1
|
Maraver F, Carbajo JM, Armijo F, Aguilera L, Martin-Megias AI, Fernandez-Toran MA, Fernandez-Gonzalez MV, Vela ML. Evaluation of climate, water and peloid of the Pink Lagoon of Torrevieja and its possible use in thalassotherapy. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02940-5. [PMID: 40366387 DOI: 10.1007/s00484-025-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
The Pink Lagoon in Torrevieja is found in the Bajo Segura region of the province of Alicante (Spain). This exorheic lake of marine sedimentary origin was connected to the Mediterranean Sea up until Quaternary times. Today it acts as a salt flat, receiving water from its neighbouring Lagoon La Mata and brine from washing of the El Pinoso quarry. The purpose of the work is to study its environmental resources: the factors of the climate, the physicochemical properties and the composition of the waters, the thermal and textural characteristics of the natural peloid, and assess their possible use as thalassotherapeutic agents. The results obtained: marine climate; hypothermal water of strong mineralization (390 g/l), hypersaline, rich in magnesium sodium chloride and extremely hard; and lime muds of mineral sediment mainly organic with a low water content and scarce hardness and adhesiveness. They allow their application in thalassotherapy, obtaining the best results in musculoskeletal and skin disorders.
Collapse
Affiliation(s)
- Francisco Maraver
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain.
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain.
| | - Jose M Carbajo
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain
| | - Francisco Armijo
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain
| | - Lourdes Aguilera
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain
| | - Ana Isabel Martin-Megias
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain
| | - Miguel Angel Fernandez-Toran
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Balneario de Cofrentes, 46625, Cofrentes (Valencia), Spain
| | - María Virginia Fernandez-Gonzalez
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Soil Science and Agricultural Chemistry, Faculty of Pharmacy, Granada University, Campus Universitario Cartuja, 18071, Granada, Spain
| | - María Lorena Vela
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Medical Hydrology Group, Department of Radiology, Complutense University of Madrid, Rehabilitation & Physiotherapy, 28040, Madrid, Spain
| |
Collapse
|
2
|
Ding Y, Ke J, Hong T, Zhang A, Wu X, Jiang X, Shao S, Gong M, Zhao S, Shen L, Chen S. Microbial diversity and ecological roles of halophilic microorganisms in Dingbian (Shaanxi, China) saline-alkali soils and salt lakes. BMC Microbiol 2025; 25:287. [PMID: 40350492 PMCID: PMC12066067 DOI: 10.1186/s12866-025-03997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
Halophilic microorganisms abound in numerous hypersaline environments, such as salt lakes, salt mines, solar salterns, and salted seafood. In the northwest of Dingbian county (Shaanxi province, China), there exists a belt of hypersaline habitats extending from the west to the north consisting of saline-alkali soil and salt lakes. Theoretically, such a hypersaline environment has a high probability of containing abundant halophilic archaea communities. Nevertheless, there is nearly no systematic research on halophilic archaea in this area. Here, we employed a combination of culture-dependent and culture-independent methods to analyze the collected samples. The high-throughput sequencing results of the archaeal 16S rRNA gene indicated that the richness of halophilic archaea in saline-alkali soils was significantly higher than that in salt lakes. In saline-alkali soils, the Natronomonas genus of archaea was more predominant compared to other genera, while in salt lakes, the Halonotius, Halorubrum, and Haloarcula genera of archaea had relatively higher abundances. However, the dominant families of halophilic archaea in both environments were mainly Haloferacaceae (30.96-72%), Halomicrobiaceae (17-53.19%) and Nanosalinaceae (1-19.08%). Based on the outcomes of pure culture experiments, a total of 26 genera and 98 strains were identified. Among the identified halophilic microorganisms, the predominant species were Halorubrum and Fodinibius, accounting for 33.67% and 13.27%, respectively. The remainder were mostly low-abundance groups within the community, and 22 potential novel taxa were discovered. Additionally, metagenomic technology was employed in our research. The analysis results demonstrated that the microorganisms in this area possess metabolic pathways capable of degrading various pollutants such as atrazine, methane, and dioxins, suggesting that some microorganisms in this area play a positive role in environmental remediation. This study roughly reveals the diversity composition and dominant species of halophilic archaea in these hypersaline environments and provides a scientific basis for the possible ecological functions of microorganisms in this area during long-term survival. It also offers scientific evidence for the development and utilization of halophilic microbial resources and ecological protection.
Collapse
Affiliation(s)
- Yue Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Juntao Ke
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Aodi Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xue Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Xinran Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shilong Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Ming Gong
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shengda Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
3
|
Sha Z, Chen H, Jin L, Zheng Q, Lu Y, Sido MY, Willis A, Liu C, Yang J. Evidence of global dispersal of the harmful cyanobacterium, Raphidiopsis raciborskii, in lentic freshwaters through migratory waterbirds. HARMFUL ALGAE 2025; 142:102786. [PMID: 39947862 DOI: 10.1016/j.hal.2024.102786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 05/09/2025]
Abstract
The cyanobacterium Raphidiopsis raciborskii has received much attention due to its global distribution and toxin production in freshwater. However, research on understanding the potential factors facilitating its geographical spread, the pattern of increasing range, and long-distance dispersal (LDD) of this species is very limited. In this study, we investigated the role of migratory waterbirds (using domesticated ducks as a proxy) and reservoirs (lentic waterbodies) in global distribution or dispersal of R. raciborskii. First, the global distribution of R. raciborskii under different reservoir scenarios was assessed through meta-analysis. The results showed a significant positive correlation between the global occurrence of R. raciborskii and the global number of reservoirs. Second, testing the capacity of R. raciborskii to spread via endozoochory or ectozoochory with ducks as a proxy of migratory waterbirds. The results indicated that R. raciborskii could be potentially dispersed through ectozoochory but not endozoochory, with a maximum carrying time of ∼96 hours corresponding to a maximum dispersal distance of ∼2300 km. In addition, the duck-carried R. raciborskii survived and could establish populations under suitable conditions. This study provides experimental evidence for the R. raciborskii dispersal through waterbirds. Overall, our results highlight that artificial reservoirs promote the increase of R. raciborskii populations, which could be dispersed across long distance via waterbird ectozoochory, thereby increasing the geographical range of R. raciborskii.
Collapse
Affiliation(s)
- Zhansen Sha
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingping Zheng
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Lu
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mekiso Y Sido
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Hobart 7000, Tasmania, Australia
| | - Cunqi Liu
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Bowden AC, Allbaugh RA, Gall AJ, Costa MDO, Leis M, Sebbag L. Ocular diagnostics, ophthalmic findings, and conjunctival microbiome in the Chilean flamingo (Phoenicopterus chilensis). Vet Ophthalmol 2025; 28:73-80. [PMID: 38880760 DOI: 10.1111/vop.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE To establish normative data for selected ocular diagnostic tests and commensal conjunctival microflora and describe the incidence of ocular pathology in Chilean flamingos. ANIMALS STUDIED A total of 41 Chilean flamingos were examined at the Blank Park Zoo in Des Moines, Iowa. PROCEDURES In 20 flamingos, blink rate was assessed undisturbed in their exhibit, then gentle manual restraint was used to assess palpebral fissure length (PFL), aqueous tear production (phenol red thread test [PRTT] in one eye, endodontic absorbent paper point tear test [EAPPTT] in the other), intraocular pressure (IOP; rebound tonometry), and fluorescein staining. Twenty-one other flamingos were brought to a darkened area for neuro-ophthalmic examination, slit lamp biomicroscopy, and indirect ophthalmoscopy. Swabs from seven flamingos were used for ocular microbiome evaluation. RESULTS Results are presented as mean ± standard deviation (range). Flamingos comprised 23 females/18 males, aged 11 ± 9.1 (0.7-40) years. Test results: blink rate, 3.7 ± 2 (1-9) blinks/min; PFL, 11.2 ± 1.2 (9-14) mm; IOP, 14 ± 3.2 (10-22) mmHg; EAPPT, 10.2 ± 2.8 (9-14) mm/min; PRTT, 6.8 ± 2.5 (3-13) mm/15 s. Dazzle reflex was positive in four birds examined. Pathologies included cataracts (n = 7 birds), corneal fibrosis (n = 3), endothelial pigment (n = 2), uveal cysts (n = 1), lens luxation (n = 1), and uveitis (n = 1). Ocular microbiome showed high diversity of taxa. CONCLUSIONS Baseline ocular parameters and incidence of ophthalmic pathology assist veterinarians with disease screening for Chilean flamingos, while the ocular microbiome showed high diversity.
Collapse
Affiliation(s)
- Anna Catherine Bowden
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Rachel A Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | | | - Matheus de O Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Faculty of Veterinary Medicine, Population Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marina Leis
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lionel Sebbag
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Palanisamy M, Ramalingam S. Microbial Bacterioruberin: A Comprehensive Review. Indian J Microbiol 2024; 64:1477-1501. [PMID: 39678945 PMCID: PMC11645389 DOI: 10.1007/s12088-024-01312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 12/17/2024] Open
Abstract
Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases. Although it possesses remarkable biological properties, studies related to the regulatory aspects of biosynthesis, in vitro and in vivo studies of purified BR have been rare. However, investigations are needed to explore the potential application of BR in various industries. Additionally, optimization of the culture conditions of BR-producing haloarchaea could pave the way for their sustainable production and utilization. The current review provides comprehensive information on BR, which includes the sources of this compound and its bioproduction, extraction, stability, toxicity, and biological activities in relation to its commercial applications. This review also discusses the potential challenges and limitations associated with BR bioproduction and its utilization in various industries. In addition, this treatise highlights the need for further research to optimize production and extraction methods and explore avenues for novel applications of BR in various sectors, such as pharmaceuticals, food, and cosmetics. Graphical Abstract
Collapse
Affiliation(s)
- Mouliraj Palanisamy
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
6
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
7
|
Pearman WS, Duffy GA, Gemmell NJ, Morales SE, Fraser CI. Long-distance movement dynamics shape host microbiome richness and turnover. FEMS Microbiol Ecol 2024; 100:fiae089. [PMID: 38857884 PMCID: PMC11212666 DOI: 10.1093/femsec/fiae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024] Open
Abstract
Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.
Collapse
Affiliation(s)
- William S Pearman
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Grant A Duffy
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin 9016, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, 310 Castle St, Dunedin 9016, New Zealand
| |
Collapse
|
8
|
Morilla MJ, Ghosal K, Romero EL. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023; 15:1828. [PMID: 37514016 PMCID: PMC10385456 DOI: 10.3390/pharmaceutics15071828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Carotenoids are natural products regulated by the food sector, currently used as feed dyes and as antioxidants in dietary supplements and composing functional foods for human consumption. Of the nearly one thousand carotenoids described to date, only retinoids, derived from beta carotene, have the status of a drug and are regulated by the pharmaceutical sector. In this review, we address a novel field: the transformation of xanthophylls, particularly the highly marketed astaxanthin and the practically unknown bacterioruberin, in therapeutic agents by altering their pharmacokinetics, biodistribution, and pharmacodynamics through their formulation as nanomedicines. The antioxidant activity of xanthophylls is mediated by routes different from those of the classical oral anti-inflammatory drugs such as corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs): remarkably, xanthophylls lack therapeutic activity but also lack toxicity. Formulated as nanomedicines, xanthophylls gain therapeutic activity by mechanisms other than increased bioavailability. Loaded into ad hoc tailored nanoparticles to protect their structure throughout storage and during gastrointestinal transit or skin penetration, xanthophylls can be targeted and delivered to selected inflamed cell groups, achieving a massive intracellular concentration after endocytosis of small doses of formulation. Most first reports showing the activities of oral and topical anti-inflammatory xanthophyll-based nanomedicines against chronic diseases such as inflammatory bowel disease, psoriasis, atopic dermatitis, and dry eye disease emerged between 2020 and 2023. Here we discuss in detail their preclinical performance, mostly targeted vesicular and polymeric nanoparticles, on cellular models and in vivo. The results, although preliminary, are auspicious enough to speculate upon their potential use for oral or topical administration in the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
9
|
Ashwini Ravi, Vijayanand S, Hemapriya J. Compilation of Analytical Techniques for Discrimination of Halophilic Archaea and Bacteria. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022130167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Serrano S, Mendo S, Caetano T. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest. Res Microbiol 2021; 173:103919. [PMID: 34942349 DOI: 10.1016/j.resmic.2021.103919] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022]
Abstract
Haloarchaea are mostly components of the microbial biomass of saline aquatic environments, where they can be a dietary source of heterotrophic metazoans or contribute to flamingo's plumage coloration. The diversity of secondary metabolites (SMs) produced by haloarchaea, which might play multiple ecological roles and have diverse biotechnological applications has been largely understudied. Herein, 67 haloarchaeal complete genomes were analyzed and 182 SMs biosynthetic gene clusters (BGCs) identified that encode the production of terpenes (including carotenoids), RiPPs and siderophores. Terpene BGCs were further analysed and it was concluded that all haloarchaea might produce squalene and bacterioruberin, which one a strong antioxidant. Most of them have other carotenoid BGCs that include a putative β-carotene ketolase that was not characterized so far in haloarchaea, but may be involved with canthaxanthin's biosynthesis. The production of bacterioruberin by Haloferax mediterranei ATCC 33500 was found to be not related to its antimicrobial activity.
Collapse
Affiliation(s)
- Susana Serrano
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Kim JY, Whon TW, Lim MY, Kim YB, Kim N, Kwon MS, Kim J, Lee SH, Choi HJ, Nam IH, Chung WH, Kim JH, Bae JW, Roh SW, Nam YD. The human gut archaeome: identification of diverse haloarchaea in Korean subjects. MICROBIOME 2020; 8:114. [PMID: 32753050 PMCID: PMC7409454 DOI: 10.1186/s40168-020-00894-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/17/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Archaea are one of the least-studied members of the gut-dwelling autochthonous microbiota. Few studies have reported the dominance of methanogens in the archaeal microbiome (archaeome) of the human gut, although limited information regarding the diversity and abundance of other archaeal phylotypes is available. RESULTS We surveyed the archaeome of faecal samples collected from 897 East Asian subjects living in South Korea. In total, 42.47% faecal samples were positive for archaeal colonisation; these were subsequently subjected to archaeal 16S rRNA gene deep sequencing and real-time quantitative polymerase chain reaction-based abundance estimation. The mean archaeal relative abundance was 10.24 ± 4.58% of the total bacterial and archaeal abundance. We observed extensive colonisation of haloarchaea (95.54%) in the archaea-positive faecal samples, with 9.63% mean relative abundance in archaeal communities. Haloarchaea were relatively more abundant than methanogens in some samples. The presence of haloarchaea was also verified by fluorescence in situ hybridisation analysis. Owing to large inter-individual variations, we categorised the human gut archaeome into four archaeal enterotypes. CONCLUSIONS The study demonstrated that the human gut archaeome is indigenous, responsive, and functional, expanding our understanding of the archaeal signature in the gut of human individuals. Video Abstract.
Collapse
Affiliation(s)
- Joon Yong Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Mi Young Lim
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Yeon Bee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Namhee Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Min-Sung Kwon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Juseok Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - In-Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132 Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| | - Jung-Ha Kim
- Department of Family Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, 06973 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do, 55365 Republic of Korea
| |
Collapse
|
12
|
Salgaonkar BB, Rodrigues R. A Study on the Halophilic Archaeal Diversity from the Food Grade Iodised Crystal Salt from a Saltern of India. Microbiology (Reading) 2020. [DOI: 10.1134/s002626171906016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
DasSarma S, DasSarma P, Laye VJ, Schwieterman EW. Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2019; 24:31-41. [PMID: 31463573 DOI: 10.1007/s00792-019-01126-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth's stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red-orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective "green edge". Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria J Laye
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward W Schwieterman
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
15
|
The Biogeography of Great Salt Lake Halophilic Archaea: Testing the Hypothesis of Avian Mechanical Carriers. DIVERSITY 2018. [DOI: 10.3390/d10040124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Halophilic archaea inhabit hypersaline ecosystems globally, and genetically similar strains have been found in locales that are geographically isolated from one another. We sought to test the hypothesis that small salt crystals harboring halophilic archaea could be carried on bird feathers and that bird migration is a driving force of these distributions. In this study, we discovered that the American White Pelicans (AWPE) at Great Salt Lake soak in the hypersaline brine and accumulate salt crystals (halite) on their feathers. We cultured halophilic archaea from AWPE feathers and halite crystals. The microorganisms isolated from the lakeshore crystals were restricted to two genera: Halorubrum and Haloarcula, however, archaea from the feathers were strictly Haloarcula. We compared partial DNA sequence of the 16S rRNA gene from our cultivars with that of similar strains in the GenBank database. To understand the biogeography of genetically similar halophilic archaea, we studied the geographical locations of the sampling sites of the closest-matched species. An analysis of the environmental factors of each site pointed to salinity as the most important factor for selection. The geography of the sites was consistent with the location of the sub-tropical jet stream where birds typically migrate, supporting the avian dispersal hypothesis.
Collapse
|
16
|
Novel haloarchaeon Natrinema thermophila having the highest growth temperature among haloarchaea with a large genome size. Sci Rep 2018; 8:7777. [PMID: 29773867 PMCID: PMC5958107 DOI: 10.1038/s41598-018-25887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Environmental temperature is one of the most important factors for the growth and survival of microorganisms. Here we describe a novel extremely halophilic archaeon (haloarchaea) designated as strain CBA1119T isolated from solar salt. Strain CBA1119T had the highest maximum and optimal growth temperatures (66 °C and 55 °C, respectively) and one of the largest genome sizes among haloarchaea (5.1 Mb). It also had the largest number of strain-specific pan-genome orthologous groups and unique pathways among members of the genus Natrinema in the class Halobacteria. A dendrogram based on the presence/absence of genes and a phylogenetic tree constructed based on OrthoANI values highlighted the particularities of strain CBA1119T as compared to other Natrinema species and other haloarchaea members. The large genome of strain CBA1119T may provide information on genes that confer tolerance to extreme environmental conditions, which may lead to the discovery of other thermophilic strains with potential applications in industrial biotechnology.
Collapse
|
17
|
Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review. Curr Microbiol 2017; 74:996-1002. [DOI: 10.1007/s00284-017-1271-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
18
|
Piña-Oviedo S, Ortiz-Hidalgo C, Ayala AG. Human Colors-The Rainbow Garden of Pathology: What Gives Normal and Pathologic Tissues Their Color? Arch Pathol Lab Med 2017; 141:445-462. [PMID: 28234573 DOI: 10.5858/arpa.2016-0274-sa] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Colors are important to all living organisms because they are crucial for camouflage and protection, metabolism, sexual behavior, and communication. Human organs obviously have color, but the underlying biologic processes that dictate the specific colors of organs and tissues are not completely understood. A literature search on the determinants of color in human organs yielded scant information. OBJECTIVES - To address 2 specific questions: (1) why do human organs have color, and (2) what gives normal and pathologic tissues their distinctive colors? DATA SOURCES - Endogenous colors are the result of complex biochemical reactions that produce biologic pigments: red-brown cytochromes and porphyrins (blood, liver, spleen, kidneys, striated muscle), brown-black melanins (skin, appendages, brain nuclei), dark-brown lipochromes (aging organs), and colors that result from tissue structure (tendons, aponeurosis, muscles). Yellow-orange carotenes that deposit in lipid-rich tissues are only produced by plants and are acquired from the diet. However, there is lack of information about the cause of color in other organs, such as the gray and white matter, neuroendocrine organs, and white tissues (epithelia, soft tissues). Neoplastic tissues usually retain the color of their nonneoplastic counterpart. CONCLUSIONS - Most available information on the function of pigments comes from studies in plants, microorganisms, cephalopods, and vertebrates, not humans. Biologic pigments have antioxidant and cytoprotective properties and should be considered as potential future therapies for disease and cancer. We discuss the bioproducts that may be responsible for organ coloration and invite pathologists and pathology residents to look at a "routine grossing day" with a different perspective.
Collapse
Affiliation(s)
| | | | - Alberto G Ayala
- From the Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas (Dr Piña-Oviedo); the Department of Pathology, Centro Medico ABC, Mexico City, Mexico (Dr Ortiz-Hidalgo); and the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Ayala)
| |
Collapse
|
19
|
Chen S, Liu HC, Zhou J, Xiang H. Haloparvum sedimenti gen. nov., sp. nov., a member of the family Haloferacaceae. Int J Syst Evol Microbiol 2016; 66:2327-2334. [PMID: 27001607 DOI: 10.1099/ijsem.0.001033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two extremely halophilic archaeal strains, DYS4T and Y2, were isolated from rock salt of the Jiangcheng Salt Mine, Yunnan province, China. Cells of the two strains were non-motile, pleomorphic rods and Gram-stain-negative. The cells produced light red-pigmented colonies. Strains DYS4T and Y2 required 2.6-3.4 M NaCl, pH 7.5- 8.0 and 42 ºC in aerobic conditions for optimal growth. Mg2+ was required for growth. The major polar lipids of both strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. An unidentified minor glycolipid spot was present for strains DYS4T and Y2, which differentiates them from the closely related species of the genera Halorubrum and Halopenitus. The lipid core of the glycolipid was sn-2,3-diphytanylglycerol (C20C20). The sequence similarity of the 16S rRNA gene demonstrated that the closest relatives of strains DYS4T and Y2 were Halorubrum aidingense 31-hongT (94.1 % and 93.6 % 16S rRNA gene sequence similarity to DYS4T and Y2, respectively) and Halopenitus salinus SKJ47T (93.4% and 93.1%). Phylogenetic analysis of the 16S rRNA gene and the rpoB' gene revealed that strains DYS4T and Y2 formed an independent lineage closely related to the genera Halorubrum and Halopenitus. The DNA G+C contents of strains DYS4T and Y2 were 68.2 and 67.0 mol%, respectively. The DNA-DNA relatedness value between strains DYS4T and Y2 was 90.0 ± 0.5%, while that between strain DYS4T and other closest relatives was less than 26 % (19 ± 0.7 % for Halorubrum aidingense 31-hongT and 25 ± 0.3% for Halopenitus salinus SKJ47T). The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains DYS4T and Y2 (=CGMCC 1.15000=JCM 30892) represent a novel species of a new genus within the family Haloferacaceae, for which the name Haloparvum sedimenti gen. nov., sp. nov. is proposed. The type strain of the type species is DYS4T (=CGMCC 1.14998T=JCM 30891T).
Collapse
Affiliation(s)
- Shaoxing Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University Key Laboratory of Crop High Quality and High Effective Cultivation and Safety Control in Yunnan Province, Honghe University, Mengzi 66110, Yunnan, China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|