1
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2025; 21:648-656. [PMID: 39090313 PMCID: PMC11785820 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Beck C, Killeen CT, Johnson SC, Kunze A. Nanomagnetic Guidance Shapes the Structure-Function Relationship of Developing Cortical Networks. NANO LETTERS 2024; 24:13564-13573. [PMID: 39432086 PMCID: PMC11529602 DOI: 10.1021/acs.nanolett.4c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
In this study, we implement large-scale nanomagnetic guidance on cortical neurons to guide dissociated neuronal networks during development. Cortical networks cultured over microelectrode arrays were exposed to functionalized magnetic nanoparticles, followed by magnetic field exposure to guide neurites over 14 days in vitro. Immunofluorescence of the axonal protein Tau revealed a greater number of neurites that were longer and aligned with the nanomagnetic force relative to nonguided networks. This was further confirmed through brightfield imaging on the microelectrode arrays during development. Spontaneous electrophysiological recordings revealed that the guided networks exhibited increased firing rates and frequency in force-aligned connectivity identified through Granger Causality. Applying this methodology across networks with nonuniform force directions increased local activity in target regions, identified as regions in the direction of the nanomagnetic force. Altogether, these results demonstrate that nanomagnetic forces guide the structure and function of dissociated cortical neuron networks at the millimeter scale.
Collapse
Affiliation(s)
- Connor
L. Beck
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Conner T. Killeen
- Department
of Microbiology, Montana State University, Bozeman, Montana 59717, United States
| | - Sara C. Johnson
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Optical
Technology Center, Montana State University, Bozeman, Montana 59717, United States
- Montana
Nanotechnology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
3
|
Wang W, Hassan MM, Kapoor-Kaushik N, Livni L, Musrie B, Tang J, Mahmud Z, Lai S, Wich PR, Ananthanarayanan V, Moalem-Taylor G, Mao G. Neural Tracing Protein-Functionalized Nanoparticles Capable of Fast Retrograde Axonal Transport in Live Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311921. [PMID: 38647340 PMCID: PMC11427170 DOI: 10.1002/smll.202311921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/29/2024] [Indexed: 04/25/2024]
Abstract
Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Natasha Kapoor-Kaushik
- Electron Microscopy Unit, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Lital Livni
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Benjamin Musrie
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Zaheri Mahmud
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Saluo Lai
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Peter Richard Wich
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- School of Biomedical Sciences, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Feole M, Pozo Devoto VM, Dragišić N, Arnaiz C, Bianchelli J, Texlová K, Kovačovicova K, Novotny JS, Havas D, Falzone TL, Stokin GB. Swedish Alzheimer's disease variant perturbs activity of retrograde molecular motors and causes widespread derangement of axonal transport pathways. J Biol Chem 2024; 300:107137. [PMID: 38447793 PMCID: PMC10997842 DOI: 10.1016/j.jbc.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.
Collapse
Affiliation(s)
- Monica Feole
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Victorio M Pozo Devoto
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic
| | - Neda Dragišić
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Julieta Bianchelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; PsychoGenics, Paramus, New Jersey, USA
| | | | - Jan S Novotny
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Tomas L Falzone
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic; Division of Neurology, University Medical Centre, Ljubljana, Slovenia; Department of Neurosciences, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
5
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
6
|
Wang W, Hassan MM, Mao G. Colloidal Perspective on Targeted Drug Delivery to the Central Nervous System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3235-3245. [PMID: 36825490 DOI: 10.1021/acs.langmuir.2c02949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This article describes a new approach in targeted drug delivery to the central nervous system (CNS) in a significant departure from the predominant systematic drug administration attempting to penetrate the blood-brain barrier (BBB). Nanoparticles chemically conjugated to neural tract tracer proteins are capable of path-specific axonal retrograde transport, transneuronal transport, and anatomical tract flow to bypass the BBB. To celebrate the work by Dr. Bettye Washington Greene on the physical chemistry of colloidal particles, this article focuses on the physiochemical characteristics of the nanoparticles, various colloidal forces that impact the colloidal stability of nanoparticles in biological media, and surface chemistry strategies to avoid nanoparticle aggregation-induced poor therapeutic outcomes. The biological environment for the anatomical retrograde transport of neural tract tracers is examined to directly link factors impacting the colloidal stability of the new class of CNS-targeting nanoconjugates such as nanoconjugate size, shape, surface charge, surface chemistry, ionic strength, pH, and protein adsorption on the nanoparticle. We conclude with opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Md Musfizur Hassan
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Yi Z, Gao H, Ji X, Yeo XY, Chong SY, Mao Y, Luo B, Shen C, Han S, Wang JW, Jung S, Shi P, Ren H, Liu X. Mapping Drug-Induced Neuropathy through In-Situ Motor Protein Tracking and Machine Learning. J Am Chem Soc 2021; 143:14907-14915. [PMID: 34469145 DOI: 10.1021/jacs.1c07312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemotherapy can induce toxicity in the central and peripheral nervous systems and result in chronic adverse reactions that impede continuous treatment and reduce patient quality of life. There is a current lack of research to predict, identify, and offset drug-induced neurotoxicity. Rapid and accurate assessment of potential neuropathy is crucial for cost-effective diagnosis and treatment. Here we report dynamic near-infrared upconversion imaging that allows intraneuronal transport to be traced in real time with millisecond resolution, but without photobleaching or blinking. Drug-induced neurotoxicity can be screened prior to phenotyping, on the basis of subtle abnormalities of kinetic characteristics in intraneuronal transport. Moreover, we demonstrate that combining the upconverting nanoplatform with machine learning offers a powerful tool for mapping chemotherapy-induced peripheral neuropathy and assessing drug-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huxin Gao
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Xin-Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore 117599, Singapore
| | - Yujie Mao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Baiwen Luo
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Chao Shen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China
| | - Sanyang Han
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore 117599, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Hongliang Ren
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- The Chinese University of Hong Kong (CUHK) Robotics Institute, Shatin, Hong Kong 999077, People's Republic of China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, People's Republic of China
- The N1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| |
Collapse
|
8
|
Hayashi K, Miyamoto MG, Niwa S. Effects of dynein inhibitor on the number of motor proteins transporting synaptic cargos. Biophys J 2021; 120:1605-1614. [PMID: 33617835 PMCID: PMC8204214 DOI: 10.1016/j.bpj.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/27/2022] Open
Abstract
Synaptic cargo transport by kinesin and dynein in hippocampal neurons was investigated by noninvasively measuring the transport force based on nonequilibrium statistical mechanics. Although direct physical measurements such as force measurement using optical tweezers are difficult in an intracellular environment, the noninvasive estimations enabled enumerating force-producing units (FPUs) carrying a cargo comprising the motor proteins generating force. The number of FPUs served as a barometer for stable and long-distance transport by multiple motors, which was then used to quantify the extent of damage to axonal transport by dynarrestin, a dynein inhibitor. We found that dynarrestin decreased the FPU for retrograde transport more than for anterograde transport. This result indicates the applicability of the noninvasive force measurements. In the future, these measurements may be used to quantify damage to axonal transport resulting from neuronal diseases, including Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Kumiko Hayashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Miki G Miyamoto
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences and Graduate School of Life Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Katiyar N, Raju G, Madhusudanan P, Gopalakrishnan-Prema V, Shankarappa SA. Neuronal delivery of nanoparticles via nerve fibres in the skin. Sci Rep 2021; 11:2566. [PMID: 33510229 PMCID: PMC7844288 DOI: 10.1038/s41598-021-81995-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accessing the peripheral nervous system (PNS) by topically applied nanoparticles is a simple and novel approach with clinical applications in several PNS disorders. Skin is richly innervated by long peripheral axons that arise from cell bodies located distally within ganglia. In this study we attempt to target dorsal root ganglia (DRG) neurons, via their axons by topical application of lectin-functionalized gold nanoparticles (IB4-AuNP). In vitro, 140.2 ± 1.9 nm IB4-AuNP were found to bind both axons and cell bodies of DRG neurons, and AuNP applied at the axonal terminals were found to translocate to the cell bodies. Topical application of IB4-AuNP on rat hind-paw resulted in accumulation of three to fourfold higher AuNP in lumbar DRG than in contralateral control DRGs. Results from this study clearly suggest that topically applied nanoparticles with neurotropic targeting ligands can be utilized for delivering nanoparticles to neuronal cell bodies via axonal transport mechanisms.
Collapse
Affiliation(s)
- Neeraj Katiyar
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Gayathri Raju
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Pallavi Madhusudanan
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Vignesh Gopalakrishnan-Prema
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Sahadev A Shankarappa
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India.
| |
Collapse
|
10
|
Lin HM, Lin LF, Sun MY, Liu J, Wu Q. Topical Delivery of Four Neuroprotective Ingredients by Ethosome-Gel: Synergistic Combination for Treatment of Oxaliplatin-Induced Peripheral Neuropathy. Int J Nanomedicine 2020; 15:3251-3266. [PMID: 32440122 PMCID: PMC7213895 DOI: 10.2147/ijn.s233747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral neuropathy is a common and painful side effect that occurs in patients with cancer induced by Oxaliplatin (OXL). The neurotoxicity correlates with the damage of dorsal root ganglion (DRG) neurons and Schwann cells (SCs). Hydroxysafflor yellow A (HSYA), icariin, epimedin B and 3, 4-dihydroxybenzoic acid (DA) are the main neuroprotective ingredients identified in Wen-Luo-Tong (WLT), a traditional Chinese medicinal topical compound. The purpose of this study was to prepare and evaluate the efficacy of an ethosomes gel formulation loaded with a combination of HSYA, icariin, epimedin B and DA. However, the low LogP value, poor solubility and macromolecule are several challenges for topical delivery of these drugs. Methods Ethosomes were prepared by the single-step injection technique. Particle size, entrapment efficiency and in vitro drug deposition studies were determined to select the optimum ethosomes. The optimized ethosomes were further incorporated into carbopol to obtain a gel. The rheological properties, morphology, in vitro drug release, in vitro gel application and skin distribution of the ethosomes gels were studied. A rat model of oxaliplatin-induced neuropathy was established to assess the therapeutic efficacy of the ethosomes gel. Results Seventy percent (v/v) ethanol, cinnamaldehyde and Phospholipon 90G were employed to develop ethosomes a carrier system. This system had a high entrapment efficiency, carried large amounts of HSYA, epimedin B, DA and icarrin, and penetrated deep into the epidermis and dermis. The optimized ethosomes had the maximum deposition of icariin, HSYA, epimedin B and relative higher amount of DA in epidermis (2.00±0.13 µg/cm2, 5.72±0.75 µg/cm2, 1.97±0.27 µg/cm2 and 9.25±1.21 µg/cm2, respectively). 0.5% carbopol 980 was selected to develop the ethosomes gel with desirable viscoelasticity and spreadability, which was suitable for topical application. The mechanical allodynia and hyperalgesia induced by OXL in rats were significantly reduced after the new ethosomes gel was applied to rats compared to model group. Conclusion Based on our findings, the ethosomes gel delivery system provided a new formulation for the topical delivery of HSYA, icariin, epimedin B and DA to counteract OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Hong-Mei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Long-Fei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ming-Yi Sun
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jia Liu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wu
- Department of TCM Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
11
|
Chen K, Nam W, Epureanu BI. Collective intracellular cargo transport by multiple kinesins on multiple microtubules. Phys Rev E 2020; 101:052413. [PMID: 32575243 DOI: 10.1103/physreve.101.052413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The transport of intracellular organelles is accomplished by groups of molecular motors, such as kinesin, myosin, and dynein. Previous studies have demonstrated that the cooperation between kinesins on a track is beneficial for long transport. However, within crowded three-dimensional (3D) cytoskeletal networks, surplus motors could impair transport and lead to traffic jams of cargos. Comprehensive understanding of the effects of the interactions among molecular motors, cargo, and tracks on the 3D cargo transport dynamics is still lack. In this work, a 3D stochastic multiphysics model is introduced to study the synergistic and antagonistic motions of kinesin motors walking on multiple mircotubules (MTs). Based on the model, we show that kinesins attaching to a common cargo can interact mechanically through the transient forces in their cargo linkers. Under different environmental conditions, such as different MT topologies and kinesin concentrations, the transient forces in the kinesins, the stepping frequency and the binding and unbinding probabilities of kinesins are changed substantially. Therefore, the macroscopic transport properties, specifically the stall force of the cargo, the transport direction at track intersections, and the mean-square displacement (MSD) of the cargo along the MT bundles vary over the environmental conditions. In general, conditions that improve the synergistic motion of kinesins increase the stall force of the cargo and the capability of maintaining the transport. In contrast, the antagonistic motion of kinesins temporarily traps the cargo and slows down the transport. Furthermore, this study predicts an optimal number of kinesins for the cargo transport at MT intersections and along MT bundles.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Woochul Nam
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bogdan I Epureanu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
12
|
Maksoudian C, Soenen SJ, Susumu K, Oh E, Medintz IL, Manshian BB. A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity. Bioconjug Chem 2020; 31:1077-1087. [PMID: 32208650 DOI: 10.1021/acs.bioconjchem.0c00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the progress in nanotechnology for biomedical applications, great efforts are still being employed in optimizing nanoparticle (NP) design parameters to improve functionality and minimize bionanotoxicity. In this study, we developed CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) that are compact ligand-coated and surface-functionalized with an HIV-1-derived TAT cell-penetrating peptide (CPP) analog to improve both biocompatibility and cellular uptake. Multiparametric studies were performed in different mammalian and murine cell lines to compare the effects of varying QD size and number of surface CPPs on cellular uptake, viability, generation of reactive oxygen species, mitochondrial health, cell area, and autophagy. Our results showed that the number of cell-associated NPs and their respective toxicity are higher for the larger QDs. Meanwhile, increasing the number of surface CPPs also enhanced cellular uptake and induced cytotoxicity through the generation of mitoROS and autophagy. Thus, here we report the optimal size and surface CPP combinations for improved QD cellular uptake.
Collapse
Affiliation(s)
- Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | | | | | | | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
13
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
14
|
Shin K, Song S, Song YH, Hahn S, Kim JH, Lee G, Jeong IC, Sung J, Lee KT. Anomalous Dynamics of in Vivo Cargo Delivery by Motor Protein Multiplexes. J Phys Chem Lett 2019; 10:3071-3079. [PMID: 31117686 DOI: 10.1021/acs.jpclett.9b01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vesicle transport conducted by motor protein multiplexes (MPMs), which is ubiquitous among eukaryotes, shows anomalous and stochastic dynamics qualitatively different from the dynamics of thermal motion and artificial active matter; the relationship between in vivo vesicle-delivery dynamics and the underlying physicochemical processes is not yet quantitatively understood. Addressing this issue, we perform accurate tracking of individual vesicles, containing upconverting nanoparticles, transported by kinesin-dynein-multiplexes along axonal microtubules. The mean-square-displacement of vesicles along the microtubule exhibits unusual dynamic phase transitions that are seemingly inconsistent with the scaling behavior of the mean-first-passage time over the travel length. These paradoxical results and the vesicle displacement distribution are quantitatively explained and predicted by a multimode MPM model, developed in the current work, where ATP-hydrolysis-coupled motion of MPM has both unidirectional and bidirectional modes.
Collapse
Affiliation(s)
- Kyujin Shin
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Korea
| | - Sanggeun Song
- Creative Research Initiative Center for Chemical Dynamics in Living Cells , Chung-Ang University , Seoul 06974 , Korea
- Department of Chemistry , Chung-Ang University , Seoul 06974 , Korea
- National Institute of Innovative Functional Imaging , Chung-Ang University , Seoul 06974 , Korea
| | - Yo Han Song
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Korea
| | - Seungsoo Hahn
- Creative Research Initiative Center for Chemical Dynamics in Living Cells , Chung-Ang University , Seoul 06974 , Korea
- Da Vinci College of General Education , Chung-Ang University , Seoul 06974 , Korea
| | - Ji-Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells , Chung-Ang University , Seoul 06974 , Korea
| | - Gibok Lee
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Korea
| | - In-Chun Jeong
- Creative Research Initiative Center for Chemical Dynamics in Living Cells , Chung-Ang University , Seoul 06974 , Korea
- Department of Chemistry , Chung-Ang University , Seoul 06974 , Korea
- National Institute of Innovative Functional Imaging , Chung-Ang University , Seoul 06974 , Korea
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living Cells , Chung-Ang University , Seoul 06974 , Korea
- Department of Chemistry , Chung-Ang University , Seoul 06974 , Korea
- National Institute of Innovative Functional Imaging , Chung-Ang University , Seoul 06974 , Korea
| | - Kang Taek Lee
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Korea
| |
Collapse
|
15
|
Visualization of Intra‐neuronal Motor Protein Transport through Upconversion Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Zeng X, Chen S, Weitemier A, Han S, Blasiak A, Prasad A, Zheng K, Yi Z, Luo B, Yang I, Thakor N, Chai C, Lim K, McHugh TJ, All AH, Liu X. Visualization of Intra‐neuronal Motor Protein Transport through Upconversion Microscopy. Angew Chem Int Ed Engl 2019; 58:9262-9268. [DOI: 10.1002/anie.201904208] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao Zeng
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Shuo Chen
- Laboratory for Circuit and Behavioral PhysiologyRIKEN Center for Brain Science Wakoshi Saitama 351-0198 Japan
| | - Adam Weitemier
- Laboratory for Circuit and Behavioral PhysiologyRIKEN Center for Brain Science Wakoshi Saitama 351-0198 Japan
| | - Sanyang Han
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Agata Blasiak
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
| | - Ankshita Prasad
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
| | - Kezhi Zheng
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Zhigao Yi
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Baiwen Luo
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
| | - In‐Hong Yang
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
| | - Nitish Thakor
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
- Department of Biomedical EngineeringJohns Hopkins School of Medicine Baltimore MD 21205 USA
| | - Chou Chai
- Research DepartmentNational Neuroscience Institute Singapore 308433 Singapore
- Department of PhysiologyNational University of Singapore Singapore 117593 Singapore
| | - Kah‐Leong Lim
- Research DepartmentNational Neuroscience Institute Singapore 308433 Singapore
- Department of PhysiologyNational University of Singapore Singapore 117593 Singapore
| | - Thomas J. McHugh
- Laboratory for Circuit and Behavioral PhysiologyRIKEN Center for Brain Science Wakoshi Saitama 351-0198 Japan
- Department of Life SciencesGraduate School of Arts and SciencesUniversity of Tokyo Tokyo Japan
| | - Angelo H. All
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
- Department of Biomedical EngineeringJohns Hopkins School of Medicine Baltimore MD 21205 USA
- Department of NeurologyJohns Hopkins School of Medicine Baltimore MD 21205 USA
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- Singapore Institute of NeurotechnologyNational University of Singapore Singapore 117456 Singapore
| |
Collapse
|
17
|
Lesniak A, Kilinc D, Blasiak A, Galea G, Simpson JC, Lee GU. Rapid Growth Cone Uptake and Dynein-Mediated Axonal Retrograde Transport of Negatively Charged Nanoparticles in Neurons Is Dependent on Size and Cell Type. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803758. [PMID: 30565853 DOI: 10.1002/smll.201803758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are now used in numerous technologies and serve as carriers for several new classes of therapeutics. Studies of the distribution of NPs in vivo demonstrate that they can be transported through biological barriers and are concentrated in specific tissues. Here, transport behavior, and final destination of polystyrene NPs are reported in primary mouse cortical neurons and SH-SY5Y cells, cultured in two-compartmental microfluidic devices. In both cell types, negative polystyrene NPs (PS(-)) smaller than 100 nm are taken up by the axons, undergo axonal retrograde transport, and accumulate in the somata. Examination of NP transport reveals different transport mechanisms depending on the cell type, particle charge, and particle internalization by the lysosomes. In cortical neurons, PS(-) inside lysosomes and 40 nm positive polystyrene NPs undergo slow axonal transport, whereas PS(-) outside lysosomes undergo fast axonal transport. Inhibition of dynein in cortical neurons decreases the transport velocity and cause a dose-dependent reduction in the number of accumulated PS(-), suggesting that the fast axonal transport is dynein mediated. These results show that the axonal retrograde transport of NPs depends on the endosomal pathway taken and establishes a means for screening nanoparticle-based therapeutics for diseases that involve neurons.
Collapse
Affiliation(s)
- Anna Lesniak
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Devrim Kilinc
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agata Blasiak
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - George Galea
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Chowdary PD, Kaplan L, Che DL, Cui B. Dynamic Clustering of Dyneins on Axonal Endosomes: Evidence from High-Speed Darkfield Imaging. Biophys J 2018; 115:230-241. [PMID: 29933888 DOI: 10.1016/j.bpj.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
One of the fundamental features that govern the cooperativity of multiple dyneins during cargo trafficking in cells is the spatial distribution of these dyneins on the cargo. Geometric considerations and recent experiments indicate that clustered distributions of dyneins are required for effective cooperation on micron-sized cargos. However, very little is known about the spatial distribution of dyneins and their cooperativity on smaller cargos, such as vesicles or endosomes <200 nm in size, which are not amenable to conventional immunostaining and optical trapping methods. In this work, we present evidence that dyneins can dynamically be clustered on endosomes in response to load. Using a darkfield imaging assay, we measured the repeated stalls and detachments of retrograde axonal endosomes under load with <10 nm localization accuracy at imaging rates up to 1 kHz for over a timescale of minutes. A three-dimensional stochastic model was used to simulate the endosome motility under load to gain insights on the mechanochemical properties and spatial distribution of dyneins on axonal endosomes. Our results indicate that 1) the distribution of dyneins on endosomes is fluid enough to support dynamic clustering under load and 2) the detachment kinetics of dynein on endosomes differs significantly from the in vitro measurements possibly due to an increase in the unitary stall force of dynein on endosomes.
Collapse
Affiliation(s)
| | - Luke Kaplan
- Department of Chemistry, Stanford University, Stanford, California
| | - Daphne L Che
- Department of Chemistry, Stanford University, Stanford, California
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
19
|
Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 2018; 15:415-423. [PMID: 29808018 DOI: 10.1038/s41592-018-0012-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/16/2018] [Indexed: 01/23/2023]
Abstract
We review the use of luminescent nanoparticles in super-resolution imaging and single-molecule tracking, and showcase novel approaches to super-resolution imaging that leverage the brightness, stability, and unique optical-switching properties of these nanoparticles. We also discuss the challenges associated with their use in biological systems, including intracellular delivery and molecular targeting. In doing so, we hope to provide practical guidance for biologists and continue to bridge the fields of super-resolution imaging and nanoparticle engineering to support their mutual advancement.
Collapse
|
20
|
Yin S, Song N, Yang H. Detection of Velocity and Diffusion Coefficient Change Points in Single-Particle Trajectories. Biophys J 2017; 115:217-229. [PMID: 29241585 DOI: 10.1016/j.bpj.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 10/25/2022] Open
Abstract
The position-time trajectory of a biological subject moving in a complex environment contains rich information about how it interacts with the local setting. Whether the subject be an animal or an intracellular endosomal vesicle, the two primary modes of biological locomotion are directional movement and random walk, respectively characterized by velocity and diffusion coefficient. This contribution introduces a method to quantitatively divide a single-particle trajectory into segments that exhibit changes in the diffusion coefficient, velocity, or both. With the determination of these two physical parameters given by the maximum likelihood estimators, the relative precisions are given as explicit functions of the number of data points and total trajectory time. The method is based on rigorous statistical tests and does not require any presumed kinetics scheme. Results of extensive characterizations, extensions to 2D and 3D trajectories, and applications to common scenarios are also discussed.
Collapse
Affiliation(s)
- Shuhui Yin
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Nancy Song
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey.
| |
Collapse
|
21
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|
22
|
Lopes CDF, Gomes CP, Neto E, Sampaio P, Aguiar P, Pêgo AP. Microfluidic-based platform to mimic the in vivo peripheral administration of neurotropic nanoparticles. Nanomedicine (Lond) 2016; 11:3205-3221. [DOI: 10.2217/nnm-2016-0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Propose a nanoparticle for neuron-targeted retrograde gene delivery and describe a microfluidic-based culture system to provide insight into vector performance and safety. Methods: Using compartmentalized neuron cultures we dissected nanoparticle bioactivity upon delivery taking advantage of (quantitative) bioimaging tools. Results: Targeted and nontargeted nanoparticles were internalized at axon terminals and retrogradely transported to cell bodies at similar average velocities but the former have shown an axonal flux 2.7-times superior to nontargeted nanoparticles, suggesting an improved cargo-transportation efficiency. The peripheral administration of nanoparticles to axon terminals is nontoxic as compared with their direct administration to the cell body or whole neuron. Conclusion: A neuron-targeted nanoparticle system was put forward. Microfluidic-based neuron cultures are proposed as a powerful tool to investigate nanoparticle bio-performance.
Collapse
Affiliation(s)
- Cátia DF Lopes
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Carla P Gomes
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto, Rua Dr Roberto Frias, s/n 4200-465 Porto, Portugal
| | - Estrela Neto
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Alameda Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Sampaio
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto, Rua Dr Roberto Frias, s/n 4200-465 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|