1
|
Ceresoli GL, Gianoncelli L. Tumor Treating Fields (TTFields) Therapy in Unresectable Pleural Mesothelioma: Overview of Efficacy, Safety, and Future Outlook. Curr Treat Options Oncol 2025; 26:398-414. [PMID: 40266436 PMCID: PMC12055647 DOI: 10.1007/s11864-025-01320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
OPINION STATEMENT Pleural mesothelioma is an incurable cancer with unmet diagnostic and therapeutic needs. Due to its pattern of local spread, few patients are candidates for multimodality treatment and thus most patients only receive systemic therapy. Chemotherapy (pemetrexed plus platinum) was standard of care until the recent addition of immunotherapy (nivolumab plus ipilimumab, or pembrolizumab plus chemotherapy) as further first-line option. Physicians treating pleural mesothelioma should be aware of another option with Tumor Treating Fields (TTFields) therapy, a locoregionally-applied therapy utilizing electric fields generated by a portable medical device, and delivered to the tumor by skin-placed arrays. TTFields therapy delivered to the thorax using the NovoTTF- 100L device concomitant with pemetrexed and platinum agent is approved for unresectable pleural mesothelioma in the US, and received Conformité Européenne certification in Europe, based on results from the phase 2 STELLAR study (EF- 23; NCT02397928), where TTFields-related toxicity was limited to mild-to-moderate reversible skin reactions. Overall survival in the STELLAR study with TTFields therapy was 18.2 months, with further post-hoc analysis showing extended survival in patients with epithelioid histology. Within the evolving landscape of systemic treatments, TTFields therapy represents a novel and clinically versatile therapeutic option in the battle against pleural mesothelioma without introducing additional toxicities other than mild-to-moderate skin irritation. While promising, additional research is needed to optimize clinical application of TTFields therapy in patients with pleural mesothelioma, such as identifying the molecular determinants of therapy efficacy, and further investigation into the safe and effective delivery of TTFields therapy together with systemic agents, including immunotherapies.
Collapse
Affiliation(s)
- Giovanni Luca Ceresoli
- Medical Oncology Unit, Cliniche Humanitas Gavazzeni, Via Mauro Gavazzeni, 21, Bergamo, Italy.
| | - Letizia Gianoncelli
- Medical Oncology Unit, ASST Santi Paolo E Carlo, Ospedale San Paolo, Via Antonio Di Rudinì, 8, 20124, Milan, Italy
| |
Collapse
|
2
|
Han W, Chen L. The therapeutic efficacy and application prospects of tumor-treating fields (TTFields) in resolving malignant tumors of central nervous system. Clin Transl Oncol 2025:10.1007/s12094-025-03909-x. [PMID: 40227534 DOI: 10.1007/s12094-025-03909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Malignancies in the central nervous system (CNS) are among the most prevalent and lethal tumors. Tumor treating fields (TTFields), a physical therapeutic strategy, show significant potential in treating CNS tumors by inducing cell apoptosis, cell-cycle arrest, immune activation, and enhancing anti-PD-1 therapy efficacy. Additionally, TTFields can increase blood-brain barrier (BBB) permeability, further supporting their application in CNS malignancies. This review aims to summarize the advances and mechanisms of TTFields in CNS tumor treatment while addressing its current limitations and challenges. METHODS We reviewed existing literature on TTFields, focusing on their effects on glioma and brain metastasis (BM)-related primary tumors. The mechanisms investigated included mitosis and cell cycle interference, inhibition of cell migration and invasion, promotion of apoptosis and protective autophagy, activation of immunogenic cell death (ICD) and immune responses, and modulation of BBB permeability. RESULTS TTFields demonstrate inhibitory effects on CNS malignancies, particularly in glioma. They also suppress brain metastasis from primary tumors such as lung cancer, breast cancer, melanoma, and colorectal cancer. Mechanistically, TTFields act through multiple pathways, including disrupting mitosis, impeding cell migration and invasion, enhancing apoptosis and autophagy, activating immune responses, and increasing BBB permeability. CONCLUSION TTFields exhibit therapeutic potential in CNS malignancies, especially glioblastoma (GBM), through diverse biological mechanisms. Their ability to enhance BBB permeability and target metastatic tumors suggests promise for broader clinical applications, including brain metastasis treatment.
Collapse
Affiliation(s)
- Wei Han
- Neurosurgical Department of Huashan Hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Tianqiao and Chrissy, Chen Institute Clinical Translational Research Center, Shanghai, 200032, China.
| | - Liang Chen
- Neurosurgical Department of Huashan Hospital and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Tianqiao and Chrissy, Chen Institute Clinical Translational Research Center, Shanghai, 200032, China
| |
Collapse
|
3
|
Klein-Goldberg A, Voloshin T, Zemer Tov E, Paz R, Somri-Gannam L, Volodin A, Koren L, Lifshitz L, Meir A, Shabtay-Orbach A, Blatt R, Cahal S, Tempel-Brami C, Wainer-Katsir K, Kan T, Koltun B, Brant B, Barsheshet Y, Haber A, Giladi M, Weinberg U, Palti Y. Role of the PI3K/AKT signaling pathway in the cellular response to Tumor Treating Fields (TTFields). Cell Death Dis 2025; 16:210. [PMID: 40148314 PMCID: PMC11950169 DOI: 10.1038/s41419-025-07546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Tumor Treating Fields (TTFields) are electric fields that induce cancer cell death. Genomic analysis of glioblastoma tumors resected from TTFields-treated patients suggested a potential link between a reduced or absent response to TTFields and activating mutations in the phosphatidylinositol 3-kinase (PI3K) p110α subunit (PIK3CA). Our study aimed to investigate the role of the PI3K/AKT pathway in the response to TTFields. We tested changes in signaling pathways in control versus TTFields-treated U-87 MG glioblastoma, A2780 ovarian carcinoma, and H1299 non-small cell lung cancer (NSCLC) cells using the Luminex multiplex assay, validated by western blot analysis and inhibition assays. We also performed in vivo validation using immunohistochemistry on tumor sections from animals bearing orthotopic N1-S1 hepatocellular, MOSE-L ovarian, or LL/2 lung tumors that were treated with TTFields or sham. Finally, we examined the efficacy of concomitant treatment with TTFields and PI3K inhibitors in cell lines and mouse models. Our findings elucidate the mechanisms driving PI3K/AKT activation following TTFields treatment, revealing that the AKT signaling amplitude increases over time and is influenced by cell-surface and cell-cell interactions. Specifically, focal adhesion kinase (FAK) and N-cadherin were found to promote AKT phosphorylation, activating cell survival pathways. Furthermore, our investigation revealed that pharmacological inhibition of PI3K sensitized cancer cells to TTFields, both in vitro and in vivo. Our research suggests that the PI3K/AKT pathway is involved in cancer cell response to TTFields, and that inhibition of this pathway may serve as a potential therapeutic target for sensitizing cancer cells to TTFields.
Collapse
|
4
|
Vergote I, Copeland LJ, Van Gorp T, Laenen A, Scambia G, Thaker PH, Cibula D, Colombo N, Lea J, Gonzalez-Martin A, Korach J, Sehouli J, Monk BJ, Heinzelmann-Schwarz V, Berger R, Buscema J, Lau S, Mądry R, Denys H, Pepin JT, Salutari V, Bagaméri A, Ardizzoia A, Henry S, Cecere SC, Hruda M, Iglesias DA, Manso L, Shai A, O'Malley DM. Tumor Treating Fields therapy in platinum-resistant ovarian cancer: Results of the ENGOT-ov50/GOG-3029/INNOVATE-3 pivotal phase 3 randomized study. Eur J Cancer 2025; 219:115306. [PMID: 40010134 DOI: 10.1016/j.ejca.2025.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
PURPOSE Tumor Treating Fields (TTFields) are electric fields that disrupt processes critical for cancer cell viability and tumor progression. The pivotal, phase 3 ENGOT-ov50/GOG-3029/INNOVATE-3 study evaluated efficacy and safety of TTFields therapy with paclitaxel (PTX) vs PTX in patients with platinum-resistant ovarian cancer (PROC). PATIENTS AND METHODS Adult patients with PROC with ≤ 5 total prior lines of therapy (LOT), including ≤ 2 prior LOT for platinum-resistant disease, and ECOG PS of 0-1 were randomized 1:1 to receive TTFields (200 kHz; ≥ 18 h/day) + PTX (80 mg/m2 weekly) or PTX. Primary endpoint was overall survival (OS). Exploratory post-hoc analyses assessed OS in pegylated liposomal doxorubicin (PLD)-naive patients. RESULTS Between March 2019 and November 2021, 558 patients (ECOG PS 0, 60.2 %; median [range] age, 62 [22-91] years) were assigned TTFields+PTX (n = 280) or PTX (n = 278). 24.4 % had 4 + prior LOT. Median OS was 12.2 months with TTFields+PTX vs 11.9 months with PTX (HR, 1.01; 95 % CI, 0.83-1.24; p = 0.89). Grade ≥ 3 adverse events (AEs) were similar between treatment groups. Grade 1/2 device-related skin AEs occurred in 83.6 % of patients receiving TTFields therapy. In exploratory post-hoc analysis in PLD-naive patients, median OS was 16 months with TTFields+PTX (n = 113) vs 11.7 months with PTX (n = 88; nominal HR, 0.67; 95 % CI, 0.49-0.94; p = 0.03). CONCLUSIONS No new safety signals were identified. TTFields+PTX did not significantly improve OS compared with PTX in the intent-to-treat population. An exploratory post-hoc analysis suggests a potentially favorable benefit-risk profile for TTFields therapy in PLD-naive patients.
Collapse
Affiliation(s)
- Ignace Vergote
- Division of Gynecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Luxembourg Gynaecological Oncology Group, Belgium.
| | - Larry J Copeland
- The Ohio State University and James Cancer Center, Division of Gynecologic Oncology, Columbus, OH, USA.
| | - Toon Van Gorp
- Division of Gynecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Luxembourg Gynaecological Oncology Group, Belgium.
| | - Annouschka Laenen
- Division of Gynecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Luxembourg Gynaecological Oncology Group, Belgium.
| | - Giovanni Scambia
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Gynecologic Oncology Unit, Roma, Italy.
| | - Premal H Thaker
- Washington University School of Medicine and Siteman Cancer Center, St. Louis, MO, USA.
| | - David Cibula
- Department of Gynaecology, Obstetrics and Neonatology, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Italy.
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Antonio Gonzalez-Martin
- Medical Oncology Department, Translational Oncology Group, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra, Madrid, Spain.
| | - Jacob Korach
- Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel.
| | - Jalid Sehouli
- Department of Gynecology with Center of Gynecological Oncology, Charité, University Medicine of Berlin, Berlin, Germany.
| | - Bradley J Monk
- Florida Cancer Specialists and Research Institute, West Palm Beach, FL, USA.
| | | | - Regina Berger
- Department of Obstetrics and Gynaecology, Medical University of Innsbruck, Innsbruck, Austria; AGO Austria, Arbeitsgemeinschaft Gynäkologische Onkologie Österreich, Vienna, Austria.
| | - Joseph Buscema
- Arizona Oncology Associates, PC - HOPE - USOR, Tucson, AZ, USA.
| | - Susie Lau
- McGill University, Jewish General Hospital, Montreal, Quebec, Canada.
| | - Radoslaw Mądry
- Department of Gynecological Oncology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Hannelore Denys
- Department of Medical Oncology, University Hospital Ghent, Belgium.
| | | | - Vanda Salutari
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Andrea Bagaméri
- Gynecologic Oncology Department, National Institute of Oncology, Budapest, Hungary.
| | | | - Stéphanie Henry
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG) and Université Catholique de Louvain CHU UCL Namur Site Ste Elisabeth, Service d'onco-hématologie (SORMIN), Namur, Belgium.
| | | | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czechia.
| | - David A Iglesias
- Division of Gynecologic Oncology, University of Florida, Gainesville, FL, USA.
| | - Luis Manso
- Medical Oncology Department, Hospital Universitario, 12 de Octubre, Madrid, Spain.
| | - Ayelet Shai
- RAMBAM Health Care Campus, Technion Israel Institute of Technology, Haifa, Israel.
| | - David M O'Malley
- The Ohio State University and James Cancer Center, Division of Gynecologic Oncology, Columbus, OH, USA. David.O'
| |
Collapse
|
5
|
Fukami S, Nagai K, Onodera S, Saito Y, Akimoto J, Kohno M. Photodynamic therapy and tumor-treating fields therapy for newly diagnosed glioblastoma. Front Oncol 2025; 15:1556669. [PMID: 40094018 PMCID: PMC11906418 DOI: 10.3389/fonc.2025.1556669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction and purpose Various treatment methods, including photodynamic therapy (PDT), are used for glioblastoma (GBM), which is an intractable tumor. Our therapeutic strategy for glioblastoma has been based on resection (if possible), and PDT. On the other hand, after tumor-treating fields therapy (TTF) became available, we have actively recommended it to our patients who are eligible for it. In this report, we describe the clinical characteristics and disease course of glioblastoma patients treated by PDT + TTF at our hospital. Methods A total of 14 patients with newly diagnosed glioblastoma, who underwent PDT + TTF from the time of insurance coverage of TTF were analyzed. The median age of the patients was 48 years. There were 10 men and 4 women, with a high prevalence of younger men. Results The average duration of TTF was 8.9 (1-19) months, and the main reasons for its discontinuation were recurrence of the tumor and scalp problems. The median progression-free survival of the 14 patients who underwent PDT + TTF was 13.4 months, which tended to be longer than that of the 30 patients who underwent PDT without TTF (11 months). Of the 10 patients who relapsed, 2 had local recurrence and 8 had distant or disseminated recurrence. Two patients with local recurrence underwent repeat resection together with PDT. To date, the prognosis for patient survival of PDT + TTF appears favorable, with 6 patients surviving for more than 2 years. Conclusion PDT + TTF treatment for newly diagnosed glioblastoma can be performed without any major adverse events, although there are some problems with the continuation of TTF, such as scalp problems and its high cost. More patients who underwent PDT + TTF relapsed with distant and/or disseminated recurrence than local recurrence, suggesting that this treatment strategy targets local recurrence. Our results demonstrate that combination therapy for newly diagnosed glioblastoma with PDT + TTF may prolong the time to recurrence and improve survival outcomes of patients, although the data in this study are preliminary.
Collapse
Affiliation(s)
- Shinjiro Fukami
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Kenta Nagai
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Sho Onodera
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Yuki Saito
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
- Department of Neurosurgery, Kohsei Chuo General Hospital, Tokyo, Japan
| | - Michihiro Kohno
- Department of Neurosurgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2025; 30:oyae227. [PMID: 39401002 PMCID: PMC11883162 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke’s Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
7
|
Jobson I, Vo NTN, Kujawinski E, Denning C, Stolnik S, Chauhan VM, Rawson F. Advancing cancer therapy with custom-built alternating electric field devices. Bioelectron Med 2025; 11:2. [PMID: 39881409 PMCID: PMC11780810 DOI: 10.1186/s42234-024-00164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research. Therefore, we sought to establish a custom-built alternating electric field device to investigate the effect of electrode design on the responsiveness of cancer cells to this therapy. METHODS A 96-well microtiter plate modified with an electrode array was fabricated to investigate its application as an in vitro alternating electric field device. This was initially performed with patient-derived GCE 31 and GIN 31 cell lines found in the core and invasive margin of the GBM tumour, respectively. We sought to establish the effect of the application of low-intensity (3 V/ cm) electric fields with an application duration of 4-48 h, using intermediate frequency (300 kHz) alternating currents (AC). To demonstrate that electric fields were entering the cell, GCE 31 and GIN 31 cells were treated with the inorganic, non-conductive zinc oxide (ZnO) nanoparticles (NP), previously demonstrated to enhance the efficacy of TTFs. After a 4-h exposure to NP, cells were then exposed to alternating electric fields or currents and their metabolic activity was assessed. To better understand how the position and morphology of cells can affect cell therapy responsiveness to alternating electric fields or currents, GBM results were compared to those from the semi-adherent brain tumour cell line, D425. RESULTS Contrary to previous findings, there was no significant difference between the GIN 31 and GCE 31 cells exposed to alternating electric fields or currents treated with or without NP compared to cells untreated and unstimulated. D425 cells exposed to alternating electric fields exhibited a pronounced metabolic increase (1.8-fold), while those exposed to alternating electric currents with or without ZnO had a reduced metabolism relative to the untreated control. CONCLUSIONS The initial hypothesis for the lack of effect of electrical stimulation on the adherent cells was that, due to only a single pair of electrodes being used, the proportion of cells that were in the correct orientation for electric field effects was limited. However, the dramatic shift in cell behaviour of the semi-adherent cells shows that cell morphology plays an important role in the responsiveness of cancer cells to AC electric fields. This study highlights the lack of understanding of the complex mechanisms by which electric fields exert effects on cancer cells. We propose that, for the therapy to be enhanced for patients, research should first focus on the underlying mechanisms of action, specifically on how individual cancer cell types respond to this therapy.
Collapse
Affiliation(s)
- Isobel Jobson
- School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Nguyen T N Vo
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Edward Kujawinski
- Electronic Workshop, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Snow Stolnik
- School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Veeren M Chauhan
- School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Frankie Rawson
- School of Pharmacy, Biodiscovery Institute & Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
8
|
Rafiq Z, Kang M, Barsoumian HB, Manzar GS, Hu Y, Leuschner C, Huang A, Masrorpour F, Lu W, Puebla-Osorio N, Welsh JW. Enhancing immunotherapy efficacy with synergistic low-dose radiation in metastatic melanoma: current insights and prospects. J Exp Clin Cancer Res 2025; 44:31. [PMID: 39881333 PMCID: PMC11781074 DOI: 10.1186/s13046-025-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages. The increasing interest in utilizing LDRT for secondary metastatic sites of uveal, mucosal, or cutaneous melanomas underscores its potential efficacy in combination with various immunotherapies. This comprehensive review traverses the journey from laboratory research to clinical applications, elucidating LDRT's immunomodulatory role on the tumor immune microenvironment (TIME) and systemic immune responses. We meticulously examine the preclinical evidence and ongoing clinical trials, throwing light on the promising prospects of LDRT as a complementary therapy in melanoma treatment. Furthermore, we explore the challenges associated with LDRT's integration into combination therapies, addressing crucial factors such as optimal dosage, fractionation, treatment frequency, and synergy with other pharmacological agents. Considering its low toxicity profile, LDRT presents a compelling case for application across multiple lesions, augmenting the antitumor immune response in poly-metastatic disease scenarios. The convergence of LDRT with other disciplines holds immense potential for developing novel radiotherapy-combined modalities, paving the way for more effective and personalized treatment strategies in melanoma and beyond. Moreover, the dose-related toxicities of immunotherapies may be reduced by synergistic amplification of antitumor efficacy with LDRT.
Collapse
Affiliation(s)
- Zahid Rafiq
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Mingyo Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gohar S Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Kalita S, Danovich D, Shaik S. Origins of the Superiority of Oscillating Electric Fields for Disrupting Senile Plaques: Insights from the 7-Residue Fragment and the Full-length Aβ-42 Peptide. J Am Chem Soc 2025; 147:2626-2641. [PMID: 39772489 PMCID: PMC11760182 DOI: 10.1021/jacs.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided. In contrast, plaques originating from the application of Os-EEF remained dispersed for long time scales. The present study provides insights into these results by modeling the decomposition modes that transpire under both field types. Additionally, this study provides insights into the frequency effects on the decomposition processes within the THz-MHz regions. The simulation shows that the Os-EEF in the lower frequency range (≤GHz) decomposes the plaque on a time scale of ∼50 ns, whereas the higher frequency Os-EEFs (≥THz) are less effective. As such, Os-EEFs with moderate-to-low frequencies (≤GHz) lead to an "explosion," whereby the peptides fly distantly apart and inhibit plaque reformation. By contrast, St-EEFs form parallel peptide pairs, which are stabilized by the EEF due to the large dipole moment of the ensemble. Thus, St-EEF applications lead to sluggish and reversible plaque decomposition processes. We further conclude that the Os-EEF impact is maximal for short pulses, which prevents the EEF propensity to arrange the peptides in parallel pairs. The superiority of the Os-EEF over the St-EEF is maintained irrespective of the peptides' length. A model is formulated that predicts the dependence of the decomposition time scale on the EEF.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Amodeo R, Morosi L, Meroni M, Bello E, Timo S, Frapolli R, D’Incalci M, Lupi M. Tumor Treating Fields enhance chemotherapy efficacy by increasing cellular drug uptake and retention in mesothelioma cells. Am J Cancer Res 2025; 15:271-285. [PMID: 39949944 PMCID: PMC11815374 DOI: 10.62347/odwl5634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 02/16/2025] Open
Abstract
Tumor Treating Fields (TTFields) applied with standard chemotherapy have been approved for the first-line treatment of unresectable pleural mesothelioma (PM), an aggressive malignancy with limited effective therapy options. In this study, we demonstrated that the simultaneous exposure to TTFields and doxorubicin or vinorelbine enhanced treatment efficacy in patient-derived PM cells by increasing intracellular drug concentrations. This was achieved by modulating several genes that encode transport proteins, such as the downregulation of P-glycoprotein (P-gp). Using specific, sensitive and quantitative analytical techniques, we observed a more than 70% increase in intracellular concentrations of doxorubicin and vinorelbine in samples treated with TTFields, and a greater than 50% increase in drug uptake in cells exposed to TTFields and pemetrexed. This result indicates that the increased drug concentration observed in TTFields treated cells is significant not only for drugs that are P-gp substrates but also suggests that TTFields could potentially affect other efflux pumps. However, the co-exposure to the drug and TTFields was critical to increasing intracellular drug levels, highlighting the necessity of concurrent use with drugs to enhance the antiproliferative effects of treatment. The in vitro findings were further corroborated by in vivo pharmacokinetic experiments in mice subcutaneously injected with epithelioid PM tumors. Indeed, a 30% increase in intratumor concentrations was observed when vinorelbine was administered with TTFields. Our findings suggest that TTFields could be a well-tolerated approach for enhancing intratumoral drug levels and potentially achieving a more significant therapeutic impact on PM treatment.
Collapse
Affiliation(s)
- Rosy Amodeo
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research HospitalRozzano, Milano, Italy
- Department of Biomedical Sciences, Humanitas UniversityPieve Emanuele, Milano, Italy
| | - Lavinia Morosi
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research HospitalRozzano, Milano, Italy
| | - Marina Meroni
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilano, Italy
| | - Ezia Bello
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilano, Italy
| | - Sara Timo
- Metabolomics and Pharmacokinetics Unit, IRCCS Humanitas Research HospitalRozzano, Milano, Italy
| | - Roberta Frapolli
- Laboratory of Cancer Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilano, Italy
| | - Maurizio D’Incalci
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research HospitalRozzano, Milano, Italy
- Department of Biomedical Sciences, Humanitas UniversityPieve Emanuele, Milano, Italy
| | - Monica Lupi
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research HospitalRozzano, Milano, Italy
| |
Collapse
|
11
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2025; 27:1-14. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Zheng M, Wang Y, Chen S, Suo Y, Yu J, Zhang X. Enhancing Electric Field Distribution in the Pancreas for Improved TTFields Therapy: A Computational Modeling Investigation. IEEE Trans Biomed Eng 2024; 71:2612-2619. [PMID: 38564342 DOI: 10.1109/tbme.2024.3383818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tumor treating fields (TTFields) therapy has shown effectiveness in glioblastoma treatment and holds potential for other cancers. However, its application in pancreatic cancer and the distribution of electric fields in pancreas remain unexplored. This study aims to investigate the electric field distributions in pancreatic regions using different array configurations for TTFields therapy. METHODS Computational modelling was employed to simulate electric field distributions, and quantitative analysis was conducted. Human body impedance measurements were used to optimize the electric properties of the model. Various array configurations were examined to assess their impact on the electric field distributions. RESULTS The study revealed that well-positioned arrays, specifically the combination of 20-piece transducer arrays in anterior-posterior orientation and 13-piece transducer arrays in left-right orientation, consistently achieved electric fields exceeding the 1V/cm threshold in over 99.4% of the pancreas. Even with a reduced number of transducers (13 pieces for both orientations), sufficient electric field coverage was achieved, exceeding the threshold in over 92.9% of the pancreas. Additionally, different array placements within the same orientation were explored to address clinical challenges such as skin rash and patient anatomical variations. CONCLUSIONS This research lays the groundwork for understanding TTFields distribution within the abdomen, offering insights into optimizing array configurations for improved electric field delivery. These results offer promises of advancing TTFields therapy for pancreatic cancer towards clinical applications, and potentially enhancing treatment efficacy and patient outcomes.
Collapse
|
13
|
Sarkari A, Lou E. Do tunneling nanotubes drive chemoresistance in solid tumors and other malignancies? Biochem Soc Trans 2024; 52:1757-1764. [PMID: 39034648 PMCID: PMC11668275 DOI: 10.1042/bst20231364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Intercellular communication within the tumor microenvironment (TME) is essential for establishing, mediating, and synchronizing cancer cell invasion and metastasis. Cancer cells, individually and collectively, react at the cellular and molecular levels to insults from standard-of-care treatments used to treat patients with cancer. One form of cell communication that serves as a prime example of cellular phenotypic stress response is a type of cellular protrusion called tunneling nanotubes (TNTs). TNTs are ultrafine, actin-enriched contact-dependent forms of membrane protrusions that facilitate long distance cell communication through transfer of various cargo, including genetic materials, mitochondria, proteins, ions, and various other molecules. In the past 5-10 years, there has been a growing body of evidence that implicates TNTs as a novel mechanism of cell-cell communication in cancer that facilitates and propagates factors that drive or enhance chemotherapeutic resistance in a variety of cancer cell types. Notably, recent literature has highlighted the potential of TNTs to serve as cellular conduits and mediators of drug and nanoparticle delivery. Given that TNTs have also been shown to form in vivo in a variety of tumor types, disrupting TNT communication within the TME provides a novel strategy for enhancing the cytotoxic effect of existing chemotherapies while suppressing this form of cellular stress response. In this review, we examine current understanding of interplay between cancer cells occurring via TNTs, and even further, the implications of TNT-mediated tumor-stromal cross-talk and the potential to enhance chemoresistance. We then examine tumor microtubes, an analogous cell protrusion heavily implicated in mediating treatment resistance in glioblastoma multiforme, and end with a brief discussion of the effects of radiation and other emerging treatment modalities on TNT formation.
Collapse
Affiliation(s)
- Akshat Sarkari
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, U.S.A
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, U.S.A
- Graduate Faculty, Integrative Biology and Physiology Department, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
14
|
Pan J, Eskandar T, Ahmed Z, Agrawal DK. Biophysical and Biological Mechanisms of Tumor Treating Fields in Glioblastoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2024; 8:265-270. [PMID: 39364266 PMCID: PMC11448370 DOI: 10.26502/jcsct.5079249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive forms of brain cancer that presents with a median survival rate of 14-30 months and along with a discouraging five-year survival rate of 4-5%. Standard treatment of newly diagnosed GBM, also known as the Stupp protocol, includes a maximally safe surgical resection followed by radiation and chemotherapy. Despite these treatment regimens, recurrence is almost inevitable, emphasizing the need for new therapies to combat the aggressive nature of GBMs. Tumor Treating Fields (TTFs) are a relatively new application to the treatment of GBMs, and results have been promising with both progression-free survival and overall survival when TTFs have been used in combination with temozolomide. This article critically reviews the biophysical and biological mechanisms of TTFs, their clinical efficacy, and discusses the results in clinical trials, including EF-11 and EF-14. Both trials have demonstrated that TTFs can enhance progression free survival and overall survival without compromising quality of life or causing severe adverse effects. Despite the high cost associated with TTFs and the need for further analysis to determine the most effective ways to integrate TTFs into GBM treatments, TTFs represent a significant advancement in GBM therapy and offer hope for improved patient prognosis.
Collapse
Affiliation(s)
- Jeremy Pan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Tony Eskandar
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
15
|
Mrugala MM, Shi W, Iwomoto F, Lukas RV, Palmer JD, Suh JH, Glas M. Global post‑marketing safety surveillance of Tumor Treating Fields (TTFields) therapy in over 25,000 patients with CNS malignancies treated between 2011-2022. J Neurooncol 2024; 169:25-38. [PMID: 38949692 PMCID: PMC11269345 DOI: 10.1007/s11060-024-04682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Tumor Treating Fields (TTFields) are alternating electric fields that disrupt cancer cell processes. TTFields therapy is approved for recurrent glioblastoma (rGBM), and newly-diagnosed (nd) GBM (with concomitant temozolomide for ndGBM; US), and for grade IV glioma (EU). We present an updated global, post-marketing surveillance safety analysis of patients with CNS malignancies treated with TTFields therapy. METHODS Safety data were collected from routine post-marketing activities for patients in North America, Europe, Israel, and Japan (October 2011-October 2022). Adverse events (AEs) were stratified by age, sex, and diagnosis. RESULTS Overall, 25,898 patients were included (diagnoses: ndGBM [68%], rGBM [26%], anaplastic astrocytoma/oligodendroglioma [4%], other CNS malignancies [2%]). Median (range) age was 59 (3-103) years; 66% patients were male. Most (69%) patients were 18-65 years; 0.4% were < 18 years; 30% were > 65 years. All-cause and TTFields-related AEs occurred in 18,798 (73%) and 14,599 (56%) patients, respectively. Most common treatment-related AEs were beneath-array skin reactions (43%), electric sensation (tingling; 14%), and heat sensation (warmth; 12%). Treatment-related skin reactions were comparable in pediatric (39%), adult (42%), and elderly (45%) groups, and in males (41%) and females (46%); and similar across diagnostic subgroups (ndGBM, 46%; rGBM, 34%; anaplastic astrocytoma/oligodendroglioma, 42%; other, 40%). No TTFields-related systemic AEs were reported. CONCLUSIONS This long-term, real-world analysis of > 25,000 patients demonstrated good tolerability of TTFields in patients with CNS malignancies. Most therapy-related AEs were manageable localized, non-serious skin events. The TTFields therapy safety profile remained consistent across subgroups (age, sex, and diagnosis), indicative of its broad applicability.
Collapse
Affiliation(s)
- Maciej M Mrugala
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Phoenix/Scottsdale, Arizona, USA.
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fabio Iwomoto
- Division of Neuro-Oncology, New York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joshua D Palmer
- The Department of Radiation Oncology, The James Cancer Hospital, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, West German Cancer Center (WTZ) and German Cancer Consortium, Partner Site, Essen, Germany
| |
Collapse
|
16
|
Dieper A, Scheidegger S, Füchslin RM, Veltsista PD, Stein U, Weyland M, Gerster D, Beck M, Bengtsson O, Zips D, Ghadjar P. Literature review: potential non-thermal molecular effects of external radiofrequency electromagnetic fields on cancer. Int J Hyperthermia 2024; 41:2379992. [PMID: 39019469 DOI: 10.1080/02656736.2024.2379992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency (RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential non-thermal RF effects remain largely elusive, however, limiting their therapeutical targetability. OBJECTIVE Therefore, we aim to provide an overview of the current literature on potential non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields (RF-EMF). MATERIAL AND METHODS This literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was conducted on March 23rd, 2024. Essential criteria herein included the continuous wave RF-EMF nature (3 kHz - 300 GHz) of the source, the securing of temperature-controlled circumstances within the trials, and the preclinical nature of the trials. RESULTS Analysis of the data processed in this review suggests that RF-EMF radiation of various frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in cytoskeletal structure and cell morphology. CONCLUSION The existent literature points toward a yet untapped therapeutic potential of RF-EMF treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-specific RF-EMF frequencies, field intensities, and exposure intervals.
Collapse
Affiliation(s)
- Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan Scheidegger
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Rudolf M Füchslin
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Centrum (MDC), Berlin, Germany
| | - Mathias Weyland
- Institute for Applied Mathematics and Physics, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olof Bengtsson
- Ferdinand-Braun-Institut (FBH), Leibnitz-Institut für Höchstfrequenztechnik, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Chen J, Liu Y, Lan J, Liu H, Tang Q, Li Z, Qiu X, Hu W, Xie J, Feng Y, Qin L, Zhang X, Liu J, Chen L. Identification and validation of COL6A1 as a novel target for tumor electric field therapy in glioblastoma. CNS Neurosci Ther 2024; 30:e14802. [PMID: 38887185 PMCID: PMC11183175 DOI: 10.1111/cns.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.
Collapse
Affiliation(s)
- Junyi Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Qingyun Tang
- Department of Gastroenterology920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Ze Li
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wentao Hu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jiaxin Xie
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Lilin Qin
- Zhejiang Cancer HospitalZhejiangHangzhouChina
| | - Xin Zhang
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Ling Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| |
Collapse
|
18
|
Wu H, Zhou F, Gao W, Chen P, Wei Y, Wang F, Zhao H. Current status and research progress of minimally invasive treatment of glioma. Front Oncol 2024; 14:1383958. [PMID: 38835394 PMCID: PMC11148461 DOI: 10.3389/fonc.2024.1383958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Glioma has a high malignant degree and poor prognosis, which seriously affects the prognosis of patients. Traditional treatment methods mainly include craniotomy tumor resection, postoperative radiotherapy and chemotherapy. Although above methods have achieved remarkable curative effect, they still have certain limitations and adverse reactions. With the introduction of the concept of minimally invasive surgery and its clinical application as well as the development and progress of imaging technology, minimally invasive treatment of glioma has become a research hotspot in the field of neuromedicine, including photothermal treatment, photodynamic therapy, laser-induced thermal theraphy and TT-Fields of tumor. These therapeutic methods possess the advantages of precision, minimally invasive, quick recovery and significant curative effect, and have been widely used in clinical practice. The purpose of this review is to introduce the progress of minimally invasive treatment of glioma in recent years and the achievements and prospects for the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yu Lin, Yulin, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
19
|
Xing Y, Yasinjan F, Cui J, Peng Y, He M, Liu W, Hong X. Advancements and current trends in tumor treating fields: a scientometric analysis. Int J Surg 2024; 110:2978-2991. [PMID: 38349201 PMCID: PMC11093503 DOI: 10.1097/js9.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 05/16/2024]
Abstract
Tumor treating fields (TTFields) therapy is a novel and effective noninvasive cancer therapy, and it has been approved by FDA in the treatment of recurrent and newly diagnosed glioblastoma, and malignant pleural mesothelioma. Moreover, TTFields therapy has been widely studied in both clinical trials and preclinical studies in recent years. Based on its high efficacy, research on TTFields therapy has been a hot topic. Thus, the authors made this scientometric analysis of TTfields to reveal the scientometric distributions such as annual publications and citations, countries and institutions, authors, journals, references, and more importantly, research status and hot topics of the field. In recent years, publication numbers have been stable at high values, and citation numbers have been increasing greatly. The United States and Israel were the top two countries with the highest publication numbers, followed by Germany and Switzerland. Scientometric analyses of keywords indicated that clinical applications and antitumor mechanisms are probably the two main parts of current research on TTfields. Most clinical trials of TTfields focus on the treatment of glioblastoma. And a variety of other cancers such as lung cancer especially nonsmall cell lung cancer, hepatic cancer, other brain tumors, etc. have also been studied in both clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Yang Xing
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Feroza Yasinjan
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences
| | - Yizhao Peng
- Department of Neurosurgery, The First Hospital of Jilin University
| | - Minghua He
- College of Computer Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Wenhui Liu
- Department of Histology and Embryology, College of Basic Medical Sciences
| | - Xinyu Hong
- Department of Neurosurgery, The First Hospital of Jilin University
| |
Collapse
|
20
|
Lan J, Liu Y, Chen J, Liu H, Feng Y, Liu J, Chen L. Advanced tumor electric fields therapy: A review of innovative research and development and prospect of application in glioblastoma. CNS Neurosci Ther 2024; 30:e14720. [PMID: 38715344 PMCID: PMC11077002 DOI: 10.1111/cns.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive malignant tumor with a high mortality rate and is the most prevalent primary intracranial tumor that remains incurable. The current standard treatment, which involves surgery along with concurrent radiotherapy and chemotherapy, only yields a survival time of 14-16 months. However, the introduction of tumor electric fields therapy (TEFT) has provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as it has been shown to extend the median survival time to 20 months. The combination of TEFT and other advanced therapies is a promising trend in the field of GBM, facilitated by advancements in medical technology. AIMS In this review, we provide a concise overview of the mechanism and efficacy of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed blueprint for TEFT implementation. CONCLUSION Tumor electric fields therapy is an effective and highly promising treatment modality for GBM. The full therapeutic potential of TEFT can be exploited by combined with other innovative technologies and treatments.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| | - Yuyang Liu
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Junyi Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Ling Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
21
|
Fesmire CC, Williamson RH, Petrella RA, Kaufman JD, Topasna N, Sano MB. Integrated Time Nanosecond Pulse Irreversible Electroporation (INSPIRE): Assessment of Dose, Temperature, and Voltage on Experimental and Clinical Treatment Outcomes. IEEE Trans Biomed Eng 2024; 71:1511-1520. [PMID: 38145519 PMCID: PMC11035095 DOI: 10.1109/tbme.2023.3340718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
OBJECTIVE This study sought to investigate a novel strategy using temperature-controlled delivery of nanosecond pulsed electric fields as an alternative to the 50-100 microsecond pulses used for irreversible electroporation. METHODS INSPIRE treatments were carried out at two temperatures in 3D tumor models using doses between 0.001 s and 0.1 s. The resulting treatment zones were quantified using viability staining and lethal electric field intensities were determined numerically. Computational modeling was then used to determine parameters necessary for INSPIRE treatments to achieve equivalent treatment zones to clinical electroporation treatments and evaluate the potential for these treatments to induce deleterious thermal damage. RESULTS Lethal thresholds between 1109 and 709 V/cm were found for nominal 0.01 s treatments with pulses between 350 ns and 2000 ns at physiological temperatures. Further increases in dose resulted in significant decreases in lethal thresholds. Given these experimental results, treatment zones comparable to clinical electroporation are possible by increasing the dose and voltage used with nanosecond duration pulses. Temperature-controlled simulations indicate minimal thermal cell death while achieving equivalent treatment volumes to clinical electroporation. CONCLUSION Nanosecond electrical pulses can achieve comparable outcomes to traditional electroporation provided sufficient electrical doses or voltages are applied. The use of temperature-controlled delivery may minimize thermal damage during treatment. SIGNIFICANCE Intense muscle stimulation and the need for cardiac gating have limited irreversible electroporation. Nanosecond pulses can alleviate these challenges, but traditionally have produced significantly smaller treatment zones. This study suggests that larger ablation volumes may be possible with the INSPIRE approach and that future in vivo studies are warranted.
Collapse
|
22
|
秦 丽, 谢 旭, 王 敏, 马 明, 潘 赟, 陈 光, 张 韶. [Simulation model of tumor-treating fields]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:360-367. [PMID: 38686418 PMCID: PMC11058494 DOI: 10.7507/1001-5515.202306074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/04/2024] [Indexed: 05/02/2024]
Abstract
Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm 3. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.
Collapse
Affiliation(s)
- 丽平 秦
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 旭 谢
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
- 浙江大学 求是高等研究院 浙江大学生物医学工程教育部重点实验室(杭州 310027)Qiushi Academy for Advanced Studies, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China
| | - 敏敏 王
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 明伟 马
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 赟 潘
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 光弟 陈
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 韶岷 张
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| |
Collapse
|
23
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
24
|
Ledbetter D, de Almeida RAA, Wu X, Naveh A, Patel CB, Gonzalez Q, Beckham TH, North R, Rhines L, Li J, Ghia A, Aten D, Tatsui C, Alvarez-Breckenridge C. Tumor treating fields suppress tumor cell growth and neurologic decline in models of spinal metastases. JCI Insight 2024; 9:e176962. [PMID: 38512420 PMCID: PMC11141916 DOI: 10.1172/jci.insight.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Spinal metastases can result in severe neurologic compromise and decreased overall survival. Despite treatment advances, local disease progression is frequent, highlighting the need for novel therapies. Tumor treating fields (TTFields) impair tumor cell replication and are influenced by properties of surrounding tissue. We hypothesized that bone's dielectric properties will enhance TTFields-mediated suppression of tumor growth in spinal metastasis models. Computational modeling of TTFields intensity was performed following surgical resection of a spinal metastasis and demonstrated enhanced TTFields intensity within the resected vertebral body. Additionally, luciferase-tagged human KRIB osteosarcoma and A549 lung adenocarcinoma cell lines were cultured in demineralized bone grafts and exposed to TTFields. Following TTFields exposure, the bioluminescence imaging (BLI) signal decreased to 10%-80% of baseline, while control cultures displayed a 4.48- to 9.36-fold increase in signal. Lastly, TTFields were applied in an orthotopic murine model of spinal metastasis. After 21 days of treatment, control mice demonstrated a 5-fold increase in BLI signal compared with TTFields-treated mice. TTFields similarly prevented tumor invasion into the spinal canal and development of neurologic symptoms. Our data suggest that TTFields can be leveraged as a local therapy within minimally conductive bone of spinal metastases. This provides the groundwork for future studies investigating TTFields for patients with treatment-refractory spinal metastases.
Collapse
Affiliation(s)
- Daniel Ledbetter
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xizi Wu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Queena Gonzalez
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Robert North
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurence Rhines
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, CNS/Pediatrics Section, and
| | - Amol Ghia
- Department of Radiation Oncology, CNS/Pediatrics Section, and
| | - David Aten
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudio Tatsui
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
25
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
26
|
Yu A, Zeng J, Yu J, Cao S, Li A. Theory and application of TTFields in newly diagnosed glioblastoma. CNS Neurosci Ther 2024; 30:e14563. [PMID: 38481068 PMCID: PMC10938032 DOI: 10.1111/cns.14563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Juan Zeng
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jinhui Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Shuo Cao
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ailin Li
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
| |
Collapse
|
27
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. Am J Cancer Res 2024; 14:562-584. [PMID: 38455403 PMCID: PMC10915321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100-300 kHz) and low intensity (1-3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro, we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0-6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0-3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
Affiliation(s)
- Rea Ravin
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
- Celoptics, Inc.Rockville, Maryland, USA
| | - Teddy X Cai
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
- The Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford UniversityOxfordshire, UK
| | - Aiguo Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Nicole Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Randall H Pursley
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Tom Pohida
- Instrumentation Development and Engineering Applications Section, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Nicole Y Morgan
- Trans-NIH Shared Resources on Biomedical Engineering and Physical Sciences, National Institute of Biomedical Imaging and Bioengineering, NIHBethesda, Maryland, USA
| | - Nathan H Williamson
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIHBethesda, Maryland, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIHBethesda, Maryland, USA
| |
Collapse
|
28
|
Tian W, Ning J, Chen L, Zeng Y, Shi Y, Xiao G, He S, Tanzhu G, Zhou R. Cost-effectiveness of tumor-treating fields plus standard therapy for advanced non-small cell lung cancer progressed after platinum-based therapy in the United States. Front Pharmacol 2024; 15:1333128. [PMID: 38375030 PMCID: PMC10875105 DOI: 10.3389/fphar.2024.1333128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Tumor treating fields (TTF) was first approved for treatment of glioblastoma. Recently, the LUNAR study demonstrated that TTF + standard therapy (ST) extended survival in patients with advanced non-small cell lung cancer (NSCLC). This primary objective of this study is to analyze the cost-effectiveness of this treatment from the United States healthcare payers' perspective. Methods: A 3-health-state Markov model was established to compare the cost-effectiveness of TTF + ST and that of ST alone. Clinical data were extracted from the LUNAR study, supplemented by additional cost and utility data obtained from publications or online sources. One-way sensitivity analysis, probabilistic sensitivity analysis, and scenario analysis were conducted. The willingness-to-pay (WTP) threshold per quality-adjusted life-years (QALYs) gained was set to $150,000. The main results include total costs, QALYs, incremental cost-effectiveness ratio (ICER) and incremental net monetary benefit (INMB). Subgroup analyses were conducted for two types of ST, including immune checkpoint inhibitor, and docetaxel. Results: During a 10-year time horizon, the costs of TTF + ST and ST alone were $431,207.0 and $128,125.9, and the QALYs were 1.809 and 1.124, respectively. The ICER of TTF + ST compared to ST was $442,732.7 per QALY, and the INMB was -$200,395.7 at the WTP threshold. The cost of TTF per month was the most influential factor in cost-effectiveness, and TTF + ST had a 0% probability of being cost-effective at the WTP threshold compared with ST alone. Conclusion: TTF + ST is not a cost-effective treatment for advanced NSCLC patients who progressed after platinum-based therapy from the perspective of the United States healthcare payers.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yin Shi
- Department of Pharmacy, Xiangya Hospital, Changsha, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang He
- Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Low JT, Brown MC, Reitman ZJ, Bernstock JD, Markert JM, Friedman GK, Waitkus MS, Bowie ML, Ashley DM. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma. J Clin Invest 2024; 134:e163452. [PMID: 38226619 PMCID: PMC10786687 DOI: 10.1172/jci163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.
Collapse
Affiliation(s)
| | | | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
30
|
Goldlust SA, Singer S, Cappello LA, AlMekkawi AK, Lee KD, Ingenito AC, Lewis BE, Nyirenda T, Azmi H, Kaptain GJ. Phase 1 study of concomitant tumor treating fields and temozolomide chemoradiation for newly diagnosed glioblastoma. Neurooncol Adv 2024; 6:vdae129. [PMID: 39211521 PMCID: PMC11358815 DOI: 10.1093/noajnl/vdae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background Glioblastoma (GBM) is the most common and aggressive primary brain tumor and has limited effective therapies. Tumor treating fields (TTF; Optune Gio®) is an FDA-approved device with data supporting a significant survival benefit and minimal toxicity when added to maintenance chemotherapy. Uptake in clinical practice is not universal and might improve if a shorter duration of treatment is feasible. This phase 1 trial was designed to determine the safety and preliminary efficacy of TTF concomitant to chemoradiation. Methods Patients with newly diagnosed, histologically confirmed GBM were eligible. Following surgery, patients were treated with TTF concomitant to standard chemoradiation. The device continued through 2 monthly cycles of maintenance temozolomide with imaging and clinical assessments at regular intervals to assess toxicity and response. The primary endpoint was the safety and tolerability of combined modality treatment based upon the incidence and severity of adverse events. Secondary endpoints were overall survival (OS) and progression-free survival (PFS). Results Thirteen patients were enrolled. Dermatologic adverse events were frequent but limited to grade 1/2. There was only 1 serious adverse event possibly related to TTF and no patients were unable to complete the prescribed course of multimodality treatment due to TTF-associated toxicity. Twelve patients were evaluable for median and 6-month progression-free survival which were 8.5 months (mo) and 66.7%, respectively. Median and 12 mo overall survival were 16.0 mo and 83.3%, respectively. Conclusions TTF can be safely delivered in conjunction with chemoradiation. The potential for a finite TTF course merits further evaluation.
Collapse
Affiliation(s)
- Samuel A Goldlust
- Department of Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Samuel Singer
- Department of Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Lori A Cappello
- Department of Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Ahmad K AlMekkawi
- Department of Neurosurgery, Saint Luke’s Hospital of Kansas City, Kansas City, Missouri, USA
| | - Kangmin D Lee
- Department of Neurosurgery, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Anthony C Ingenito
- Department of Radiation Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Brett E Lewis
- Department of Radiation Oncology, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Themba Nyirenda
- Office of Research Administration, Hackensack Meridian Health, Edison, New Jersey, USA
| | - Hooman Azmi
- Department of Neurosurgery, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - George J Kaptain
- Department of Neurosurgery, Hackensack University Medical Center, Hackensack, New Jersey, USA
| |
Collapse
|
31
|
Mikic N, Gentilal N, Cao F, Lok E, Wong ET, Ballo M, Glas M, Miranda PC, Thielscher A, Korshoej AR. Tumor-treating fields dosimetry in glioblastoma: Insights into treatment planning, optimization, and dose-response relationships. Neurooncol Adv 2024; 6:vdae032. [PMID: 38560348 PMCID: PMC10981464 DOI: 10.1093/noajnl/vdae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Tumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry. The focus is on clinical utility to facilitate a practical understanding of these principles and how they can be used to guide treatment. The current evidence for a correlation between TTFields dose, tumor growth, and clinical outcome will be presented and discussed. Furthermore, we will provide perspectives and updated insights into the planning and optimization of TTFields therapy for glioblastoma by reviewing how the dose and thermal effects of TTFields are affected by factors such as tumor location and morphology, peritumoral edema, electrode array position, treatment duration (compliance), array "edge effect," electrical duty cycle, and skull-remodeling surgery. Finally, perspectives are provided on how to optimize the efficacy of future TTFields therapy.
Collapse
Affiliation(s)
- Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Edwin Lok
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eric T Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Matthew Ballo
- Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pedro C Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Ma J, Singh S, Li M, Seelig D, Molnar GF, Wong ET, Dhawan S, Kim S, Helland L, Chen D, Tapinos N, Lawler S, Singh G, Chen CC. Directionally non-rotating electric field therapy delivered through implanted electrodes as a glioblastoma treatment platform: A proof-of-principle study. Neurooncol Adv 2024; 6:vdae121. [PMID: 39156619 PMCID: PMC11327618 DOI: 10.1093/noajnl/vdae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Background While directionally rotating tumor-treating fields (TTF) therapy has garnered considerable clinical interest in recent years, there has been comparatively less focus on directionally non-rotating electric field therapy (dnEFT). Methods We explored dnEFT generated through customized electrodes as a glioblastoma therapy in in vitro and in vivo preclinical models. The effects of dnEFT on tumor apoptosis and microglia/macrophages in the tumor microenvironment were tested using flow-cytometric and qPCR assays. Results In vitro, dnEFT generated using a clinical-grade spinal cord stimulator showed antineoplastic activity against independent glioblastoma cell lines. In support of the results obtained using the clinical-grade electrode, dnEFT delivered through a customized, 2-electrode array induced glioblastoma apoptosis. To characterize this effect in vivo, a custom-designed 4-electrode array was fabricated such that tumor cells can be implanted into murine cerebrum through a center channel equidistant from the electrodes. After implantation with this array and luciferase-expressing murine GL261 glioblastoma cells, mice were randomized to dnEFT or placebo. Relative to placebo-treated mice, dnEFT reduced tumor growth (measured by bioluminescence) and prolonged survival (median survival gain of 6.5 days). Analysis of brain sections following dnEFT showed a notable increase in the accumulation of peritumoral macrophage/microglia with increased expression of M1 genes (IFNγ, TNFα, and IL-6) and decreased expression of M2 genes (CD206, Arg, and IL-10) relative to placebo-treated tumors. Conclusions Our results suggest therapeutic potential in glioblastoma for dnEFT delivered through implanted electrodes, supporting the development of a proof-of-principle clinical trial using commercially available deep brain stimulator electrodes.
Collapse
Affiliation(s)
- Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ming Li
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Davis Seelig
- Department of Veterinary Clinic Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | - Eric T Wong
- Department of Neurology, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Chen
- Department of Neurosurgery, Taiwan Medical University, Taipei, Taiwan
| | - Nikos Tapinos
- Department of Neurosurgery, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Neurosurgery, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
33
|
Olatunji G, Aderinto N, Adefusi T, Kokori E, Akinmoju O, Yusuf I, Olusakin T, Muzammil MA. Efficacy of tumour-treating fields therapy in recurrent glioblastoma: A narrative review of current evidence. Medicine (Baltimore) 2023; 102:e36421. [PMID: 38050252 PMCID: PMC10695547 DOI: 10.1097/md.0000000000036421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Recurrent Glioblastoma presents a formidable challenge in oncology due to its aggressive nature and limited treatment options. Tumour-Treating Fields (TTFields) Therapy, a novel therapeutic modality, has emerged as a promising approach to address this clinical conundrum. This review synthesizes the current evidence surrounding the efficacy of TTFields Therapy in the context of recurrent Glioblastoma. Diverse academic databases were explored to identify relevant studies published within the last decade. Strategic keyword selection facilitated the inclusion of studies focusing on TTFields Therapy's efficacy, treatment outcomes, and patient-specific factors. The review reveals a growing body of evidence suggesting the potential clinical benefits of TTFields Therapy for patients with recurrent Glioblastoma. Studies consistently demonstrate its positive impact on overall survival (OS) and progression-free survival (PFS). The therapy's safety profile remains favorable, with mild to moderate skin reactions being the most commonly reported adverse events. Our analysis highlights the importance of patient selection criteria, with emerging biomarkers such as PTEN mutation status influencing therapy response. Additionally, investigations into combining TTFields Therapy with other treatments, including surgical interventions and novel approaches, offer promising avenues for enhancing therapeutic outcomes. The synthesis of diverse studies underscores the potential of TTFields Therapy as a valuable addition to the armamentarium against recurrent Glioblastoma. The narrative review comprehensively explains the therapy's mechanisms, clinical benefits, adverse events, and future directions. The insights gathered herein serve as a foundation for clinicians and researchers striving to optimize treatment strategies for patients facing the challenging landscape of recurrent Glioblastoma.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | | | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Ife, Nigeria
| | - Tobi Olusakin
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
34
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
35
|
Sarkari A, Korenfeld S, Deniz K, Ladner K, Wong P, Padmanabhan S, Vogel RI, Sherer LA, Courtemanche N, Steer C, Wainer-Katsir K, Lou E. Treatment with tumor-treating fields (TTFields) suppresses intercellular tunneling nanotube formation in vitro and upregulates immuno-oncologic biomarkers in vivo in malignant mesothelioma. eLife 2023; 12:e85383. [PMID: 37955637 PMCID: PMC10642963 DOI: 10.7554/elife.85383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Disruption of intercellular communication within tumors is emerging as a novel potential strategy for cancer-directed therapy. Tumor-Treating Fields (TTFields) therapy is a treatment modality that has itself emerged over the past decade in active clinical use for patients with glioblastoma and malignant mesothelioma, based on the principle of using low-intensity alternating electric fields to disrupt microtubules in cancer cells undergoing mitosis. There is a need to identify other cellular and molecular effects of this treatment approach that could explain reported increased overall survival when TTFields are added to standard systemic agents. Tunneling nanotube (TNTs) are cell-contact-dependent filamentous-actin-based cellular protrusions that can connect two or more cells at long-range. They are upregulated in cancer, facilitating cell growth, differentiation, and in the case of invasive cancer phenotypes, a more chemoresistant phenotype. To determine whether TNTs present a potential therapeutic target for TTFields, we applied TTFields to malignant pleural mesothelioma (MPM) cells forming TNTs in vitro. TTFields at 1.0 V/cm significantly suppressed TNT formation in biphasic subtype MPM, but not sarcomatoid MPM, independent of effects on cell number. TTFields did not significantly affect function of TNTs assessed by measuring intercellular transport of mitochondrial cargo via intact TNTs. We further leveraged a spatial transcriptomic approach to characterize TTFields-induced changes to molecular profiles in vivo using an animal model of MPM. We discovered TTFields induced upregulation of immuno-oncologic biomarkers with simultaneous downregulation of pathways associated with cell hyperproliferation, invasion, and other critical regulators of oncogenic growth. Several molecular classes and pathways coincide with markers that we and others have found to be differentially expressed in cancer cell TNTs, including MPM specifically. We visualized short TNTs in the dense stromatous tumor material selected as regions of interest for spatial genomic assessment. Superimposing these regions of interest from spatial genomics over the plane of TNT clusters imaged in intact tissue is a new method that we designate Spatial Profiling of Tunneling nanoTubes (SPOTT). In sum, these results position TNTs as potential therapeutic targets for TTFields-directed cancer treatment strategies. We also identified the ability of TTFields to remodel the tumor microenvironment landscape at the molecular level, thereby presenting a potential novel strategy for converting tumors at the cellular level from 'cold' to 'hot' for potential response to immunotherapeutic drugs.
Collapse
Affiliation(s)
- Akshat Sarkari
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Sophie Korenfeld
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Karina Deniz
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Katherine Ladner
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Phillip Wong
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Sanyukta Padmanabhan
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
| | - Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of MinnesotaMinneapolisUnited States
| | - Laura A Sherer
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
| | - Clifford Steer
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolisUnited States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of MinnesotaMinneapolisUnited States
| | | | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of MinnesotaMinneapolisUnited States
- Graduate Faculty, Integrative Biology and Physiology Department, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
36
|
Hambarde S, Manalo JM, Baskin DS, Sharpe MA, Helekar SA. Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells. Sci Rep 2023; 13:19264. [PMID: 37935811 PMCID: PMC10630398 DOI: 10.1038/s41598-023-46758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Raising reactive oxygen species (ROS) levels in cancer cells to cause macromolecular damage and cell death is a promising anticancer treatment strategy. Observations that electromagnetic fields (EMF) elevate intracellular ROS and cause cancer cell death, have led us to develop a new portable wearable EMF device that generates spinning oscillating magnetic fields (sOMF) to selectively kill cancer cells while sparing normal cells in vitro and to shrink GBM tumors in vivo through a novel mechanism. Here, we characterized the precise configurations and timings of sOMF stimulation that produce cytotoxicity due to a critical rise in superoxide in two types of human glioma cells. We also found that the antioxidant Trolox reverses the cytotoxic effect of sOMF on glioma cells indicating that ROS play a causal role in producing the effect. Our findings clarify the link between the physics of magnetic stimulation and its mechanism of anticancer action, facilitating the development of a potential new safe noninvasive device-based treatment for GBM and other gliomas.
Collapse
Affiliation(s)
- Shashank Hambarde
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jeanne M Manalo
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA
| | - Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, USA.
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
- Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neurosurgery, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
37
|
Kumaria A, Ashkan K. Novel therapeutic strategies in glioma targeting glutamatergic neurotransmission. Brain Res 2023; 1818:148515. [PMID: 37543066 DOI: 10.1016/j.brainres.2023.148515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | |
Collapse
|
38
|
Mikobi EK, Voorhees G, Mahmood A, Gandhi A, Bailey M, Phillips J. Influence of Tumor-Treating Fields in a Young Patient With Primary Spinal Glioblastoma Multiforme (GBM): A Case Report of a Rare Tumor. Cureus 2023; 15:e49441. [PMID: 38149153 PMCID: PMC10750880 DOI: 10.7759/cureus.49441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
We present a 31-year-old female patient with primary glioblastoma multiforme (GBM) of the thoracic spine, diagnosed in approximately mid-2020. Her symptoms began several months prior with right foot paresthesia, which progressed to neuropathy ascending from her distal to proximal right lower extremity. Over several months, she developed lumbo-thoracic throbbing pain, which was dermatomal radiating anteriorly. Her pain worsened with activity. A thoracic spine MRI showed a focus of abnormal intradural intramedullary enhancement present from the T10-T11 disc level to the T12-L1 disc level, producing a large amount of edema within the cord. She underwent a gross total surgical resection. The patient had WHO Grade IV spinal GBM per histopathology. The patient received adjuvant concurrent radiation therapy and temozolomide chemotherapy. She continues with maintenance temozolomide along with the compassionate use of Novocure alternating electrical field therapy for the spine. She is being monitored closely by a multi-specialty team. At 32 months post-radiation therapy, her disease is stable with no evidence of progression. She has made significant improvements in her ambulation and symptoms. While GBM is most commonly intracranial, primary spinal GBM is relatively rare. Although established treatment guidelines exist for supratentorial GBM, treatment protocol choices for spinal GBM remain controversial but typically mirror those used for intracranial GBM and include surgery, radiation therapy, and chemotherapy. Alternating electrical field therapy, also known as tumor-treating fields (TTFields), is indicated for adjuvant treatment of intracranial GBM. While further studies of TTFields in spinal GBM are needed, TTFields appear to be a safe adjunct treatment for spinal GBM. Further studies are still needed aimed at finding an improved treatment for spinal GBM.
Collapse
Affiliation(s)
- Emmanuel K Mikobi
- Internal Medicine, Corpus Christi Medical Center, Corpus Christi, USA
| | - Gerard Voorhees
- Radiation Oncology, Corpus Christi Medical Center, Corpus Christi, USA
| | - Aftab Mahmood
- Hematology and Oncology, Corpus Christi Medical Center, Corpus Christi, USA
| | - Arpit Gandhi
- Radiology, Radiology Associates, Corpus Christi, USA
| | - Michael Bailey
- Pathology, Corpus Christi Medical Center, Corpus Christi, USA
| | - Jacqueline Phillips
- Internal Medicine, Graduate Medical Education, Corpus Christi Medical Center, Corpus Christi, USA
| |
Collapse
|
39
|
Vanderlinden A, Jones CG, Myers KN, Rominiyi O, Collis SJ. DNA damage response inhibitors enhance tumour treating fields (TTFields) potency in glioma stem-like cells. Br J Cancer 2023; 129:1829-1840. [PMID: 37777579 PMCID: PMC10667536 DOI: 10.1038/s41416-023-02454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND High-grade gliomas are primary brain cancers with unacceptably low and persistent survival rates of 10-16 months for WHO grade 4 gliomas over the last 40 years, despite surgical resection and DNA-damaging chemo-radiotherapy. More recently, tumour-treating fields therapy (TTFields) has demonstrated modest survival benefit and been clinically approved in several countries. TTFields is thought to mediate anti-cancer activity by primarily disrupting mitosis. However, recent data suggest that TTFields may also attenuate DNA damage repair and replication fork dynamics, providing a potential platform for therapeutic combinations incorporating standard-of-care treatments and targeted DNA damage response inhibitors (DDRi). METHODS We have used patient-derived, typically resistant, glioma stem-like cells (GSCs) in combination with the previously validated preclinical Inovitro™ TTFields system together with a number of therapeutic DDRi. RESULTS We show that TTFields robustly activates PARP- and ATR-mediated DNA repair (including PARylation and CHK1 phosphorylation, respectively), whilst combining TTFields with PARP1 or ATR inhibitor treatment leads to significantly reduced clonogenic survival. The potency of each of these strategies is further enhanced by radiation treatment, leading to increased amounts of DNA damage with profound delay in DNA damage resolution. CONCLUSION To our knowledge, our findings represent the first report of TTFields applied with clinically approved or in-trial DDRi in GSC models and provides a basis for translational studies toward multimodal DDRi/TTFields-based therapeutic strategies for patients with these currently incurable tumours.
Collapse
Affiliation(s)
- Aurelie Vanderlinden
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Callum G Jones
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Katie N Myers
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK
| | - Ola Rominiyi
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Division of Neuroscience, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
- Department of Neurosurgery, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S10 2JF, UK.
| | - Spencer J Collis
- Division of Clinical Medicine, The University of Sheffield, School of Medicine and Population Health, Sheffield, S10 2RX, UK.
| |
Collapse
|
40
|
Haber A, Shapira N, Zeidan A, Giladi M, Story MD. Implications of electrical properties of cells for treatment specificity of electric/electromagnetic fields-based therapeutic approaches. Phys Life Rev 2023; 47:154-156. [PMID: 39491436 DOI: 10.1016/j.plrev.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/05/2024]
Affiliation(s)
| | | | | | | | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
41
|
Li X, Liu K, Xing L, Rubinsky B. A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights. Radiol Oncol 2023; 57:279-291. [PMID: 37665740 PMCID: PMC10476910 DOI: 10.2478/raon-2023-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Tumor Treating Fields (TTFields) is a non-invasive modality for cancer treatment that utilizes a specific sinusoidal electric field ranging from 100 kHz to 300 kHz, with an intensity of 1 V/cm to 3 V/cm. Its purpose is to inhibit cancer cell proliferation and induce cell death. Despite promising outcomes from clinical trials, TTFields have received FDA approval for the treatment of glioblastoma multiforme (GBM) and malignant pleural mesothelioma (MPM). Nevertheless, global acceptance of TTFields remains limited. To enhance its clinical application in other types of cancer and gain a better understanding of its mechanisms of action, this review aims to summarize the current research status by examining existing literature on TTFields' clinical trials and mechanism studies. CONCLUSIONS Through this comprehensive review, we seek to stimulate novel ideas and provide physicians, patients, and researchers with a better comprehension of the development of TTFields and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xing Li
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Kaida Liu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Lidong Xing
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nan Jing, Jiang Su, China
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California Berkeley, BerkeleyCA, United States of America
| |
Collapse
|
42
|
Jones AB, Schanel TL, Rigsby MR, Griguer CE, McFarland BC, Anderson JC, Willey CD, Hjelmeland AB. Tumor Treating Fields Alter the Kinomic Landscape in Glioblastoma Revealing Therapeutic Vulnerabilities. Cells 2023; 12:2171. [PMID: 37681903 PMCID: PMC10486683 DOI: 10.3390/cells12172171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Taylor L. Schanel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Mikayla R. Rigsby
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Corinne E. Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Joshua C. Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| |
Collapse
|
43
|
Lee WS, Jang Y, Cho A, Kim YB, Bu YH, Yang S, Kim EH. Effectiveness of tumor‑treating fields to reduce the proliferation and migration of liposarcoma cell lines. Exp Ther Med 2023; 26:363. [PMID: 37408858 PMCID: PMC10318604 DOI: 10.3892/etm.2023.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 07/07/2023] Open
Abstract
Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yoonjung Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Gyeongsangbuk-do 42988, Republic of Korea
| | - Ahyeon Cho
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yu Bin Kim
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Young Hyun Bu
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Somi Yang
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| |
Collapse
|
44
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
45
|
Yang C, Zhang Q, Ma C, Huang Y, Ding HX, Lu JW, Wang J, Li X, Zhong YH, Li ZQ. Characteristics and management of tumor treating fields-related dermatological complications in patients with glioblastoma. Medicine (Baltimore) 2023; 102:e33830. [PMID: 37335714 PMCID: PMC10194479 DOI: 10.1097/md.0000000000033830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023] Open
Abstract
Tumor treating fields (TTFields) is a novel approved modality for the treatment of glioblastoma (GBM) exhibiting a satisfactory effect. Although TTFields has shown considerable safety for the normal brain, dermatological adverse events (DAEs) often occur during therapy. However, studies focused on the identification and management of DAEs are rare. The clinical data and photos of skin lesions from 9 patients with GBM were retrospectively analyzed, and the types and grades of individual scalp dermatitis were evaluated based on the Common Terminology Criteria for Adverse Events version 5.0 (CTCAE v 5.0). Adherence and safety were also evaluated on the basis of the device monitoring data. Eight patients (88.9%) exhibited grade 1 or grade 2 CTCAE DAEs, all of whom were cured after interventions. The adherence was >90%, with no relevant safety events reported. Finally, a guideline for preventing DAEs in patients with GBM was proposed. The identification and management of TTFields-related DAEs is necessary and urgent in patients with GBM. Timely interventions of DAEs will help to improve the adherence and quality of life of patients, which ultimately improves prognosis. The proposed guideline for preventing DAEs in patients with GBM assists in the management of healthcare providers and may avoid dermatologic complications.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hai-Xia Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Wei Lu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-Hua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Fishman H, Monin R, Dor-On E, Kinzel A, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) increase the effectiveness of temozolomide and lomustine in glioblastoma cell lines. J Neurooncol 2023; 163:83-94. [PMID: 37131108 DOI: 10.1007/s11060-023-04308-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.
Collapse
|
47
|
Regnery S, Franke H, Held T, Trinh T, Naveh A, Abraham Y, Hörner-Rieber J, Hess J, Huber PE, Debus J, Lopez Perez R, Adeberg S. Tumor treating fields as novel combination partner in the multimodal treatment of head and neck cancer. Head Neck 2023; 45:838-848. [PMID: 36872620 DOI: 10.1002/hed.27298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND We aimed to demonstrate the effects of tumor treating fields (TTFields) in head and neck squamous cell carcinoma (HNSCC) cells when combined with radiotherapy (RT) and chemotherapy. METHODS Two human HNSCC cell lines (Cal27, FaDu) received five different treatments: TTFields, RT +/- TTFields and RT + simultaneous cisplatin +/- TTFields. Effects were quantified using clonogenic assays and flow cytometric analyses of DAPI, caspase-3 activation and γH2AX foci. RESULTS Treatment with RT + TTFields decreased the clonogenic survival as strong as treatment with RT + simultaneous cisplatin. The triple combination of RT + simultaneous cisplatin + TTFields even further decreased the clonogenic survival. Accordingly, combination of TTFields with RT or RT + simultaneous cisplatin increased cellular apoptosis and DNA double-strand breaks. CONCLUSION TTFields therapy seems a promising combination partner in the multimodal treatment of locally advanced HNSCC. It could be used to intensify chemoradiotherapy or as alternative to chemotherapy.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrik Franke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thuy Trinh
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Section of Experimental and Translation Head and neck Oncology, Department of Otorhinolaryngology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter E Huber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ramon Lopez Perez
- Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
48
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
50
|
Aurora B Kinase Inhibition by AZD1152 Concomitant with Tumor Treating Fields Is Effective in the Treatment of Cultures from Primary and Recurrent Glioblastomas. Int J Mol Sci 2023; 24:ijms24055016. [PMID: 36902447 PMCID: PMC10003311 DOI: 10.3390/ijms24055016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.
Collapse
|