1
|
Neves SC, Sousa A, Nascimento DS, Orge ID, Ferreira SA, Mota C, Moroni L, Barrias CC, Granja PL. A hybrid construct with tailored 3D structure for directing pre-vascularization in engineered tissues. Mater Today Bio 2024; 29:101291. [PMID: 39435373 PMCID: PMC11492604 DOI: 10.1016/j.mtbio.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Hybrid 3D constructs combining different structural components afford unique opportunities to engineer functional tissues. Creating functional microvascular networks within these constructs is crucial for promoting integration with host vessels and ensuring successful engraftment. Here, we present a hybrid 3D system in which poly (ethylene oxide terephthalate)/poly (butylene terephthalate) fibrous scaffolds are combined with pectin hydrogels to provide internal topography and guide the formation of microvascular beds. The sequence/method of seeding human endothelial cells (EC) and mesenchymal stromal cells (MSC) into the system had a significant impact on microvessel formation. Optimal results were obtained when EC were directly seeded onto the fibrous scaffold, followed by the addition of hydrogel-embedded MSC. This approach facilitated the development of highly oriented microvascular networks along the fibers. These networks were lumenized, supported by a basement membrane, and stabilized by pericyte-like cells, persisting for at least 28 days in vitro. Furthermore, culture under pro-angiogenic and osteoinductive conditions induced MSC osteogenic differentiation without impairing microvessel formation. Upon subcutaneous implantation in mice, the pre-vascularized constructs were infiltrated by host vessels, and human microvessels were still present after 2 weeks. Overall, the proposed hybrid 3D system, combined with an optimized cell-seeding protocol, offers an effective approach for directing the formation of robust and geometrically oriented microvessels, making it promising for tissue engineering applications.
Collapse
Affiliation(s)
- Sara C. Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- FEUP - Faculdade de Engenharia da Universidade Do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
- MERLN - Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Diana S. Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Iasmim D. Orge
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Sílvia A. Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Carlos Mota
- MERLN - Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Lorenzo Moroni
- MERLN - Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Pedro L. Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| |
Collapse
|
2
|
Kang J, Liang Y, Liu J, Hu M, Lin S, Zhong J, Wang C, Zeng Q, Zhang C. Dual roles of photosynthetic hydrogel with sustained oxygen generation in promoting cell survival and eradicating anaerobic infection. Mater Today Bio 2024; 28:101197. [PMID: 39221211 PMCID: PMC11364899 DOI: 10.1016/j.mtbio.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Tissue engineering offers a promising alternative for oral and maxillofacial tissue defect rehabilitation; however, cells within a sizeable engineered tissue construct after transplantation inevitably face prolonged and severe hypoxic conditions, which may compromise the survivability of the transplanted cells and arouse the concern of anaerobic infection. Microalgae, which can convert carbon dioxide and water into oxygen and glucose through photosynthesis, have been studied as a source of oxygen supply for several biomedical applications, but their promise in orofacial tissue regeneration remains unexplored. Here, we demonstrated that through photosynthetic oxygenation, Chlamydomonas reinhardtii (C. reinhardtii) supported dental pulp stem cell (DPSC) energy production and survival under hypoxia. We developed a multifunctional photosynthetic hydrogel by embedding DPSCs and C. reinhardtii encapsulated alginate microspheres (CAMs) within gelatin methacryloyl hydrogel (GelMA) (CAMs@GelMA). This CAMs@GelMA hydrogel can generate a sustainable and sufficient oxygen supply, reverse intracellular hypoxic status, and enhance the metabolic activity and viability of DPSCs. Furthermore, the CAMs@GelMA hydrogel exhibited selective antibacterial activity against oral anaerobes and remarkable antibiofilm effects on multispecies biofilms by disrupting the hypoxic microenvironment and increasing reactive oxygen species generation. Our work presents an innovative photosynthetic strategy for oral tissue engineering and opens new avenues for addressing other hypoxia-related challenges.
Collapse
Affiliation(s)
- Jun Kang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ye Liang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mingxin Hu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shulan Lin
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jialin Zhong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Xing T, Wang X, Xu Y, Sun F, Chen M, Yan Q, Ma Z, Jiang H, Chen X, Li X, Sultan R, Yan T, Wang Z, Jia J. Click method preserves but EDC method compromises the therapeutic activities of the peptide-activated hydrogels for critical ischemic vessel regeneration. Biomed Pharmacother 2024; 177:116959. [PMID: 38906023 DOI: 10.1016/j.biopha.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/25/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Peptide-functionalized hydrogel is one of commonly used biomaterials to introduce hydrogel-induced vessel regeneration. Despite many reports about the discoveries of high-active peptides (or ligands) for regeneration, the study on the conjugating methods for the hydrogel functionalization with peptides is limited. Here, we compared the vasculogenic efficacy of the peptide-functionalized hydrogels prepared by two commonly used conjugating methods, 1-ethyl-3-(3-dimethylamino propyl) carbodiimide (EDC) and Click methods, through cell models, organ-on-chips models, animal models, and RNA sequencing analysis. Two vascular-related cell types, the human umbilical vein endothelial cells (HUVECs) and the adipose-derived stem cells (ADSCs), have been cultured on the hydrogel surfaces prepared by EDC/Click methods. It showed that the hydrogels prepared by Click method supported the higher vasculogenic activities while the ones made by EDC method compromised the peptide activities on hydrogels. The vasculogenesis assays further revealed that hydrogels prepared by Click method promoted a better vascular network formation. In a critical ischemic hindlimb model, only the peptide-functionalized hydrogels prepared by Click method successfully salvaged the ischemic limb, significantly improved blood perfusion, and enhanced the functional recoveries (through gait analysis and animal behavior studies). RNA sequencing studies revealed that the hydrogels prepared by Click method significantly promoted the PI3K-AKT pathway activation compared to the hydrogels prepared by EDC method. All the results suggested that EDC method compromised the functions of the peptides, while Click method preserved the vascular regenerating capacities of the peptides on the hydrogels, illustrating the importance of the conjugating method during the preparation of the peptide-functionalized hydrogels.
Collapse
Affiliation(s)
- Tongying Xing
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Xuelin Wang
- School of Life Sciences, Shanghai University, Shanghai, China; Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yongqiang Xu
- Department of colorectal surgery, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Fei Sun
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qiang Yan
- Department of Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China; Department of Surgery, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Zhihong Ma
- Department of Precision Medical Clinical Research Center, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingxing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Rabia Sultan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China; Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Al-Badri G, Phillips JB, Shipley RJ, Ovenden NC. Formation of vascular-like structures using a chemotaxis-driven multiphase model. Math Biosci 2024; 372:109183. [PMID: 38554855 DOI: 10.1016/j.mbs.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
We propose a continuum model for pattern formation, based on the multiphase model framework, to explore in vitro cell patterning within an extracellular matrix (ECM). We demonstrate that, within this framework, chemotaxis-driven cell migration can lead to the formation of cell clusters and vascular-like structures in 1D and 2D respectively. The influence on pattern formation of additional mechanisms commonly included in multiphase tissue models, including cell-matrix traction, contact inhibition, and cell-cell aggregation, are also investigated. Using sensitivity analysis, the relative impact of each model parameter on the simulation outcomes is assessed to identify the key parameters involved. Chemoattractant-matrix binding is further included, motivated by previous experimental studies, and found to reduce the spatial scale of patterning to within a biologically plausible range for capillary structures. Key findings from the in-depth parameter analysis of the 1D models, both with and without chemoattractant-matrix binding, are demonstrated to translate well to the 2D model, obtaining vascular-like cell patterning for multiple parameter regimes. Overall, we demonstrate a biologically-motivated multiphase model capable of generating long-term pattern formation on a biologically plausible spatial scale both in 1D and 2D, with applications for modelling in vitro vascular network formation.
Collapse
Affiliation(s)
- Georgina Al-Badri
- Department of Mathematics, University College London, London, UK; Centre for Nerve Engineering, University College London, London, UK.
| | - James B Phillips
- Centre for Nerve Engineering, University College London, London, UK; Department of Pharmacology, University College London, London, UK
| | - Rebecca J Shipley
- Centre for Nerve Engineering, University College London, London, UK; Department of Mechanical Engineering, University College London, London, UK
| | - Nicholas C Ovenden
- Department of Mathematics, University College London, London, UK; Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
5
|
Kwon H, Lee S, Byun H, Huh SJ, Lee E, Kim E, Lee J, Shin H. Engineering pre-vascularized 3D tissue and rapid vascular integration with host blood vessels via co-cultured spheroids-laden hydrogel. Biofabrication 2024; 16:025029. [PMID: 38447223 DOI: 10.1088/1758-5090/ad30c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6μm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.
Collapse
Affiliation(s)
- Hyunseok Kwon
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Natesh NR, Mogha P, Chen A, Antonia SJ, Varghese S. Differential roles of normal and lung cancer-associated fibroblasts in microvascular network formation. APL Bioeng 2024; 8:016120. [PMID: 38524671 PMCID: PMC10959556 DOI: 10.1063/5.0188238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Perfusable microvascular networks offer promising three-dimensional in vitro models to study normal and compromised vascular tissues as well as phenomena such as cancer cell metastasis. Engineering of these microvascular networks generally involves the use of endothelial cells stabilized by fibroblasts to generate robust and stable vasculature. However, fibroblasts are highly heterogenous and may contribute variably to the microvascular structure. Here, we study the effect of normal and cancer-associated lung fibroblasts on the formation and function of perfusable microvascular networks. We examine the influence of cancer-associated fibroblasts on microvascular networks when cultured in direct (juxtacrine) and indirect (paracrine) contacts with endothelial cells, discovering a generative inhibition of microvasculature in juxtacrine co-cultures and a functional inhibition in paracrine co-cultures. Furthermore, we probed the secreted factors differential between cancer-associated fibroblasts and normal human lung fibroblasts, identifying several cytokines putatively influencing the resulting microvasculature morphology and functionality. These findings suggest the potential contribution of cancer-associated fibroblasts in aberrant microvasculature associated with tumors and the plausible application of such in vitro platforms in identifying new therapeutic targets and/or agents that can prevent formation of aberrant vascular structures.
Collapse
Affiliation(s)
- Naveen R. Natesh
- Department of Biomedical Engineering, Duke University, 203 Research Drive, MSRB1 Room No. 381, Durham, North Carolina 27710, USA
| | - Pankaj Mogha
- Department of Orthopaedic Surgery, Duke University, 200 Trent Drive, Durham, North Carolina 27710, USA
| | - Alan Chen
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | - Scott J. Antonia
- Department of Medical Oncology, Duke University, Durham, North Carolina 27710, USA
| | | |
Collapse
|
7
|
Pereira M, Pinto J, Arteaga B, Guerra A, Jorge RN, Monteiro FJ, Salgado CL. A Comprehensive Look at In Vitro Angiogenesis Image Analysis Software. Int J Mol Sci 2023; 24:17625. [PMID: 38139453 PMCID: PMC10743557 DOI: 10.3390/ijms242417625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. TE technique is characterized by several stages, starting from the choice of cell culture and the more appropriate scaffold material that can adequately support and supply them with the necessary biological cues for microvessel development. The next step is to analyze the attained microvasculature, which is reliant on the available labeling and microscopy techniques to visualize the network, as well as metrics employed to characterize it. These are usually attained with the use of software, which has been cited in several works, although no clear standard procedure has been observed to promote the reproduction of the cell response analysis. The present review analyzes not only the various steps previously described in terms of the current standards for evaluation, but also surveys some of the available metrics and software used to quantify networks, along with the detection of analysis limitations and future improvements that could lead to considerable progress for angiogenesis evaluation and application in TE research.
Collapse
Affiliation(s)
- Mariana Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jéssica Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Belén Arteaga
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Av. de la Investigación 11, 18016 Granada, Spain
| | - Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
| | - Renato Natal Jorge
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
- PCCC—Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
8
|
Hydrogel-Based Tissue-Mimics for Vascular Regeneration and Tumor Angiogenesis. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
9
|
Computational Model Exploring Characteristic Pattern Regulation in Periventricular Vessels. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122069. [PMID: 36556434 PMCID: PMC9788473 DOI: 10.3390/life12122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The developing neocortical vasculature exhibits a distinctive pattern in each layer. In murine embryos, vessels in the cortical plate (CP) are vertically oriented, whereas those in the intermediate zone (IZ) and the subventricular zone (SVZ) form a honeycomb structure. The formation of tissue-specific vessels suggests that the behavior of endothelial cells is under a specific regulatory regime in each layer, although the mechanisms involved remain unknown. In the present study, we aimed to explore the conditions required to form these vessel patterns by conducting simulations using a computational model. We developed a novel model framework describing the collective migration of endothelial cells to represent the angiogenic process and performed a simulation using two-dimensional approximation. The attractive and repulsive guidance of tip cells was incorporated into the model based on the function and distribution of guidance molecules such as VEGF and Unc ligands. It is shown that an appropriate combination of guidance effects reproduces both the parallel straight pattern in the CP and meshwork patterns in the IZ/SVZ. Our model demonstrated how the guidance of the tip cell causes a variety of vessel patterns and predicted how tissue-specific vascular formation was regulated in the early development of neocortical vessels.
Collapse
|
10
|
Zohar B, Debbi L, Machour M, Nachum N, Redenski I, Epshtein M, Korin N, Levenberg S. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater 2022; 163:182-193. [PMID: 35597433 DOI: 10.1016/j.actbio.2022.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
Vascularization of 3D engineered tissues poses a great challenge in the field of tissue engineering. One promising approach for vascularizing engineered tissue is cocultivation with endothelial cells (ECs), which spontaneously self-assemble into a natural capillary network in the presence of supportive cells. However, the ECs do not self-assemble according to physiological hierarchy which is required to support blood supply. This work describes the design and fabrication of an AngioTube, a biodegradable engineered macro-vessel surrounded by cylindrical micro-channel array, which is designed to support physiological flow distribution and enable the integration with living capillaries. The well-defined geometry of the engineered micro-channels guides endothelial cells to form patent micro-vessels which sprouted in accordance with the channel orientation. Three different in-vitro models were used to demonstrate anastomosis of these engineered micro-vessels with self-assembled vascular networks. Finally, in-vivo functionality was demonstrated by direct anastomosis with the femoral artery in a rat hindlimb model. This unique approach proposes a new micro-fabrication strategy which introduces uncompromised micro-fluidic device geometrical accuracy at the tissue-scale level. STATEMENT OF SIGNIFICANCE: This study proposes a micro-fabrication strategy suitable for processing real-scale cylindrical implants with very high accuracy, which will enable translation of the high-resolution geometry of micro-fluidic devices to clinically relevant implants containing functional multi-scale vascular networks. Moreover, this approach promises to advance the field of tissue engineering by opening new opportunities to explore the impact of well controlled and uncompromised 3D micro-geometry on cellular behavior.
Collapse
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Lior Debbi
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Majd Machour
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netta Nachum
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Idan Redenski
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-Israel Institute of Technology
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology.
| |
Collapse
|
11
|
Lin Z, Zhang X, Fritch MR, Li Z, Kuang B, Alexander PG, Hao T, Cao G, Tan S, Bruce KK, Lin H. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials 2022; 283:121451. [DOI: 10.1016/j.biomaterials.2022.121451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/12/2023]
|
12
|
Wang Y, Kankala RK, Ou C, Chen A, Yang Z. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioact Mater 2022; 9:198-220. [PMID: 34820566 PMCID: PMC8586021 DOI: 10.1016/j.bioactmat.2021.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The construction of biomimetic vasculatures within the artificial tissue models or organs is highly required for conveying nutrients, oxygen, and waste products, for improving the survival of engineered tissues in vitro. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular biology have enabled the creation of three-dimensional (3D) tissues and organs composed of highly complex vascular systems. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the vascularization of tissues. Initially, the significance of vascular elements and the regeneration mechanisms of vascularization, including angiogenesis and vasculogenesis, are briefly introduced. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments in fabricating vascularized tissues or organs, in terms of tunable physical properties, high similarity in physiological environments, and alternative shaping mechanisms, among others. Furthermore, we discuss the utilization of such hydrogels-based vascularized tissues in various applications, including tissue regeneration, drug screening, and organ-on-chips. Finally, we put forward the key challenges, including multifunctionalities of hydrogels, selection of suitable cell phenotype, sophisticated engineering techniques, and clinical translation behind the development of the tissues with complex vasculatures towards their future development.
Collapse
Affiliation(s)
- Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523059, PR China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, Guangdong, 510080, PR China
| |
Collapse
|
13
|
Debbi L, Zohar B, Shuhmaher M, Shandalov Y, Goldfracht I, Levenberg S. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials 2021; 280:121286. [PMID: 34871879 DOI: 10.1016/j.biomaterials.2021.121286] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
A functional multi-scale vascular network can promote 3D engineered tissue growth and improve transplantation outcome. In this work, by using a combination of living cells, biological hydrogel, and biodegradable synthetic polymer we fabricated a biocompatible, multi-scale vascular network (MSVT) within thick, implantable engineered tissues. Using a templating technique, macro-vessels were patterned in a 3D biodegradable polymeric scaffold seeded with endothelial and support cells within a collagen gel. The lumen of the macro-vessel was lined with endothelial cells, which further sprouted and anastomosed with the surrounding self-assembled capillaries. Anastomoses between the two-scaled vascular systems displayed tightly bonded cell junctions, as indicated by vascular endothelial cadherin expression. Moreover, MSVT functionality and patency were demonstrated by dextran passage through the interconnected multi-scale vasculature. Additionally, physiological flow conditions were applied with home-designed flow bioreactors, to achieve a MSVT with a natural endothelium structure. Finally, implantation of a multi-scale-vascularized graft in a mouse model resulted in extensive host vessel penetration into the graft and a significant increase in blood perfusion via the engineered vessels compared to control micro-scale-vascularized graft. Designing and fabricating such multi-scale vascular architectures within 3D engineered tissues may benefit both in vitro models and therapeutic translation research.
Collapse
Affiliation(s)
- Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Barak Zohar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Yulia Shandalov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Idit Goldfracht
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
14
|
Szklanny AA, Machour M, Redenski I, Chochola V, Goldfracht I, Kaplan B, Epshtein M, Simaan Yameen H, Merdler U, Feinberg A, Seliktar D, Korin N, Jaroš J, Levenberg S. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102661. [PMID: 34510579 PMCID: PMC11468543 DOI: 10.1002/adma.202102661] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/28/2021] [Indexed: 05/09/2023]
Abstract
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native-like millimetric vessels. This work presents a novel strategy aiming to create fully-engineered patient-specific thick tissue flaps.
Collapse
Affiliation(s)
- Ariel A. Szklanny
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Majd Machour
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Idan Redenski
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Václav Chochola
- Department of Histology and EmbryologyFaculty of MedicineMasaryk UniversityBrno625 00Czech Republic
| | - Idit Goldfracht
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Ben Kaplan
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Mark Epshtein
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Haneen Simaan Yameen
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Uri Merdler
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Adam Feinberg
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPA15213USA
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Netanel Korin
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Josef Jaroš
- Cell and Tissue RegenerationInternational Clinical Research CenterSt. Anne's University Hospital BrnoBrno65691Czech Republic
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
15
|
Cell-based therapies for vascular regeneration: Past, present and future. Pharmacol Ther 2021; 231:107976. [PMID: 34480961 DOI: 10.1016/j.pharmthera.2021.107976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Tissue vascularization remains one of the outstanding challenges in regenerative medicine. Beyond its role in circulating oxygen and nutrients, the vasculature is critical for organ development, function and homeostasis. Importantly, effective vascular regeneration is key in generating large 3D tissues for regenerative medicine applications to enable the survival of cells post-transplantation, organ growth, and integration into the host system. Therefore, the absence of clinically applicable means of (re)generating vessels is one of the main obstacles in cell replacement therapy. In this review, we highlight cell-based vascularization strategies which demonstrate clinical potential, discuss their strengths and limitations and highlight the main obstacles hindering cell-based therapeutic vascularization.
Collapse
|
16
|
Malheiro A, Wieringa P, Moroni L. Peripheral neurovascular link: an overview of interactions and in vitro models. Trends Endocrinol Metab 2021; 32:623-638. [PMID: 34127366 DOI: 10.1016/j.tem.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Nerves and blood vessels (BVs) establish extensive arborized networks to innervate tissues and deliver oxygen/metabolic support. Developmental cues direct the formation of these intricate and often overlapping patterns, which reflect close interactions within the peripheral neurovascular system. Besides the mutual dependence to survive and function, nerves and BVs share several receptors and ligands, as well as principles of differentiation, growth and pathfinding. Neurovascular (NV) interactions are maintained in adult life and are essential for certain regenerative mechanisms, such as wound healing. In pathological situations (e.g., type 2 diabetes mellitus), the NV system can be severely perturbed and become dysfunctional. Unwanted neural growth and vascularization are also associated with the progression of some pathologies, such as cancer and endometriosis. In this review, we describe the fundamental NV interactions in development, highlighting the similarities between both networks and wiring mechanisms. We also describe the NV contribution to regenerative processes and potential pathological dysfunctions. Finally, we provide an overview of current in vitro models used to replicate and investigate the NV ecosystem, addressing present limitations and future perspectives.
Collapse
Affiliation(s)
- Afonso Malheiro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
17
|
Salamone M, Rigogliuso S, Nicosia A, Campora S, Bruno CM, Ghersi G. 3D Collagen Hydrogel Promotes In Vitro Langerhans Islets Vascularization through ad-MVFs Angiogenic Activity. Biomedicines 2021; 9:biomedicines9070739. [PMID: 34199087 PMCID: PMC8301445 DOI: 10.3390/biomedicines9070739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 μm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF–islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation.
Collapse
Affiliation(s)
- Monica Salamone
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Salvatrice Rigogliuso
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
| | - Carmelo Marco Bruno
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
| | - Giulio Ghersi
- Abiel s.r.l., c/o Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (C.M.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy;
- Correspondence:
| |
Collapse
|
18
|
Heene S, Thoms S, Kalies S, Wegner N, Peppermüller P, Born N, Walther F, Scheper T, Blume CA. Vascular Network Formation on Macroporous Polydioxanone Scaffolds. Tissue Eng Part A 2021; 27:1239-1249. [PMID: 33397206 DOI: 10.1089/ten.tea.2020.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, microvascular network structures for tissue engineering were generated on newly developed macroporous polydioxanone (PDO) scaffolds. PDO represents a polymer biodegradable within months and offers optimal material properties such as elasticity and nontoxic degradation products. PDO scaffolds prepared by porogen leaching and cryo-dried to achieve pore sizes of 326 ± 149.67 μm remained stable with equivalent values for Young's modulus after 4 weeks. Scaffolds were coated with fibrin for optimal cell adherence. To exclude interindividual differences, autologous fibrin was prepared out of human plasma-derived fibrinogen and proved a comparable quality to nonautologous commercially available fibrinogen. Fibrin-coated scaffolds were seeded with recombinant human umbilical vein endothelial cells expressing GFP (GFP-HUVECs) in coculture with adipose tissue-derived mesenchymal stem cells (AD-hMSCs) to form vascular networks. The growth factor content in culture media was optimized according its effect on network formation, quantified and assessed by AngioTool®. A ratio of 2:3 GFP-HUVECs/AD-hMSCs in medium enriched with 20 ng/mL vascular endothelial growth factor, basic fibroblast growth factor, and hydrocortisone was found to be optimal. Network structures appeared after 2 days of cultivation and stabilized until day 7. The resulting networks were lumenized that could be verified by dextran staining. This new approach might be suitable for microvascular tissue patches as a useful template to be used in diverse vascularized tissue constructs.
Collapse
Affiliation(s)
- Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Nils Wegner
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Pia Peppermüller
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | - Frank Walther
- Department of Materials Test Engineering, Technical University Dortmund, Dortmund, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Cornelia A Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
19
|
Später T, Ampofo E, Menger MD, Laschke MW. Combining Vascularization Strategies in Tissue Engineering: The Faster Road to Success? Front Bioeng Biotechnol 2020; 8:592095. [PMID: 33364230 PMCID: PMC7752995 DOI: 10.3389/fbioe.2020.592095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
20
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Jia J, Jeon EJ, Li M, Richards DJ, Lee S, Jung Y, Barrs RW, Coyle R, Li X, Chou JC, Yost MJ, Gerecht S, Cho SW, Mei Y. Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. SCIENCE ADVANCES 2020; 6:eaaz5894. [PMID: 32923589 PMCID: PMC7455498 DOI: 10.1126/sciadv.aaz5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Biologically active ligands (e.g., RGDS from fibronectin) play critical roles in the development of chemically defined biomaterials. However, recent decades have shown only limited progress in discovering novel extracellular matrix-protein-derived ligands for translational applications. Through motif analysis of evolutionarily conserved RGD-containing regions in laminin (LM) and peptide-functionalized hydrogel microarray screening, we identified a peptide (a1) that showed superior supports for endothelial cell (EC) functions. Mechanistic studies attributed the results to the capacity of a1 engaging both LM- and Fn-binding integrins. RNA sequencing of ECs in a1-functionalized hydrogels showed ~60% similarities with Matrigel in "vasculature development" gene ontology terms. Vasculogenesis assays revealed the capacity of a1-formulated hydrogels to improve EC network formation. Injectable alginates functionalized with a1 and MMPQK (a vascular endothelial growth factor-mimetic peptide with a matrix metalloproteinase-degradable linker) increased blood perfusion and functional recovery over decellularized extracellular matrix and (RGDS + MMPQK)-functionalized hydrogels in an ischemic hindlimb model, illustrating the power of this approach.
Collapse
Affiliation(s)
- Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Soojin Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
- Ocean University of China, School of Medicine and Pharmacy, Qingdao, Shandong, China
| | - James C. Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J. Yost
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, and Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B, Eager J, Cohen A, Levenberg S, Spiller KL. Macrophages of diverse phenotypes drive vascularization of engineered tissues. SCIENCE ADVANCES 2020; 6:eaay6391. [PMID: 32494664 PMCID: PMC7195167 DOI: 10.1126/sciadv.aay6391] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/10/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are key contributors to vascularization, but the mechanisms behind their actions are not understood. Here, we show that diverse macrophage phenotypes have distinct effects on endothelial cell behavior, with resulting effects on vascularization of engineered tissues. In Transwell coculture, proinflammatory M1 macrophages caused endothelial cells to up-regulate genes associated with sprouting angiogenesis, whereas prohealing (M2a), proremodeling (M2c), and anti-inflammatory (M2f) macrophages promoted up-regulation of genes associated with pericyte cell differentiation. In 3D tissue-engineered human blood vessel networks in vitro, short-term exposure (1 day) to M1 macrophages increased vessel formation, while long-term exposure (3 days) caused regression. When human tissue-engineered blood vessel networks were implanted into athymic mice, macrophages expressing markers of both M1 and M2 phenotypes wrapped around and bridged adjacent vessels and formed vessel-like structures themselves. Last, depletion of host macrophages inhibited remodeling of engineered vessels, infiltration of host vessels, and anastomosis with host vessels.
Collapse
Affiliation(s)
- P. L. Graney
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - S. Ben-Shaul
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - S. Landau
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - A. Bajpai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - B. Singh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - J. Eager
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - A. Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - S. Levenberg
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
- Corresponding author. (S.L.); (K.L.S.)
| | - K. L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Corresponding author. (S.L.); (K.L.S.)
| |
Collapse
|
23
|
Yeo M, Kim G. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Acta Biomater 2020; 107:102-114. [PMID: 32142759 DOI: 10.1016/j.actbio.2020.02.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Human skeletal muscle is composed of intricate anatomical structures, including uniaxially arranged myotubes and widely distributed blood capillaries. In this regard, vascularization is an essential part of the successful development of an engineered skeletal muscle tissue to restore its function and physiological activities. In this paper, we propose a method to obtain a platform for co-culturing human umbilical vein endothelial cells (HUVECs) and C2C12 cells using cell electrospinning and 3D bioprinting. To elaborate, on the surface of mechanical supporters (polycaprolactone and collagen struts) with a topographical cue, HUVECs-laden alginate bioink was uniaxially electrospun. The electrospun HUVECs showed high cell viability (90%), homogeneous cell distribution, and efficient HUVEC growth. Furthermore, the myoblasts (C2C12 cells), which were seeded on the vascularized structure (HUVECs-laden fibers), were co-cultured to facilitate myoblast regeneration. As a result, the scaffold that included myoblasts and HUVECs represented a high degree of the myosin heavy chain (MHC) with striated patterns and enhanced myogenic-specific gene expressions (MyoD, troponin T, MHC and myogenin) as compared to the scaffold that included only myoblasts. STATEMENT OF SIGNIFICANCE: Cell electrospinning is an advanced electrospinning method that improves cell-matrix interactions by embedding cells directly into micro/nanofibers. Here, cell electrospinning was employed to achieve not only the homogeneous human umbilical vein endothelial cells (HUVECs) distribution with a high cell-viability (~90%), but also highly aligned topographical cue. Moreover, the uniaxially micropatterned PCL/collagen struts as a physical support were generated using three-dimensional (3D) printing, and was covered with HUVEC-laden micro/nanofibers. This hierarchical structure provided meaningful mechanical stability, homogeneous cell distribution, and HUVEC transformation into a narrow, elongated structure. Furthermore, the myoblasts (C2C12 cells) were seeded on the HUVECs-laden fibers and cocultured to facilitate myogenesis. In brief, a myosin heavy chain with striated patterns and enhanced myogenic specific gene expressions were represented.
Collapse
Affiliation(s)
- Miji Yeo
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 440-746, South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 440-746, South Korea.
| |
Collapse
|
24
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
25
|
Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell‐mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnol Bioeng 2020; 117:1148-1158. [DOI: 10.1002/bit.27250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Guangliang Zhang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Mathew Varkey
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Zhan Wang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Beibei Xie
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Ruixing Hou
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Anthony Atala
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| |
Collapse
|
26
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
27
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Herron LA, Hansen CS, Abaci HE. Engineering tissue-specific blood vessels. Bioeng Transl Med 2019; 4:e10139. [PMID: 31572797 PMCID: PMC6764806 DOI: 10.1002/btm2.10139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular diversity among organs has recently become widely recognized. Several studies using mouse and human fetal tissues revealed distinct characteristics of organ-specific vasculature in molecular and functional levels. Thorough understanding of vascular heterogeneities in human adult tissues is significant for developing novel strategies for targeted drug delivery and tissue regeneration. Recent advancements in microfabrication techniques, biomaterials, and differentiation protocols allowed for incorporation of microvasculature into engineered organs. Such vascularized organ models represent physiologically relevant platforms that may offer innovative tools for dissecting the effects of the organ microenvironment on vascular development and expand our present knowledge on organ-specific human vasculature. In this article, we provide an overview of the current structural and molecular evidence on microvascular diversity, bioengineering methods used to recapitulate the microenvironmental cues, and recent vascularized three-dimensional organ models from the perspective of tissue-specific vasculature.
Collapse
Affiliation(s)
- Lauren A. Herron
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| | - Corey S. Hansen
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| | - Hasan E. Abaci
- Department of DermatologyColumbia University Irving Medical CenterNew YorkNY10032
| |
Collapse
|
29
|
Zohar B, Blinder Y, Epshtein M, Szklanny AA, Kaplan B, Korin N, Mooney DJ, Levenberg S. Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue. Commun Biol 2019; 2:158. [PMID: 31069267 PMCID: PMC6499812 DOI: 10.1038/s42003-019-0400-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The key to understanding, harnessing, and manipulating natural biological processes for the benefit of tissue engineering lies in providing a controllable dynamic environment for tissue development in vitro while being able to track cell activity in real time. This work presents a multi-channel bioreactor specifically designed to enable on-line imaging of fluorescently labeled cells embedded in replicated 3D engineered constructs subjected to different flow conditions. The images are acquired in 3D using a standard upright confocal microscope and further analyzed and quantified by computer vision. The platform is used to characterize and quantify the pace and directionality of angiogenic processes induced by flow. The presented apparatus bears considerable potential to advance scientific research, from basic research pursuing the effect of flow versus static conditions on 3D scaffolds and cell types, to clinically oriented modeling in drug screening and cytotoxicity assays.
Collapse
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaron Blinder
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Mark Epshtein
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel A. Szklanny
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ben Kaplan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Bruce Rapaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
30
|
Blatchley MR, Hall F, Wang S, Pruitt HC, Gerecht S. Hypoxia and matrix viscoelasticity sequentially regulate endothelial progenitor cluster-based vasculogenesis. SCIENCE ADVANCES 2019; 5:eaau7518. [PMID: 30906859 PMCID: PMC6426463 DOI: 10.1126/sciadv.aau7518] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Vascular morphogenesis is the formation of endothelial lumenized networks. Cluster-based vasculogenesis of endothelial progenitor cells (EPCs) has been observed in animal models, but the underlying mechanism is unknown. Here, using O2-controllabe hydrogels, we unveil the mechanism by which hypoxia, co-jointly with matrix viscoelasticity, induces EPC vasculogenesis. When EPCs are subjected to a 3D hypoxic gradient ranging from <2 to 5%, they rapidly produce reactive oxygen species that up-regulate proteases, most notably MMP-1, which degrade the surrounding extracellular matrix. EPC clusters form and expand as the matrix degrades. Cell-cell interactions, including those mediated by VE-cadherin, integrin-β2, and ICAM-1, stabilize the clusters. Subsequently, EPC sprouting into the stiffer, intact matrix leads to vascular network formation. In vivo examination further corroborated hypoxia-driven clustering of EPCs. Overall, this is the first description of how hypoxia mediates cluster-based vasculogenesis, advancing our understanding toward regulating vascular development as well as postnatal vasculogenesis in regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Franklyn Hall
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Songnan Wang
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hawley C Pruitt
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology and Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Später T, Frueh FS, Nickels RM, Menger MD, Laschke MW. Prevascularization of collagen-glycosaminoglycan scaffolds: stromal vascular fraction versus adipose tissue-derived microvascular fragments. J Biol Eng 2018; 12:24. [PMID: 30473729 PMCID: PMC6234670 DOI: 10.1186/s13036-018-0118-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Background The seeding of scaffolds with the stromal vascular fraction (SVF) of adipose tissue is a common prevascularization strategy in tissue engineering. Alternatively, adipose tissue-derived microvascular fragments (ad-MVF) may serve as vascularization units. In contrast to SVF single cells, they represent a mixture of intact arteriolar, capillary and venular vessel segments. Therefore, we herein hypothesized that the ad-MVF-based prevascularization of scaffolds is superior to the conventional SVF single cells-based approach. Results SVF single cells and ad-MVF were enzymatically isolated from epididymal fat pads of green fluorescent protein (GFP)+ donor mice to assess their viability and cellular composition using fluorescence microscopy and flow cytometry. Moreover, collagen-glycosaminoglycan matrices (Integra®) were seeded with identical amounts of the isolates and implanted into full-thickness skin defects within dorsal skinfold chambers of GFP− recipient mice for the intravital fluorescent microscopic, histological and immunohistochemical analysis of implant vascularization and incorporation throughout an observation period of 2 weeks. Non-seeded matrices served as controls. While both isolates contained a comparable fraction of endothelial cells, perivascular cells, adipocytes and stem cells, ad-MVF exhibited a significantly higher viability. After in vivo implantation, the vascularization of ad-MVF-seeded scaffolds was improved when compared to SVF-seeded ones, as indicated by a significantly higher functional microvessel density. This was associated with an enhanced cellular infiltration, collagen content and density of CD31+/GFP+ microvessels particularly in the center of the implants, demonstrating a better incorporation into the surrounding host tissue. In contrast, non-seeded matrices exhibited a poor vascularization, incorporation and epithelialization over time. Conclusions The present study demonstrates that ad-MVF are highly potent vascularization units that markedly accelerate and improve scaffold vascularization when compared to the SVF. Electronic supplementary material The online version of this article (10.1186/s13036-018-0118-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Später
- 1Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand Surgery, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
| | - Ruth M Nickels
- 1Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- 1Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Matthias W Laschke
- 1Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
32
|
Landau S, Ben‐Shaul S, Levenberg S. Oscillatory Strain Promotes Vessel Stabilization and Alignment through Fibroblast YAP-Mediated Mechanosensitivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800506. [PMID: 30250793 PMCID: PMC6145399 DOI: 10.1002/advs.201800506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/24/2018] [Indexed: 05/24/2023]
Abstract
Endothelial cells form the interior layer of blood vessels and, as such, are constantly exposed to shear stress and mechanical strain. While the impact of shear stress on angiogenesis is widely studied, the role of mechanical strain is less understood. To this end, endothelial cells and fibroblasts are cocultured under oscillatory strain to create a vessel network. The two cell types show distinctly different sensitivities to the mechanical stimulation. The fibroblasts, sense the stress directly, and respond by increased alignment, proliferation, differentiation, and migration, facilitated by YAP translocation into the nucleus. In contrast, the endothelial cells form aligned vessels by tracking fibroblast alignment. YAP inhibition in constructs under mechanical strain results in vessel destruction whereas less damage is observed in the YAP-inhibited static control. Moreover, the mechanical stimulation enhances vessel development and stabilization. Additionally, vessel orientation is preserved upon implantation into a mouse dorsal window chamber and promotes the invading host vessels to orient in the same manner. This study sheds light on the mechanisms by which mechanical strain affects the development of blood vessels within engineered tissues. This can be further utilized to engineer a more organized and stable vasculature suitable for transplantation of engineered grafts.
Collapse
Affiliation(s)
- Shira Landau
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| | - Shahar Ben‐Shaul
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifa3200002Israel
| |
Collapse
|
33
|
Adler M, Mayo A, Zhou X, Franklin RA, Jacox JB, Medzhitov R, Alon U. Endocytosis as a stabilizing mechanism for tissue homeostasis. Proc Natl Acad Sci U S A 2018; 115:E1926-E1935. [PMID: 29429964 PMCID: PMC5828590 DOI: 10.1073/pnas.1714377115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells in tissues communicate by secreted growth factors (GF) and other signals. An important function of cell circuits is tissue homeostasis: maintaining proper balance between the amounts of different cell types. Homeostasis requires negative feedback on the GFs, to avoid a runaway situation in which cells stimulate each other and grow without control. Feedback can be obtained in at least two ways: endocytosis in which a cell removes its cognate GF by internalization and cross-inhibition in which a GF down-regulates the production of another GF. Here we ask whether there are design principles for cell circuits to achieve tissue homeostasis. We develop an analytically solvable framework for circuits with multiple cell types and find that feedback by endocytosis is far more robust to parameter variation and has faster responses than cross-inhibition. Endocytosis, which is found ubiquitously across tissues, can even provide homeostasis to three and four communicating cell types. These design principles form a conceptual basis for how tissues maintain a healthy balance of cell types and how balance may be disrupted in diseases such as degeneration and fibrosis.
Collapse
Affiliation(s)
- Miri Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Xu Zhou
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruth A Franklin
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Jeremy B Jacox
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510;
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
34
|
The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Res Ther 2018; 9:35. [PMID: 29433579 PMCID: PMC5809876 DOI: 10.1186/s13287-017-0764-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/22/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023] Open
Abstract
Background Co-cultures of endothelial cells with mesenchymal stem cells currently represent one of the most promising approaches in providing oxygen and nutrient supply for microvascular tissue engineering. Still, to translate this model into clinics several in vitro parameters including growth medium and scaffold degradation need to be fine-tuned. Methods We recently described the co-culture of adipose-derived stem cells with endothelial cells in fibrin, resulting in capillary formation in vitro as well as their perfusion in vivo. Here, we aimed to further characterise microvascular tube formation in fibrin by determining the role of scaffold degradation, thrombin concentration and culture conditions on vascularisation. Results We observed that inhibition of cell-mediated fibrin degradation by the commonly used inhibitor aprotinin resulted in impaired vascular network formation. Aprotinin had no effect on laminin and collagen type IV deposition or formation of tube-like structures in scaffold-free co-culture, indicating that poor vascularisation of fibrin clots is primarily caused by inhibition of plasminogen-driven fibrinolysis. Co-culture in plasminogen- and factor XIII-depleted fibrin did not result in different vascular network density compared to controls. Furthermore, we demonstrate that thrombin negatively affects vascular network density at high concentrations. However, only transient activation of incorporated endothelial cells by thrombin could be observed, thus excluding a long-term inflammatory response in tissue-engineered micro-capillaries. Finally, we show that vascularisation of fibrin scaffolds in basal medium is undermined because of increased fibrinolytic activity leading to scaffold destabilisation without aprotinin. Conclusions Taken together, our data reveal a critical role of fibrinolysis inhibition in in vitro cell-mediated vascularisation of fibrin scaffolds. Electronic supplementary material The online version of this article (10.1186/s13287-017-0764-2) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Landau S, Guo S, Levenberg S. Localization of Engineered Vasculature within 3D Tissue Constructs. Front Bioeng Biotechnol 2018; 6:2. [PMID: 29404324 PMCID: PMC5786867 DOI: 10.3389/fbioe.2018.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Today, in vitro vessel network systems frequently serve as models for investigating cellular and functional mechanisms underlying angiogenesis and vasculogenesis. Understanding the cues triggering the observed cell migration, organization, and differentiation, as well as the time frame of these processes, can improve the design of engineered microvasculature. Here, we present first evidence of the migration of endothelial cells into the depths of the scaffold, where they formed blood vessels surrounded by extracellular matrix and supporting cells. The supporting cells presented localization-dependent phenotypes, where cells adjacent to blood vessels displayed a more mature phenotype, with smooth muscle cell characteristics, whereas cells on the scaffold surface showed a pericyte-like phenotype. Yes-associated protein (YAP), a transcription activator of genes involved in cell proliferation and tissue growth, displayed spatially dependent expression, with cells on the surface showing more nuclear YAP than cells situated deeper within the scaffold.
Collapse
Affiliation(s)
- Shira Landau
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Pradhan S, Keller KA, Sperduto JL, Slater JH. Fundamentals of Laser-Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Adv Healthc Mater 2017; 6:10.1002/adhm.201700681. [PMID: 29065249 PMCID: PMC5797692 DOI: 10.1002/adhm.201700681] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/13/2017] [Indexed: 12/24/2022]
Abstract
The cell and tissue engineering fields have profited immensely through the implementation of highly structured biomaterials. The development and implementation of advanced biofabrication techniques have established new avenues for generating biomimetic scaffolds for a multitude of cell and tissue engineering applications. Among these, laser-based degradation of biomaterials is implemented to achieve user-directed features and functionalities within biomimetic scaffolds. This review offers an overview of the physical mechanisms that govern laser-material interactions and specifically, laser-hydrogel interactions. The influences of both laser and material properties on efficient, high-resolution hydrogel degradation are discussed and the current application space in cell and tissue engineering is reviewed. This review aims to acquaint readers with the capability and uses of laser-based degradation of biomaterials, so that it may be easily and widely adopted.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| |
Collapse
|
37
|
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, Marsano A. Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Sci Rep 2017; 7:14252. [PMID: 29079730 PMCID: PMC5660248 DOI: 10.1038/s41598-017-13882-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
In vitro recapitulation of an organotypic stromal environment, enabling efficient angiogenesis, is crucial to investigate and possibly improve vascularization in regenerative medicine. Our study aims at engineering the complexity of a vascular milieu including multiple cell-types, a stromal extracellular matrix (ECM), and molecular signals. For this purpose, the human adipose stromal vascular fraction (SVF), composed of a heterogeneous mix of pericytes, endothelial/stromal progenitor cells, was cultured under direct perfusion flow on three-dimensional (3D) collagen scaffolds. Perfusion culture of SVF-cells reproducibly promoted in vitro the early formation of a capillary-like network, embedded within an ECM backbone, and the release of numerous pro-angiogenic factors. Compared to static cultures, perfusion-based engineered constructs were more rapidly vascularized and supported a superior survival of delivered cells upon in vivo ectopic implantation. This was likely mediated by pericytes, whose number was significantly higher (4.5-fold) under perfusion and whose targeted depletion resulted in lower efficiency of vascularization, with an increased host foreign body reaction. 3D-perfusion culture of SVF-cells leads to the engineering of a specialized milieu, here defined as an angiogenic niche. This system could serve as a model to investigate multi-cellular interactions in angiogenesis, and as a module supporting increased grafted cell survival in regenerative medicine.
Collapse
Affiliation(s)
- Giulia Cerino
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Emanuele Gaudiello
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Manuele Giuseppe Muraro
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Friedrich Eckstein
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Ivan Martin
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Arnaud Scherberich
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Anna Marsano
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
38
|
Adepu S, Dhiman N, Laha A, Sharma CS, Ramakrishna S, Khandelwal M. Three-dimensional bioprinting for bone tissue regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Staubli SM, Cerino G, Gonzalez De Torre I, Alonso M, Oertli D, Eckstein F, Glatz K, Rodríguez Cabello JC, Marsano A. Control of angiogenesis and host response by modulating the cell adhesion properties of an Elastin-Like Recombinamer-based hydrogel. Biomaterials 2017; 135:30-41. [PMID: 28482232 DOI: 10.1016/j.biomaterials.2017.04.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The control of the in vivo vascularization of engineered tissue substitutes is essential in order to obtain either a rapid induction or a complete inhibition of the process (e.g. in muscles and hyaline-cartilage, respectively). Among the several polymers available, Elastin-Like Recombinamers (ELR)-based hydrogel stands out as a promising material for tissue engineering thanks to its viscoelastic properties, non-toxicity, and non-immunogenicity. In this study, we hypothesized that varying the cell adhesion properties of ELR-hydrogels could modulate the high angiogenic potential of adipose tissue-derived stromal vascular fraction (SVF) cells, predominantly composed of endothelial/mural and mesenchymal cells. Human SVF cells, embedded in RGD-REDV-bioactivated or unmodified ELR-hydrogels, were implanted in rat subcutaneous pockets either immediately or upon 5-day-culture in perfusion-bioreactors. Perfusion-based culture enhanced the endothelial cell cord-like-organization and the release of pro-angiogenic factors in functionalized constructs. While in vivo vascularization and host cell infiltration within the bioactivated gels were highly enhanced, the two processes were strongly inhibited in non-functionalized SVF-based hydrogels up to 28 days. ELR-based hydrogels showed a great potential to determine the successful integration of engineered substitutes thanks to their capacity to finely control the angiogenic/inflammation process at the recipient site, even in presence of SVF cells.
Collapse
Affiliation(s)
- Sebastian Manuel Staubli
- Department of Surgery, University Hospital Basel, Switzerland; Department of Biomedicine, University Basel, Switzerland
| | - Giulia Cerino
- Department of Surgery, University Hospital Basel, Switzerland; Department of Biomedicine, University Basel, Switzerland
| | - Israel Gonzalez De Torre
- G.I.R. BIOFORGE, Universidad de Valladolid, Valladolid, Spain; Technical Proteins NanoBiotechnology S.L., Valladolid, Spain
| | - Matilde Alonso
- G.I.R. BIOFORGE, Universidad de Valladolid, Valladolid, Spain
| | - Daniel Oertli
- Department of Surgery, University Hospital Basel, Switzerland; Department of Biomedicine, University Basel, Switzerland
| | - Friedrich Eckstein
- Department of Surgery, University Hospital Basel, Switzerland; Department of Biomedicine, University Basel, Switzerland
| | - Katharina Glatz
- Institute of Pathology, University Hospital Basel, University of Basel, Switzerland
| | | | - Anna Marsano
- Department of Surgery, University Hospital Basel, Switzerland; Department of Biomedicine, University Basel, Switzerland.
| |
Collapse
|
40
|
Zohar B, Blinder Y, Mooney DJ, Levenberg S. Flow-Induced Vascular Network Formation and Maturation in Three-Dimensional Engineered Tissue. ACS Biomater Sci Eng 2017; 4:1265-1271. [DOI: 10.1021/acsbiomaterials.7b00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Barak Zohar
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yaron Blinder
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
41
|
Landau S, Szklanny AA, Yeo GC, Shandalov Y, Kosobrodova E, Weiss AS, Levenberg S. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. Biomaterials 2017; 122:72-82. [DOI: 10.1016/j.biomaterials.2017.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/01/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
|
42
|
Perry L, Flugelman MY, Levenberg S. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle. Mol Ther 2017; 25:935-948. [PMID: 28279644 DOI: 10.1016/j.ymthe.2017.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
In vitro prevascularization of engineered tissue constructs promises to enhance their clinical applicability. We hypothesize that adult endothelial cells (ECs), isolated from limb veins of elderly patients, bear the vasculogenic properties required to form vascular networks in vitro that can later integrate with the host vasculature upon implantation. Here, we show that adult ECs formed vessel networks that were more developed and complex than those formed by human umbilical vein endothelial cells (HUVECs) seeded with various supporting cells on three-dimensional (3D) biodegradable polymer scaffolds. In parallel, secreted levels of key proangiogenic cytokines were significantly higher in adult EC-bearing scaffolds as compared to HUVEC scaffolds. As a proof of concept for applicability of this model, adult ECs were co-seeded with human myoblasts as well as supporting cells and successfully formed a branched network, which was surrounded by aligned human myotubes. The vascularized engineered muscle tissue implanted into a full-thickness defect in immunodeficient mice remained viable and anastomosed with the host vasculature within 9 days of implantation. Functional "chimeric" blood vessels and various types of anastomosis were observed. These findings provide strong evidence of the applicability of adult ECs in construction of clinically relevant autologous vascularized tissue.
Collapse
Affiliation(s)
- Luba Perry
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel; Inter-departmental Program in Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa 32000, Israel
| | - Shulamit Levenberg
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
43
|
Fine B, Vunjak-Novakovic G. Shortcomings of Animal Models and the Rise of Engineered Human Cardiac Tissue. ACS Biomater Sci Eng 2017; 3:1884-1897. [PMID: 33440547 DOI: 10.1021/acsbiomaterials.6b00662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide here an historical context of how studies utilizing engineered human cardiac muscle can complement and in some cases substitute animal and cell models for studies of disease and drug testing. We give an overview of the development of animal models and discuss the ability of novel human tissue models to overcome limited predictive power of cell culture and animal models in studies of drug efficacy and safety. The in vitro generation of cardiac tissue is discussed in the context of state of the art in the field. Finally we describe the assembly of multitissue platforms for more accurate representation of integrated human cardiac physiology and consider the advantages of in silico drug trials to augment our ability to predict drug-drug and organ-organ interactions in humans.
Collapse
Affiliation(s)
- Barry Fine
- Department of Biomedical Engineering and ‡Department of Medicine, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, New York 10027, United States
| |
Collapse
|
44
|
Comeau ES, Hocking DC, Dalecki D. Ultrasound patterning technologies for studying vascular morphogenesis in 3D. J Cell Sci 2016; 130:232-242. [PMID: 27789577 DOI: 10.1242/jcs.188151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022] Open
Abstract
Investigations in this report demonstrate the versatility of ultrasound-based patterning and imaging technologies for studying determinants of vascular morphogenesis in 3D environments. Forces associated with ultrasound standing wave fields (USWFs) were employed to non-invasively and volumetrically pattern endothelial cells within 3D collagen hydrogels. Patterned hydrogels were composed of parallel bands of endothelial cells located at nodal regions of the USWF and spaced at intervals equal to one half wavelength of the incident sound field. Acoustic parameters were adjusted to vary the spatial dimensions of the endothelial bands, and effects on microvessel morphogenesis were analyzed. High-frequency ultrasound imaging techniques were used to image and quantify the spacing, width and density of initial planar cell bands. Analysis of resultant microvessel networks showed that vessel width, orientation, density and branching activity were strongly influenced by the initial 3D organization of planar bands and, hence, could be controlled by acoustic parameters used for patterning. In summary, integration of USWF-patterning and high-frequency ultrasound imaging tools enabled fabrication of vascular constructs with defined microvessel size and orientation, providing insight into how spatial cues in 3D influence vascular morphogenesis.
Collapse
Affiliation(s)
- Eric S Comeau
- Department of Biomedical Engineering, Goergen Hall, P.O. Box 270168, University of Rochester, Rochester, NY 14627, USA
| | - Denise C Hocking
- Department of Biomedical Engineering, Goergen Hall, P.O. Box 270168, University of Rochester, Rochester, NY 14627, USA.,Department of Pharmacology and Physiology, 601 Elmwood Avenue, Box 711, University of Rochester, Rochester, NY 14642, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, Goergen Hall, P.O. Box 270168, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
45
|
Malheiro A, Wieringa P, Mota C, Baker M, Moroni L. Patterning Vasculature: The Role of Biofabrication to Achieve an Integrated Multicellular Ecosystem. ACS Biomater Sci Eng 2016; 2:1694-1709. [DOI: 10.1021/acsbiomaterials.6b00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Afonso Malheiro
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Carlos Mota
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew Baker
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue
Regeneration, MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
46
|
Sapoznik E, Niu G, Zhou Y, Murphy SV, Soker S. Fluorescent Cell Imaging in Regenerative Medicine. Biomed Eng Comput Biol 2016; 7:29-33. [PMID: 27158228 PMCID: PMC4854300 DOI: 10.4137/becb.s39045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/05/2016] [Accepted: 04/03/2016] [Indexed: 01/14/2023] Open
Abstract
Fluorescent protein imaging, a promising tool in biological research, incorporates numerous applications that can be of specific use in the field of regenerative medicine. To enhance tissue regeneration efforts, scientists have been developing new ways to monitor tissue development and maturation in vitro and in vivo. To that end, new imaging tools and novel fluorescent proteins have been developed for the purpose of performing deep-tissue high-resolution imaging. These new methods, such as intra-vital microscopy and Förster resonance energy transfer, are providing new insights into cellular behavior, including cell migration, morphology, and phenotypic changes in a dynamic environment. Such applications, combined with multimodal imaging, significantly expand the utility of fluorescent protein imaging in research and clinical applications of regenerative medicine.
Collapse
Affiliation(s)
- Etai Sapoznik
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Guoguang Niu
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA.; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Winston-Salem, NC, USA
| |
Collapse
|
47
|
Freiman A, Shandalov Y, Rozenfeld D, Shor E, Segal S, Ben-David D, Meretzki S, Egozi D, Levenberg S. Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro. Stem Cell Res Ther 2016; 7:5. [PMID: 26753517 PMCID: PMC4709933 DOI: 10.1186/s13287-015-0251-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (MSCs) have been gaining fame mainly due to their vast clinical potential, simple isolation methods and minimal donor site morbidity. Adipose-derived MSCs and microvascular endothelial cells have been shown to bear angiogenic and vasculogenic capabilities. We hypothesized that co-culture of human adipose-derived MSCs with human adipose-derived microvascular endothelial cells (HAMECs) will serve as an effective cell pair to induce angiogenesis and vessel-like network formation in three-dimensional scaffolds in vitro. Methods HAMECs or human umbilical vein endothelial cells (HUVECs) were co-cultured on scaffolds with either MSCs or human neonatal dermal fibroblasts. Cells were immunofluorescently stained within the scaffolds at different time points post-seeding. Various analyses were performed to determine vessel length, complexity and degree of maturity. Results The HAMEC:MSC combination yielded the most organized and complex vascular elements within scaffolds, and in the shortest period of time, when compared to the other tested cell combinations. These differences were manifested by higher network complexity, more tube alignment and higher α-smooth muscle actin expression. Moreover, these generated microvessels further matured and developed during the 14-day incubation period within the three-dimensional microenvironment. Conclusions These data demonstrate optimal vascular network formation upon co-culture of microvascular endothelial cells and adipose-derived MSCs in vitro and constitute a significant step in appreciation of the potential of microvascular endothelial cells and MSCs in different tissue engineering applications that can also be advantageous in in vivo studies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0251-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Freiman
- Inter-departmental Program in Biotechnology, Technion-Israel Institute of Technology, Haifa, 32000, Israel. .,Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Yulia Shandalov
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Dekel Rozenfeld
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Erez Shor
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Sofia Segal
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | | | | | - Dana Egozi
- Department of Plastic and Reconstructive Surgery, Kaplan Hospital, Rehovot, Israel.
| | - Shulamit Levenberg
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|