenteral nutrition. FASEB J 2018; 33:3378-3391. [PMID: 30514107 DOI: 10.1096/fj.201801695r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intestinal villus atrophy is a major complication of total parenteral nutrition (TPN). Our previous study revealed that TPN-induced villus atrophy is accompanied by elevated expression of CUGBP, Elav-like family member 1 (CELF1); however, its mechanism of action has not been fully understood. Herein, we report a pivotal role of CELF1/p53 axis, which induces a sustained antiproliferative signal, leading to suppressed proliferation of intestinal epithelial cells (IECs). By using a rat model of TPN, we found synchronous upregulation of CELF1 and p53 in jejunum mucosa, accompanied by a 51% decrease in crypt cell proliferation rate. By using HCT-116 cells as an IEC model in vitro, we found that the expression of CELF1 altered dynamically in parallel to proliferation rate, suggesting a self-adaptive expression pattern in IECs in vitro. Furthermore, ectopic overexpression of CELF1 elicited a significant antiproliferative effect in HCT-116, Caco-2, and IEC-6 cells, whereas knockdown of CELF1 elicited a significant proproliferative effect. Moreover, cell-cycle assay revealed that ectopic overexpression of CELF1 induced sustained G2 arrest and G1 arrest in HCT-116 and IEC-6 cells, respectively, which could be abolished by p53 silencing. Mechanistically, polysomal profiling and nascent protein analysis revealed that regulation of p53 by CELF1 was mediated through accelerating its protein translation in polysomes. Taken together, our findings revealed a sustained suppression of IEC proliferation evoked by CELF1/p53 axis, which may be a potential therapeutic target for the treatment of TPN-induced villus atrophy.-Yan, J.-K., Zhang, T., Dai, L.-N., Gu, B.-L., Zhu, J., Yan, W.-H., Cai, W., Wang, Y. CELF1/p53 axis: a sustained antiproliferative signal leading to villus atrophy under total parenteral nutrition.
Collapse
Affiliation(s)
- Jun-Kai Yan
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Tian Zhang
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Li-Na Dai
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Bei-Lin Gu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Jie Zhu
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Wei-Hui Yan
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and
| | - Wei Cai
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Wang
- Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
15
|
Zhou G, Peng K, Song Y, Yang W, Shu W, Yu T, Yu L, Lin M, Wei Q, Chen C, Yin L, Cong Y, Liu Z. CD177+ neutrophils suppress epithelial cell tumourigenesis in colitis-associated cancer and predict good prognosis in colorectal cancer. Carcinogenesis 2018; 39:272-282. [PMID: 29228136 DOI: 10.1093/carcin/bgx142] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are found to be infiltrated in tumour tissues of patients with colitis-associated cancer (CAC) and colorectal cancer (CRC), and CD177 is mainly expressed in neutrophils. In our study, expression of CD177 in tumour tissues from patients with CAC or CRC was analysed byquantitative real-time polymerase chain reaction, flow cytometry and immunohistochemistry. We recruited 378 patients with CRC, determined CD177 expression in tumours and examined its correlation with clinicopathological features. Moreover, CAC model was induced in wild-type and CD177-/- mice by azoxymethane/dextran sodium sulphate. CD177+ neutrophils were significantly increased in colon tumour tissues from patients with CRC or CAC compared with controls. Expression of CD177 mRNA and percentages of CD177+ neutrophils were also markedly increased in tumour tissues from CRC patients compared with controls. Patients with high density of CD177+ neutrophils had better overall survival and disease-free survival compared with controls. Multivariate analyses revealed that the density of CD177+ neutrophils was an independent factor in predicting overall survival and disease-free survival. Consistently, CD177 depletion aggravated azoxymethane/dextran sodium sulphate-induced CAC in mice. Expression of Ki67 and proliferating cell nuclear antigen was increased in tumour tissues from CD177-/- mice compared with wild-type counterparts. Moreover, CD177-/- neutrophils failed to migrate in response to fMLP[AU: Please expand fMLP, DN, TNM and HIF-1α.] stimulation compared with wild-type controls. Our data indicate that CD177+ neutrophils suppress epithelial cell tumourigenesis and act as an independent factor in predicting the prognosis in patients with CRC. CD177+ neutrophils may serve as a novel therapeutic target in the treatment and predict the prognosis of CAC and CRC.
Collapse
Affiliation(s)
- Guangxi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Kangsheng Peng
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yang Song
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lin Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Chunqiu Chen
- Department of General Surgery, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Lu Yin
- Department of General Surgery, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Zhou G, Wu W, Yu L, Yu T, Yang W, Wang P, Zhang X, Cong Y, Liu Z. Tripartite motif-containing (TRIM) 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. J Allergy Clin Immunol 2018; 142:1218-1228.e12. [DOI: 10.1016/j.jaci.2017.09.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
|
17
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
18
|
Critical role of ROCK2 activity in facilitating mucosal CD4 + T cell activation in inflammatory bowel disease. J Autoimmun 2018; 89:125-138. [DOI: 10.1016/j.jaut.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
|
19
|
Shi Y, He C, Ma C, Yu T, Cong Y, Cai W, Liu Z. Smad nuclear interacting protein 1 (SNIP1) inhibits intestinal inflammation through regulation of epithelial barrier function. Mucosal Immunol 2018; 11:835-845. [PMID: 29426045 DOI: 10.1038/mi.2017.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Smad nuclear interacting protein 1 (SNIP1) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms involved are still largely unknown. Our results demonstrated that SNIP1 was markedly decreased in intestinal epithelial cells (IEC) from IBD patients compared with healthy controls. Impaired expression of SNIP1 caused a significant decrease of transepithelial electrical resistance but an increase of fluorescein isothiocyanate-dextran flux in Caco-2 monolayers, whereas overexpression of SNIP1 reversed such effects. Overexpression of SNIP1 also inhibited the activity of NF-κB p65 and proinflammatory cytokine production (e.g., TNF-α, IL-1β, and IL-8) by IEC. Importantly, supplementation of exogenous SNIP1 significantly ameliorated intestinal mucosal inflammation in experimental colitis, characterized by less-severe intestinal epithelial barrier damage and decreased proinflammatory cytokine production. Our data thus demonstrated a novel mechanism whereby SNIP1 regulates intestinal inflammation through modulating intestinal epithelial barrier function. Targeting SNIP1 may provide a therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Y Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - C Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - T Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Y Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - W Cai
- Department of General Surgery, Ruijin Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Ferreira MDF, Aylor AEA, Mellanby RJ, Campbell SM, Gow AG. Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Open Vet J 2018; 7:360-366. [PMID: 29296596 PMCID: PMC5738890 DOI: 10.4314/ovj.v7i4.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022] Open
Abstract
Lethargy is a frequent and important clinical feature of anaemia; however, it does not absolutely correlate with the severity of anaemia. Manganese is efficiently absorbed through the gastrointestinal tract via divalent metal transporter 1 (DMT1), which is also responsible for iron transport. DMT1 is upregulated in iron deficiency (ID). Increased manganese concentrations are reported in ID anaemia (IDA) in various species. Manganese is neurotoxic and therefore may contribute to lethargy observed in some anaemic patients. In addition, anaemia and ID are common in human inflammatory bowel disease. Little is known about how anaemia influences manganese metabolism in veterinary patients and how common is anaemia in dogs with chronic enteropathy (CE). If elevated manganese concentrations are found, then potentially neurotoxicity may be contributing to morbidity in these cases. The objectives of this study were to investigate the hypothesis that whole blood manganese concentrations would be increased in dogs with anaemia, particularly in dogs with confirmed IDA, and that anaemia would be common in canine CE. Medical records from 2012-2016 were reviewed for dogs with CE that were anaemic, as well as dogs with confirmed IDA, where a sample suitable for manganese analysis was held in an archive. Manganese concentration was measured in whole blood from: 11 anaemic dogs with CE, 6 dogs with IDA, 9 non-anaemic ill controls, and 12 healthy controls. Mann-Whitney U and Kruskal-Wallis tests with post-test Dunn's multiple comparisons tests were performed, with P<0.05 considered significant. The prevalence of anaemia in canine CE was 20.6% (33/160). Manganese concentrations were significantly different between all groups (P=0.0001) and higher in non-anaemic than anaemic dogs (P=0.0078). Manganese concentrations were also higher in healthy compared to ill controls (P<0.0001), anaemic dogs with CE (P=0.0056) and to dogs with IDA (P=0.0001). No differences were observed between anaemic dogs with CE, IDA and ill controls. Although anaemia was frequently observed in canine CE, the hypothesis that dogs with anaemia would have increased manganese concentrations, possibly contributing to a lethargic state was not supported. Further research is warranted to understand the influence of anaemia on whole blood manganese.
Collapse
Affiliation(s)
- Marisa da Fonseca Ferreira
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | | | - Richard John Mellanby
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Susan Mary Campbell
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Adam George Gow
- Hospital for Small Animals, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| |
Collapse
|
21
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Abstract
Anemia is a frequent complication of many inflammatory disorders, including inflammatory bowel disease. Although the pathogenesis of this problem is multifactorial, a key component is the abnormal elevation of the hormone hepcidin, the central regulator of systemic iron homeostasis. Investigations over the last decade have resulted in important insights into the role of hepcidin in iron metabolism and the mechanisms that lead to hepcidin dysregulation in the context of inflammation. These insights provide the foundation for novel strategies to prevent and treat the anemia associated with inflammatory diseases.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
23
|
Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y, Tu QQ, Zhang W, Bi X. MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem Biophys Res Commun 2017; 486:759-766. [DOI: 10.1016/j.bbrc.2017.03.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022]
|