1
|
Hu B, Zhang Y, Xing Z, Chen X, Rao C, Liu K, Tan A, Su J. Two independent regulatory mechanisms synergistically contribute to P450-mediated insecticide resistance in a lepidopteran pest, Spodoptera exigua. BMC Biol 2025; 23:122. [PMID: 40346596 PMCID: PMC12065349 DOI: 10.1186/s12915-025-02228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Cytochrome P450 enzymes play a pivotal role in the detoxification of plant allelochemicals and insecticides. Overexpression of P450 genes has been proven to be involved in insecticide resistance in insects. However, the molecular mechanisms underlying the regulation of P450 genes in insects are poorly understood. RESULTS Here, we determine that upregulation of CYP321B1 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in the resistant Spodoptera exigua strain. Enhanced expression of transcription factors CncC/Maf contributes to the increase in the expression of CYP321B1 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses confirm that a specific binding site is crucial for binding CncC/Maf to activate the expression of CYP321B1. In addition, creation of a new binding site resulting from the cis-mutations in the promoter region of CYP321B1 in the resistant strain facilitates the binding of the POU/homeodomain transcription factor Nubbin, and further enhances the expression of this P450 gene. Furthermore, we authenticate that changes in both trans- and cis-regulatory elements in the promoter region of CYP321B1 act in combination to modulate the promoter activity in a synergistic manner. CONCLUSIONS Collectively, these results demonstrate that two distinct but synergistic mechanisms coordinately result in the overexpression of CYP321B1 involved in insecticide resistance in an agriculturally important insect pest, S. exigua. The information on mechanisms of metabolic resistance could help to understand the development of resistance to insecticides by other pests and contribute to designing effective integrated pest management strategies for the pest control.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Yuting Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiangzhu Chen
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Cong Rao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kuitun Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Hu B, Deng Y, Lu T, Ren M, Liu K, Rao C, Guo H, Su J. Inhibition of transcriptional regulation of detoxification genes contributes to insecticide resistance management in Spodoptera exigua. Commun Biol 2025; 8:128. [PMID: 39870807 PMCID: PMC11772755 DOI: 10.1038/s42003-025-07560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Synthetic insecticides have been widely used for the prevention and control of disease vectors and agricultural pests. However, frequent uses of insecticides have resulted in the development of insecticide resistance in these insect pests. The resistance adversely affects the efficacy of insecticides, and seriously reduces the lifespan of insecticides. Therefore, resistance management requires new strategies to suppress insecticide resistance. Here, we confirm that CncC/Maf are the key regulators of various detoxification genes involved in insecticide resistance in Spodoptera exigua. Then, we develop a cell screening platform to identify the natural compound inhibitors of CncC/Maf and determine that sofalcone can act as a CncC/Maf inhibitor in vitro and in vivo. Bioassay results showed that sofalcone significantly enhanced the toxicity (more than 3-fold) of chlorpyrifos and lambda-cyhalothrin against S. exigua larvae. Finally, we demonstrate that sofalcone can greatly improve the susceptibility of S. exigua larvae to insecticides by inhibiting the activity of the ROS/CncC-dependent detoxifying enzymes and downregulating the expression levels of detoxification genes. CncC/Maf inhibitors can be used as broad-spectrum synergists to overcome insecticide resistance in pest populations. Altogether, our results demonstrate that reduced expression of detoxification genes resulting from suppression of transcriptional regulation of these genes contributes to controlling insecticide resistance, which provides a very novel and high-efficiency green resistance management strategy.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Yuping Deng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Lu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Miaomiao Ren
- College of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Kuitun Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cong Rao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hailiang Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
3
|
Chamnanya S, Kiddela B, Saingamsook J, Nachaiwieng W, Lumjuan N, Somboon P, Yanola J. Overexpression of multiple cytochrome P450 genes with and without knockdown resistance mutations confers high resistance to deltamethrin in Culex quinquefasciatus. Infect Dis Poverty 2025; 14:2. [PMID: 39800715 PMCID: PMC11726926 DOI: 10.1186/s40249-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand. METHODS Two field-collected strains of Cx. quinquefasciatus, Cq_SP and Cq_NiH, were selected with deltamethrin to generate the resistant strains Cq_SP-R and Cq_NiH-R, respectively. Bioassays were tested on larvae and adults of each strain according to WHO methods. Eight cytochrome P450 genes were analyzed for the expression level using quantitative real time-PCR. The cDNA of mosquitoes was amplified and sequenced for four fragments of vgsc gene. The kdr L1014F mutation and the haplotype of the CYP9M10 gene were detected in survivor and dead mosquitoes after exposure to the deltamethrin WHO test paper. Statistical analyses were performed using Fisher's exaction test. RESULTS Bioassay tests revealed a significantly higher resistance level in Cq_SP-R than in Cq_NiH-R strains in both larvae and adults. All eight cytochrome P450 genes were significantly overexpressed in larvae of Cq_NiH-R strain compared to the parent and susceptible Cq_Sus strains. The CYP6AA7 and CYP9J34 genes had the highest expression ratios, exceeding 24-fold in Cq_NiH-R larvae. In Cq_SP-R strain, the CYP4H34 and CYP9J34 genes were overexpressed in both stages. The kdr L1014F mutation was found in Cq_SP-R and its parent Cq_SP strains with a significantly higher mutant allele frequency in the survivor mosquitoes than in dead mosquitoes (P < 0.0001). The V240M and novel L925F mutations were found only in Cq_SP-R strain. Heterozygous genotype for the D-Cu( +)/Cu(-) of CYP9M10 gene was detected in Cq_NiH and Cq_NiH-R strains but other strains were mostly homozygous for the Cu(-)/Cu(-). CONCLUSIONS Overexpression of multiple cytochrome P450 genes alone has a relatively minor impact on resistance. The combined mechanisms of cytochrome P450- and kdr-mediated resistance result in significantly higher resistance to deltamethrin in Cx. quinquefasciatus. This study supports sustainable public health initiatives in Thailand to address the evolving challenges of insecticide resistance.
Collapse
Affiliation(s)
- Saowanee Chamnanya
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Benyapa Kiddela
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jassada Saingamsook
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Woottichai Nachaiwieng
- School of Health Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Biomedical Technology Research Group for Vulnerable Populations, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Xin J, Brown D, Wang Y, Wang X, Li M, Li T, Liu N. Unveiling the Role of Two Rhodopsin-like GPCR Genes in Insecticide-Resistant House Flies, Musca domestica. Int J Mol Sci 2024; 25:10618. [PMID: 39408947 PMCID: PMC11477390 DOI: 10.3390/ijms251910618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Insecticide resistance in insects, driven by the overexpression of P450 enzymes, presents a significant challenge due to the enhanced metabolic detoxification of insecticides. Although the transcriptional regulation of P450 genes is not yet fully understood, G-protein-coupled receptor (GPCR) genes have emerged as key regulators in this process. This study is the first to associate GPCR genes with insecticide resistance in Musca domestica. We identified two key rhodopsin-like GPCR genes, ALHF_02706.g1581 and ALHF_04422.g2918, which were significantly overexpressed in the resistant ALHF strain compared to sensitive strains. Notably, both ALHF_02706.g1581 and ALHF_04422.g2918 were mapped to autosome 2, where critical but unidentified regulatory factors controlling resistance and P450 gene regulation are located. This supports our hypothesis that GPCRs function as trans-regulatory factors for P450-mediated resistance. Functional analysis using transgenic Drosophila demonstrated that overexpression of these rhodopsin-like GPCR genes increased permethrin resistance by approximately two-fold. Specifically, ALHF_02706.g1581 overexpression significantly upregulated the Drosophila resistance-related P450 genes CYP12D1, CYP6A2, and CYP6A8, while ALHF_04422.g2918 increased CYP6G1 and CYP6A2 expression, thereby enhancing insecticide detoxification in rhodopsin-like GPCR transgenic Drosophila lines. These findings suggest that these rhodopsin-like GPCR genes on autosome 2 may act as trans-regulatory factors for P450-mediated resistance, underscoring their critical role in insecticide detoxification and resistance development in M. domestica.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (J.X.); (D.B.); (Y.W.); (X.W.); (M.L.); (T.L.)
| |
Collapse
|
5
|
Tang H, Liu X, Wang S, Wang Y, Bai L, Peng X, Chen M. A relaxin receptor gene RpGPCR41 is involved in the resistance of Rhopalosiphum padi to pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105894. [PMID: 38685221 DOI: 10.1016/j.pestbp.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
7
|
Li M, Feng X, Reid WR, Tang F, Liu N. Multiple-P450 Gene Co-Up-Regulation in the Development of Permethrin Resistance in the House Fly, Musca domestica. Int J Mol Sci 2023; 24:ijms24043170. [PMID: 36834582 PMCID: PMC9959456 DOI: 10.3390/ijms24043170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
This paper reports a study conducted at the whole transcriptome level to characterize the P450 genes involved in the development of pyrethroid resistance, utilizing expression profile analyses of 86 cytochrome P450 genes in house fly strains with different levels of resistance to pyrethroids/permethrin. Interactions among the up-regulated P450 genes and possible regulatory factors in different autosomes were examined in house fly lines with different combinations of autosomes from a resistant house fly strain, ALHF. Eleven P450 genes that were significantly up-regulated, with levels > 2-fold those in the resistant ALHF house flies, were in CYP families 4 and 6 and located on autosomes 1, 3 and 5. The expression of these P450 genes was regulated by trans- and/or cis-acting factors, especially on autosomes 1 and 2. An in vivo functional study indicated that the up-regulated P450 genes also conferred permethrin resistance in Drosophila melanogaster transgenic lines. An in vitro functional study confirmed that the up-regulated P450 genes are able to metabolize not only cis- and trans-permethrin, but also two metabolites of permethrin, PBalc and PBald. In silico homology modeling and the molecular docking methodology further support the metabolic capacity of these P450s for permethrin and substrates. Taken together, the findings of this study highlight the important function of multi-up-regulated P450 genes in the development of insecticide resistance in house flies.
Collapse
Affiliation(s)
- Ming Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
- Department of Entomology, University of California, San Diego, CA 92093, USA
| | - Xuechun Feng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - William R. Reid
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Fang Tang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-844-5076
| |
Collapse
|
8
|
Li J, Lv H, Li X, Yao Y, Li J, Ma K. Identification and expression analysis of G protein-coupled receptors in the cotton aphid, Aphis gossypii Glover. Int J Biol Macromol 2022; 224:115-124. [DOI: 10.1016/j.ijbiomac.2022.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
9
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Li Y, Li Y, Wang G, Li J, Zhang M, Wu J, Liang C, Zhou H, Tang J, Zhu G. Differential metabolome responses to deltamethrin between resistant and susceptible Anopheles sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113553. [PMID: 35483147 DOI: 10.1016/j.ecoenv.2022.113553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Insecticide-based vector control measures play an important role in the prevention and control of insect-borne infectious diseases such as malaria; however, insecticide resistance has become a severe global problem for vector control. To date, the metabolic mechanism by which Anopheles sinensis, the most widely distributed malaria vector in China and Asia, detoxifies insecticides is not clear. In this study, the molecular metabolite changes in both the larval and adult stages of deltamethrin susceptible (DS) and deltamethrin-resistant (DR) An. sinensis mosquitoes were analysed by using liquid chromatography tandem mass spectrometry (LC-MS/MS) after exposure to deltamethrin. There were 127 differential metabolites in larval DR An. sinensis and 168 in adults. Five metabolites (glycerophosphocholine, deoxyguanosine, DL-methionine sulfoxide, D-myo-inositol-3-phosphate and N-acetyl-alpha-D-glucosamine1-phosphate) were downregulated in both DR larvae and adults, and one metabolite (aspartyl-glutamine) was upregulated, and the ratio of down- and up-regulation of these metabolites was 5:1. The differential metabolites between the DS and DR mosquitos were mainly classified into organic oxygen compounds, carboxylic acids and their derivatives, glycerophospholipids and purine nucleotides, and the common pathway enriched in both the larval and adult DR An. sinensis was glycerophospholipid metabolism. The findings of this study provide further mechanistic understanding of insecticide resistance in An. sinensis.
Collapse
Affiliation(s)
- Yueyue Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Yashu Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Guanxi Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Julin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Meihua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jingyao Wu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Cheng Liang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Huayun Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China
| | - Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Tang B, Xu K, Liu Y, Zhou Z, Karthi S, Yang H, Li C. A review of physiological resistance to insecticide stress in Nilaparvata lugens. 3 Biotech 2022; 12:84. [PMID: 35251886 PMCID: PMC8882538 DOI: 10.1007/s13205-022-03137-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 01/02/2023] Open
Abstract
Insecticides are widely used in agriculture as effective means to control pests. However, pests have not been completely mitigated with the increased use of insecticides. Instead, many side effects have arisen, especially the '3Rs' (resistance, resurgence, and residue). The brown planthopper, Nilaparvata lugens, is one of the most threatening rice pests. The main insecticides for controlling N. lugens belong to organochlorine, organophosphorus, carbamate, neonicotinoid and pyrethroid groups. However, metabolic enzymes, including cytochrome P450s, esterases, glutathione-S-transferases, and ATP-binding cassette transporters, effectively promote the detoxification of insecticides. Besides, mutations of neurological target sites, such as acetylcholinesterase, nicotinic acetylcholine, γ-aminobutyric acid receptor, and ryanodine receptor, result in insensitivity to insecticides. Here, we review the physiological metabolic resistance in N. lugens under insecticide stress to provide a theoretical basis for identifying and developing more effective and harmless insecticides.
Collapse
Affiliation(s)
- Bin Tang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China ,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang People’s Republic of China
| | - Kangkang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China ,Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Yongkang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang People’s Republic of China
| | - Zhongshi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412 India
| | - Hong Yang
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China
| |
Collapse
|
12
|
Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21869. [PMID: 35088911 DOI: 10.1002/arch.21869] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Insects have evolved a powerful detoxification system to protect themselves against environmental and anthropogenic xenobiotics including pesticides and nanoparticles. The resulting tolerance to insecticides is an immense problem in agriculture. In this study, we summarize advances in our understanding of insect xenobiotic responses: the detoxification strategies and the regulation mechanisms against xenobiotics including nanoparticles, the problem of response specificity and the potential usefulness of this study field for an elaborate pest management. In particular, we highlight that versatility of the detoxification system relies on the relatively unspecific recognition of a broad range of potential toxic substances that trigger either of various canonical xenobiotic responses signaling pathways, including CncC/Keap1, HR96, AHR/ARNT, GPCR, and MAPK/CREB. However, it has emerged that the actual response to an inducer may nevertheless be specific. There are two nonexclusive possibilities that may explain response specificity: (1) differential cross-talk between the known pathways and (2) additional, yet unidentified regulators and pathways of detoxification. Hence, a deeper and broader understanding of the regulation mechanisms of xenobiotic response in insects in the future might facilitate the development and application of highly efficient and environmentally friendly pest control methods, allowing us to face the challenge of the world population growth.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, Parc Valrose, Nice, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Şengül Demirak MŞ, Canpolat E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. INSECTS 2022; 13:162. [PMID: 35206735 PMCID: PMC8878986 DOI: 10.3390/insects13020162] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
The use of synthetic insecticides has been a solution to reduce mosquito-borne disease transmission for decades. Currently, no single intervention is sufficient to reduce the global disease burden caused by mosquitoes. Problems associated with extensive usage of synthetic compounds have increased substantially which makes mosquito-borne disease elimination and prevention more difficult over the years. Thus, it is crucial that much safer and effective mosquito control strategies are developed. Natural compounds from plants have been efficiently used to fight insect pests for a long time. Plant-based bioinsecticides are now considered a much safer and less toxic alternative to synthetic compounds. Here, we discuss candidate plant-based compounds that show larvicidal, adulticidal, and repellent properties. Our discussion also includes their mode of action and potential impact in mosquito disease transmission and circumvention of resistance. This review improves our knowledge on plant-based bioinsecticides and the potential for the development of state-of-the-art mosquito control strategies.
Collapse
Affiliation(s)
- Meryem Ş. Şengül Demirak
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpaşa University, Tokat 60150, Turkey;
| | | |
Collapse
|
14
|
Gong Y, Li T, Li Q, Liu S, Liu N. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front Physiol 2022; 12:802584. [PMID: 35095564 PMCID: PMC8792746 DOI: 10.3389/fphys.2021.802584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Qi Li
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Shikai Liu
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- *Correspondence: Nannan Liu,
| |
Collapse
|
15
|
Nauen R, Bass C, Feyereisen R, Vontas J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:105-124. [PMID: 34590892 DOI: 10.1146/annurev-ento-070621-061328] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s) perform a variety of important physiological functions, but it is their role in the detoxification of xenobiotics, such as natural and synthetic insecticides, that is the topic of this review. Recent advances in insect genomics and postgenomic functional approaches have provided an unprecedented opportunity to understand the evolution of insect P450s and their role in insect toxicology. These approaches have also been harnessed to provide new insights into the genomic alterations that lead to insecticide resistance, the mechanisms by which P450s are regulated, and the functional determinants of P450-mediated insecticide resistance. In parallel, an emerging body of work on the role of P450s in defining the sensitivity of beneficial insects to insecticides has been developed. The knowledge gained from these studies has applications for the management of P450-mediated resistance in insect pests and can be leveraged to safeguard the health of important beneficial insects.
Collapse
Affiliation(s)
- Ralf Nauen
- Crop Science Division R&D, Bayer AG, D-40789 Monheim, Germany;
| | - Chris Bass
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom;
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - John Vontas
- Department of Crop Science, Agricultural University of Athens, GR-11855 Athens, Greece;
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
16
|
Kefi M, Charamis J, Balabanidou V, Ioannidis P, Ranson H, Ingham VA, Vontas J. Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics 2021; 22:891. [PMID: 34903168 PMCID: PMC8667434 DOI: 10.1186/s12864-021-08205-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insecticide-treated bed nets and indoor residual spraying comprise the major control measures against Anopheles gambiae sl, the dominant vector in sub-Saharan Africa. The primary site of contact with insecticide is through the mosquitoes' legs, which represents the first barrier insecticides have to bypass to reach their neuronal targets. Proteomic changes and leg cuticle modifications have been associated with insecticide resistance that may reduce the rate of penetration of insecticides. Here, we performed a multiple transcriptomic analyses focusing on An. coluzzii legs. RESULTS Firstly, leg-specific enrichment analysis identified 359 genes including the pyrethroid-binder SAP2 and 2 other chemosensory proteins, along with 4 ABCG transporters previously shown to be leg enriched. Enrichment of gene families included those involved in detecting chemical stimuli, including gustatory and ionotropic receptors and genes implicated in hydrocarbon-synthesis. Subsequently, we compared transcript expression in the legs of a highly resistant strain (VK7-HR) to both a strain with very similar genetic background which has reverted to susceptibility after several generations without insecticide pressure (VK7-LR) and a lab susceptible population (NG). Two hundred thirty-two differentially expressed genes (73 up-regulated and 159 down-regulated) were identified in the resistant strain when compared to the two susceptible counterparts, indicating an over-expression of phase I detoxification enzymes and cuticular proteins, with decrease in hormone-related metabolic processes in legs from the insecticide resistant population. Finally, we analysed the short-term effect of pyrethroid exposure on An. coluzzii legs, comparing legs of 1 h-deltamethrin-exposed An. coluzzii (VK7-IN) to those of unexposed mosquitoes (VK7-HR) and identified 348 up-regulated genes including those encoding for GPCRs, ABC transporters, odorant-binding proteins and members of the divergent salivary gland protein family. CONCLUSIONS The data on An. coluzzii leg-specific transcriptome provides valuable insights into the first line of defense in pyrethroid resistant and short-term deltamethrin-exposed mosquitoes. Our results suggest that xenobiotic detoxification is likely occurring in legs, while the enrichment of sensory proteins, ABCG transporters and cuticular genes is also evident. Constitutive resistance is primarily associated with elevated levels of detoxification and cuticular genes, while short-term insecticide-induced tolerance is linked with overexpression of transporters, GPCRs and GPCR-related genes, sensory/binding and salivary gland proteins.
Collapse
Affiliation(s)
- M Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - J Charamis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - V Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - P Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Parasitology Unit, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
17
|
McNew SM, Boquete MT, Espinoza‐Ulloa S, Andres JA, Wagemaker NCAM, Knutie SA, Richards CL, Clayton DH. Epigenetic effects of parasites and pesticides on captive and wild nestling birds. Ecol Evol 2021; 11:7713-7729. [PMID: 34188846 PMCID: PMC8216931 DOI: 10.1002/ece3.7606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes to the environment challenge animal populations to adapt to new conditions and unique threats. While the study of adaptation has focused on genetic variation, epigenetic mechanisms may also be important. DNA methylation is sensitive to environmental stressors, such as parasites and pesticides, which may affect gene expression and phenotype. We studied the effects of an invasive ectoparasite, Philornis downsi, on DNA methylation of Galápagos mockingbirds (Mimus parvulus). We used the insecticide permethrin to manipulate P. downsi presence in nests of free-living mockingbirds and tested for effects of parasitism on nestling mockingbirds using epiGBS, a reduced-representation bisulfite sequencing (RRBS) approach. To distinguish the confounding effects of insecticide exposure, we conducted a matching experiment exposing captive nestling zebra finches (Taeniopygia guttata) to permethrin. We used zebra finches because they were the closest model organism to mockingbirds that we could breed in controlled conditions. We identified a limited number of differentially methylated cytosines (DMCs) in parasitized versus nonparasitized mockingbirds, but the number was not more than expected by chance. In contrast, we saw clear effects of permethrin on methylation in captive zebra finches. DMCs in zebra finches paralleled documented effects of permethrin exposure on vertebrate cellular signaling and endocrine function. Our results from captive birds indicate a role for epigenetic processes in mediating sublethal nontarget effects of pyrethroid exposure in vertebrates. Environmental conditions in the field were more variable than the laboratory, which may have made effects of both parasitism and permethrin harder to detect in mockingbirds. RRBS approaches such as epiGBS may be a cost-effective way to characterize genome-wide methylation profiles. However, our results indicate that ecological epigenetic studies in natural populations should consider the number of cytosines interrogated and the depth of sequencing in order to have adequate power to detect small and variable effects.
Collapse
Affiliation(s)
- Sabrina M. McNew
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Cornell Lab of OrnithologyCornell UniversityIthacaNYUSA
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
| | - M. Teresa Boquete
- Department of Integrative BiologyUniversity of South FloridaTampaFLUSA
- Department of Evolutionary EcologyEstación Biológica de DoñanaCSICSevillaSpain
| | - Sebastian Espinoza‐Ulloa
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
- Facultad de MedicinaPontifica Universidad Católica del EcuadorQuitoEcuador
| | - Jose A. Andres
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNYUSA
- Department of BiologyUniversity of SaskatchewanSaskatoonSKCanada
| | | | - Sarah A. Knutie
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| | | | - Dale H. Clayton
- School of Biological SciencesUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
18
|
Liu N, Li T, Wang Y, Liu S. G-Protein Coupled Receptors (GPCRs) in Insects-A Potential Target for New Insecticide Development. Molecules 2021; 26:2993. [PMID: 34069969 PMCID: PMC8157829 DOI: 10.3390/molecules26102993] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play important roles in cell biology and insects' physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (T.L.); (Y.W.)
| | - Shikai Liu
- College of Fisheries, Ocean University of China, Qingdao 266100, China;
| |
Collapse
|
19
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
20
|
Amezian D, Nauen R, Le Goff G. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104822. [PMID: 33838715 DOI: 10.1016/j.pestbp.2021.104822] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 05/21/2023]
Abstract
Arthropods have well adapted to the vast array of chemicals they encounter in their environment. Whether these xenobiotics are plant allelochemicals or anthropogenic insecticides one of the strategies they have developed to defend themselves is the induction of detoxification enzymes. Although upregulation of detoxification enzymes and efflux transporters in response to specific inducers has been well described, in insects, yet, little is known on the transcriptional regulation of these genes. Over the past twenty years, an increasing number of studies with insects have used advanced genetic tools such as RNAi, CRISPR/Cas9 and reporter gene assays to dissect the genomic grounds of their xenobiotic response and hence contributed substantially in improving our knowledge on the players involved. Xenobiotics are partly recognized by various "xenobiotic sensors" such as membrane-bound or nuclear receptors. This initiates a molecular reaction cascade ultimately leading to the translocation of a transcription factor to the nucleus that recognizes and binds to short sequences located upstream their target genes to activate transcription. To date, a number of signaling pathways were shown to mediate the upregulation of detoxification enzymes in arthropods and to play a role in either metabolic resistance to insecticides or host-plant adaptation. These include nuclear receptors AhR/ARNT and HR96, GPCRs, CncC and MAPK/CREB. Recent work reveals that upregulation and activation of some components of these pathways as well as polymorphism in the binding motifs of transcription factors are linked to insects' adaptive processes. The aim of this mini-review is to summarize and describe recent work that shed some light on the main regulatory routes of detoxification gene expression in insects.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903 Sophia Antipolis, France.
| |
Collapse
|
21
|
Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 2021; 11:9041. [PMID: 33907243 PMCID: PMC8079677 DOI: 10.1038/s41598-021-88121-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides, especially pyrethroids, are the most important in the insect pest control and preventing insect vector-borne human diseases. However, insect pests, including mosquitoes, have developed resistance in the insecticides that used against them. Cytochrome P450s are associated with insecticide resistance through overexpression and detoxification mechanisms in insect species. In this study, we utilized a powerful tool, the RNAi technique, to determine the roles of key P450 genes overexpressed in permethrin resistant mosquitoes that confer insecticide resistance to unravel the molecular basis of resistance mechanisms in the mosquito Culex quinquefasciatus. The results showed that knockdown of 8 key P450 genes using RNAi techniques significantly decreased resistance to permethrin in resistant mosquitoes. In silico modeling and docking analysis further revealed the potential metabolic function of overexpressed P450 genes in the development of insecticide resistance in mosquitoes. These findings not only highlighted the functional importance of these P450 genes in insecticide resistance, but also revealed that overexpression of multiple P450 genes was responsible for the high levels of insecticide resistance in a mosquito population of Culex quinquefasciatus.
Collapse
|
22
|
Black WC, Snell TK, Saavedra-Rodriguez K, Kading RC, Campbell CL. From Global to Local-New Insights into Features of Pyrethroid Detoxification in Vector Mosquitoes. INSECTS 2021; 12:insects12040276. [PMID: 33804964 PMCID: PMC8063960 DOI: 10.3390/insects12040276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/04/2023]
Abstract
The threat of mosquito-borne diseases continues to be a problem for public health in subtropical and tropical regions of the world; in response, there has been increased use of adulticidal insecticides, such as pyrethroids, in human habitation areas over the last thirty years. As a result, the prevalence of pyrethroid-resistant genetic markers in natural mosquito populations has increased at an alarming rate. This review details recent advances in the understanding of specific mechanisms associated with pyrethroid resistance, with emphasis on features of insecticide detoxification and the interdependence of multiple cellular pathways. Together, these advances add important context to the understanding of the processes that are selected in resistant mosquitoes. Specifically, before pyrethroids bind to their targets on motoneurons, they must first permeate the outer cuticle and diffuse to inner tissues. Resistant mosquitoes have evolved detoxification mechanisms that rely on cytochrome P450s (CYP), esterases, carboxyesterases, and other oxidation/reduction (redox) components to effectively detoxify pyrethroids to nontoxic breakdown products that are then excreted. Enhanced resistance mechanisms have evolved to include alteration of gene copy number, transcriptional and post-transcriptional regulation of gene expression, as well as changes to cellular signaling mechanisms. Here, we outline the variety of ways in which detoxification has been selected in various mosquito populations, as well as key gene categories involved. Pathways associated with potential new genes of interest are proposed. Consideration of multiple cellular pathways could provide opportunities for development of new insecticides.
Collapse
|
23
|
Maiquez VF, Pitzer JB, Geden CJ. Insecticide Resistance Development in the Filth Fly Pupal Parasitoid, Spalangia cameroni (Hymenoptera: Pteromalidae), Using Laboratory Selections. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:326-331. [PMID: 33367762 DOI: 10.1093/jee/toaa286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 06/12/2023]
Abstract
Filth flies remain one of the most prevalent pest groups affecting the animal production industry. Spalangia spp. and Muscidifurax spp. are beneficial parasitic wasps that often are utilized to manage filth fly populations such as house flies, Musca domestica L. (Diptera: Muscidae), and stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae). These wasps search for filth fly pupae as hosts in areas potentially treated with insecticides, which may result in nontarget insecticide selection effects. However, research regarding resistance development in parasitic wasps such as S. cameroni Perkins (Hymenoptera: Pteromalidae) is limited. Therefore, a study was conducted to determine the potential of S. cameroni to develop resistance to the commonly used insecticide permethrin, as well as compare permethrin susceptibility among several S. cameroni strains. After 10 selected generations, susceptibility was significantly lower for the selected strain when compared with that of its unselected parent strain. A comparison of several parasitoid strains collected from different U.S. states indicated that permethrin susceptibility was not significantly different between a baseline strain and more recently established field strains. The potential implications of this previously unrecognized nontarget insecticide exposure effect on filth fly parasitoids are discussed.
Collapse
Affiliation(s)
- Vincent F Maiquez
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA
| | - Jimmy B Pitzer
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA
| | - Christopher J Geden
- United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agriculture, and Veterinary Entomology, Gainesville, FL
| |
Collapse
|
24
|
Berenbaum M, Calla B. Editorial overview: Cytochrome P450s in plant-insect interactions: new insights on gut reactions. CURRENT OPINION IN INSECT SCIENCE 2021; 43:vi-ix. [PMID: 33875172 DOI: 10.1016/j.cois.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- May Berenbaum
- Department of Entomology at the University of Illinois at Urbana-Champaign, United States.
| | - Bernarda Calla
- Department of Entomology at the University of Illinois at Urbana-Champaign, United States
| |
Collapse
|
25
|
Li X, Deng Z, Chen X. Regulation of insect P450s in response to phytochemicals. CURRENT OPINION IN INSECT SCIENCE 2021; 43:108-116. [PMID: 33385580 DOI: 10.1016/j.cois.2020.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Insect herbivores use phytochemicals as signals to induce expression of their phytochemical-detoxifying cytochrome P450 monooxygenases (P450s). The regulatory cascades that transduce phytochemical signals to enhanced expression of P450s are the focus of this review. At least seven signaling pathways, including RTK/MAPK, GPCR/CREB, GPCR/NFκB, ROS/CncC/Keap1, AhR/ARNT, cytosol NR, and nucleus-located NR, may be involved in phytochemical induction of P450s. Constitutive overexpression, overphosphorylation, and/or activation of one or more effectors in the corresponding pathway are common causes of P450 overexpression that lead to phytochemical or insecticide resistance. Future research should pay more attentions to the starting point of each pathway, the number of pathways and their cross talk for a given phytochemical, and the pathways for downregulation of P450s.
Collapse
Affiliation(s)
- Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuewei Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
26
|
Ullah F, Gul H, Tariq K, Desneux N, Gao X, Song D. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104687. [PMID: 32980055 DOI: 10.1016/j.pestbp.2020.104687] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 05/15/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are highly conserved multifunctional enzymes that play crucial roles in insecticide resistance development. In this study, the molecular mechanisms of P450s in acetamiprid resistance development to melon aphid, Aphis gossypii was investigated. Acetamiprid resistant (32.64-fold resistance) population (Ace-R) of A. gossypii was established by continuous selection with acetamiprid for 24 generations. Quantitative Real Time PCR was carried out to analyze the expression of P450 genes in both acetamiprid resistant (Ace-R) and susceptible (Ace-S) strains. Result showed that nine genes (CYP6CY14, CYP6DC1, CYP6CZ1, CYP6DD1, CYP6CY5, CYP6CY9, CYP6DA1, CYP6CY18, and CYP6CY16) of CYP3 clade, four genes (CYP302A1, CYP315A1, CYP301A1, and CYP314A1) of CYP2 clade, two genes (CYP4CK1, CYP4G51) of CYP4 clade and three genes (CYP306A1, CYP305E1, CYP307A1) of mitochondrial clade (Mito clad) were significantly up-regulated, in Ace-R compared to Ace-S strain. Whilst CYP4CJ2 gene from (CYP4 clade) was significantly down-regulated in Ace-R strain. Furthermore, RNA interference-mediated knockdown of CYP6CY14, CYP6DC1, and CYP6CZ1 genes significantly increased the sensitivity of Ace-R strain to acetamiprid. Taken together, this study showed that P450 genes especially CYP6CY14, CYP6DC1 and CYP6CZ1 are potentially involved in acetamiprid resistance development in A. gossypii. This study could be useful to understand the molecular basis of acetamiprid resistance mechanism in A. gossypii.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan; Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, FL 32611, USA; U.S. Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Ma Z, Zhang Y, You C, Zeng X, Gao X. The role of G protein-coupled receptor-related genes in cytochrome P450-mediated resistance of the house fly, Musca domestica (Diptera: Muscidae), to imidacloprid. INSECT MOLECULAR BIOLOGY 2020; 29:92-103. [PMID: 31456272 DOI: 10.1111/imb.12615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Ninety-four putative G protein-coupled receptors (GPCRs) were identified in the Musca domestica genome. They were annotated and compared with their homologues in Drosophila melanogaster. Phylogenetic analyses of the GPCRs from both species revealed that several family members shared a closer relationship based on the domain architecture. The expression profiles of these genes were examined by quantitative real-time PCR amongst three strains of the house fly, a near-isogenic line strain with imidacloprid resistance (N-IRS), the corresponding susceptible strain (CSS) and another strain derived from field populations with imidacloprid resistance (IRS). We found that five GPCR genes were upregulated in the N-IRS and eight GPCR genes were upregulated in the IRS strains compared to the CSS strain. The transgenic lines of D. melanogaster with the GPCR genes (LOC101899380 in the N-IRS strain and LOC101895664 in the IRS strain) exhibited significantly increased tolerance to imidacloprid, and higher expression of cytochrome P450 genes. Bioinformatic analysis of LOC101899380 was carried out based on its full-length nucleic acid sequence and putative amino acid sequence, and it was named Methuselah-like10 (Mthl10) owing to its homology with D. melanogaster Mthl10. A cell-base cell counting kit-8 toxicity assay demonstrated that the expression of the GPCR gene LOC101899380 in Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system can elevate the cell tolerance to imidacloprid, indirectly supporting the hypothesis that the GPCR gene LOC101899380 plays some role in imidacloprid resistance. These results should be useful for furthering understanding of the regulatory pathway by which house flies develop resistance.
Collapse
Affiliation(s)
- Z Ma
- Department of Entomology, China Agricultural University, Beijing, China
| | - Y Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - C You
- Department of Entomology, China Agricultural University, Beijing, China
| | - X Zeng
- Beijing Center for Diseases Prevention and Control, Beijing, China
| | - X Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Scott JG, Buchon N. Drosophila melanogaster as a powerful tool for studying insect toxicology. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:95-103. [PMID: 31685202 DOI: 10.1016/j.pestbp.2019.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Insecticides are valuable and widely used tools for the control of pest insects. Despite the use of synthetic insecticides for >50 years, we continue to have a limited understanding of the genes that influence the key steps of the poisoning process. Major barriers for improving our understanding of insecticide toxicity have included a narrow range of tools and/or a large number of candidate genes that could be involved in the poisoning process. Herein, we discuss the numerous tools and resources available in Drosophila melanogaster that could be brought to bear to improve our understanding of the processes determining insecticide toxicity. These include unbiased approaches such as forward genetic screens, population genetic methods and candidate gene approaches. Examples are provided to showcase how D. melanogaster has been successfully used for insecticide toxicology studies in the past, and ideas for future studies using this valuable insect are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | - Nicolas Buchon
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| |
Collapse
|
29
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Role of the G-Protein-Coupled Receptor Signaling Pathway in Insecticide Resistance. Int J Mol Sci 2019; 20:ijms20174300. [PMID: 31484301 PMCID: PMC6747477 DOI: 10.3390/ijms20174300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) regulated intracellular signaling pathway is known to be involved in the development of insecticide resistance in the mosquito, Culex quinquefasciatus. To elucidate the specific role of each effector in the GPCR regulating pathway, we initially expressed a GPCR, G-protein alpha subunit (Gαs), adenylate cyclase (AC), and protein kinase A (PKA) in insect Spodoptera frugiperda (Sf9) cells and investigated their regulation function on cyclic AMP (cAMP) production and PKA activity. GPCR, Gαs, and AC individually expressed Sf9 cells showed higher cAMP production as the expression of each effector increased. All the effector-expressed cell lines showed increased PKA activity however. Moreover, Sf9 cytochrome P450 gene expression and cell tolerance to permethrin were examined. The relative expression of CYP9A32gene in Sf9 cells tested was significantly increased in all effector-expressed cell lines compared to a control cell line; these effector-expressed cell lines also showed significantly higher tolerance to permethrin. Inhibitor treatments on each effector-expressed cell line revealed that Bupivacaine HCl and H89 2HCl robustly inhibited cAMP production and PKA activity, respectively, resulting in decreased tolerance to permethrin in all cell lines. The synergistic functions of Bupivacaine HCl and H89 2HCl with permethrin were further examined in Culex mosquito larvae, providing a valuable new information for mosquito control strategies.
Collapse
|
31
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Negri A, Ferrari M, Nodari R, Coppa E, Mastrantonio V, Zanzani S, Porretta D, Bandi C, Urbanelli S, Epis S. Gene silencing through RNAi and antisense Vivo-Morpholino increases the efficacy of pyrethroids on larvae of Anopheles stephensi. Malar J 2019; 18:294. [PMID: 31462239 PMCID: PMC6712854 DOI: 10.1186/s12936-019-2925-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 11/25/2022] Open
Abstract
Background Insecticides are still at the core of insect pest and vector control programmes. Several lines of evidence indicate that ABC transporters are involved in detoxification processes against insecticides, including permethrin and other pyrethroids. In particular, the ABCG4 gene, a member of the G subfamily, has consistently been shown to be up-regulated in response to insecticide treatments in the mosquito malaria vector Anopheles stephensi (both adults and larvae). Methods To verify the actual involvement of this transmembrane protein in the detoxification process of permethrin, bioassays on larvae of An. stephensi, combining the insecticide with a siRNA, specifically designed for the inhibition of ABCG4 gene expression were performed. Administration to larvae of the same siRNA, labeled with a fluorescent molecule, was effected to investigate the systemic distribution of the inhibitory RNA into the larval bodies. Based on siRNA results, similar experiments using antisense Vivo-Morpholinos (Vivo-MOs) were effected. These molecules, compared to siRNA, are expected to guarantee a higher stability in environmental conditions and in the insect gut, and present thus a higher potential for future in-field applications. Results Bioassays using two different concentrations of siRNA, associated with permethrin, led to an increase of larval mortality, compared with results with permethrin alone. These outcomes confirm that ABCG4 transporter plays a role in the detoxification process against the selected insecticide. Moreover, after fluorescent labelling, it was shown the systemic dissemination of siRNA in different body districts of An. stephensi larvae, which suggest a potential systemic effect of the molecule. At the same time, results of Vivo-MO experiments were congruent with those obtained using siRNA, thus confirming the potential of ABCG4 inhibition as a strategy to increase permethrin susceptibility in mosquitoes. For the first time, Vivo-MOs were administered in water to larvae, with evidence for a biological effect. Conclusions Targeting ABCG4 gene for silencing through both techniques resulted in an increased pyrethroid efficacy. These results open the way toward the possibility to exploit ABCG4 inhibition in the context of integrated programmes for the control An. stephensi mosquitoes and malaria transmission.
Collapse
Affiliation(s)
- Agata Negri
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy.,Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Marco Ferrari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Texas Biomedical Research Institute, San Antonio, 7620 NW Loop 410, San Antonio, TX, 78227-5301, USA
| | - Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Edoardo Coppa
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Valentina Mastrantonio
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sergio Zanzani
- Department of Veterinary Medicine-DIMEVET, Università degli Studi di Milano, Via Celoria, 10, 20133, Milan, Italy
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy.,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185, Rome, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Via Celoria 26, 20133, Milan, Italy. .,Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Via del Giochetto, 06126, Perugia, Italy.
| |
Collapse
|
33
|
Wei L, Xu C, Liang A, Fu Y. Insect-resistant Mechanism of Recombinant Baculovirus AcMNPV-PK2-EGFP against Spodoptera exigua Larvae. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Sun L, Liu P, Zhang C, Du H, Wang Z, Moural TW, Zhu F, Cao C. Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria dispar and Drosophila melanogaster. Front Physiol 2019; 10:766. [PMID: 31275171 PMCID: PMC6594220 DOI: 10.3389/fphys.2019.00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
The ocular albinism type 1 (OA1), a pigment cell-specific integral membrane glycoprotein, is a member of the G-protein-coupled receptor (GPCR) superfamily that binds to heterotrimeric G proteins in mammalian cells. We aimed to characterize the physiological functions an insect OA1 from Lymantria dispar (LdOA1) employs in the regulation of insecticide tolerance. In the present study, we investigated the roles of LdOA1 in response to deltamethrin exposure in both L. dispar and Drosophila melanogaster. LdOA1 was expressed at the lowest level during the 4th instar stage, while LdOA1 was significantly upregulated in the 5th instar and male stages. Knockdown of LdOA1 by injecting dsRNA of LdOA1 into gypsy moth larvae caused a 4.80-fold higher mortality than in control larvae microinjected with dsRNA of GFP under deltamethrin stress. Nine out of 11 L. dispar CYP genes were significantly downregulated under deltamethrin stress in LdOA1 silenced larvae as compared to control larvae. Moreover, the LdOA1 gene was successfully overexpressed in D. melanogaster using transgenic technique. The deltamethrin contact assay showed that the LdOA1 overexpression in flies significantly enhanced the tolerance to deltamethrin compared to the control flies. Furthermore, the downstream Drosophila CYP genes were upregulated in the LdOA1 overexpression flies, suggesting LdOA1 may play a master switch role in P450-mediated metabolic detoxification. This study is the first report of an insect OA1 gene regulating insecticide tolerance and potentially playing a role in the regulation of downstream cytochrome P450 expression. These results contribute to the future development of novel insecticides targeting insect GPCRs.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiying Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
35
|
Hu B, Zhang S, Ren M, Tian X, Wei Q, Mburu DK, Su J. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. INSECT SCIENCE 2019; 26:199-216. [PMID: 28881445 PMCID: PMC7379962 DOI: 10.1111/1744-7917.12538] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Cytochrome P450 and UDP-glucosyltransferase (UGT) as phase I and phase II metabolism enzymes, respectively, play vital roles in the breakdown of endobiotics and xenobiotics. Insects can increase the expression of detoxification enzymes to cope with the stress from xenobiotics including insecticides. However, the molecular mechanisms for insecticide detoxification in Spodoptera exigua remain elusive, and the genes conferring insecticide metabolisms in this species are less well reported. In this study, 68 P450 and 32 UGT genes were identified. Phylogenetic analysis showed gene expansions in CYP3 and CYP4 clans of P450 genes and UGT33 family of this pest. P450 and UGT genes exhibited specific tissue expression patterns. Insecticide treatments in fat body cells of S. exigua revealed that the expression levels of P450 and UGT genes were significantly influenced by challenges of abamectin, lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb. Multiple genes for detoxification were affected in expression levels after insecticide exposures. The results demonstrated that lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb induced similar responses in the expression of P450 and UGT genes in fat body cells; eight P450 genes and four UGT genes were co-up-regulated significantly, and no or only a few CYP/UGT genes were down-regulated significantly by these four insecticides. However, abamectin triggered a distinct response for P450 and UGT gene expression; more P450 and UGT genes were down-regulated by abamectin than by the other four compounds. In conclusion, P450 and UGT genes from S. exigua were identified, and different responses to abamectin suggest a different mechanism for insecticide detoxification.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Shu‐Heng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Miao‐Miao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xiang‐Rui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - David Kibe Mburu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jian‐Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
36
|
Huang ZY, Bian G, Xi Z, Xie X. Genes important for survival or reproduction in Varroa destructor identified by RNAi. INSECT SCIENCE 2019; 26:68-75. [PMID: 28748595 DOI: 10.1111/1744-7917.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Varroa mite, (Varroa destructor), is the worst threat to honey bee health worldwide. To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction. Double-stranded RNA (dsRNA) of six candidate genes (Da, Pros26S, RpL8, RpL11, RpP0 and RpS13) were synthesized and each injected into Varroa mites, then mite survival and reproduction were assessed. Injection of dsRNA for Da (Daughterless) and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase) caused a significant reduction in mite survival, with 3.57% ± 1.94% and 30.03% ± 11.43% mites surviving at 72 h post-injection (hpi), respectively. Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95% ± 5.03% and 82.36 ± 2.81%, respectively. Injections of dsRNA for four other genes (RpL8, RpL11, RpP0 and RpS13) did not affect survival significantly, enabling us to assess their effect on Varroa mite reproduction. The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls. Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8, RpL11) and one gene important for survival (Pros26S). In conclusion, through RNA interference, we have discovered two genes important for mite survival and four genes important for mite reproduction. These genes could be explored as possible targets for the control of Varroa destructor in the future.
Collapse
Affiliation(s)
- Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| | - Guowu Bian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
37
|
Campbell CL, Saavedra-Rodriguez K, Kubik TD, Lenhart A, Lozano-Fuentes S, Black WC. Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS One 2019; 14:e0211497. [PMID: 30695054 PMCID: PMC6350986 DOI: 10.1371/journal.pone.0211497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Association mapping of factors that condition pyrethroid resistance in Aedes aegypti has consistently identified genes in multiple functional groups. Toward better understanding of the mechanisms involved, we examined high throughput sequencing data (HTS) from two Aedes aegypti aegypti collections from Merida, Yucatan, Mexico treated with either permethrin or deltamethrin. Exome capture enrichment for coding regions and the AaegL5 annotation were used to identify genes statistically associated with resistance. The frequencies of single nucleotide polymorphisms (SNPs) were compared between resistant and susceptible mosquito pools using a contingency χ2 analysis. The -log10(χ2p value) was calculated at each SNP site, with a weighted average determined from all sites in each gene. Genes with -log10(χ2p value) ≥ 4.0 and present among all 3 treatment groups were subjected to gene set enrichment analysis (GSEA). We found that several functional groups were enriched compared to all coding genes. These categories were transport, signal transduction and metabolism, in order from highest to lowest statistical significance. Strikingly, 21 genes with demonstrated association to synaptic function were identified. In the high association group (n = 1,053 genes), several genes were identified that also genetically or physically interact with the voltage-gated sodium channel (VGSC). These genes were eg., CHARLATAN (CHL), a transcriptional regulator, several ankyrin-domain proteins, PUMILIO (PUM), a translational repressor, and NEDD4 (E3 ubiquitin-protein ligase). There were 13 genes that ranked among the top 10%: these included VGSC; CINGULIN, a predicted neuronal gap junction protein, and the aedine ortholog of NERVY (NVY), a transcriptional regulator. Silencing of CHL and NVY followed by standard permethrin bottle bioassays validated their association with permethrin resistance. Importantly, VGSC levels were also reduced about 50% in chl- or nvy-dsRNA treated mosquitoes. These results are consistent with the contribution of a variety of neuronal pathways to pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
38
|
Hill CA, Sharan S, Watts VJ. Genomics, GPCRs and new targets for the control of insect pests and vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:99-106. [PMID: 30553493 DOI: 10.1016/j.cois.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 06/09/2023]
Abstract
The pressing need for new pest control products with novel modes of action has spawned interest in small molecules and peptides targeting arthropod GPCRs. Genome sequence data and tools for reverse genetics have enabled the prediction and characterization of GPCRs from many invertebrates. We review recent work to identify, characterize and de-orphanize arthropod GPCRs, with a focus on studies that reveal exciting new functional roles for these receptors, including the regulation of metabolic resistance. We explore the potential for insecticides targeting Class A biogenic amine-binding and peptide-binding receptors, and consider the innovation required to generate pest-selective leads for development, within the context of new PCR-targeting products to control arthropod vectors of disease.
Collapse
Affiliation(s)
- Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA.
| | - Shruti Sharan
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2089, USA
| |
Collapse
|
39
|
Zhou D, Duan B, Xu Y, Ma L, Shen B, Sun Y, Zhu C. NYD-OP7/PLC regulatory signaling pathway regulates deltamethrin resistance in Culex pipiens pallens (Diptera: Culicidae). Parasit Vectors 2018; 11:419. [PMID: 30012184 PMCID: PMC6048805 DOI: 10.1186/s13071-018-3011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigation of insecticide resistance mechanisms is considered a vital first step towards the creation of effective strategies to control resistant mosquitoes and manage mosquito-borne diseases. Our previous study revealed that NYD-OP7 may be associated with deltamethrin resistance in Culex pipiens pallen. However, the precise function of NYD-OP7 in deltamethrin resistance is still unclear. In this study, we investigated the role of NYD-OP7 in the molecular mechanisms underlying pyrethroid resistance. RESULTS Knockdown of NYD-OP7 not only increased the susceptibility of the mosquitoes to deltamethrin in vivo but also simultaneously repressed both expression and enzyme activity of its downstream effector molecule, phospholipase C (PLC) and expression of several insecticide resistance-related P450 genes. Knockdown of PLC also sensitized the mosquitoes to deltamethrin and reduced the expression of the P450 genes. CONCLUSIONS Our results revealed that NYD-OP7 and its downstream effector PLC contribute to deltamethrin resistance by regulating the expression of P450s in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Baiyun Duan
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Li T, Liu N. The Function of G-Protein-Coupled Receptor-Regulatory Cascade in Southern House Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:862-870. [PMID: 29608693 PMCID: PMC6025232 DOI: 10.1093/jme/tjy022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 05/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) are a large family of seven-transmembrane domain proteins that exist in plants and animals, playing critical physiological functions through intracellular cascades. Previous studies revealed an important regulation pathway of GPCR/Guanine nucleotide-binding protein (G-protein)/Adenylyl Cyclase (AC)/cAMP-dependent protein kinase A (PKA) in the insecticide resistance and regulation of resistance-related P450 gene expression in highly resistant southern house mosquitoes, Culex quinquefasciatus Say (Diptera: Culicidae). However, the function of this regulation pathway in field-collected and laboratory-susceptible mosquitoes is still unknown. In the current study, we characterized the function of each effector (GPCR, G-protein, AC, and PKA) in this GPCR intracellular pathway in both field-collected and laboratory Cx. quinquefasciatus strains, showing that knockdown of the expression of each effector gene can cause 1) decreased expression of their downstream respective genes and 2) increased sensitivity of the mosquitoes to permethrin insecticide. These results, together with our previous findings, strongly suggest the universal function of the GPCR-regulation cascade in the mosquito's sensitivity to insecticides and its regulation of resistance development through P450-mediated detoxification.
Collapse
Affiliation(s)
- Ting Li
- Department of Entomology and Plant Pathology, Funchess Hall, Auburn University, Auburn, AL
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Funchess Hall, Auburn University, Auburn, AL
- Corresponding author, e-mail:
| |
Collapse
|
41
|
Homem RA, Davies TGE. An overview of functional genomic tools in deciphering insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 27:103-110. [PMID: 30025625 PMCID: PMC6060081 DOI: 10.1016/j.cois.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 05/13/2023]
Abstract
In this short review, we highlight three functional genomic technologies that have recently been contributing to the understanding of the molecular mechanisms underpinning insecticide resistance: the GAL4/UAS system, a molecular tool used to express genes of interest in a spatiotemporal controlled manner; the RNAi system, which is used to knock-down gene expression; and the most recently developed gene editing tool, CRISPR/Cas9, which can be used to knock-out and knock-in sequences of interest.
Collapse
Affiliation(s)
- Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Thomas G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| |
Collapse
|
42
|
Lu N, Li M, Lei H, Jiang X, Tu W, Lu Y, Xia D. Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells. J Steroid Biochem Mol Biol 2017; 172:89-97. [PMID: 28602959 DOI: 10.1016/j.jsbmb.2017.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/18/2022]
Abstract
Butyric acid (BA), one of the short chain fatty acids (SCFAs), has positive actions on the metabolism, inflammation, etc. However, whether it influences the reproductive physiology and if so the detail mechanism involved has not yet been determined. In this study, the porcine granulosa cells (PGCs) were treated with gradient concentrations of BA. After 24h culture, 0.05mM BA significantly stimulated the progesterone (P4) secretion (P<0.05), 5mM and 10mM BA significantly inhibited the P4 secretion (P<0.05). Simultaneously, BA up-regulated the estradiol (E2) secretion in a dose dependent manner, 5mM and 10mM BA significantly promoted the E2 level (P<0.05). In addition, 10mM BA significantly promoted the G-protein-coupled receptor 41/43 mRNA (P<0.05). Interestingly, 5mM BA treatment significantly down-regulated cyclic adenosine monophosphate (cAMP) content (P<0.05), steroidogenic acute regulatory (StAR), steroidogenic factor 1 (SF1), P450scc in the mRNA and/or protein level (P<0.05), and these actions were reversed by cAMP activator forskolin (FK). Moreover, the co-treatment of 5mM BA and bupivacaine (BPC, the cAMP inhibitor) significantly accumulated the inhibition action of BPC on cAMP, the secretion of P4, and the abundance of StAR mRNA (P<0.05), inhibited the up-regulation of 5mM BA on the E2 secretion (P<0.05). Further, the Global Proteome and KEGG pathway analysis found that 5mM BA significantly up-regulated the I3LM80 proteins (P<0.05), which is involved in the steroid biosynthesis signaling pathway. 5mM BA significantly decreased the F2Z5G3 protein level (P<0.05), and the cAMP signaling pathway. In conclusion, present findings for the first time demonstrated that BA could regulate the P4 and E2 hormone synthesis in PGCs via the cAMP signaling pathway.
Collapse
Affiliation(s)
- Naisheng Lu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Mengjiao Li
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Hulong Lei
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Xueyuan Jiang
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Weilong Tu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Yang Lu
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| | - Dong Xia
- Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| |
Collapse
|
43
|
Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade. Biochem Biophys Rep 2017; 12:12-19. [PMID: 28955787 PMCID: PMC5613228 DOI: 10.1016/j.bbrep.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus, focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages. GPCR, Gs alpha subunit protein (Gαs), adenylyl cyclase (ACs), and protein kinase A (PKAs) regulates resistance P450 gene expression and the development of insecticide resistance in mosquitoes, Culex quinquefasciatus. GPCR, Gαs, ACs, and PKAs, are highly expressed in the brain of mosquitoes, corresponding their role in signaling transduction, and regulation. GPCR, Gαs, ACs, PKAs, and P450s are expressed in the different life stages of mosquitoes, revealing their functional importance in response to exposure to insecticides during mosquito life stages.
Collapse
|
44
|
The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci Rep 2017; 7:587. [PMID: 28373679 PMCID: PMC5428437 DOI: 10.1038/s41598-017-00486-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 monooxygenases play a critical role in insecticide resistance by allowing resistant insects to metabolize insecticides. Previous studies revealed that two P450 genes, CYP9M10 and CYP6AA7, are not only up-regulated but also induced in resistant Culex mosquitoes. In this study, CYP9M10 and CYP6AA7 were separately co-expressed with cytochrome P450 reductase (CPR) in insect Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system and the enzymatic activity and metabolic ability of CYP9M10/CPR and CYP6AA7/CPR to permethrin and its metabolites, including 3-phenoxybenzoic alcohol (PBOH) and 3-phenoxybenzaldehyde (PBCHO), characterized. PBOH and PBCHO, both of which are toxic to Culex mosquito larvae, can be further metabolized by CYP9M10/CPR and CYP6AA7/CPR, with the ultimate metabolite identified here as PBCOOH, which is considerably less toxic to mosquito larvae. A cell-based MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay revealed that Sf9 cells expressing CYP9M10/CPR or CYP6AA7/CPR increased the cell line's tolerance to permethrin, PBOH, and PBCHO. This study confirms the important role played by CYP9M10 and CYP6AA7 in the detoxification of permethrin and its metabolites PBOH and PBCHO.
Collapse
|
45
|
Balakrishna Pillai A, Nagarajan U, Mitra A, Krishnan U, Rajendran S, Hoti SL, Mishra RK. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control. INSECT MOLECULAR BIOLOGY 2017; 26:127-139. [PMID: 27991710 DOI: 10.1111/imb.12282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.
Collapse
Affiliation(s)
- A Balakrishna Pillai
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth University, Puducherry, India
| | | | - A Mitra
- Department of Microbiology, Adamas University, Kolkata, India
| | | | - S Rajendran
- Jawaharlal Institute for Post Medical Education and Research, Puducherry, India
| | - S L Hoti
- Regional Medical Research Centre, ICMR, Belgaum, India
| | - R K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
46
|
Gong Y, Diao Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1-12. [PMID: 27819118 DOI: 10.1007/s10646-016-1742-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 05/25/2023]
Abstract
The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China
| | - Qingyun Diao
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China.
| |
Collapse
|
47
|
Liu B, Tian M, Guo Q, Ma L, Zhou D, Shen B, Sun Y, Zhu C. MiR-932 Regulates Pyrethroid Resistance in Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1205-1210. [PMID: 27313166 PMCID: PMC5013817 DOI: 10.1093/jme/tjw083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/06/2016] [Indexed: 05/12/2023]
Abstract
MicroRNAs (miRNAs) play notable role in regulation of gene expression at the posttranscription level, and have been involved in many biological processes, including insecticide resistance. In this study, we investigated the role of miR-932 in the molecular mechanisms of pyrethroid resistance in Culex pipiens pallens (L.). Overexpression of miR-932 in the DS-strain made the mosquitoes more resistant to deltamethrin, while inhibiting the expression of miR-932 in the DR-strain made the mosquitoes more sensitive to deltamethrin. Further, we also identified CpCPR5 as a target gene of miR-932. Sustained overexpression of miR-932 resulted in repression of CpCPR5, and that knockdown of miR-932 increased CpCPR5 expression. In addition, knockdown of CpCPR5 decreased the sensitivity of mosquitoes to deltamethrin in the DS-strain. In conclusion, our study finds a molecular link between miR-932 and CpCPR5 and provides a novel insight into the mechanism of insecticide resistance.
Collapse
Affiliation(s)
- Bingqian Liu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Mengmeng Tian
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China (; ; ; ; ; ; ; )
| |
Collapse
|