1
|
Manesco C, Cloitre T, Martin M, Gerber YN, Perrin FE, Saavedra‐Villanueva O, Gergely C. Undergrowth Collagen Fibers Analysis by Fingerprint Enhancement Method. Biol Cell 2025; 117:e70001. [PMID: 40194960 PMCID: PMC11975548 DOI: 10.1111/boc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Collagen is a key protein in mammals that maintains structural integrity within tissues. A failure in fibrillar collagen reorganization can induce cancer or fibrosis formation, such as in spinal cord injury (SCI), where the healing process after the initial trauma leads to the formation of scar tissue, which includes fibrosis. As there is no current treatment targeting the fibrotic process directly, a better understanding of collagen properties can thus help to apprehend malignant states. Characterization of collagen fibers has been widely explored on second-harmonic generation (SHG) images, due to the label-free nature of the SHG imaging technique. It has been performed with various fibers extraction methods such as curvelet transform (CT) implemented in the open-source software CurveAlign. However, when it comes to investigating undergrowth collagen fibers (collagen fibers that are still under reorganization) as observed in SCI, the CT method becomes complex to tune for nonadvanced users in order to properly segment the fibers. To improve collagen detection in the case of undergrowth fibers, we propose a methodology based on the fingerprint enhancement (FP-E) algorithm that requires fewer user input parameters and is less time-consuming. Our method was extensively tested on SHG data from injured spinal cord samples. We obtained metrics that depicted changes in collagen organization over time, particularly a significant increase in fiber density, demonstrating the FP-E algorithm was properly adapted to address the evolution of collagen properties after SCI. Besides the simpler tuning of the method compared to commonly used software, the combination with further characterization of the extracted fibers could lead to consider fibrillar collagen as a biomarker in diseases where fibers are under development. The FP-E algorithm is provided in the article.
Collapse
Affiliation(s)
- Clara Manesco
- Laboratoire Charles Coulomb (L2C)Université de Montpellier, CNRSMontpellierFrance
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C)Université de Montpellier, CNRSMontpellierFrance
| | - Marta Martin
- Laboratoire Charles Coulomb (L2C)Université de Montpellier, CNRSMontpellierFrance
| | | | | | | | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C)Université de Montpellier, CNRSMontpellierFrance
| |
Collapse
|
2
|
Woessner AE, Witt NJ, Jones JD, Sander EA, Quinn KP. Quantification of age-related changes in the structure and mechanical function of skin with multiscale imaging. GeroScience 2024; 46:4869-4882. [PMID: 38761286 PMCID: PMC11336155 DOI: 10.1007/s11357-024-01199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
The mechanical properties of skin change during aging but the relationships between structure and mechanical function remain poorly understood. Previous work has shown that young skin exhibits a substantial decrease in tissue volume, a large macro-scale Poisson's ratio, and an increase in micro-scale collagen fiber alignment during mechanical stretch. In this study, label-free multiphoton microscopy was used to quantify how the microstructure and fiber kinematics of aged mouse skin affect its mechanical function. In an unloaded state, aged skin was found to have less collagen alignment and more non-enzymatic collagen fiber crosslinks. Skin samples were then loaded in uniaxial tension and aged skin exhibited a lower mechanical stiffness compared to young skin. Aged tissue also demonstrated less volume reduction and a lower macro-scale Poisson's ratio at 10% uniaxial strain, but not at 20% strain. The magnitude of 3D fiber realignment in the direction of loading was not different between age groups, and the amount of realignment in young and aged skin was less than expected based on theoretical fiber kinematics affine to the local deformation. These findings provide key insights on how the collagen fiber microstructure changes with age, and how those changes affect the mechanical function of skin, findings which may help guide wound healing or anti-aging treatments.
Collapse
Affiliation(s)
- Alan E Woessner
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA
| | - Nathan J Witt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Edward A Sander
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, 123 John A. White Jr. Engineering Hall, Fayetteville, AR, 72701, USA.
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
3
|
Zhou M, González PJ, Van Haasterecht L, Soylu A, Mihailovski M, Van Zuijlen P, Groot ML. Uniaxial mechanical stretch properties correlated with three-dimensional microstructure of human dermal skin. Biomech Model Mechanobiol 2024; 23:911-925. [PMID: 38324073 PMCID: PMC11101527 DOI: 10.1007/s10237-023-01813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/30/2023] [Indexed: 02/08/2024]
Abstract
The intact and healthy skin forms a barrier to the outside world and protects the body from mechanical impact. The skin is a complex structure with unique mechano-elastic properties. To better direct the design of biomimetic materials and induce skin regeneration in wounds with optimal outcome, more insight is required in how the mechano-elastic properties emerge from the skin's main constituents, collagen and elastin fibers. Here, we employed two-photon excited autofluorescence and second harmonic generation microscopy to characterize collagen and elastin fibers in 3D in 24 human dermis skin samples. Through uniaxial stretching experiments, we derive uni-directional mechanical properties from resultant stress-strain curves, including the initial Young's modulus, elastic Young's modulus, maximal stress, and maximal and mid-strain values. The stress-strain curves show a large variation, with an average Young's modules in the toe and linear regions of 0.1 MPa and 21 MPa. We performed a comprehensive analysis of the correlation between the key mechanical properties with age and with microstructural parameters, e.g., fiber density, thickness, and orientation. Age was found to correlate negatively with Young's modulus and collagen density. Moreover, real-time monitoring during uniaxial stretching allowed us to observe changes in collagen and elastin alignment. Elastin fibers aligned significantly in both the heel and linear regions, and the collagen bundles engaged and oriented mainly in the linear region. This research advances our understanding of skin biomechanics and yields input for future first principles full modeling of skin tissue.
Collapse
Affiliation(s)
- Mengyao Zhou
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands.
| | - Patrick José González
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands
| | - Ludo Van Haasterecht
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands
- Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Mozartstraat 201, 1962 AB, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center (UMC), Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alperen Soylu
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands
| | - Maria Mihailovski
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands
| | - Paul Van Zuijlen
- Burn Center and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Mozartstraat 201, 1962 AB, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Center (UMC), Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Pediatric Surgical Centre, Emma Children's Hospital, Amsterdam University Medical Center (UMC), Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam University Medical Center (UMC), Location Vrije Universiteit Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Faculty of Science, Department of Physics, Laserlab, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Pukaluk A, Sommer G, Holzapfel GA. Multimodal experimental studies of the passive mechanical behavior of human aortas: Current approaches and future directions. Acta Biomater 2024; 178:1-12. [PMID: 38401775 DOI: 10.1016/j.actbio.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and include, among others, critical conditions of the aortic wall. Importantly, such critical conditions require effective diagnosis and treatment, which are not yet accurate enough. However, they could be significantly strengthened with predictive material models of the aortic wall. In particular, such predictive models could support surgical decisions, preoperative planning, and estimation of postoperative tissue remodeling. However, developing a predictive model requires experimental data showing both structural parameters and mechanical behavior. Such experimental data can be obtained using multimodal experiments. This review therefore discusses the current approaches to multimodal experiments. Importantly, the strength of the aortic wall is determined primarily by its passive components, i.e., mainly collagen, elastin, and proteoglycans. Therefore, this review focuses on multimodal experiments that relate the passive mechanical behavior of the human aortic wall to the structure and organization of its passive components. In particular, the multimodal experiments are classified according to the expected results. Multiple examples are provided for each experimental class and summarized with highlighted advantages and disadvantages of the method. Finally, future directions of multimodal experiments are envisioned and evaluated. STATEMENT OF SIGNIFICANCE: Multimodal experiments are innovative approaches that have gained interest very quickly, but also recently. This review presents therefore a first clear summary of groundbreaking research in the field of multimodal experiments. The benefits and limitations of various types of multimodal experiments are thoroughly discussed, and a comprehensive overview of possible results is provided. Although this review focuses on multimodal experiments performed on human aortic tissues, the methods used and described are not limited to human aortic tissues but can be extended to other soft materials.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway.
| |
Collapse
|
5
|
Medina-Lombardero S, Bain C, Charlton L, Pellicoro A, Rocliffe H, Cash J, Reuben R, Crichton ML. The biomechanics of wounds at physiologically relevant levels: Understanding skin's stress-shielding effect for the quantitative assessment of healing. Mater Today Bio 2024; 25:100963. [PMID: 38312802 PMCID: PMC10835282 DOI: 10.1016/j.mtbio.2024.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Wounds are responsible for the decrease in quality of life of billions of people around the world. Their assessment relies on subjective parameters which often delays optimal treatments and results in increased healthcare costs. In this work, we sought to understand and quantify how wounds at different healing stages (days 1, 3, 7 and 14 post wounding) change the mechanical properties of the tissues that contain them, and how these could be measured at clinically relevant strain levels, as a step towards quantitative wound tracking technologies. To achieve this, we used digital image correlation and mechanical testing on a mouse model of wound healing to map the global and local tissue strains. We found no significant differences in the elastic and viscoelastic properties of wounded vs unwounded skin when samples were measured in bulk, presumably as these were masked by the protective mechanisms of skin, which redistributes the applied loads to mitigate high stresses and reduce tissue damage. By measuring local strain values and observing the distinct patterns they formed, it was possible to establish a connection between the healing phase of the tissue (determined by the time post-injury and the observed histological features) and the overall mechanical behaviour. Importantly, these parameters were measured from the surface of the tissue, using physiologically relevant strains without increasing the tissue's damage. Adaptations of these approaches for clinical use have the potential to aid in the identification of skin healing problems, such as excessive inflammation or lack of mechanical progression over time. An increase, decrease, or lack of change in the elasticity and viscoelasticity parameters, can be indicative of wound state, thus ultimately leading to improved diagnostic outcomes.
Collapse
Affiliation(s)
- Sara Medina-Lombardero
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Connor Bain
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Laura Charlton
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3RF, United Kingdom
| | - Antonella Pellicoro
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Holly Rocliffe
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Jenna Cash
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Robert Reuben
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Michael L. Crichton
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| |
Collapse
|
6
|
Krolopp Á, Fésűs L, Szipőcs G, Wikonkál N, Szipőcs R. A 20 MHz Repetition Rate, Sub-Picosecond Ti-Sapphire Laser for Fiber Delivery in Nonlinear Microscopy of the Skin. Life (Basel) 2024; 14:231. [PMID: 38398740 PMCID: PMC10889949 DOI: 10.3390/life14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Nonlinear microscopy (NM) enables us to investigate the morphology or monitor the physiological processes of the skin through the use of ultrafast lasers. Fiber (or fiber-coupled) lasers are of great interest because they can easily be combined with a handheld, scanning nonlinear microscope. This latter feature greatly increases the utility of NM for pre-clinical applications and in vivo tissue imaging. Here, we present a fiber-coupled, sub-ps Ti-sapphire laser system being optimized for in vivo, stain-free, 3D imaging of skin alterations with a low thermal load of the skin. The laser is pumped by a low-cost, 2.1 W, 532 nm pump laser and delivers 0.5-1 ps, high-peak-power pulses at a ~20 MHz repetition rate. The spectral bandwidth of the laser is below 2 nm, which results in a low sensitivity for dispersion during fiber delivery. The reduction in the peak intensity due to the increased pulse duration is compensated by the lower repetition rate of our laser. In our proof-of-concept imaging experiments, a ~1.8 m long, commercial hollow-core photonic bandgap fiber was used for fiber delivery. Fresh and frozen skin biopsies of different skin alterations (e.g., adult hemangioma, basal cell cancer) and an unaffected control were used for high-quality, two-photon excitation fluorescence microscopy (2PEF) and second-harmonic generation (SHG) z-stack (3D) imaging.
Collapse
Affiliation(s)
- Ádám Krolopp
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - Luca Fésűs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, H-1085 Budapest, Hungary
| | - Gergely Szipőcs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| | - Norbert Wikonkál
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária Street 41, H-1085 Budapest, Hungary
| | - Róbert Szipőcs
- HUN-REN Wigner RCP, Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- R&D Ultrafast Lasers Ltd., Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
7
|
Matsuzaki S, Hase E, Takanari H, Hayashi Y, Hayashi Y, Oshikata H, Minamikawa T, Kimura S, Ichimura-Shimizu M, Yasui T, Harada M, Tsuneyama K. Quantification of collagen fiber properties in alcoholic liver fibrosis using polarization-resolved second harmonic generation microscopy. Sci Rep 2023; 13:22100. [PMID: 38092851 PMCID: PMC10719293 DOI: 10.1038/s41598-023-48887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Liver fibrosis is assessed mainly by conventional staining or second harmonic generation (SHG) microscopy, which can only provide collagen content in fibrotic area. We propose to use polarization-resolved SHG (PR-SHG) microscopy to quantify liver fibrosis in terms of collagen fiber orientation and crystallization. Liver samples obtained from autopsy cases with fibrosis stage of F0-F4 were evaluated with an SHG microscope, and 12 consecutive PR-SHG images were acquired while changing the polarization azimuth angle of the irradiated laser from 0° to 165° in 15° increments using polarizer. The fiber orientation angle (φ) and degree (ρ) of collagen were estimated from the images. The SHG-positive area increased as the fibrosis stage progressed, which was well consistent with Sirius Red staining. The value of φ was random regardless of fibrosis stage. The mean value of ρ (ρ-mean), which represents collagen fiber crystallinity, varied more as fibrosis progressed to stage F3, and converged to a significantly higher value in F4 than in other stages. Spatial dispersion of ρ (ρ-entropy) also showed increased variation in the stage F3 and decreased variation in the stage F4. It was shown that PR-SHG could provide new information on the properties of collagen fibers in human liver fibrosis.
Collapse
Affiliation(s)
- Saya Matsuzaki
- Department of Radiology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Eiji Hase
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Hiroki Takanari
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- Department of Legal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yuri Hayashi
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Yusaku Hayashi
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Haruto Oshikata
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | | | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan
| | - Takeshi Yasui
- Division of Next-Generation Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Masafumi Harada
- Department of Radiology, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Koichi Tsuneyama
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan.
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School of Medicine, 3-18-15, Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
8
|
Vadon-Le Goff S, Tessier A, Napoli M, Dieryckx C, Bauer J, Dussoyer M, Lagoutte P, Peyronnel C, Essayan L, Kleiser S, Tueni N, Bettler E, Mariano N, Errazuriz-Cerda E, Fruchart Gaillard C, Ruggiero F, Becker-Pauly C, Allain JM, Bruckner-Tuderman L, Nyström A, Moali C. Identification of PCPE-2 as the endogenous specific inhibitor of human BMP-1/tolloid-like proteinases. Nat Commun 2023; 14:8020. [PMID: 38049428 PMCID: PMC10696041 DOI: 10.1038/s41467-023-43401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-β superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.
Collapse
Affiliation(s)
- Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Manon Napoli
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Cindy Dieryckx
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Julien Bauer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Priscillia Lagoutte
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Célian Peyronnel
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Lucie Essayan
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Svenja Kleiser
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Nicole Tueni
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Emmanuel Bettler
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Elisabeth Errazuriz-Cerda
- University of Lyon, Centre d'Imagerie Quantitative Lyon-Est (CIQLE), SFR Santé-Lyon Est, 69373, Lyon, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Florence Ruggiero
- ENS Lyon, CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), 69007, Lyon, France
| | - Christoph Becker-Pauly
- University of Kiel, Biochemical Institute, Unit for Degradomics of the Protease Web, Kiel, Germany
| | - Jean-Marc Allain
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France.
| |
Collapse
|
9
|
Godefroy W, Faivre L, Sansac C, Thierry B, Allain JM, Bruneval P, Agniel R, Kellouche S, Monasson O, Peroni E, Jarraya M, Setterblad N, Braik M, Even B, Cheverry S, Domet T, Albanese P, Larghero J, Cattan P, Arakelian L. Development and qualification of clinical grade decellularized and cryopreserved human esophagi. Sci Rep 2023; 13:18283. [PMID: 37880340 PMCID: PMC10600094 DOI: 10.1038/s41598-023-45610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
Tissue engineering is a promising alternative to current full thickness circumferential esophageal replacement methods. The aim of our study was to develop a clinical grade Decellularized Human Esophagus (DHE) for future clinical applications. After decontamination, human esophagi from deceased donors were placed in a bioreactor and decellularized with sodium dodecyl sulfate (SDS) and ethylendiaminetetraacetic acid (EDTA) for 3 days. The esophagi were then rinsed in sterile water and SDS was eliminated by filtration on an activated charcoal cartridge for 3 days. DNA was removed by a 3-hour incubation with DNase. A cryopreservation protocol was evaluated at the end of the process to create a DHE cryobank. The decellularization was efficient as no cells and nuclei were observed in the DHE. Sterility of the esophagi was obtained at the end of the process. The general structure of the DHE was preserved according to immunohistochemical and scanning electron microscopy images. SDS was efficiently removed, confirmed by a colorimetric dosage, lack of cytotoxicity on Balb/3T3 cells and mesenchymal stromal cell long term culture. Furthermore, DHE did not induce lymphocyte proliferation in-vitro. The cryopreservation protocol was safe and did not affect the tissue, preserving the biomechanical properties of the DHE. Our decellularization protocol allowed to develop the first clinical grade human decellularized and cryopreserved esophagus.
Collapse
Affiliation(s)
- William Godefroy
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France.
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Caroline Sansac
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Briac Thierry
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Service d'ORL Pédiatrique, AP-HP, Hôpital Universitaire Necker, 75015, Paris, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Paris, France
| | - Patrick Bruneval
- Service d'Anatomie Pathologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), CY Cergy Paris Université, Cergy-Pontoise, France
| | - Olivier Monasson
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Elisa Peroni
- CNRS, BioCIS, CY Cergy Paris Université, 95000, Cergy Pontoise, France
- CNRS, BioCIS, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Mohamed Jarraya
- Banque de Tissus Humains, Hôpital St-Louis, AP-HP, Paris, France
| | - Niclas Setterblad
- UMS Saint-Louis US53 / UAR2030, Institut de Recherche Saint-Louis Plateforme Technologique Centre, Université Paris Cité - Inserm - CNRS, Paris, France
| | - Massymissa Braik
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Benjamin Even
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Sophie Cheverry
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Thomas Domet
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
| | - Patricia Albanese
- Laboratoire Gly-CRRET, Université Paris Est Créteil, Université Paris Est, EA 4397 ERL CNRS 9215, Créteil, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
- Centre MEARY de Thérapie Cellulaire Et Génique, AP-HP, Hôpital Saint-Louis, 75010, Paris, France
| | - Pierre Cattan
- Service de Chirurgie Viscérale, Cancérologique et Endocrinienne, Hôpital Saint-Louis - Université Paris Cité, Paris, France
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
- CIC de Biothérapies CBT 501, Paris, France
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France
| | - Lousineh Arakelian
- Unité de Thérapie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France.
- CIC de Biothérapies CBT 501, Paris, France.
- Human Immunology, Pathophysiology, Immunotherapy / HIPI / INSERM UMR976, Laboratoire de Biotechnologies de Cellules Souches, Université Paris Cité, 75010, Paris, France.
| |
Collapse
|
10
|
Parvez N, Merson J, Picu RC. Stiffening mechanisms in stochastic athermal fiber networks. Phys Rev E 2023; 108:044502. [PMID: 37978689 DOI: 10.1103/physreve.108.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
Stochastic athermal networks composed of fibers that deform axially and in bending strain stiffen much faster than thermal networks of axial elements, such as elastomers. Here we investigate the physical origin of stiffening in athermal network materials. To this end, we use models of stochastic networks subjected to uniaxial deformation and identify the emergence of two subnetworks, the stress path subnetwork (SPSN) and the bending support subnetwork (BSSN), which carry most of the axial and bending energies, respectively. The BSSN controls lateral contraction and modulates the organization of the SPSN during deformation. The SPSN is preferentially oriented in the loading direction, while the BSSN's preferential orientation is orthogonal to the SPSN. In nonaffine networks stiffening is exponential, while in close-to-affine networks it is quadratic. The difference is due to a much more modest lateral contraction in the approximately affine case and to a stiffer BSSN. Exponential stiffening emerges from the interplay of the axial and bending deformation modes at the scale of individual or small groups of fibers undergoing large deformations and being subjected to the constraint of rigid cross-links, and it is not necessarily a result of complex interactions involving many connected fibers. An apparent third regime of quadratic stiffening may be evidenced in nonaffinely deforming networks provided the nominal stress is observed. This occurs at large stretches, when the BSSN contribution of stiffening vanishes. However, this regime is not present if the Cauchy stress is used, in which case stiffening is exponential throughout the entire deformation. These results shed light on the physical nature of stiffening in a broad class of materials including connective tissue, the extracellular matrix, nonwovens, felt, and other athermal network materials.
Collapse
Affiliation(s)
- N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
11
|
Colboc H, Moguelet P, Bazin D, Letavernier E, Sun C, Chessel A, Carvalho P, Lok C, Dillies AS, Chaby G, Maillard H, Kottler D, Goujon E, Jurus C, Panaye M, Tang E, Courville P, Boury A, Monfort JB, Chasset F, Senet P, Schanne-Klein MC. Elastic fiber alterations and calcifications in calcific uremic arteriolopathy. Sci Rep 2023; 13:15519. [PMID: 37726292 PMCID: PMC10509184 DOI: 10.1038/s41598-023-42492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
Calcific uremic arteriolopathy (CUA) is a severely morbid disease, affecting mostly dialyzed end-stage renal disease (ESRD) patients, associated with calcium deposits in the skin. Calcifications have been identified in ESRD patients without CUA, indicating that their presence is not specific to the disease. The objective of this retrospective multicenter study was to compare elastic fiber structure and skin calcifications in ESRD patients with CUA to those without CUA using innovative structural techniques. Fourteen ESRD patients with CUA were compared to 12 ESRD patients without CUA. Analyses of elastic fiber structure and skin calcifications using multiphoton microscopy followed by machine-learning analysis and field-emission scanning electron microscopy coupled with energy dispersive X-ray were performed. Elastic fibers specifically appeared fragmented in CUA. Quantitative analyses of multiphoton images showed that they were significantly straighter in ESRD patients with CUA than without CUA. Interstitial and vascular calcifications were observed in both groups of ESRD patients, but vascular calcifications specifically appeared massive and circumferential in CUA. Unlike interstitial calcifications, massive circumferential vascular calcifications and elastic fibers straightening appeared specific to CUA. The origins of such specific elastic fiber's alteration are still to be explored and may involve relationships with ischemic vascular or inflammatory processes.
Collapse
Affiliation(s)
- Hester Colboc
- Sorbonne Université, Hôpital Rothschild, Service Plaies et Cicatrisation, UMRS_1155, 5, Rue Santerre, 75012, Paris, France.
| | - Philippe Moguelet
- Sorbonne Université, Hôpital Tenon, Anatomie et Cytologie Pathologiques, Paris, France
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, UMRS_1155, Paris, France
| | - Chenyu Sun
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Anatole Chessel
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Priscille Carvalho
- Centre Hospitalier Universitaire de Rouen, Service de Dermatologie, Rouen, France
| | - Catherine Lok
- Centre Hospitalier Universitaire d'Amiens, Service de Dermatologie, Amiens, France
| | | | - Guillaume Chaby
- Centre Hospitalier Universitaire d'Amiens, Service de Dermatologie, Amiens, France
| | - Hervé Maillard
- Centre Hospitalier du Mans, Service de Dermatologie, Le Mans, France
| | - Diane Kottler
- Centre Hospitalier Universitaire de Caen, Service de Dermatologie, Caen, France
| | - Elisa Goujon
- Centre Hospitalier de Chalon-sur-Saône, Service de Dermatologie, Chalon, France
| | - Christine Jurus
- Clinique du Tonkin, Service de Médecine Vasculaire, Villeurbanne, France
| | - Marine Panaye
- Clinique du Tonkin, Service de Médecine Vasculaire, Villeurbanne, France
| | - Ellie Tang
- Sorbonne Université, Hôpital Tenon, Service des Explorations Fonctionnelles Multidisciplinaires, UMRS_1155, Paris, France
| | - Philippe Courville
- Centre Hospitalier Universitaire de Rouen, Anatomie et Cytologie Pathologiques, Rouen, France
| | - Antoine Boury
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Jean-Benoit Monfort
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie 3t Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Patricia Senet
- Sorbonne Université, Faculté de Médecine, Service de Dermatologie et Allergologie, Hôpital Tenon, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d'Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
12
|
Manesco C, Saavedra-Villanueva O, Martin M, de Lizaraga J, Varga B, Cloitre T, Gerber YN, Perrin FE, Gergely C. Organization of collagen fibers and tissue hardening: Markers of fibrotic scarring after spinal cord injury in mice revealed by multiphoton-atomic force microscopy imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102699. [PMID: 37572769 DOI: 10.1016/j.nano.2023.102699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/14/2023]
Abstract
Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar. To investigate the role of collagen, we used a multimodal label-free imaging approach combining multiphoton and atomic force microscopy. The second harmonic generation signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen density and the formation of more tortuous fibers over time after injury are observed. Nano-mechanical investigations revealed a noticeable hardening of the injured area, correlated with collagen fibers' formation. These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution.
Collapse
Affiliation(s)
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Yannick Nicolas Gerber
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; IUF, Intitut Universitaire de, France, Paris
| | | | | |
Collapse
|
13
|
Merson J, Parvez N, Picu RC. Probing soft fibrous materials by indentation. Acta Biomater 2023; 163:25-34. [PMID: 35381401 PMCID: PMC9526757 DOI: 10.1016/j.actbio.2022.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Indentation is often used to measure the stiffness of soft materials whose main structural component is a network of filaments, such as the cellular cytoskeleton, connective tissue, gels, and the extracellular matrix. For elastic materials, the typical procedure requires fitting the experimental force-displacement curve with the Hertz model, which predicts that f=kδ1.5 and k is proportional to the reduced modulus of the indented material, E/(1-ν2). Here we show using explicit models of fiber networks that the Hertz model applies to indentation in network materials provided the indenter radius is larger than approximately 12lc, where lc is the mean segment length of the network. Using smaller indenters leads to a relation between force and indentation displacement of the form f=kδq, where q is observed to increase with decreasing indenter radius. Using the Hertz model to interpret results of indentations in network materials using small indenters leads to an inferred modulus smaller than the real modulus of the material. The origin of this departure from the classical Hertz model is investigated. A compacted, stiff network region develops under the indenter, effectively increasing the indenter size and modifying its shape. This modification is marginal when large indenters are used. However, when the indenter radius is small, the effect of the compacted layer is pronounced as it changes the indenter profile from spherical towards conical. This entails an increase of exponent q above the value of 1.5 corresponding to spherical indenters. STATEMENT OF SIGNIFICANCE: The article presents a study of indentation in network biomaterials and demonstrates a size effect which precludes the use of the Hertz model to infer the elastic constants of the material. The size effect occurs once the indenter radius is smaller than approximately 12 times the mean segment length of the network. This result provides guidelines for the selection of indentation conditions that guarantee the applicability of the Hertz model. At the same time, the finding may be used to infer the mean segment length of the network based on indentations with indenters of various sizes. Hence, the method can be used to evaluate this structural parameter which is not easily accessible in experiments.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
14
|
van Haasterecht L, Zhou M, Ma Y, Bartolini L, Van Mourik F, Van Zuijlen PPM, Groot ML. Visualizing dynamic three-dimensional changes of human reticular dermal collagen under mechanical strain. Biomed Phys Eng Express 2023; 9:035033. [PMID: 37054703 DOI: 10.1088/2057-1976/accc8e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/13/2023] [Indexed: 04/15/2023]
Abstract
In clinical practice, plastic surgeons are often faced with large skin defects that are difficult to close primarily. Management of large skin wounds e.g. burns or traumatic lacerations requires knowledge of skin biomechanic properties. Research into skin microstructural adaptation to mechanical deformation has only been performed using static regimes due to technical limitations. Here, we combine uniaxial stretch tests with fast second harmonic generation imaging and we apply this for the first time to investigate dynamic collagen rearrangement in reticular human dermis.Ex vivohuman skin from the abdomen and upper thigh was simultaneously uniaxially stretched while either periodically visualizing 3D reorganization, or visualizing 2D changes in real time. We determined collagen alignment via orientation indices and found pronounced variability across samples. Comparing mean orientation indices at the different stages of the stress strain curves (toe, heel, linear) showed a significant increase in collagen alignment during the linear part of the mechanical response. We conclude that fast SHG imaging during uni-axial extension is a promising research tool for future studies on skin biomechanic properties.
Collapse
Affiliation(s)
- L van Haasterecht
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB Amsterdam, The Netherlands
- Burn Center, Red Cross Hospital, PO Box 1074, 1940 EB Beverwijk, The Netherlands
| | - M Zhou
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Y Ma
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - L Bartolini
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - F Van Mourik
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - P P M Van Zuijlen
- Amsterdam UMC, Vrije Universiteit, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, PO Box 7057, 1007 MB Amsterdam, The Netherlands
- Burn Center, Red Cross Hospital, PO Box 1074, 1940 EB Beverwijk, The Netherlands
| | - M L Groot
- LaserLab Amsterdam, Department of Physics and Astronomy, Faculty of Sciences Vrije Universiteit, Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2023; 161:154-169. [PMID: 36812954 DOI: 10.1016/j.actbio.2023.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Among the three layers of the aortic wall, the media is primarily responsible for its mechanical properties, but the adventitia prevents the aorta from overstretching and rupturing. The role of the adventitia is therefore crucial with regard to aortic wall failure, and understanding the load-induced changes in tissue microstructure is of high importance. Specifically, the focus of this study is on the changes in collagen and elastin microstructure in response to macroscopic equibiaxial loading applied to the aortic adventitia. To observe these changes, multi-photon microscopy imaging and biaxial extension tests were performed simultaneously. In particular, microscopy images were recorded at 0.02 stretch intervals. The microstructural changes of collagen fiber bundles and elastin fibers were quantified with the parameters of orientation, dispersion, diameter, and waviness. The results showed that the adventitial collagen was divided from one into two fiber families under equibiaxial loading conditions. The almost diagonal orientation of the adventitial collagen fiber bundles remained unchanged, but the dispersion was substantially reduced. No clear orientation of the adventitial elastin fibers was observed at any stretch level. The waviness of the adventitial collagen fiber bundles decreased under stretch, but the adventitial elastin fibers showed no change. These original findings highlight differences between the medial and adventitial layers and provide insight into the stretching process of the aortic wall. STATEMENT OF SIGNIFICANCE: To provide accurate and reliable material models, it is essential to understand the mechanical behavior of the material and its microstructure. Such understanding can be enhanced with tracking of the microstructural changes caused by mechanical loading of the tissue. This study provides therefore a unique dataset of structural parameters of the human aortic adventitia obtained under equibiaxial loading. The structural parameters describe orientation, dispersion, diameter, and waviness of collagen fiber bundles and elastin fibers. Eventually, the microstructural changes in the human aortic adventitia are compared with the microstructural changes in the human aortic media from a previous study. This comparison reveals the cutting-edge findings on the differences in the response to the loading between these two human aortic layers.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth, University of Graz, Austria
| | - Christian Viertler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering (NTNU), Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
16
|
Picu R, Jin S. Toughness of Network Materials: Structural Parameters Controlling Damage Accumulation. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 172:105176. [PMID: 36582492 PMCID: PMC9794194 DOI: 10.1016/j.jmps.2022.105176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many materials have a network of fibers as their main structural component and are referred to as network materials. Their strength and toughness are important in both engineering and biology. In this work we consider stochastic model fiber networks without pre-existing cracks and study their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post peak regime. We observe that ductile failure takes place at constant energy release rate defined in the absence of pre-existing cracks as the strain derivative of the specific energy released. The network parameters controlling the energy release rate are identified and discussed in relation to the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to brittle failure transition as the network becomes more affine and relate the embrittlement to the reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that the network strength scales linearly with the bond strength and with the crosslink density. The present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail by the gradual accumulation of distributed damage and contribute to the development of a physical picture of failure in stochastic network materials.
Collapse
Affiliation(s)
- R.C. Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - S. Jin
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
17
|
Munisso MC, Saito S, Tsuge I, Morimoto N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J Mech Behav Biomed Mater 2023; 138:105585. [PMID: 36435035 DOI: 10.1016/j.jmbbm.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The availability of quantitative structural data on the orientation of collagen fibers is of crucial importance for understanding the behavior of connective tissues. These fibers can be visualized using a variety of imaging techniques, including second harmonic generation (SHG) microscopy. However, characterization of the collagen network requires the accurate extraction of parameters from imaging data. To this end, several automated processes have been developed to identify the preferred orientation of collagen fibers. Common methods include fast Fourier transforms and curvelet transforms, but these tools are mostly used to infer a single preferred orientation. The purpose of this pilot study was to develop an easy procedure for comprehensively comparing multiple human skin samples with the goal of analyzing load-dependent changes via SHG microscopy. We created a 3D model based upon 2D image stacks that provide fiber orientation data perpendicular and parallel to the plane of the epidermis. The SHG images were analyzed by CurveAlign to obtain angle histogram plots containing information about the multiple fiber orientations in each single image. Subsequently, contour plots of the angle histogram intensities were created to provide a useful visual plotting method to clearly show the anomalies in the angle histograms in all samples. Our results provided additional details on how the collagen network carries a load. In fact, analysis of SHG images indicated that increased stretch was accompanied by an increase in the alignment of fibers in the loading direction. Moreover, these images demonstrated that more than one type of preferred orientation is present. In particular, the 3D network of fibers appears to have two preferred orientations in the planes both perpendicular and parallel to the plane of the epidermis.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Rosalia L, Hallou A, Cochrane L, Savin T. A magnetically actuated, optically sensed tensile testing method for mechanical characterization of soft biological tissues. SCIENCE ADVANCES 2023; 9:eade2522. [PMID: 36630495 PMCID: PMC9833656 DOI: 10.1126/sciadv.ade2522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Mechanical properties of soft biological tissues play a critical role in physiology and disease, affecting cell behavior and fate decisions and contributing to tissue development, maintenance, and repair. Limitations of existing tools prevent a comprehensive characterization of soft tissue biomechanics, hindering our understanding of these fundamental processes. Here, we develop an instrument for high-fidelity uniaxial tensile testing of soft biological tissues in controlled environmental conditions, which is based on the closed-loop interaction between an electromagnetic actuator and an optical strain sensor. We first validate the instrument using synthetic elastomers characterized via conventional methods; then, we leverage the proposed device to investigate the mechanical properties of murine esophageal tissue and, individually, of each of its constitutive layers, namely, the epithelial, connective, and muscle tissues. The enhanced reliability of this instrument makes it an ideal platform for future wide-ranging studies of the mechanics of soft biological tissues.
Collapse
Affiliation(s)
- Luca Rosalia
- Health Sciences and Technology Program, Harvard-MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Adrien Hallou
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Thierry Savin
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Woessner AE, Quinn KP. Improved segmentation of collagen second harmonic generation images with a deep learning convolutional neural network. JOURNAL OF BIOPHOTONICS 2022; 15:e202200191. [PMID: 36087040 PMCID: PMC9789175 DOI: 10.1002/jbio.202200191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Collagen fibers play an important role in both the structure and function of various tissues in the human body. Visualization and quantitative measurements of collagen fibers are possible through imaging modalities such as second harmonic generation (SHG), but accurate segmentation of collagen fibers is difficult for datasets involving variable imaging depths due to the effects of scattering and absorption. Therefore, an objective approach to segmentation is needed for datasets with images of variable SHG intensity. In this study, a U-Net convolutional neural network (CNN) was trained to accurately segment collagen-positive pixels throughout SHG z-stacks. CNN performance was benchmarked against other common thresholding techniques, and was found to outperform intensity-based segmentation algorithms within an independent dataset, particularly at deeper imaging depths. These results indicate that a trained CNN can accurately segment collagen-positive pixels within a wide range of imaging depths, which is useful for quantitative SHG imaging in thick tissues.
Collapse
Affiliation(s)
- Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
20
|
Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, Mazza E, Werner S. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2-miRNA-collagen axis. Matrix Biol 2022; 113:39-60. [PMID: 36367485 DOI: 10.1016/j.matbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022]
Abstract
Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Anastasiya Martyts
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Jonas Schwestermann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Katharina Janke
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Petra Boukamp
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
21
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2022; 151:396-413. [PMID: 35970481 DOI: 10.1016/j.actbio.2022.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Understanding the correlation between tissue architecture, health status, and mechanical properties is essential for improving material models and developing tissue engineering scaffolds. Since structural-based material models are state of the art, there is an urgent need for experimentally obtained structural parameters. For this purpose, the medial layer of nine human abdominal aortas was simultaneously subjected to equibiaxial loading and multi-photon microscopy. At each loading interval of 0.02, collagen and elastin fibers were imaged based on their second-harmonic generation signal and two-photon excited autofluorescence, respectively. The structural alterations in the fibers were quantified using the parameters of orientation, diameter, and waviness. The results of the mechanical tests divided the sample cohort into the ruptured and non-ruptured, and stiff and non-stiff groups, which were covered by the findings from histological investigations. The alterations in structural parameters provided an explanation for the observed mechanical behavior. In addition, the waviness parameters of both collagen and elastin fibers showed the potential to serve as indicators of tissue strength. The data provided address deficiencies in current material models and bridge multiscale mechanisms in the aortic media. STATEMENT OF SIGNIFICANCE: Available material models can reproduce, but cannot predict, the mechanical behavior of human aortas. This deficiency could be overcome with the help of experimentally validated structural parameters as provided in this study. Simultaneous multi-photon microscopy and biaxial extension testing revealed the microstructure of human aortic media at different stretch levels. Changes in the arrangement of collagen and elastin fibers were quantified using structural parameters such as orientation, diameter and waviness. For the first time, structural parameters of human aortic tissue under continuous loading conditions have been obtained. In particular, the waviness parameters at the reference configuration have been associated with tissue stiffness, brittleness, and the onset of atherosclerosis.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
22
|
Momen M, Brounts SH, Binversie EE, Sample SJ, Rosa GJM, Davis BW, Muir P. Selection signature analyses and genome-wide association reveal genomic hotspot regions that reflect differences between breeds of horse with contrasting risk of degenerative suspensory ligament desmitis. G3 (BETHESDA, MD.) 2022; 12:6648349. [PMID: 35866615 PMCID: PMC9526059 DOI: 10.1093/g3journal/jkac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabrina H Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Guilherme J M Rosa
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Peter Muir
- Corresponding author: Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Royer SP, Han SJ. Mechanobiology in the Comorbidities of Ehlers Danlos Syndrome. Front Cell Dev Biol 2022; 10:874840. [PMID: 35547807 PMCID: PMC9081723 DOI: 10.3389/fcell.2022.874840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders, characterized by skin stretchability, joint hypermobility and instability. Mechanically, various tissues from EDS patients exhibit lowered elastic modulus and lowered ultimate strength. This change in mechanics has been associated with EDS symptoms. However, recent evidence points toward a possibility that the comorbidities of EDS could be also associated with reduced tissue stiffness. In this review, we focus on mast cell activation syndrome and impaired wound healing, comorbidities associated with the classical type (cEDS) and the hypermobile type (hEDS), respectively, and discuss potential mechanobiological pathways involved in the comorbidities.
Collapse
Affiliation(s)
- Shaina P. Royer
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
- Department of Mechanical Engineering, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Sangyoon J. Han,
| |
Collapse
|
24
|
Girardeau-Hubert S, Lynch B, Zuttion F, Label R, Rayee C, Brizion S, Ricois S, Martinez A, Park E, Kim C, Marinho PA, Shim JH, Jin S, Rielland M, Soeur J. Impact of microstructure on cell behavior and tissue mechanics in collagen and dermal decellularized extra-cellular matrices. Acta Biomater 2022; 143:100-114. [PMID: 35235868 DOI: 10.1016/j.actbio.2022.02.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/01/2022]
Abstract
Skin models are used for many applications such as research and development or grafting. Unfortunately, most lack a proper microenvironment producing poor mechanical properties and inaccurate extra-cellular matrix composition and organization. In this report we focused on mechanical properties, extra-cellular matrix organization and cell interactions in human skin samples reconstructed with pure collagen or dermal decellularized extra-cellular matrices (S-dECM) and compared them to native human skin. We found that Full-thickness S-dECM samples presented stiffness two times higher than collagen gel and similar to ex vivo human skin, and proved for the first time that keratinocytes also impact dermal mechanical properties. This was correlated with larger fibers in S-dECM matrices compared to collagen samples and with a differential expression of F-actin, vinculin and tenascin C between S-dECM and collagen samples. This is clear proof of the microenvironment's impact on cell behaviors and mechanical properties. STATEMENT OF SIGNIFICANCE: In vitro skin models have been used for a long time for clinical applications or in vitro knowledge and evaluation studies. However, most lack a proper microenvironment producing a poor combination of mechanical properties and appropriate biological outcomes, partly due to inaccurate extra-cellular matrix (ECM) composition and organization. This can lead to limited predictivity and weakness of skin substitutes after grafting. This study shows, for the first time, the importance of a complex and rich microenvironment on cell behaviors, matrix macro- and micro-organization and mechanical properties. The increased composition and organization complexity of dermal skin decellularized extra-cellular matrix populated with differentiated cells produces in vitro skin models closer to native human skin physiology.
Collapse
|
25
|
Biaxial mechanics of thermally denaturing skin - Part 1: Experiments. Acta Biomater 2022; 140:412-420. [PMID: 34560301 DOI: 10.1016/j.actbio.2021.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
The mechanics of collagenous soft tissues, such as skin, are sensitive to heat. Thus, quantifying and modeling thermo-mechanical coupling of skin is critical to our understanding of skin's physiology, pathophysiology, and its treatment. However, key gaps persist in our knowledge about skin's coupled thermo-mechanics. Among them, we haven't quantified the role of skin's microstructural organization in its response to superphysiological loading. To fill this gap, we conducted a comprehensive set of experiments in which we combined biaxial mechanical testing with histology and two-photon imaging under liquid heat treatment at temperatures ranging from 37∘C to 95∘C lasting between 2 seconds and 5 minutes. Among other observations, we found that unconstrained skin, when exposed to high temperatures, shrinks anisotropically with the principal direction of shrinkage being aligned with collagen's principal orientation. Additionally, we found that when skin is isometrically constrained, it produces significant forces during denaturation that are also anisotropic. Finally, we found that denaturation significantly alters the mechanical behavior of skin. For short exposure times, this alteration is reflected in a reduction of stiffness at high strains. At long exposure times, the tissue softened to a point where it became untestable. We supplemented our findings with confirmation of collagen denaturation in skin via loss of birefringence and second harmonic generation. Finally, we captured all time-, temperature-, and direction-dependent experimental findings in a hypothetical model. Thus, this work fills a fundamental gap in our current understanding of skin thermo-mechanics and will support future developments in thermal injury prevention, thermal injury management, and thermal therapeutics of skin. STATEMENT OF SIGNIFICANCE: Our work experimentally explores how skin reacts to being heated. That is, it measures how much skin shrinks, what forces it produces, and how its mechanical properties change; all as a function of temperature, but also of direction and time. Additionally, our work connects these measurements to changes in skin's microscopic make-up. This knowledge is important to our understanding of skin's function and dysfunction, especially during burn injuries or heat-dependent treatments.
Collapse
|
26
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. Effect of collagen fibre orientation on the Poisson's ratio and stress relaxation of skin: an ex vivo and in vivo study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211301. [PMID: 35345435 PMCID: PMC8941416 DOI: 10.1098/rsos.211301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
During surgical treatment skin undergoes extensive deformation, hence it must be able to withstand large mechanical stresses without damage. Therefore, understanding the mechanical properties of skin becomes important. A detailed investigation on the relationship between the three-dimensional deformation response of skin and its microstructure is conducted in the current study. This study also discloses the underlying science of skin viscoelasticity. Deformation response of skin is captured using digital image correlation, whereas micro-CT, scanning electron microscopy and atomic force microscopy are used for microstructure analysis. Skin shows a large lateral contraction and expansion (auxeticity) when stretched parallel and perpendicular to the skin tension lines, respectively. Large lateral contraction is a result of fluid exudation from the tissue, while large rotation of the stiff collagen fibres in the loading direction explains the skin auxeticity. During stress relaxation, lateral contraction and fluid effluxion from skin reveal that tissue volume loss is the intrinsic science of skin viscoelasticity. Furthermore, the results obtained from in vivo study on human skin show the relevance of the ex vivo study to physiological conditions and stretching of the skin during its treatments.
Collapse
Affiliation(s)
- Krashn Kumar Dwivedi
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| | - Navin Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, India
- Department of Mechanical Engineering, Indian Institute of Technology, Ropar, India
| |
Collapse
|
27
|
Gök Ç, Devecioğlu İ, Güçlü B. Mechanical Impedance of Rat Glabrous Skin and Its Relation With Skin Morphometry. J Biomech Eng 2022; 144:1116027. [PMID: 34423811 DOI: 10.1115/1.4052225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 11/08/2022]
Abstract
The mechanical impedance of intact and epidermis-peeled rat glabrous skin was studied at two sites (digit and sole) and at two frequencies (40 Hz and 250 Hz). The thicknesses of skin layers at the corresponding regions were measured histologically from intact- and peeled-skin samples in every subject. Compared to intact sole skin, digital rat skin has thicker layers and higher mechanical resistance, and it is less stiff. The resistance of the skin significantly decreased after epidermal peeling at both the digit and the sole. Furthermore, peeling caused the reactance to become positive due to inertial effects. As the frequency was increased from 40 to 250 Hz, the resistance and stiffness also increased for the intact skin, while the peeled skin showed less frictional (i.e., resistance) but more inertial (i.e., positive reactance) effects. We estimated the mechanical properties of epidermis and dermis with lumped-element models developed for both intact and peeled conditions. The models predicted that dermis has higher mass, lower stiffness, and lower resistance compared to epidermis, similar to the experimental impedance results obtained in the peeled condition which consisted mostly of dermis. The overall impedance was simulated more successfully at 40 Hz. When both frequencies are considered, the models produced consistent results for resistance in both conditions. The results imply that most of the model parameters should be frequency-dependent and suggest that mechanical properties of epidermis can be related to its thickness. These findings may help in designing artificial skin for neuroprosthetic limbs.
Collapse
Affiliation(s)
- Çağlar Gök
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Engineering Faculty, Tekirdağ Namık Kemal University, Tekirdağ 59860, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, İstanbul 34684, Turkey
| |
Collapse
|
28
|
Lynch B, Pageon H, Le Blay H, Brizion S, Bastien P, Bornschlögl T, Domanov Y. A mechanistic view on the aging human skin through ex vivo layer-by-layer analysis of mechanics and microstructure of facial and mammary dermis. Sci Rep 2022; 12:849. [PMID: 35039567 PMCID: PMC8764052 DOI: 10.1038/s41598-022-04767-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/31/2021] [Indexed: 01/09/2023] Open
Abstract
Age-related changes in skin mechanics have a major impact on the aesthetic perception of skin. The link between skin microstructure and mechanics is crucial for therapeutic and cosmetic applications as it bridges the micro- and the macro-scale. While our perception is governed by visual and tactile changes at the macroscopic scale, it is the microscopic scale (molecular assemblies, cells) that is targeted by topical treatments including active compounds and energies. We report here a large dataset on freshly excised human skin, and in particular facial skin highly relevant for cosmetics and aesthetic procedures. Detailed layer-by-layer mechanical analysis revealed significant age-dependent decrease in stiffness and elastic recoil of full-thickness skin from two different anatomical areas. In mammary skin, we found that the onset of mechanical degradation was earlier in the superficial papillary layer than in the deeper, reticular dermis. These mechanical data are linked with microstructural alterations observed in the collagen and elastic networks using staining and advanced imaging approaches. Our data suggest that with ageing, the earliest microstructural and mechanical changes occur in the top-most layers of dermis/skin and then propagate deeper, providing an opportunity for preventive topical treatments acting at the level of papillary dermis.
Collapse
Affiliation(s)
- Barbara Lynch
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France.
| | - Hervé Pageon
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - Heiva Le Blay
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - Sébastien Brizion
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - Philippe Bastien
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - Thomas Bornschlögl
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| | - Yegor Domanov
- L'Oréal Research and Innovation, Advanced Research, Aulnay-sous-Bois, France
| |
Collapse
|
29
|
Raoux C, Schmeltz M, Bied M, Alnawaiseh M, Hansen U, Latour G, Schanne-Klein MC. Quantitative structural imaging of keratoconic corneas using polarization-resolved SHG microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:4163-4178. [PMID: 34457406 PMCID: PMC8367248 DOI: 10.1364/boe.426145] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/22/2021] [Indexed: 05/20/2023]
Abstract
The human cornea is mainly composed of collagen fibrils aligned together within stacked lamellae. This lamellar structure can be affected in pathologies such as keratoconus, which is characterized by progressive corneal thinning and local steepening. In this study, we use polarization-resolved second harmonic generation (P-SHG) microscopy to characterize 8 control and 6 keratoconic human corneas. Automated processing of P-SHG images of transverse sections provides the collagen orientation in every pixel with sub-micrometer resolution. Series of P-SHG images recorded in the most anterior region of the stroma evidence sutural lamellae inclined at 22° ± 5° to the corneal surface, but show no significant difference between control and keratoconic corneas. In contrast, series of P-SHG images acquired along the full thickness of the stroma show a loss of order in the lamellar structure of keratoconic corneas, in agreement with their defective mechanical properties. This structural difference is analyzed quantitatively by computing the entropy and the orientation index of the collagen orientation distribution and significant differences are obtained along the full thickness of the stroma. This study shows that P-SHG is an effective tool for automatic quantitative analysis of structural defects of human corneas and should be applied to other collagen-rich tissues.
Collapse
Affiliation(s)
- Clothilde Raoux
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- These authors contributed equally
| | - Margaux Schmeltz
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- These authors contributed equally
| | - Marion Bied
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Maged Alnawaiseh
- Department of Ophthalmology, Hospital Fulda, University of Marburg, Campus Fulda, 36043 Fulda, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Münster, 48149 Münster, Germany
| | - Gaël Latour
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, Ecole polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
30
|
Witte M, Rübhausen M, Jaspers S, Wenck H, Fischer F. A method to analyze the influence of mechanical strain on dermal collagen morphologies. Sci Rep 2021; 11:7565. [PMID: 33828115 PMCID: PMC8027212 DOI: 10.1038/s41598-021-86907-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Collagen fibers and their orientation play a major role in the mechanical behavior of soft biological tissue such as skin. Here, we present a proof-of-principle study correlating mechanical properties with collagen fiber network morphologies. A dedicated multiphoton stretching device allows for mechanical deformations in combination with a simultaneous analysis of its collagen fiber network by second harmonic generation imaging (SHG). The recently introduced Fiber Image Network Evaluation (FINE) algorithm is used to obtain detailed information about the morphology with regard to fiber families in collagen network images. To demonstrate the potential of our method, we investigate an isotropic and an anisotropic ex-vivo dorsal pig skin sample under quasi-static cyclic stretching and relaxation sequences. Families of collagen fibers are found to form a partially aligned collagen network under strain. We find that the relative force uptake is accomplished in two steps. Firstly, fibers align within their fiber families and, secondly, fiber families orient in the direction of force. The maximum alignment of the collagen fiber network is found to be determined by the largest strain. Isotropic and anisotropic samples reveal a different micro structural behavior under repeated deformation leading to a similar force uptake after two stretching cycles. Our method correlates mechanical properties with morphologies in collagen fiber networks.
Collapse
Affiliation(s)
- Maximilian Witte
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, Hamburg, 22607, Germany.,Beiersdorf AG, Hamburg, 20245, Germany
| | - Michael Rübhausen
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, Hamburg, 22607, Germany
| | | | | | | |
Collapse
|
31
|
Woessner AE, Jones JD, Witt NJ, Sander EA, Quinn KP. Three-Dimensional Quantification of Collagen Microstructure During Tensile Mechanical Loading of Skin. Front Bioeng Biotechnol 2021; 9:642866. [PMID: 33748088 PMCID: PMC7966723 DOI: 10.3389/fbioe.2021.642866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
Skin is a heterogeneous tissue that can undergo substantial structural and functional changes with age, disease, or following injury. Understanding how these changes impact the mechanical properties of skin requires three-dimensional (3D) quantification of the tissue microstructure and its kinematics. The goal of this study was to quantify these structure-function relationships via second harmonic generation (SHG) microscopy of mouse skin under tensile mechanical loading. Tissue deformation at the macro- and micro-scale was quantified, and a substantial decrease in tissue volume and a large Poisson’s ratio was detected with stretch, indicating the skin differs substantially from the hyperelastic material models historically used to explain its behavior. Additionally, the relative amount of measured strain did not significantly change between length scales, suggesting that the collagen fiber network is uniformly distributing applied strains. Analysis of undeformed collagen fiber organization and volume fraction revealed a length scale dependency for both metrics. 3D analysis of SHG volumes also showed that collagen fiber alignment increased in the direction of stretch, but fiber volume fraction did not change. Interestingly, 3D fiber kinematics was found to have a non-affine relationship with tissue deformation, and an affine transformation of the micro-scale fiber network overestimates the amount of fiber realignment. This result, along with the other outcomes, highlights the importance of accurate, scale-matched 3D experimental measurements when developing multi-scale models of skin mechanical function.
Collapse
Affiliation(s)
- Alan E Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Jake D Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Nathan J Witt
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Edward A Sander
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Kyle P Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
32
|
Xydias D, Ziakas G, Psilodimitrakopoulos S, Lemonis A, Bagli E, Fotsis T, Gravanis A, Tzeranis DS, Stratakis E. Three-dimensional characterization of collagen remodeling in cell-seeded collagen scaffolds via polarization second harmonic generation. BIOMEDICAL OPTICS EXPRESS 2021; 12:1136-1153. [PMID: 33680563 PMCID: PMC7901316 DOI: 10.1364/boe.411501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 05/08/2023]
Abstract
In this study, we use non-linear imaging microscopy to characterize the structural properties of porous collagen-GAG scaffolds (CGS) seeded with human umbilical vein endothelial cells (HUVECs), as well as human mesenchymal stem cells (hMSCs), a co-culture previously reported to form vessel-like structures inside CGS. The evolution of the resulting tissue construct was monitored over 10 days via simultaneous two- and three-photon excited fluorescence microscopy. Time-lapsed 2- and 3-photon excited fluorescence imaging was utilized to monitor the temporal evolution of the vascular-like structures up to 100 µm inside the scaffold up to 10 days post-seeding. 3D polarization-dependent second harmonic generation (PSHG) was utilized to monitor collagen-based scaffold remodeling and determine collagen fibril orientation up to 200 µm inside the scaffold. We demonstrate that polarization-dependent second harmonic generation can provide a novel way to quantify the reorganization of the collagen architecture in CGS simultaneously with key biomechanical interactions between seeded cells and CGS that regulate the formation of vessel-like structures inside 3D tissue constructs. A comparison between samples at different days in vitro revealed that gradually, the scaffolds developed an orthogonal net-like architecture, previously found in real skin.
Collapse
Affiliation(s)
- Dionysios Xydias
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
- Department of Materials Science and Technology, School of Sciences and Engineering, University of Crete, Greece
| | - Georgios Ziakas
- Department of Materials Science and Technology, School of Sciences and Engineering, University of Crete, Greece
| | | | - Andreas Lemonis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
| | - Eleni Bagli
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Ioannina, Greece
| | - Achille Gravanis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece
- Department of Pharmacology, School of Medicine, University of Crete, Greece
| | - Dimitrios S. Tzeranis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Greece
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Cyprus, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece
- Department of Physics, School of Sciences and Engineering, University of Crete, Greece
| |
Collapse
|
33
|
Deogekar S, Picu RC. Strength of stochastic fibrous materials under multiaxial loading. SOFT MATTER 2021; 17:704-714. [PMID: 33216098 PMCID: PMC7856081 DOI: 10.1039/d0sm01713b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many biological and engineering materials are made from fibers organized in the form of a stochastic crosslinked network, and the mechanics of the network controls the behavior of the material. In this work we investigate the strength of stochastic networks without pre-existing damage which fail due to crosslink rupture. Athermal networks ranging from approximately affine to strongly non-affine are subjected to multiaxial loading and the strength is evaluated using numerical models. It is observed that once the stress is normalized by the strength measured in uniaxial tension, the failure surface becomes approximately independent of network parameters. This extends the relation between strength and network parameters previously established in (S. Deogekar, M. R. Islam, R. C. Picu, Parameters controlling the strength of stochastic fibrous materials, Int. J. Solids Struct., 2019, 168, 194-202) to the multiaxial case. The failure surface depends on both first two invariants of the stress. Strongly non-affine networks behave somewhat different from the affine networks under loadings close to the hydrostatic and pure shear loading modes, while the difference disappears in the first quadrant of the principal stress space. The results are compared with experimental data from the literature.
Collapse
Affiliation(s)
- S Deogekar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
34
|
Microstructural deformation observed by Mueller polarimetry during traction assay on myocardium samples. Sci Rep 2020; 10:20531. [PMID: 33239670 PMCID: PMC7688642 DOI: 10.1038/s41598-020-76820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Despite recent advances, the myocardial microstructure remains imperfectly understood. In particular, bundles of cardiomyocytes have been observed but their three-dimensional organisation remains debated and the associated mechanical consequences unknown. One of the major challenges remains to perform multiscale observations of the mechanical response of the heart wall. For this purpose, in this study, a full-field Mueller polarimetric imager (MPI) was combined, for the first time, with an in-situ traction device. The full-field MPI enables to obtain a macroscopic image of the explored tissue, while providing detailed information about its structure on a microscopic scale. Specifically it exploits the polarization of the light to determine various biophysical quantities related to the tissue scattering or anisotropy properties. Combined with a mechanical traction device, the full-field MPI allows to measure the evolution of such biophysical quantities during tissue stretch. We observe separation lines on the tissue, which are associated with a fast variation of the fiber orientation, and have the size of cardiomyocyte bundles. Thus, we hypothesize that these lines are the perimysium, the collagen layer surrounding these bundles. During the mechanical traction, we observe two mechanisms simultaneously. On one hand, the azimuth shows an affine behavior, meaning the orientation changes according to the tissue deformation, and showing coherence in the tissue. On the other hand, the separation lines appear to be resistant in shear and compression but weak against traction, with a forming of gaps in the tissue.
Collapse
|
35
|
Islam MR, Virag J, Oyen ML. Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues. J Biomech 2020; 113:110090. [PMID: 33176223 DOI: 10.1016/j.jbiomech.2020.110090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Soft biological tissues demonstrate strong time-dependent mechanical behavior, arising from their intrinsic viscoelasticity and fluid flow-induced poroelasticity. It is increasingly recognized that time-dependent mechanical properties of soft tissues influence their physiological functions and are linked to several pathological processes. Nevertheless, soft tissue time-dependent characteristics, especially their micromechanical variation with tissue composition and location, remain poorly understood. Nanoindentation is a well-established technique to measure local elastic properties but has not been fully explored to determine micro-scale time-dependent properties of soft tissues. Here, a nanoindentation-based experimental strategy is implemented to characterize the micro-scale poroelastic and viscoelastic behavior of mouse heart, kidney, and liver tissues. It is demonstrated that heart tissue exhibits substantial mechanical heterogeneity where the elastic modulus varies spatially from 1 to 30 kPa. In contrast, both kidney and liver tissues show relatively homogeneous response with elastic modulus 0.5-3 kPa. All three tissues demonstrate marked load relaxation under constant indentation, where the relaxation behavior is observed to be largely dominated by tissue viscoelasticity. Intrinsic permeability varies among different tissues, where heart tissue is found to be less permeable compared to kidney and liver tissues. Overall, the results presented herein provide key insights into the time-dependent micromechanical behavior of different tissues and can therefore contribute to studies of tissue pathology and tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States
| | - Jitka Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
36
|
Dwivedi KK, Lakhani P, Kumar S, Kumar N. The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach. J Biomech Eng 2020; 142:091006. [PMID: 32005989 DOI: 10.1115/1.4046205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 01/01/2023]
Abstract
The understanding of strain rate-dependent mechanical properties of the skin is important for accurate prediction of its biomechanics under different loading conditions. This study investigated the effect of strain rate, i.e., 0.025/s (low), 0.5/s (medium), and 1.25/s (high), ranging in the physiological loading rate of connective tissue, on the stress-relaxation response of the porcine dermis. Results show that in the initial phase of the relaxation, the value of stress relaxation (extent of relaxation) was found higher for high strain rate. However, the equilibrium stress was found strain rate independent. A Mooney-Rivlin-based five-term quasi-linear viscoelastic (QLV) model was proposed to determine the effect of strain rate on the stress-relaxation behavior of the porcine dermis. The value of relaxation modulus G1 and G2 were found higher for the high strain rate, whereas the reverse trend was observed for G3, G4, and G5. Moreover, the value of time constants τ1,τ2,τ3τ4, and τ5 were found higher for low strain rate. Statistical analysis shows no significant difference in the values of G5, τ4, and τ5 among the three strain rates. The proposed model was found capable to fit the stress-relaxation response of skin with great accuracy, e.g., root-mean-squared-error (RMSE) value equal to 0.015 ± 0.00012 MPa. Moreover, this hyper-viscoelastic model can be utilized: to quantify the effects of age and diseases on the skin; to simulate the stresses on sutures during large wound closure and impact loading.
Collapse
Affiliation(s)
- Krashn K Dwivedi
- Centre for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Piyush Lakhani
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| |
Collapse
|
37
|
Witte M, Jaspers S, Wenck H, Rübhausen M, Fischer F. General method for classification of fiber families in fiber-reinforced materials: application to in-vivo human skin images. Sci Rep 2020; 10:10888. [PMID: 32616723 PMCID: PMC7331592 DOI: 10.1038/s41598-020-67632-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Fiber structures play a major role for the function of fiber-reinforced materials such as biological tissue. An objective classification of the fiber orientations into fiber families is crucial to understand its mechanical properties. We introduce the Fiber Image Network Evaluation Algorithm (FINE algorithm) to classify and quantify the number of fiber families in scientific images. Each fiber family is characterized by an amplitude, a mean orientation, and a dispersion. A new alignment index giving the averaged fraction of aligned fibers is defined. The FINE algorithm is validated by realistic grayscale Monte-Carlo fiber images. We apply the algorithm to an in-vivo depth scan of second harmonic generation images of dermal collagen in human skin. The derived alignment index exhibits a crossover at a critical depth where two fiber families with a perpendicular orientation around the main tension line arise. This strongly suggests the presence of a transition from the papillary to the reticular dermis. Hence, the FINE algorithm provides a valuable tool for a reliable classification and a meaningful interpretation of in-vivo collagen fiber networks and general fiber reinforced materials.
Collapse
Affiliation(s)
- Maximilian Witte
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, 22607, Hamburg, Germany
- Beiersdorf AG, 20245, Hamburg, Germany
| | | | | | - Michael Rübhausen
- Center for Free-Electron Laser Science (CFEL), University of Hamburg, 22607, Hamburg, Germany
| | | |
Collapse
|
38
|
Diab M, Kumaraswamy N, Reece GP, Hanson SE, Fingeret MC, Markey MK, Ravi-Chandar K. Characterization of human female breast and abdominal skin elasticity using a bulge test. J Mech Behav Biomed Mater 2020; 103:103604. [PMID: 32090931 DOI: 10.1016/j.jmbbm.2019.103604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
Characterization of material properties of human skin is required to develop a physics-based biomechanical model that can predict deformation of female breast after cosmetic and reconstructive surgery. In this paper, we have adopted an experimental approach to characterize the biaxial response of human skin using bulge tests. Skin specimens were harvested from breast and abdominal skin of female subjects who underwent mastectomy and/or reconstruction at The University of Texas MD Anderson Cancer Center and who provided informed consent. The specimens were tested within 2 h of harvest, and after freezing for different time periods but not exceeding 6 months. Our experimental results show that storage in a freezer at -20 °C for up to about 40 days does not lead to changes in the mechanical response of the skin beyond statistical variation. Moreover, displacement at the apex of the bulged specimen versus applied pressure varies significantly between different specimens from the same subject and from different subjects. The bulge test results were used in an inverse optimization procedure in order to calibrate two different constitutive material models - the angular integration model proposed by Lanir (1983) and the generalized structure tensor formulation of Gasser et al. (2006). The material parameters were estimated through a cost function that penalized deviations of the displacement and principal curvatures at the apex. Generally, acceptable fits were obtained with both models, although the angular integration model was able to fit the curvatures slightly better than the Gasser et al. model. The range of the model parameters has been extracted for use in physics-based biomechanical models of the breast.
Collapse
Affiliation(s)
- Mazen Diab
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA; Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Nishamathi Kumaraswamy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory P Reece
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Summer E Hanson
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle C Fingeret
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mia K Markey
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishnaswamy Ravi-Chandar
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
39
|
Noise reduction and quantification of fiber orientations in greyscale images. PLoS One 2020; 15:e0227534. [PMID: 31945084 PMCID: PMC6964846 DOI: 10.1371/journal.pone.0227534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
Quantification of the angular orientation distribution of fibrous tissue structures in scientific images benefits from the Fourier image analysis to obtain quantitative information. Measurement uncertainties represent a major challenge and need to be considered by propagating them in order to determine an adaptive anisotropic Fourier filter. Our adaptive filter method (AF) is based on the maximum relative uncertainty δcut of the power spectrum as well as a weighted radial sum with weighting factor α. We use a Monte-Carlo simulation to obtain realistic greyscale images that include defined variations in fiber thickness, length, and angular dispersion as well as variations in noise. From this simulation the best agreement between predefined and derived angular orientation distribution is found for evaluation parameters δcut = 2.1% and α = 1.5. The resulting cumulative orientation distribution was modeled by a sigmoid function to obtain the mean angle and the fiber dispersion. A comparison to a state-of-the-art band-pass method revealed that the AF method is more suitable for the application on greyscale fiber images, since the error of the fiber dispersion significantly decreased from (33.9 ± 26.5)% to (13.2 ± 12.7)%. Both methods were found to accurately quantify the mean fiber orientation with an error of (1.9 ± 1.5)° and (2.3 ± 2.1)° in case of the AF and the band-pass method, respectively. We demonstrate that the AF method is able to accurately quantify the fiber orientation distribution in in vivo second-harmonic generation images of dermal collagen with a mean fiber orientation error of (6.0 ± 4.0)° and a dispersion error of (9.3 ± 12.1)%.
Collapse
|
40
|
Meador WD, Sugerman GP, Story HM, Seifert AW, Bersi MR, Tepole AB, Rausch MK. The regional-dependent biaxial behavior of young and aged mouse skin: A detailed histomechanical characterization, residual strain analysis, and constitutive model. Acta Biomater 2020; 101:403-413. [PMID: 31614209 DOI: 10.1016/j.actbio.2019.10.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/12/2023]
Abstract
Skin fulfills several vital functions, many of which are dependent on its mechanical properties. Therefore, as mice have become an invaluable model for skin research, determining murine skin's mechanical properties is important. Specifically, skin's mechanical properties are important for functional tests as well as for prognostic and diagnostic purposes. Additionally, computational simulations of skin behavior are becoming commonplace, rendering accurate models of murine skin's constitutive behavior necessary. To date, our knowledge of mouse skin mechanics shows significant gaps. For example, there are no comprehensive reports correlating skin's mechanical properties with region, age, and direction. Moreover, mouse skin's residual strain behavior has not been reported on. In our current work, we set out to fill these gaps. Based on histology, 2-photon microscopy, and planar biaxial testing, while accurately tracking various reference configurations, we report on differences in gross structure, microstructural organization, and constitutive response of skin, and cast those properties into a versatile Fung-type hyperelastic constitutive law for three reference configurations. Our data is the most comprehensive report contrasting the mechanical properties of young (12 weeks) and aged (52 weeks) mouse skin and will, thus, be valuable to basic science as control data, and provide accurate constitutive laws for mouse skin modeling. STATEMENT OF SIGNIFICANCE: Our findings are significant as they fill several gaps in our understanding of mouse skin mechanics. This is particularly important as mouse skin is becoming a frequent and critical model of human skin for cosmetic and medical science. Specifically, we quantified how mechanical properties of mice skin vary with age, with location, and with direction. Additionally, we cast our findings into constitutive models that can be used by others for predictive computer simulations of skin behavior.
Collapse
|
41
|
Cavinato C, Badel P, Krasny W, Avril S, Morin C. Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Deogekar S, Islam M, Picu R. Parameters controlling the strength of stochastic fibrous materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2019; 168:194-202. [PMID: 31395989 PMCID: PMC6687067 DOI: 10.1016/j.ijsolstr.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many materials of everyday use are fibrous and their strength is important in most applications. In this work we study the dependence of the strength of random fiber networks on structural parameters such as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. Athermal networks of cellular and fibrous type are considered. We conclude that the network strength scales linearly with the cross-link number density and with the cross-link strength for a broad range of network parameters, and for both types of networks considered. Network strength is independent of fiber material properties and of fiber tortuosity. This information can be used to design fiber networks for specified strength and, generally, to understand the mechanical behavior of fibrous materials.
Collapse
Affiliation(s)
| | | | - R.C. Picu
- Corresponding author, , Tel: 1 518 276 2195
| |
Collapse
|
43
|
Islam MR, Picu RC. Random fiber networks with inclusions: The mechanism of reinforcement. Phys Rev E 2019; 99:063001. [PMID: 31330690 DOI: 10.1103/physreve.99.063001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/16/2022]
Abstract
The mechanical behavior of athermal random fiber networks embedding particulate inclusions is studied in this work. Composites in which the filler size is comparable with the mean segment length of the network are considered. Inclusions are randomly distributed in the network at various volume fractions, and cases in which fibers are rigidly bonded to fillers and in which no such bonding is imposed are studied separately. In the presence of inclusions, the small strain modulus increases, while the ability of the network to strain stiffen decreases relative to the unfilled network case. The reinforcement induced by fillers is most pronounced in sparse networks of floppier filaments that deform in the bending-dominated mode in the unfilled state. As the unfilled network density or the bending stiffness of fibers increases, the effect of filling diminishes rapidly. Fillers lead to a transition from the soft, bending-dominated, to the stiffer, stretching-dominated, deformation mode of the network, a transition which is primarily responsible for the observed overall reinforcement. The confinement, i.e., the restriction on network kinematics imposed by fillers, causes this transition. These results provide a justification for the observed difference in reinforcement obtained in sparsely versus densely cross-linked networks at a given filling fraction and provide guidance for the further development of network-based materials.
Collapse
Affiliation(s)
- M R Islam
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
44
|
|
45
|
Ducourthial G, Affagard JS, Schmeltz M, Solinas X, Lopez-Poncelas M, Bonod-Bidaud C, Rubio-Amador R, Ruggiero F, Allain JM, Beaurepaire E, Schanne-Klein MC. Monitoring dynamic collagen reorganization during skin stretching with fast polarization-resolved second harmonic generation imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800336. [PMID: 30604478 DOI: 10.1002/jbio.201800336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/04/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The mechanical properties of biological tissues are strongly correlated to the specific distribution of their collagen fibers. Monitoring the dynamic reorganization of the collagen network during mechanical stretching is however a technical challenge, because it requires mapping orientation of collagen fibers in a thick and deforming sample. In this work, a fast polarization-resolved second harmonic generation microscope is implemented to map collagen orientation during mechanical assays. This system is based on line-to-line switching of polarization using an electro-optical modulator and works in epi-detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. This microstructure reorganization is quantified by the entropy of the collagen orientation distribution as a function of the stretch ratio. It exhibits a linear behavior, whose slope is measured with a good accuracy. This approach can be generalized to probe a variety of dynamic processes in thick tissues.
Collapse
Affiliation(s)
| | | | | | - Xavier Solinas
- LOB, École Polytechnique, CNRS, INSERM, Palaiseau, France
| | | | - Christelle Bonod-Bidaud
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, CNRS, Université de Lyon, Lyon, France
| | - Ruth Rubio-Amador
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, CNRS, Université de Lyon, Lyon, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, CNRS, Université de Lyon, Lyon, France
| | - Jean-Marc Allain
- LMS, École Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| | | | | |
Collapse
|
46
|
Affagard JS, Lynch B, Bancelin S, Ducourthial G, Bonod-Bidaud C, Ruggiero F, Schanne-Klein MC, Allain JM. Contribution of the collagen fibers to the skin mechanics. Comput Methods Biomech Biomed Engin 2019. [DOI: 10.1080/10255842.2020.1714928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. S. Affagard
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| | - B. Lynch
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
| | - S. Bancelin
- LOB, Ecole Polytechnique, CNRS, Palaiseau, France
| | | | | | - F. Ruggiero
- IGFL, ENS-Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - J.-M. Allain
- LMS, Ecole Polytechnique, CNRS, Palaiseau, France
- Inria, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
47
|
Johnson S, Cowley K, Hawkins TJ, Määttä A. Pulling force deforms hair follicle root sheath nuclei and surrounding dermal collagen matrix differently at infundibulum, isthmus and suprabulbar regions. Exp Dermatol 2019; 28:862-866. [PMID: 31021445 DOI: 10.1111/exd.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
The biomechanical properties of the collagenous dermal matrix are well described but responses to mechanical force by the hair follicles have not been characterised so far. We applied a pulling force on hair follicles to visualise and quantify changes in the keratin-14 and involucrin-positive cell layers of the follicles using nuclear dimensions as an indicator of tissue deformation. Moreover, we used second-harmonic generation imaging to visualise changes in the dermal collagen. We report how the anatomical regions of the follicle respond to the force. Nuclei of the isthmus region were most affected. The nuclei in both K14-positive outer root sheath cells and in involucrin-positive cells were significantly compressed, whereas the response in the infundibulum and suprabulbar regions was more variable. The deformation of the nuclei did not correlate with lamin A/C expression. The changes in the collagenous matrix were distinct at different depths of the dermis as collagen fibrils were compressed closer to each other in the region adjacent to upper suprabulbar follicle and pulled apart near the infundibulum. Thus, the responses to the force are locally defined and the cells in the permanent and cycling parts of the follicle behave differently.
Collapse
Affiliation(s)
- Simeon Johnson
- Department of Biosciences, Durham University, Durham, UK
| | - Kevin Cowley
- Procter & Gamble, Reading Innovation Centre, Reading, UK
| | | | - Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
48
|
Wahlsten A, Pensalfini M, Stracuzzi A, Restivo G, Hopf R, Mazza E. On the compressibility and poroelasticity of human and murine skin. Biomech Model Mechanobiol 2019; 18:1079-1093. [PMID: 30806838 DOI: 10.1007/s10237-019-01129-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
Abstract
A total of 37 human and 33 murine skin samples were subjected to uniaxial monotonic, cyclic, and relaxation experiments. Detailed analysis of the three-dimensional kinematic response showed that skin volume is significantly reduced as a consequence of a tensile elongation. This behavior is most pronounced in monotonic but persists in cyclic tests. The dehydration associated with volume loss depends on the osmolarity of the environment, so that tension relaxation changes as a consequence of modifying the ionic strength of the environmental bath. Similar to ex vivo observations, complementary in vivo stretching experiments on human volar forearms showed strong in-plane lateral contraction. A biphasic homogenized model is proposed which allows representing all relevant features of the observed mechanical response.
Collapse
Affiliation(s)
- Adam Wahlsten
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.
| | - Marco Pensalfini
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Alberto Stracuzzi
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Raoul Hopf
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland. .,Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
49
|
Abstract
An important issue in tissue biomechanics is to decipher the relationship between the mechanical behavior at macroscopic scale and the organization of the collagen fiber network at microscopic scale. Here, we present a protocol to combine traction assays with multiphoton microscopy in ex vivo murine skin. This multiscale approach provides simultaneously the stress/stretch response of a skin biopsy and the collagen reorganization in the dermis by use of second harmonic generation (SHG) signals and appropriate image processing.
Collapse
|
50
|
Li C, Li Y, Zhou G, Gao Y, Ma S, Chen Y, Song J, Wang X. Whole-genome bisulfite sequencing of goat skins identifies signatures associated with hair cycling. BMC Genomics 2018; 19:638. [PMID: 30153818 PMCID: PMC6114738 DOI: 10.1186/s12864-018-5002-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hair follicles (HFs), upon development, undergo repetitive cycles of growth (anagen), regression (catagen), and rest (telogen). The transition between the stages is determined by multiple molecular signals, including DNA methylation, which plays important roles in mammalian cellular identity and is essential for the development of HFs. Secondary hair follicles (SHFs) in cashmere goat exhibit classic cyclic hair development, and little has been done on a genome-wide scale to examine potentially methylated genes involved in the hair cyclic transition. Results Genome-wide DNA methylation profiles between skin tissues sampled during the anagen and telogen stages in cashmere goats were investigated using whole-genome bisulfite sequencing (WGBS). The methylation status was observed to be higher in the skin samples with HFs in the telogen than those in the anagen stage. A total of 1311 differentially methylated regions (DMRs) were identified between the two groups, which contained 493 fully annotated DMR-related genes (DMGs) (269 Hyper- DMGs and 224 Hypo-DMGs). Furthermore, a significant over-representation of the functional categories for DMGs related to immune response and intercellular crosstalk during hair cycling was observed. By integrating DNA methylation and mRNA expression data, we revealed that four genes (FMN1, PCOLCE, SPTLC3, and COL5A1) are crucial factors for elucidating epigenetic mechanisms contributing to the telogen-to-anagen transition. Conclusion Our study provided systematic methylome maps pertaining to the hair cycling stages (anagen vs telogen) at a single-base resolution, and revealed stage-specific methylation loci during cashmere growth or quiescence. Furthermore, we identified epigenetically regulated genes that are potentially involved in HF development and growth in cashmere goats, and likely in other mammal species. Electronic supplementary material The online version of this article (10.1186/s12864-018-5002-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ye Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Sen Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|