1
|
Zhang Z, Li J, Ma M, Shi H, Lu M, Liang F, Wang X, Ma P, Tian Y, Song D, Zhang Z. Near-infrared fluorescence imaging tool with large Stokes shift for sensitively detecting carboxylesterase 2 and monitoring its expression in non-alcoholic fatty liver disease. Talanta 2025; 285:127378. [PMID: 39689640 DOI: 10.1016/j.talanta.2024.127378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) now affects more than one quarter of the global population and becomes a heavy public health burden. However, the underlying mechanism for the pathogenesis of NAFLD is still not clear. Carboxylesterase 2 (CES2), highly abundant in the liver and intestine, plays an important role in endogenous lipid metabolism and lipolysis. So far, the literatures for the role of CES2 in the development of NAFLD are still limited. In this study, we designed and synthesized a near-infrared fluorescent probe (HP-LZ-CES2) which can be specifically recognized and hydrolyzed by CES2, releasing a benzoate residue and a fluorophore (HP-LZ) with good fluorescence signal. With this probe, CES2 levels can be quantitatively measured in vitro and qualitatively visualized in living cells and mice. The probe has the advantages of large Stokes shift, high detection sensitivity and good selectivity. Further, the CES2 expression levels were visually investigated in both high-fat cells as the in vitro model for NAFLD and high-fat diet fed mouse as the in vivo model for NAFLD. The cell imaging experiments indicated a reduction of fluorescence signal in high-fat hepatic cells. The in vivo experiments showed an obvious reduction of fluorescence in the liver of NAFLD mouse model, which is consistent with the hepatic cell experiments. In contrast, an enhancement of fluorescence was observed in the intestine of NAFLD mouse model. As a result, the NAFLD mouse model can be visually distinguished from the normal chow mouse by vision. Therefore, the proposed probe can be an auxiliary tool for the diagnosis of NAFLD and a visual tool for understanding CES2's role in the development of NAFLD.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meijun Lu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Fanghui Liang
- Department of Pharmacy, Changchun Medical College, Changchun, 130031, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Hildebrandt M, Koshimizu M, Asada Y, Fukumitsu K, Ohkuma M, Sang N, Nakano T, Kunikata T, Okazaki K, Kawaguchi N, Yanagida T, Lian L, Zhang J, Yamashita T. Comparative Validation of Scintillator Materials for X-Ray-Mediated Neuronal Control in the Deep Brain. Int J Mol Sci 2024; 25:11365. [PMID: 39518918 PMCID: PMC11547033 DOI: 10.3390/ijms252111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
When exposed to X-rays, scintillators emit visible luminescence. X-ray-mediated optogenetics employs scintillators for remotely activating light-sensitive proteins in biological tissue through X-ray irradiation. This approach offers advantages over traditional optogenetics, allowing for deeper tissue penetration and wireless control. Here, we assessed the short-term safety and efficacy of candidate scintillator materials for neuronal control. Our analyses revealed that lead-free halide scintillators, such as Cs3Cu2I5, exhibited significant cytotoxicity within 24 h and induced neuroinflammatory effects when injected into the mouse brain. In contrast, cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) nanoparticles showed no detectable cytotoxicity within the same period, and injection into the mouse brain did not lead to observable neuroinflammation over four weeks. Electrophysiological recordings in the cerebral cortex of awake mice showed that X-ray-induced radioluminescence from Ce:GAGG nanoparticles reliably activated 45% of the neuronal population surrounding the implanted particles, a significantly higher activation rate than europium-doped GAGG (Eu:GAGG) microparticles, which activated only 10% of neurons. Furthermore, we established the cell-type specificity of this technique by using Ce:GAGG nanoparticles to selectively stimulate midbrain dopamine neurons. This technique was applied to freely behaving mice, allowing for wireless modulation of place preference behavior mediated by midbrain dopamine neurons. These findings highlight the unique suitability of Ce:GAGG nanoparticles for X-ray-mediated optogenetics. The deep tissue penetration, short-term safety, wireless neuronal control, and cell-type specificity of this system offer exciting possibilities for diverse neuroscience applications and therapeutic interventions.
Collapse
Affiliation(s)
- Mercedes Hildebrandt
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.H.); (K.F.); (M.O.); (N.S.)
| | - Masanori Koshimizu
- Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Shizuoka, Japan;
| | - Yasuki Asada
- Faculty of Radiological Technology, School of Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Kansai Fukumitsu
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.H.); (K.F.); (M.O.); (N.S.)
- International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Mahito Ohkuma
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.H.); (K.F.); (M.O.); (N.S.)
| | - Na Sang
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.H.); (K.F.); (M.O.); (N.S.)
| | - Takashi Nakano
- International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
- Department of Computational Biology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiaki Kunikata
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan; (T.K.); (K.O.); (N.K.); (T.Y.)
| | - Kai Okazaki
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan; (T.K.); (K.O.); (N.K.); (T.Y.)
| | - Noriaki Kawaguchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan; (T.K.); (K.O.); (N.K.); (T.Y.)
| | - Takayuki Yanagida
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Nara, Japan; (T.K.); (K.O.); (N.K.); (T.Y.)
| | - Linyuan Lian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China;
| | - Jianbing Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Takayuki Yamashita
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (M.H.); (K.F.); (M.O.); (N.S.)
- International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
5
|
Gangemi CG, Janovjak H. Optogenetics in Pancreatic Islets: Actuators and Effects. Diabetes 2024; 73:1566-1582. [PMID: 38976779 PMCID: PMC11417442 DOI: 10.2337/db23-1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
The islets of Langerhans reside within the endocrine pancreas as highly vascularized microorgans that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include Ca2+ waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbation of islet function with near physiological spatiotemporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on controlling hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways, are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Christina G. Gangemi
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- European Molecular Biology Laboratory Australia, Monash University, Clayton, Victoria, Australia
| | - Harald Janovjak
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Tian W, Jia Q, Lin J, Luo J, He D, Yang J, Guo T, Guo H, Guo Y, Zhang W, Chen F, Ye Y, Liu J, Xu M, Deng C, Cui B, Su D, Wang H, Lu Y, Xiao J, Liu H, Yang J, Hou Z, Wang S. Remote neurostimulation through an endogenous ion channel using a near-infrared light-activatable nanoagonist. SCIENCE ADVANCES 2024; 10:eadn0367. [PMID: 39121219 PMCID: PMC11313869 DOI: 10.1126/sciadv.adn0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The development of noninvasive approaches to precisely control neural activity in mammals is highly desirable. Here, we used the ion channel transient receptor potential ankyrin-repeat 1 (TRPA1) as a proof of principle, demonstrating remote near-infrared (NIR) activation of endogenous neuronal channels in mice through an engineered nanoagonist. This achievement enables specific neurostimulation in nongenetically modified mice. Initially, target-based screening identified flavins as photopharmacological agonists, allowing for the photoactivation of TRPA1 in sensory neurons upon ultraviolet A/blue light illumination. Subsequently, upconversion nanoparticles (UCNPs) were customized with an emission spectrum aligned to flavin absorption and conjugated with flavin adenine dinucleotide, creating a nanoagonist capable of NIR activation of TRPA1. Following the intrathecal injection of the nanoagonist, noninvasive NIR stimulation allows precise bidirectional control of nociception in mice through remote activation of spinal TRPA1. This study demonstrates a noninvasive NIR neurostimulation method with the potential for adaptation to various endogenous ion channels and neural processes by combining photochemical toolboxes with customized UCNPs.
Collapse
Affiliation(s)
- Weifeng Tian
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Organoid Technology, Kunming Medical University, Kunming, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qi Jia
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiewen Lin
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Luo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongmei He
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiling Guo
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yusheng Guo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feiyu Chen
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ying Ye
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingjing Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mindong Xu
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chengjie Deng
- Cell Biology and Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Boxiang Cui
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Deyuan Su
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hao Wang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Heng Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, GMU-GIBH Joint School of Life Sciences, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zhiyao Hou
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shu Wang
- The Affiliated TCM Hospital of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat Biomed Eng 2024; 8:808-822. [PMID: 37945752 PMCID: PMC11310082 DOI: 10.1038/s41551-023-01113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.
Collapse
Affiliation(s)
- Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yosuke M Morizawa
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
9
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
10
|
Ji Y, Heidari A, Nzigou Mombo B, Wegner SV. Photoactivation of LOV domains with chemiluminescence. Chem Sci 2024; 15:1027-1038. [PMID: 38239695 PMCID: PMC10793642 DOI: 10.1039/d3sc04815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with in situ generated light from a chemiluminescence reaction between luminol and H2O2. This activation is possible due to the spectral overlap between the blue chemiluminescence emission and the absorption bands of the flavin chromophore in LOV domains. All four LOV domain proteins with diverse backgrounds and structures (iLID, BcLOV4, nMagHigh/pMagHigh, and VVDHigh) were photoactivated by chemiluminescence as demonstrated using a bead aggregation assay. The photoactivation with chemiluminescence required a critical light-output below which the LOV domains reversed back to their dark state with protein characteristic kinetics. Furthermore, spatially confined chemiluminescence produced inside giant unilamellar vesicles (GUVs) was able to photoactivate proteins both on the membrane and in solution, leading to the recruitment of the corresponding proteins to the GUV membrane. Finally, we showed that reactive oxygen species produced by neutrophil like cells can be converted into sufficient chemiluminescence to recruit the photoswitchable protein BcLOV4-mCherry from solution to the cell membrane. The findings highlight the utility of chemiluminescence as an endogenous light source for optogenetic applications, offering new possibilities for studying cellular processes in optically non-transparent systems.
Collapse
Affiliation(s)
- Yuhao Ji
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Brice Nzigou Mombo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster 48149 Münster Germany
| |
Collapse
|
11
|
Miziev S, Pawlak WA, Howard N. Comparative analysis of energy transfer mechanisms for neural implants. Front Neurosci 2024; 17:1320441. [PMID: 38292898 PMCID: PMC10825050 DOI: 10.3389/fnins.2023.1320441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants.
Collapse
|
12
|
Katagiri H. Inter-organ communication involved in metabolic regulation at the whole-body level. Inflamm Regen 2023; 43:60. [PMID: 38087385 PMCID: PMC10714542 DOI: 10.1186/s41232-023-00306-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/29/2023] [Indexed: 10/16/2024] Open
Abstract
Metabolism in each organ of multi-organ organisms, including humans, is regulated in a coordinated manner to dynamically maintain whole-body homeostasis. Metabolic information exchange among organs/tissues, i.e., inter-organ communication, which is necessary for this purpose, has been a subject of ongoing research. In particular, it has become clear that metabolism of energy, glucose, lipids, and amino acids is dynamically regulated at the whole-body level mediated by the nervous system, including afferent, central, and efferent nerves. These findings imply that the central nervous system obtains metabolic information from peripheral organs at all times and sends signals selectively to peripheral organs/tissues to maintain metabolic homeostasis, and that the liver plays an important role in sensing and transmitting information on the metabolic status of the body. Furthermore, the utilization of these endogenous mechanisms is expected to lead to the development of novel preventive/curative therapies for metabolic diseases such as diabetes and obesity.(This is a summarized version of the subject matter presented at Symposium 7 presented at the 43rd Annual Meeting of the Japanese Society of Inflammation and Regeneration.).
Collapse
Affiliation(s)
- Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
13
|
Li H, Wang J, Fang Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. MICROSYSTEMS & NANOENGINEERING 2023; 9:4. [PMID: 36620392 PMCID: PMC9810608 DOI: 10.1038/s41378-022-00444-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Neural probes are among the most widely applied tools for studying neural circuit functions and treating neurological disorders. Given the complexity of the nervous system, it is highly desirable to monitor and modulate neural activities simultaneously at the cellular scale. In this review, we provide an overview of recent developments in multifunctional neural probes that allow simultaneous neural activity recording and modulation through different modalities, including chemical, electrical, and optical stimulation. We will focus on the material and structural design of multifunctional neural probes and their interfaces with neural tissues. Finally, future challenges and prospects of multifunctional neural probes will be discussed.
Collapse
Affiliation(s)
- Hongbian Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jinfen Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
14
|
Yasunaga H, Takeuchi H, Mizuguchi K, Nishikawa A, Loesing A, Ishikawa M, Kamiyoshihara C, Setogawa S, Ohkawa N, Sekiguchi H. MicroLED neural probe for effective in vivo optogenetic stimulation. OPTICS EXPRESS 2022; 30:40292-40305. [PMID: 36298964 DOI: 10.1364/oe.470318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The MicroLED probe enables optogenetic control of neural activity in spatially separated brain regions. Understanding its heat generation characteristics is important. In this study, we investigated the temperature rise (ΔT) characteristics in the brain tissue using a MicroLED probe. The ΔT strongly depended on the surrounding environment of the probe, including the differences between the air and the brain, and the area touching the brain tissue. Through animal experiments, we suggest an in situ temperature monitoring method using temperature dependence on electrical characteristics of the MicroLED. Finally, optical stimulation by MicroLEDs proved effective in controlling optogenetic neural activity in animal models.
Collapse
|
15
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Li C, Shi S, Gao D, Li B, Song G, Chen Y, An H, Xing C. Near-Infrared Light-Responsive Nanoinhibitors for Tumor Suppression through Targeting and Regulating Anion Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31715-31726. [PMID: 35798541 DOI: 10.1021/acsami.2c08503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The gated state of anion channels is involved in the regulation of proliferation and migration of tumors. Specific regulators are urgently needed for efficacious cancer ablation. For this purpose, it is essential to understand the molecular mechanisms of interaction between the regulators and anion channels and apply this knowledge to regulate anion channels. Transmembrane 16A (TMEM16A) is the molecular basis of the calcium-activated chloride channels. It is an anion channel activated by Ca2+, and the inhibition of TMEM16A is associated with a decrease in tumorigenesis. Herein, we characterized a natural compound procyanidin (PC) as an efficacious and selective inhibitor of TMEM16A with an IC50 of 10.6 ± 0.6 μM. Our research revealed the precise sites (D383, R535, and E624) of electrostatic interactions between PC and TMEM16A. Near-infrared (NIR)-light-responsive photothermal conjugated polymer nanoparticles encapsulating PC (CPNs-PC) were established to remotely target and regulate the TMEM16A anion channel. Upon NIR irradiation, CPNs-PC downregulated the signaling pathway downstream of TMEM16A and arrested the cell cycle progression of cancer cells and improved the bioavailability of PC. The tumor inhibition ratio of CPNs-PC was superior to PC by 13.4%. Our findings enabled the development of a strategy to accurately and remotely regulate anion channels to promote tumor regression using NIR-light-responsive conjugated polymer nanoparticles containing specific inhibitors of TMEM16A.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300071, P. R. China
| | - Dong Gao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Guoqiang Song
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yafei Chen
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hailong An
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
17
|
Wei Z, Liu Y, Li B, Li J, Lu S, Xing X, Liu K, Wang F, Zhang H. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:175. [PMID: 35688804 PMCID: PMC9187711 DOI: 10.1038/s41377-022-00864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.
Collapse
Affiliation(s)
- Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuang Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zou L, Xu K, Tian H, Fang Y. Remote neural regulation mediated by nanomaterials. NANOTECHNOLOGY 2022; 33:272002. [PMID: 35442216 DOI: 10.1088/1361-6528/ac62b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Neural regulation techniques play an essential role in the functional dissection of neural circuits and also the treatment of neurological diseases. Recently, a series of nanomaterials, including upconversion nanoparticles (UCNPs), magnetic nanoparticles (MNPs), and silicon nanomaterials (SNMs) that are responsive to remote optical or magnetic stimulation, have been applied as transducers to facilitate localized control of neural activities. In this review, we summarize the latest advances in nanomaterial-mediated neural regulation, especially in a remote and minimally invasive manner. We first give an overview of existing neural stimulation techniques, including electrical stimulation, transcranial magnetic stimulation, chemogenetics, and optogenetics, with an emphasis on their current limitations. Then we focus on recent developments in nanomaterial-mediated neural regulation, including UCNP-mediated fiberless optogenetics, MNP-mediated magnetic neural regulation, and SNM-mediated non-genetic neural regulation. Finally, we discuss the possibilities and challenges for nanomaterial-mediated neural regulation.
Collapse
Affiliation(s)
- Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
20
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
21
|
Dubey N, Chandra S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int J Mol Sci 2022; 23:ijms23031800. [PMID: 35163726 PMCID: PMC8836693 DOI: 10.3390/ijms23031800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Collapse
|
23
|
Abstract
To understand how brain functions arise from interconnected neural networks, it is necessary to develop tools that can allow simultaneous manipulation and recording of neural activities. Multimodal neural probes, especially those that combine optogenetics with electrophysiology, provide a powerful tool for the dissection of neural circuit functions and understanding of brain diseases. In this review, we provide an overview of recent developments in multimodal neural probes. We will focus on materials and integration strategies of multimodal neural probes to achieve combined optogenetic stimulation and electrical recordings with high spatiotemporal precision and low invasiveness. In addition, we will also discuss future opportunities of multimodal neural interfaces in basic and translational neuroscience.
Collapse
Affiliation(s)
- Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Yaguchi M, Jia X, Schlesinger R, Jiang X, Ataka K, Heberle J. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles. Front Mol Biosci 2022; 8:782688. [PMID: 35252344 PMCID: PMC8892918 DOI: 10.3389/fmolb.2021.782688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Direct optical activation of microbial rhodopsins in deep biological tissue suffers from ineffective light delivery because visible light is strongly scattered and absorbed. NIR light has deeper tissue penetration, but NIR-activation requires a transducer that converts NIR light into visible light in proximity to proteins of interest. Lanthanide-doped upconversion nanoparticles (UCNPs) are ideal transducer as they absorb near-infrared (NIR) light and emit visible light. Therefore, UCNP-assisted excitation of microbial rhodopsins with NIR light has been intensively studied by electrophysiology technique. While electrophysiology is a powerful method to test the functional performance of microbial rhodopsins, conformational changes associated with the NIR light illumination in the presence of UCNPs remain poorly understood. Since UCNPs have generally multiple emission peaks at different wavelengths, it is important to reveal if UCNP-generated visible light induces similar structural changes of microbial rhodopsins as conventional visible light illumination does. Here, we synthesize the lanthanide-doped UCNPs that convert NIR light to blue light. Using these NIR-to-blue UCNPs, we monitor the NIR-triggered conformational changes in sensory rhodopsin II from Natronomonas pharaonis (NpSRII), blue light-sensitive microbial rhodospsin, by FTIR spectroscopy. FTIR difference spectrum of NpSRII was recorded under two different excitation conditions: (ⅰ) with conventional blue light, (ⅱ) with UCNP-generated blue light upon NIR excitation. Both spectra display similar spectral features characteristic of the long-lived M photointermediate state during the photocycle of NpSRII. This study demonstrates that NIR-activation of NpSRII mediated by UCNPs takes place in a similar way to direct blue light activation of NpSRII.
Collapse
Affiliation(s)
- Momo Yaguchi
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, China
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, China
| | - Kenichi Ataka
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Liu X, Qiu F, Hou L, Wang X. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Front Behav Neurosci 2022; 15:820017. [PMID: 35145384 PMCID: PMC8823253 DOI: 10.3389/fnbeh.2021.820017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Brain stimulation is a critical technique in neuroscience research and clinical application. Traditional transcranial brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS) have been widely investigated in neuroscience for decades. However, TMS and tDCS have poor spatial resolution and penetration depth, and DBS requires electrode implantation in deep brain structures. These disadvantages have limited the clinical applications of these techniques. Owing to developments in science and technology, substantial advances in noninvasive and precise deep stimulation have been achieved by neuromodulation studies. Second-generation brain stimulation techniques that mainly rely on acoustic, electronic, optical, and magnetic signals, such as focused ultrasound, temporal interference, near-infrared optogenetic, and nanomaterial-enabled magnetic stimulation, offer great prospects for neuromodulation. This review summarized the mechanisms, development, applications, and strengths of these techniques and the prospects and challenges in their development. We believe that these second-generation brain stimulation techniques pave the way for brain disorder therapy.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| | - Xiaohui Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lijuan Hou Xiaohui Wang
| |
Collapse
|
26
|
Jiang S, Wu X, Rommelfanger NJ, Ou Z, Hong G. Shedding light on neurons: optical approaches for neuromodulation. Natl Sci Rev 2022; 9:nwac007. [PMID: 36196122 PMCID: PMC9522429 DOI: 10.1093/nsr/nwac007] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Today's optical neuromodulation techniques are rapidly evolving, benefiting from advances in photonics, genetics and materials science. In this review, we provide an up-to-date overview of the latest optical approaches for neuromodulation. We begin with the physical principles and constraints underlying the interaction between light and neural tissue. We then present advances in optical neurotechnologies in seven modules: conventional optical fibers, multifunctional fibers, optical waveguides, light-emitting diodes, upconversion nanoparticles, optical neuromodulation based on the secondary effects of light, and unconventional light sources facilitated by ultrasound and magnetic fields. We conclude our review with an outlook on new methods and mechanisms that afford optical neuromodulation with minimal invasiveness and footprint.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Nicholas J Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
28
|
Hong JW, Yoon C, Jo K, Won JH, Park S. Recent advances in recording and modulation technologies for next-generation neural interfaces. iScience 2021; 24:103550. [PMID: 34917907 PMCID: PMC8666678 DOI: 10.1016/j.isci.2021.103550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Along with the advancement in neural engineering techniques, unprecedented progress in the development of neural interfaces has been made over the past few decades. However, despite these achievements, there is still room for further improvements especially toward the possibility of monitoring and modulating neural activities with high resolution and specificity in our daily lives. In an effort of taking a step toward the next-generation neural interfaces, we want to highlight the recent progress in neural technologies. We will cover a wide scope of such developments ranging from novel platforms for highly specific recording and modulation to system integration for practical applications of novel interfaces.
Collapse
Affiliation(s)
- Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chanwoong Yoon
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghyun Jo
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon Hee Won
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjun Park
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute of Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
29
|
Matsubara T, Yamashita T. Remote Optogenetics Using Up/Down-Conversion Phosphors. Front Mol Biosci 2021; 8:771717. [PMID: 34805279 PMCID: PMC8602066 DOI: 10.3389/fmolb.2021.771717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial rhodopsins widely used for optogenetics are sensitive to light in the visible spectrum. As visible light is heavily scattered and absorbed by tissue, stimulating light for optogenetic control does not reach deep in the tissue irradiated from outside the subject body. Conventional optogenetics employs fiber optics inserted close to the target, which is highly invasive and poses various problems for researchers. Recent advances in material science integrated with neuroscience have enabled remote optogenetic control of neuronal activities in living animals using up- or down-conversion phosphors. The development of these methodologies has stimulated researchers to test novel strategies for less invasive, wireless control of cellular functions in the brain and other tissues. Here, we review recent reports related to these new technologies and discuss the current limitations and future perspectives toward the establishment of non-invasive optogenetics for clinical applications.
Collapse
Affiliation(s)
- Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
30
|
Patel M, Meenu M, Pandey JK, Kumar P, Patel R. Recent development in upconversion nanoparticles and their application in optogenetics: A review. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Matsubara T, Yanagida T, Kawaguchi N, Nakano T, Yoshimoto J, Sezaki M, Takizawa H, Tsunoda SP, Horigane SI, Ueda S, Takemoto-Kimura S, Kandori H, Yamanaka A, Yamashita T. Remote control of neural function by X-ray-induced scintillation. Nat Commun 2021; 12:4478. [PMID: 34294698 PMCID: PMC8298491 DOI: 10.1038/s41467-021-24717-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.
Collapse
Affiliation(s)
- Takanori Matsubara
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.256115.40000 0004 1761 798XDepartment of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takayuki Yanagida
- grid.260493.a0000 0000 9227 2257Nara Institute of Science and Technology, Nara, Japan
| | - Noriaki Kawaguchi
- grid.260493.a0000 0000 9227 2257Nara Institute of Science and Technology, Nara, Japan
| | - Takashi Nakano
- grid.260493.a0000 0000 9227 2257Nara Institute of Science and Technology, Nara, Japan ,grid.256115.40000 0004 1761 798XDepartment of Computational Biology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junichiro Yoshimoto
- grid.260493.a0000 0000 9227 2257Nara Institute of Science and Technology, Nara, Japan
| | - Maiko Sezaki
- grid.274841.c0000 0001 0660 6749International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- grid.274841.c0000 0001 0660 6749International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi P. Tsunoda
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan ,grid.419082.60000 0004 1754 9200PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Shin-ichiro Horigane
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular/Cellular Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shuhei Ueda
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular/Cellular Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Sayaka Takemoto-Kimura
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular/Cellular Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan ,grid.419082.60000 0004 1754 9200CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akihiro Yamanaka
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.419082.60000 0004 1754 9200CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Yamashita
- grid.27476.300000 0001 0943 978XDepartment of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Neural Regulation, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.256115.40000 0004 1761 798XDepartment of Physiology, Fujita Health University School of Medicine, Toyoake, Japan ,grid.419082.60000 0004 1754 9200PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
32
|
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Infrared (IR) adaptation phenomena are ubiquitous in nature and biological systems. Taking inspiration from natural creatures, researchers have devoted extensive efforts for developing advanced IR adaptive materials and exploring their applications in areas of smart camouflage, thermal energy management, biomedical science, and many other IR-related technological fields. Herein, an up-to-date review is provided on the recent advancements of bioinspired IR adaptive materials and their promising applications. First an overview of IR adaptation in nature and advanced artificial IR technologies is presented. Recent endeavors are then introduced toward developing bioinspired adaptive materials for IR camouflage and IR radiative cooling. According to the Stefan-Boltzmann law, IR camouflage can be realized by either emissivity engineering or thermal cloaks. IR radiative cooling can maximize the thermal radiation of an object through an IR atmospheric transparency window, and thus holds great potential for use in energy-efficient green buildings and smart personal thermal management systems. Recent advances in bioinspired adaptive materials for emerging near-IR (NIR) applications are also discussed, including NIR-triggered biological technologies, NIR light-fueled soft robotics, and NIR light-driven supramolecular nanosystems. This review concludes with a perspective on the challenges and opportunities for the future development of bioinspired IR adaptive materials.
Collapse
Affiliation(s)
- Jiajia Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinfang Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
33
|
Abstract
Upconversion nanoparticle-mediated optogenetics enables remote delivery of upconverted visible light from a near-infrared light source to targeted neurons or areas, with the precision of a pulse of laser light in vivo for effective deep-tissue neuromodulation. Compared to conventional optogenetic tools, upconversion nanoparticle-based optogenetic techniques are less invasive and cause reduced inflammation with minimal levels of tissue damage. In addition to the optical stimulation, this design offers simultaneously temperature recording in proximity to the stimulated area. This chapter strives to provide life science researchers with an introduction to upconversion optogenetics, starting from the fundamental concept of photon upconversion and nanoparticle fabrication to the current state-of-the-art of surface engineering and device integration for minimally invasive neuromodulation.
Collapse
|
34
|
Tsujimura M, Noji T, Saito K, Kojima K, Sudo Y, Ishikita H. Mechanism of absorption wavelength shifts in anion channelrhodopsin-1 mutants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148349. [PMID: 33248117 DOI: 10.1016/j.bbabio.2020.148349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
Using a quantum mechanical/molecular mechanical approach, we show the mechanisms of how the protein environment of Guillardia theta anion channelrhodopsin-1 (GtACR1) can shift the absorption wavelength. The calculated absorption wavelengths for GtACR1 mutants, M105A, C133A, and C237A are in agreement with experimentally measured wavelengths. Among 192 mutant structures investigated, mutations at Thr101, Cys133, Pro208, and Cys237 are likely to increase the absorption wavelength. In particular, T101A GtACR1 was expressed in HEK293T cells. The measured absorption wavelength is 10 nm higher than that of wild type, consistent with the calculated wavelength. (i) Removal of a polar residue from the Schiff base moiety, (ii) addition of a polar or acidic residue to the β-ionone ring moiety, and (iii) addition of a bulky residue to increase the planarity of the β-ionone and Schiff base moieties are the basis of increasing the absorption wavelength.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| |
Collapse
|
35
|
Takano Y, Miyake K, Sobhanan J, Biju V, Tkachenko NV, Imahori H. Near-infrared light control of membrane potential by an electron donor-acceptor linked molecule. Chem Commun (Camb) 2020; 56:12562-12565. [PMID: 32940286 DOI: 10.1039/d0cc05326k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Near-infrared (NIR) light control of living cellular activities is a highly desired technique for living cell manipulation because of its advantage of high penetrability towards living tissue. In this study, (π-extended porphyrin)-fullerene linked molecules are designed and synthesized to achieve NIR light control of the membrane potential. A donor-(π-extended porphyrin)-acceptor linked molecule exhibited the formation of the charge-separated state with a relatively long lifetime (0.68 μs) and a moderate quantum yield (27-31%). The hydrophilic trimethylammonium-linked triad molecule successfully altered PC12 cells' membrane potential via photoinduced intramolecular charge separation.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan. and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. and Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Kazuaki Miyake
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science, Hokkaido University, Kita-20, Nishi-10, Sapporo 001-0020, Japan. and Graduate School of Environmental Science, Hokkaido University, Kita-10, Nishi-5, Sapporo 060-810, Japan
| | - Nikolai V Tkachenko
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, Tampere FI-33720, Finland.
| | - Hiroshi Imahori
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. and Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
36
|
Krajnik B, Golacki LW, Kostiv U, Horák D, Podhorodecki A. Single-Nanocrystal Studies on the Homogeneity of the Optical Properties of NaYF 4:Yb 3+,Er 3. ACS OMEGA 2020; 5:26537-26544. [PMID: 33110981 PMCID: PMC7581227 DOI: 10.1021/acsomega.0c03252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 05/16/2023]
Abstract
Development of upconverting nanomaterials which are able to emit visible light upon near-infrared excitation opens a wide range of potential applications. Because of their remarkable photostability, they are widely used in bioimaging, optogenetics, and optoelectronics. In this work, we demonstrate the influence of several experimental conditions as well as a dopant concentration on the luminescence properties of upconverting nanocrystals (UPNCs) that need to be taken into account for their efficient use in the practical applications. We found that not only nanoparticle architecture affects the optical properties of UPNCs, but also factors such as sample concentration, excitation light power density, and temperature may influence the green-to-red emission ratio. We performed studies on both the single-nanoparticle and ensemble levels over a broad concentration range and found the heterogeneity in the optical properties of UPNCs with low dopant concentrations.
Collapse
Affiliation(s)
- Bartosz Krajnik
- Department
of Experimental Physics, Wroclaw University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Lukasz W. Golacki
- Department
of Experimental Physics, Wroclaw University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Uliana Kostiv
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
nám. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute
of Macromolecular Chemistry, Czech Academy
of Sciences, Heyrovského
nám. 2, 162 06 Prague 6, Czech Republic
| | - Artur Podhorodecki
- Department
of Experimental Physics, Wroclaw University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
37
|
Li DY, Zheng Z, Yu TT, Tang BZ, Fei P, Qian J, Zhu D. Visible-near infrared-II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. JOURNAL OF BIOPHOTONICS 2020; 13:e202000142. [PMID: 32589789 DOI: 10.1002/jbio.202000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)-near infrared (NIR)-I light imaging. If the skull optical clearing window is available for NIR-II, the imaging depth will be further enhanced. Herein, we developed a vis-NIR-II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR-II. Using a NIR-II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis-NIR-II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR-II laser-induced targeted injury of cortical single vessel. This work enhances the ability of NIR-II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.
Collapse
Affiliation(s)
- Dong-Yu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ting-Ting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ben-Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
38
|
Hu M, Han Q, Lyu L, Tong Y, Dong S, Loh ZH, Xing B. Luminescent molecules towards precise cellular event regulation. Chem Commun (Camb) 2020; 56:10231-10234. [PMID: 32749396 DOI: 10.1039/d0cc01923b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A unique lanthanide complex which responds to near-infrared (NIR) stimulation was developed for remote regulation of cellular events. This molecule can be localized specifically on the cell surface. Upon NIR stimulation, strong emission of the complex can successfully modulate the activities of light-gated membrane channels and regulate the ion flux in vivo.
Collapse
Affiliation(s)
- Ming Hu
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang link, 637371, Singapore.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhao J, Ellis-Davies GCR. Intracellular photoswitchable neuropharmacology driven by luminescence from upconverting nanoparticles. Chem Commun (Camb) 2020; 56:9445-9448. [PMID: 32761019 PMCID: PMC7812838 DOI: 10.1039/d0cc03956j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoswitchable drugs are small-molecule optical probes that undergo chromatically selective control of drug efficacy using, most often, UV-visible light. Here we report that luminescence produced by near-infrared stimulation of NaYF4:TmYb nanoparticles can be used for "remote control" of an azobenzene-based photochromic ion channel blocker of neurons in living brain slices.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
40
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
41
|
Light-mediated control of Gene expression in mammalian cells. Neurosci Res 2020; 152:66-77. [DOI: 10.1016/j.neures.2019.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
42
|
Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach. Neurosci Res 2020; 152:59-65. [PMID: 31987879 DOI: 10.1016/j.neures.2020.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
One of the most important goals in neuroscience and neuroengineering is noninvasive deep brain stimulation and imaging. Recently, lanthanide-doped upconversion nanoparticles (UCNPs) have been developed as a new class of optical actuators and labels to allow for the use of near-infrared light (NIR) to optogenetically stimulate and image neurons nestled in deep brain regions. Besides the high penetration depth of NIR excitation, UCNPs show advantages in neuronal imaging and stimulation due to their large anti-Stokes shifts, sharp emission bandwidths, low autofluorescence background, high resistance to photobleaching, high temporal resolution in photon conversion as well as high biocompatibility for in vivo applications. UCNP technology paves the way for minimally invasive deep brain stimulation and imaging with the potential for remote therapy. This review focuses on the recent development of UCNP applications in neuroscience, including UCNP-mediated NIR upconversion optogenetics as well as UCNP-assisted retrograde neuronal tracing and imaging.
Collapse
|
43
|
Wang Y, Xie K, Yue H, Chen X, Luo X, Liao Q, Liu M, Wang F, Shi P. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. NANOSCALE 2020; 12:2406-2414. [PMID: 31782467 DOI: 10.1039/c9nr07583f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wireless optogenetics based on the upconversion technique has recently provided an effective and interference-free alternative for remote brain stimulation and inhibition in behaving animals, which is of great promise for neuroscience research. However, more versatile upconversion devices are yet to be implemented for neural tissues other than the brain. In this study, a flexible and fully implantable upconversion device was developed for epidural spinal cord stimulation. The upconversion device was fabricated via a straightforward, two-step, heat-pulling process using biocompatible thermoplastic polypropylene as a backbone, which is mixed with upconversion nanoparticles (UCNPs) to form a flexible optrode device that converts near-infrared (NIR) irradiation to visible light for the optogenetic manipulation of spinal cord tissues. In this system, the flexible upconversion device is fully implantable within the rigid spine structure, and shows excellent long-term biocompatibility even after a four-month experiment. In anesthetized mice, the UCNP device implanted at the L4 vertebra can be used to reliably evoke hindlimb muscular activity upon NIR triggering. In behaving mice, neural modulation by the same UCNP devices effectively inhibits the animals' movement as a result of remote spinal cord stimulation. We believe that the flexible upconversion device provides new possibilities for wireless neural modulation in spinal cord tissues, and will become a valuable supplement to the current tool sets of upconversion based wireless optogenetics.
Collapse
Affiliation(s)
- Ying Wang
- School of Biological Science and Medical Engineering, Beihang University, Haidian District, Beijing, 100191, China and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China. and Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Haidian District, Beijing, 100191, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Haibing Yue
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Xian Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| | - Xuan Luo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
| | - Qinghai Liao
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Ming Liu
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China. and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
44
|
All AH, Zeng X, Teh DBL, Yi Z, Prasad A, Ishizuka T, Thakor N, Hiromu Y, Liu X. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803474. [PMID: 31432555 DOI: 10.1002/adma.201803474] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Optogenetics is an optical technique that exploits visible light for selective neuromodulation with spatio-temporal precision. Despite enormous effort, the effective stimulation of targeted neurons, which are located in deeper structures of the nervous system, by visible light, remains a technical challenge. Compared to visible light, near-infrared illumination offers a higher depth of tissue penetration owing to a lower degree of light attenuation. Herein, an overview of advances in developing new modalities for neural circuitry modulation utilizing upconversion-nanoparticle-mediated optogenetics is presented. These developments have led to minimally invasive optical stimulation and inhibition of neurons with substantially improved selectivity, sensitivity, and spatial resolution. The focus is to provide a comprehensive review of the mechanistic basis for evaluating upconversion parameters, which will be useful in designing, executing, and reporting optogenetic experiments.
Collapse
Affiliation(s)
- Angelo Homayoun All
- Department of Biomedical Engineering & Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xiao Zeng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Daniel Boon Loong Teh
- Department of Medicine & Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Toru Ishizuka
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Nitish Thakor
- Department of Biomedical Engineering & Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Medicine & Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yawo Hiromu
- Department of Integrative Life Sciences, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
45
|
Rostami I, Rezvani Alanagh H, Hu Z, Shahmoradian SH. Breakthroughs in medicine and bioimaging with up-conversion nanoparticles. Int J Nanomedicine 2019; 14:7759-7780. [PMID: 31576121 PMCID: PMC6765331 DOI: 10.2147/ijn.s221433] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Nanomedicine is a medical application of biochemistry incorporated with materials chemistry at the scale of nanometer for the purpose of diagnosis, prevention, and treatment. New models and approaches are typically associated with nanomedicine for precise multifunctional diagnostic systems at molecular level. Hence, employing nanoparticles (NPs) has unveiled new opportunities for efficient therapies and remedy of difficult-to-cure diseases. Among all types of inorganic NPs, lanthanide-doped up-conversion nanoparticles (UCNPs) have shown excellent potential for biomedical applications, especially for multimodal bioimaging including fluorescence and electron microscopy. Association of these visualization techniques plus the capability for transporting biomaterials and drugs make them superior agents in the field of nanomedicine. Accordingly, in this review, we firstly presented a fundamental understanding of physical and optical properties of UCNPs and secondly, we illustrated some of the prominent associations with bioimaging, theranostics, cancer therapy, and optogenetics.
Collapse
Affiliation(s)
- Iman Rostami
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, PSI5232, Switzerland
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, People’s Republic of China
| | - Hamideh Rezvani Alanagh
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, People’s Republic of China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, People’s Republic of China
- Center for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province350108, People’s Republic of China
| | - Sarah H Shahmoradian
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, PSI5232, Switzerland
| |
Collapse
|
46
|
Cela E, Sjöström PJ. Novel Optogenetic Approaches in Epilepsy Research. Front Neurosci 2019; 13:947. [PMID: 31551699 PMCID: PMC6743373 DOI: 10.3389/fnins.2019.00947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a major neurological disorder characterized by repeated seizures afflicting 1% of the global population. The emergence of seizures is associated with several comorbidities and severely decreases the quality of life of patients. Unfortunately, around 30% of patients do not respond to first-line treatment using anti-seizure drugs (ASDs). Furthermore, it is still unclear how seizures arise in the healthy brain. Therefore, it is critical to have well developed models where a causal understanding of epilepsy can be investigated. While the development of seizures has been studied in several animal models, using chemical or electrical induction, deciphering the results of such studies has been difficult due to the uncertainty of the cell population being targeted as well as potential confounds such as brain damage from the procedure itself. Here we describe novel approaches using combinations of optical and genetic methods for studying epileptogenesis. These approaches can circumvent some shortcomings associated with the classical animal models and may thus increase the likelihood of developing new treatment options.
Collapse
Affiliation(s)
- Elvis Cela
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Per Jesper Sjöström
- Brain Repair and Integrative Neuroscience Program, Centre for Research in Neuroscience, Department of Medicine, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
47
|
Sardoiwala MN, Srivastava AK, Karmakar S, Roy Choudhury S. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chem Neurosci 2019; 10:3375-3385. [PMID: 31244053 DOI: 10.1021/acschemneuro.9b00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Optogenetics have evolved as a promising tool to control the processes at a cellular level via photons. Specially, it confers a specific control over cellular function through real-time cytomodulation even in freely moving animals. Neuronal stimulation is prerequisite for deep tissue light penetration or insertion of optrode for light illumination to the neurons that have been proven to be compromised due to poor light penetration and invasiveness of the procedure, respectively. In this review, the application of nanotechnology is being elaborated by the use of metal nanoparticles (AuNPs), upconversion nanocrystals (UCNPs), and quantum dots (CdSe) for targeting particular organs or tissues, and their potential to emit a specific light on excitation to overcome the limitations associated with earlier methods has been elucidated. The optothermal and magnetothermal properties, photoluminescence, and higher photostability of nanomaterials are explored in context of therapeutic applicability of optogenetics. The nanostructure characteristics and specific ion channel targeting have shown promising therapeutic potential against neurodegenerative disorders (Alzheimer's, Parkinson's, Huntington's), epilepsy, and blindness. This review compiles mechanical and optical characteristics of nanomaterials that endow superior optogenetic therapeutic potentials to cure immedicable infirmities.
Collapse
Affiliation(s)
| | - Anup K. Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| |
Collapse
|
48
|
Li J, Duan H, Pu K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901607. [PMID: 31199021 DOI: 10.1002/adma.201901607] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Photoregulation, which utilizes light to remotely control biological events, provides a precise way to decipher biology and innovate in medicine; however, its potential is limited by the shallow tissue penetration and/or phototoxicity of ultraviolet (UV)/visible light that are required to match the optical responses of endogenous photosensitive substances. Thereby, biologically friendly near-infrared (NIR) light with improved tissue penetration is desired for photoregulation. Since there are a few endogenous biomolecules absorbing or emitting light in the NIR region, the development of molecular transducers is essential to convert NIR light into the cues for regulation of biological events. In this regard, optical nanomaterials able to convert NIR light into UV/visible light, heat, or free radicals are suitable for this task. Here, the recent developments of optical nanotransducers for NIR-light-mediated photoregulation in medicine are summarized. The emerging applications, including photoregulation of neural activity, gene expression, and visual systems, as well as photochemical tissue bonding, are highlighted, along with the design principles of nanotransducers. Moreover, the current challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
49
|
Wiesholler LM, Frenzel F, Grauel B, Würth C, Resch-Genger U, Hirsch T. Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation. NANOSCALE 2019; 11:13440-13449. [PMID: 31287476 DOI: 10.1039/c9nr03127h] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Yb,Nd,Er-doped upconversion nanoparticles (UCNPs) have attracted considerable interest as luminescent reporters for bioimaging, sensing, energy conversion/shaping, and anticounterfeiting due to their capability to convert multiple near-infrared (NIR) photons into shorter wavelength ultraviolet, visible or NIR luminescence by successive absorption of two or more NIR photons. This enables optical measurements in complex media with very little background and high penetration depths for bioimaging. The use of Nd3+ as substitute for the commonly employed sensitizer Yb3+ or in combination with Yb3+ shifts the excitation wavelength from about 980 nm, where the absorption of water can weaken upconversion luminescence, to about 800 nm, and laser-induced local overheating effects in cells, tissue, and live animal studies can be minimized. To systematically investigate the potential of Nd3+ doping, we assessed the performance of a set of similarly sized Yb3+,Nd3+,Er3+-doped core- and core-shell UCNPs of different particle architecture in water at broadly varied excitation power densities (P) with steady state and time-resolved fluorometry for excitation at 980 nm and 808 nm. As a measure for UCNPs performance, the P-dependent upconversion quantum yield (ΦUC) and its saturation behavior were used as well as particle brightness (BUC). Based upon spectroscopic measurements at both excitation wavelengths in water and in a lipid phantom and BUC-based calculations of signal size at different penetration depths, conditions under which excitation at 808 nm is advantageous are derived and parameters for the further optimization of triple-doped UCNPs are given.
Collapse
Affiliation(s)
- Lisa M Wiesholler
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, 93040 Regensburg, Germany.
| | - Florian Frenzel
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany. and WG Nanooptics, Institute for Physics, Humboldt-University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Bettina Grauel
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany. and WG Nanooptics, Institute for Physics, Humboldt-University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Christian Würth
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany.
| | - Ute Resch-Genger
- BAM Federal Institute for Materials Research and Testing, Division 1.10 Biophotonics, 12489 Berlin, Germany.
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, 93040 Regensburg, Germany.
| |
Collapse
|
50
|
Meynaghizadeh-Zargar R, Salehpour F, Hamblin MR, Mahmoudi J, Sadigh-Eteghad S. Potential Application of Upconverting Nanoparticles for Brain Photobiomodulation. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:596-605. [PMID: 31335302 DOI: 10.1089/photob.2019.4659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain photobiomodulation (PBM) describes the use of visible to near-infrared light for modulation or stimulation of the central nervous system in both healthy individuals and diseased conditions. Although the transcranial approach to delivering light to the head is the most common technique to stimulate the brain, delivery of light to deeper structures in the brain is still a challenge. The science of nanoparticle engineering in combination with biophotonic excitation could provide a way to overcome this problem. Upconversion is an anti-Stokes process that is capable of transforming low energy photons that penetrate tissue well to higher energy photons with a greater biological effect, but poor tissue penetration. Wavelengths in the third optical window are optimal for light penetration into brain tissue, followed by windows II, IV, and I. The combination of trivalent lanthanide ions within a crystalline host provides a nanostructure that exhibits the upconversion phenomenon. Upconverting nanoparticles (UCNPs) have been successfully used in various medical fields. Their ability to cross the brain-blood barrier and their low toxicity make them a good candidate for application in brain disorders. It is possible that delivery of UCNPs to the brainstem or deeper parts of the cerebral tissue, followed by irradiation using light wavelengths with good tissue penetration properties, could allow more efficient PBM of the brain.
Collapse
Affiliation(s)
| | - Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|