1
|
Shi W, Li Q, Li X, Luo L, Gan J, Ma Y, Wang J, Chen T, Zhang Y, Su P, Ma X, Guo J, Huang L. Transcriptome Analysis of Stephania yunnanensis and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis. Molecules 2025; 30:259. [PMID: 39860129 PMCID: PMC11767795 DOI: 10.3390/molecules30020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The medicinal plant Stephania yunnanensis is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of S. yunnanensis and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported. In this study, based on the differences in the content of crebanine and several other BIAs in different tissues, we conducted transcriptome sequencing of roots, stems, and leaves. We then identified candidate genes through functional annotation and sequence alignment and further analyzed them in combination with the genome. Based on this analysis, we identified three CYP80 enzymes (SyCYP80Q5-1, SyCYP80Q5-3, and SyCYP80G6), which exhibited different activities toward (S)- and (R)-configured substrates in S. yunnanensis and demonstrated strict stereoselectivity enroute to aporphine. This study provides metabolomic and transcriptomic information on the biosynthesis of BIAs in S. yunnanensis, offers valuable insights into the elucidation of BIA biosynthesis, and lays the foundation for the complete analysis of pathways for more aporphine alkaloids.
Collapse
Affiliation(s)
- Wenlong Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Linglong Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jingyi Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xiaohui Ma
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| |
Collapse
|
2
|
Lephoto KS, Wang D, Liu S, Li L, Wang C, Liu R, Jiang Y, Wang A, Wang K, Zhao M, Chen P, Wang Y, Zhang M. Evolution, Structural and Functional Characteristics of the MADS-box Gene Family and Gene Expression Through Methyl Jasmonate Regulation in Panax ginseng C.A. Meyer. PLANTS (BASEL, SWITZERLAND) 2024; 13:3574. [PMID: 39771274 PMCID: PMC11677711 DOI: 10.3390/plants13243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
MADS-box genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits. The MADS-Box gene family in Jilin ginseng has not been studied. This study investigated the evolution and structural and functional diversification of the PgMADS gene family using bioinformatics and analyzed gene expression through methyl jasmonate (MeJA) regulation. The results revealed that the evolution of the PgMADS gene family is diverged into ten clusters of a constructed phylogenetic tree, of which the SOC1 cluster is the most prevalent with a higher number of PgMADS genes. Despite their distinct evolutionary clusters, a significant number of members contains common conserved motifs. The PgMADS gene family was functionally differentiated into three primary functional categories, biological process, molecular function, and cellular component. Their expression is variable within a tissue, at a developmental stage, and in cultivars. Regardless of the diversity of the functions of PgMADS genes and evolution, their expression correlated and formed a co-expression gene network. Weighted gene co-expression network analyses identified hub genes that could be regulating ginsenoside biosynthesis. Interestingly, the family also is involved in MeJA regulation. These findings provide a valuable reference for future investigations on PgMADS genes.
Collapse
Affiliation(s)
- Katleho Senoko Lephoto
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- National University of Lesotho, P.O. Roma 180, Roma, Maseru 100, Lesotho
| | - Dinghui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Ruicen Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Aimin Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.S.L.); (D.W.); (S.L.); (L.L.); (C.W.); (R.L.); (Y.J.); (A.W.); (K.W.); (M.Z.); (P.C.)
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Liu S, Chen X, Zhao T, Yu J, Chen P, Wang Y, Wang K, Zhao M, Jiang Y, Wang Y, Zhang M. Identification of PgRg1-3 Gene for Ginsenoside Rg1 Biosynthesis as Revealed by Combining Genome-Wide Association Study and Gene Co-Expression Network Analysis of Jilin Ginseng Core Collection. PLANTS (BASEL, SWITZERLAND) 2024; 13:1784. [PMID: 38999623 PMCID: PMC11244481 DOI: 10.3390/plants13131784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Ginseng, an important medicinal plant, is characterized by its main active component, ginsenosides. Among more than 40 ginsenosides, Rg1 is one of the ginsenosides used for measuring the quality of ginseng. Therefore, the identification and characterization of genes for Rg1 biosynthesis are important to elucidate the molecular basis of Rg1 biosynthesis. In this study, we utilized 39,327 SNPs and the corresponding Rg1 content from 344 core ginseng cultivars from Jilin Province. We conducted a genome-wide association study (GWAS) combining weighted gene co-expression network analysis (WGCNA), SNP-Rg1 content association analysis, and gene co-expression network analysis; three candidate Rg1 genes (PgRg1-1, PgRg1-2, and PgRg1-3) and one crucial candidate gene (PgRg1-3) were identified. Functional validation of PgRg1-3 was performed using methyl jasmonate (MeJA) regulation and RNAi, confirming that this gene regulates Rg1 biosynthesis. The spatial-temporal expression patterns of the PgRg1-3 gene and known key enzyme genes involved in ginsenoside biosynthesis differ. Furthermore, variations in their networks have a significant impact on Rg1 biosynthesis. This study established an accurate and efficient method for identifying candidate genes, cloned a novel gene controlling Rg1 biosynthesis, and identified 73 SNPs significantly associated with Rg1 content. This provides genetic resources and effective tools for further exploring the molecular mechanisms of Rg1 biosynthesis and molecular breeding.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaxia Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Tianqi Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jinghui Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Jiang Y, He G, Li R, Wang K, Wang Y, Zhao M, Zhang M. Functional Validation of the Cytochrome P450 Family PgCYP309 Gene in Panax ginseng. Biomolecules 2024; 14:715. [PMID: 38927118 PMCID: PMC11201774 DOI: 10.3390/biom14060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is an ancient and valuable Chinese herbal medicine, and ginsenoside, as the main active ingredient of ginseng, has received wide attention because of its various pharmacological active effects. Cytochrome P450 is the largest family of enzymes in plant metabolism and is involved in the biosynthesis of terpenoids, alkaloids, lipids, and other primary and secondary plant metabolites. It is significant to explore more PgCYP450 genes with unknown functions and reveal their roles in ginsenoside synthesis. In this study, based on the five PgCYP450 genes screened in the pre-laboratory, through the correlation analysis with the content of ginsenosides and the analysis of the interactions network of the key enzyme genes for ginsenoside synthesis, we screened out those highly correlated with ginsenosides, PgCYP309, as the target gene from among the five PgCYP450 genes. Methyl jasmonate-induced treatment of ginseng adventitious roots showed that the PgCYP309 gene responded to methyl jasmonate induction and was involved in the synthesis of ginsenosides. The PgCYP309 gene was cloned and the overexpression vector pBI121-PgCYP309 and the interference vector pART27-PgCYP309 were constructed. Transformation of ginseng adventitious roots by the Agrobacterium fermentum-mediated method and successful induction of transgenic ginseng hairy roots were achieved. The transformation rate of ginseng hairy roots with overexpression of the PgCYP309 gene was 22.7%, and the transformation rate of ginseng hairy roots with interference of the PgCYP309 gene was 40%. Analysis of ginseng saponin content and relative gene expression levels in positive ginseng hairy root asexual lines revealed a significant increase in PPD, PPT, and PPT-type monomeric saponins Re and Rg2. The relative expression levels of PgCYP309 and PgCYP716A53v2 genes were also significantly increased. PgCYP309 gene promotes the synthesis of ginsenosides, and it was preliminarily verified that PgCYP309 gene can promote the synthesis of dammarane-type ginsenosides.
Collapse
Affiliation(s)
- Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Gaohui He
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (G.H.); (R.L.); (K.W.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Luo S, Yang X, Zhang Y, Kuang T, Tang C. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. Food Chem 2024; 435:137504. [PMID: 37813026 DOI: 10.1016/j.foodchem.2023.137504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Panax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.
Collapse
Affiliation(s)
- Shiying Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| |
Collapse
|
6
|
Yu X, Yu J, Liu S, Liu M, Wang K, Zhao M, Wang Y, Chen P, Lei J, Wang Y, Zhang M. Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2024; 13:604. [PMID: 38475452 DOI: 10.3390/plants13050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes.
Collapse
Affiliation(s)
- Xiaochen Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jinghui Yu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
7
|
Liu C, Lv T, Shen Y, Liu T, Liu M, Hu J, Liu S, Jiang Y, Zhang M, Zhao M, Wang K, Wang Y. Genome-wide identification and integrated analysis of TCP genes controlling ginsenoside biosynthesis in Panax ginseng. BMC PLANT BIOLOGY 2024; 24:47. [PMID: 38216888 PMCID: PMC10787463 DOI: 10.1186/s12870-024-04729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Panax ginseng is an important medicinal plant, and ginsenosides are the main bioactive molecules of ginseng. The TCP (TBI, CYC, PCF) family is a group of transcription factors (TFs) that play an important role in plant growth and development, hormone signalling and synthesis of secondary metabolites. In our study, 78 PgTCP transcripts were identified from the established ginseng transcriptome database. A phylogenetic tree analysis showed that the 67 PgTCP transcripts with complete open reading frames were classified into three subfamilies, including CIN, PCF, and CYC/TB1. Protein structure analysis showed that PgTCP genes had bHLH structures. Chromosomal localization analysis showed that 63 PgTCP genes were localized on 17 of the 24 chromosomes of the Chinese ginseng genome. Expression pattern analysis showed that PgTCP genes differed among different lineages and were spatiotemporally specific. Coexpression network analysis indicated that PgTCP genes were coexpressed and involved in plant activities or metabolic regulation in ginseng. The expression levels of PgTCP genes from class I (PCF) were significantly downregulated, while the expression levels of PgTCP genes from class II (CIN and CYC/TB1) were upregulated, suggesting that TCP genes may be involved in the regulation of secondary metabolism in ginseng. As the PgTCP26-02 gene was found to be related to ginsenoside synthesis, its predicted protein structure and expression pattern were further analysed. Our results provide new insights into the origin, differentiation, evolution and function of the PgTCP gene family in ginseng, as well as the regulation of plant secondary metabolism.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tingting Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Yanhua Shen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
8
|
Wang P, Yan Y, Yan M, Piao X, Wang Y, Lei X, Yang H, Zhang N, Li W, Di P, Yang L. Identification and analysis of BAHD superfamily related to malonyl ginsenoside biosynthesis in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1301084. [PMID: 38186598 PMCID: PMC10768564 DOI: 10.3389/fpls.2023.1301084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
Introduction The BAHD (benzylalcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase and deacetylvindoline 4-O-acetyltransferase), has various biological functions in plants, including catalyzing the biosynthesis of terpenes, phenolics and esters, participating in plant stress response, affecting cell stability, and regulating fruit quality. Methods Bioinformatics methods, real-time fluorescence quantitative PCR technology, and ultra-high-performance liquid chromatography combined with an Orbitrap mass spectrometer were used to explore the relationship between the BAHD gene family and malonyl ginsenosides in Panax ginseng. Results In this study, 103 BAHD genes were identified in P. ginseng, mainly distributed in three major clades. Most PgBAHDs contain cis-acting elements associated with abiotic stress response and plant hormone response. Among the 103 genes, 68 PgBAHDs are WGD (whole-genome duplication) genes. The significance of malonylation in biosynthesis has garnered considerable attention in the study of malonyltransferases. The phylogenetic tree results showed 34 PgBAHDs were clustered with genes that have malonyl characterization. Among them, seven PgBAHDs (PgBAHD4, 45, 65, 74, 90, 97, and 99) showed correlations > 0.9 with crucial enzyme genes involved in ginsenoside biosynthesis and > 0.8 with malonyl ginsenosides. These seven genes were considered potential candidates involved in the biosynthesis of malonyl ginsenosides. Discussion These results help elucidate the structure, evolution, and functions of the P. ginseng BAHD gene family, and establish the foundation for further research on the mechanism of BAHD genes in ginsenoside biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Limin Yang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Hu J, Liu T, Huo H, Liu S, Liu M, Liu C, Zhao M, Wang K, Wang Y, Zhang M. Genome-wide characterization, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC PLANT BIOLOGY 2023; 23:376. [PMID: 37525122 PMCID: PMC10392005 DOI: 10.1186/s12870-023-04390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.
Collapse
Affiliation(s)
- Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
10
|
Liu S, Jiang Y, Wang Y, Huo H, Cilkiz M, Chen P, Han Y, Li L, Wang K, Zhao M, Zhu L, Lei J, Wang Y, Zhang M. Genetic and molecular dissection of ginseng ( Panax ginseng Mey.) germplasm using high-density genic SNP markers, secondary metabolites, and gene expressions. FRONTIERS IN PLANT SCIENCE 2023; 14:1165349. [PMID: 37575919 PMCID: PMC10416250 DOI: 10.3389/fpls.2023.1165349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023]
Abstract
Genetic and molecular knowledge of a species is crucial to its gene discovery and enhanced breeding. Here, we report the genetic and molecular dissection of ginseng, an important herb for healthy food and medicine. A mini-core collection consisting of 344 cultivars and landraces was developed for ginseng that represents the genetic variation of ginseng existing in its origin and diversity center. We sequenced the transcriptomes of all 344 cultivars and landraces; identified over 1.5 million genic SNPs, thereby revealing the genic diversity of ginseng; and analyzed them with 26,600 high-quality genic SNPs or a selection of them. Ginseng had a wide molecular diversity and was clustered into three subpopulations. Analysis of 16 ginsenosides, the major bioactive components for healthy food and medicine, showed that ginseng had a wide variation in the contents of all 16 ginsenosides and an extensive correlation of their contents, suggesting that they are synthesized through a single or multiple correlated pathways. Furthermore, we pair-wisely examined the relationships between the cultivars and landraces, revealing their relationships in gene expression, gene variation, and ginsenoside biosynthesis. These results provide new knowledge and new genetic and genic resources for advanced research and breeding of ginseng and related species.
Collapse
Affiliation(s)
- Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Mustafa Cilkiz
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
11
|
Liu C, Zhao M, Ma H, Zhang Y, Liu Q, Liu S, Wang Y, Wang K, Zhang M, Wang Y. The NAC Transcription Factor PgNAC41-2 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. Int J Mol Sci 2023; 24:11946. [PMID: 37569353 PMCID: PMC10418625 DOI: 10.3390/ijms241511946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a perennial herb of the Araliaceae family, a traditional and valuable Chinese herb in China. The main active component of ginseng is ginsenoside. The NAC transcription factors belong to a large family of plant-specific transcription factors, which are involved in growth and development, stress response and secondary metabolism. In this study, we mapped the NAC gene family on 24 pairs of ginseng chromosomes and found numerous gene replications in the genome. The NAC gene PgNAC41-2, found to be highly related to ginsenoside synthesis, was specifically screened. The phylogeny and expression pattern of the PgNAC41-2 gene were analyzed, along with the derived protein sequence, and a structure model was generated. Furthermore, the PgNAC41-2 gene was cloned and overexpressed by a Rhizobium rhizogenes mediated method, using ginseng petioles as receptor material. The saponin content of the transformed material was analyzed to verify the function of the NAC transcription factor in ginseng. Our results indicate that the PgNAC41-2 gene positively regulates the biosynthesis of saponins.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Hedan Ma
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China;
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
12
|
Wang P, Xiao Y, Yan M, Yan Y, Lei X, Di P, Wang Y. Whole-genome identification and expression profiling of growth-regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng. BMC Genomics 2023; 24:334. [PMID: 37328802 PMCID: PMC10276473 DOI: 10.1186/s12864-023-09435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Panax ginseng is a perennial herb and one of the most widely used traditional medicines in China. During its long growth period, it is affected by various environmental factors. Past studies have shown that growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) are involved in regulating plant growth and development, responding to environmental stress, and responding to the induction of exogenous hormones. However, GRF and GIF transcription factors in ginseng have not been reported. RESULTS In this study, 20 GRF gene members of ginseng were systematically identified and found to be distributed on 13 chromosomes. The ginseng GIF gene family has only ten members, which are distributed on ten chromosomes. Phylogenetic analysis divided these PgGRFs into six clades and PgGIFs into two clades. In total, 18 of the 20 PgGRFs and eight of the ten PgGIFs are segmental duplications. Most PgGRF and PgGIF gene promoters contain some hormone- and stress- related cis-regulatory elements. Based on the available public RNA-Seq data, the expression patterns of PgGRF and PgGIF genes were analysed from 14 different tissues. The responses of the PgGRF gene to different hormones (6-BA, ABA, GA3, IAA) and abiotic stresses (cold, heat, drought, and salt) were studied. The expression of the PgGRF gene was significantly upregulated under GA3 induction and three weeks of heat treatment. The expression level of the PgGIF gene changed only slightly after one week of heat treatment. CONCLUSIONS The results of this study may be helpful for further study of the function of PgGRF and PgGIF genes and lay a foundation for further study of their role in the growth and development of Panax ginseng.
Collapse
Affiliation(s)
- Ping Wang
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Yan
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China
| | - Yan Yan
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China
| | - Xiujuan Lei
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China
| | - Peng Di
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China.
| | - Yingping Wang
- State Local Joint Engineering Research Centre of Ginseng Breeding and Application, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
Zhu L, Hu J, Li R, Liu C, Jiang Y, Liu T, Liu M, Zhao M, Wang Y, Wang K, Zhang M. Transcriptome-Wide Integrated Analysis of the PgGT25-04 Gene in Controlling Ginsenoside Biosynthesis in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2023; 12:1980. [PMID: 37653897 PMCID: PMC10224475 DOI: 10.3390/plants12101980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 08/13/2023]
Abstract
Panax ginseng is a valuable medicinal herb of the Araliaceae family with various pharmacological activities. The Trihelix transcription factors family is involved in growth and secondary metabolic processes in plants, but no studies have been reported on the involvement of Trihelix genes in secondary metabolic processes in ginseng. In this study, weighted co-expression network analysis, correlation analysis between PgGTs and ginsenosides and key enzyme genes, and interaction network analysis between PgGTs and key enzyme genes were used to screen out the PgGT25-04 gene, which was negatively correlated with ginsenoside synthesis. Using ABA treatment of ginseng hair roots, PgGT genes were found to respond to ABA signals. Analysis of the sequence characteristics and expression pattern of the PgGT25-04 gene in ginseng revealed that its expression is spatiotemporally specific. The interfering vector pBI121-PgGT25-04 containing the PgGT25-04 gene was constructed, and the ginseng adventitious roots were transformed using the Agrobacterium-mediated method to obtain the pBI121-PgGT25-04 positive hairy root monocot line. The saponin contents of positive ginseng hair roots were measured by HPLC, and the changes in PgGT25-04 and key enzyme genes in positive ginseng hair roots were detected via fluorescence quantitative RT-PCR. These results preliminarily identified the role of the PgGT25-04 gene in the secondary metabolism of ginseng in Jilin to provide a theoretical basis for the study of Trihelix transcription factors in Panax ginseng.
Collapse
Affiliation(s)
- Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Ruiqi Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (L.Z.); (J.H.); (R.L.); (C.L.); (Y.J.); (T.L.); (M.L.); (M.Z.); (Y.W.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
14
|
Wang Q, Peng W, Rong J, Zhang M, Jia W, Lei X, Wang Y. Molecular analysis of the 14-3-3 genes in Panax ginseng and their responses to heat stress. PeerJ 2023; 11:e15331. [PMID: 37187526 PMCID: PMC10178371 DOI: 10.7717/peerj.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Panax Ginseng is a perennial and semi-shady herb with tremendous medicinal value. Due to its unique botanical characteristics, ginseng is vulnerable to various abiotic factors during its growth and development, especially in high temperatures. Proteins encoded by 14-3-3 genes form a highly conserved protein family that widely exists in eukaryotes. The 14-3-3 family regulates the vital movement of cells and plays an essential role in the response of plants to abiotic stresses, including high temperatures. Currently, there is no relevant research on the 14-3-3 genes of ginseng. Methods The identification of the ginseng 14-3-3 gene family was mainly based on ginseng genomic data and Hidden Markov Models (HMM). We used bioinformatics-related databases and tools to analyze the gene structure, physicochemical properties, cis-acting elements, gene ontology (GO), phylogenetic tree, interacting proteins, and transcription factor regulatory networks. We analyzed the transcriptome data of different ginseng tissues to clarify the expression pattern of the 14-3-3 gene family in ginseng. The expression level and modes of 14-3-3 genes under heat stress were analyzed by quantitative real-time PCR (qRT-PCR) technology to determine the genes in the 14-3-3 gene family responding to high-temperature stress. Results In this study, 42 14-3-3 genes were identified from the ginseng genome and renamed PgGF14-1 to PgGF14-42. Gene structure and evolutionary relationship research divided PgGF14s into epsilon (ε) and non-epsilon (non-ε) groups, mainly located in four evolutionary branches. The gene structure and motif remained highly consistent within a subgroup. The physicochemical properties and structure of the predicted PgGF14 proteins conformed to the essential characteristics of 14-3-3 proteins. RNA-seq results indicated that the detected PgGF14s existed in different organs and tissues but differed in abundance; their expression was higher in roots, stems, leaves, and fruits but lower in seeds. The analysis of GO, cis-acting elements, interacting proteins, and regulatory networks of transcription factors indicated that PgGF14s might participate in physiological processes, such as response to stress, signal transduction, material synthesis-metabolism, and cell development. The qRT-PCR results indicated PgGF14s had multiple expression patterns under high-temperature stress with different change trends in several treatment times, and 38 of them had an apparent response to high-temperature stress. Furthermore, PgGF14-5 was significantly upregulated, and PgGF14-4 was significantly downregulated in all treatment times. This research lays a foundation for further study on the function of 14-3-3 genes and provides theoretical guidance for investigating abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Mengyang Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenhao Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
15
|
Liu C, Wang K, Yun Z, Liu W, Zhao M, Wang Y, Hu J, Liu T, Wang N, Wang Y, Zhang M. Functional Study of PgGRAS68-01 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. Int J Mol Sci 2023; 24:ijms24043347. [PMID: 36834759 PMCID: PMC9961673 DOI: 10.3390/ijms24043347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/11/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is a perennial herb from the genus Panax in the family Araliaceae. It is famous in China and abroad. The biosynthesis of ginsenosides is controlled by structural genes and regulated by transcription factors. GRAS transcription factors are widely found in plants. They can be used as tools to modify plant metabolic pathways by interacting with promoters or regulatory elements of target genes to regulate the expression of target genes, thereby activating the synergistic interaction of multiple genes in metabolic pathways and effectively improving the accumulation of secondary metabolites. However, there are no reports on the involvement of the GRAS gene family in ginsenoside biosynthesis. In this study, the GRAS gene family was located on chromosome 24 pairs in ginseng. Tandem replication and fragment replication also played a key role in the expansion of the GRAS gene family. The PgGRAS68-01 gene closely related to ginsenoside biosynthesis was screened out, and the sequence and expression pattern of the gene were analyzed. The results showed that the expression of PgGRAS68-01 gene was spatio-temporal specific. The full-length sequence of PgGRAS68-01 gene was cloned, and the overexpression vector pBI121-PgGRAS68-01 was constructed. The ginseng seedlings were transformed by Agrobacterium rhifaciens-mediated method. The saponin content in the single root of positive hair root was detected, and the inhibitory role of PgGRAS68-01 in ginsenoside synthesis is reported.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.W.); (M.Z.)
| | - Ziyi Yun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Wenbo Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.W.); (M.Z.)
| |
Collapse
|
16
|
Li L, Lv B, Zang K, Jiang Y, Wang C, Wang Y, Wang K, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer. BMC PLANT BIOLOGY 2023; 23:30. [PMID: 36639779 PMCID: PMC9838044 DOI: 10.1186/s12870-023-04038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginseng, Panax ginseng Meyer, is a traditional herb that is immensely valuable both for human health and medicine and for medicinal plant research. The homeodomain leucine zipper (HD-Zip) gene family is a plant-specific transcription factor gene family indispensable in the regulation of plant growth and development and plant response to environmental stresses. RESULTS We identified 117 HD-Zip transcripts from the transcriptome of ginseng cv. Damaya that is widely grown in Jilin, China where approximately 60% of the world's ginseng is produced. These transcripts were positioned to 64 loci in the ginseng genome and the ginseng HD-Zip genes were designated as PgHDZ genes. Identification of 82 and 83 PgHDZ genes from the ginseng acc. IR826 and cv. ChP genomes, respectively, indicated that the PgHDZ gene family consists of approximately 80 PgHDZ genes. Phylogenetic analysis showed that the gene family originated after Angiosperm split from Gymnosperm and before Dicots split from Monocots. The gene family was classified into four subfamilies and has dramatically diverged not only in gene structure and functionality but also in expression characteristics. Nevertheless, co-expression network analysis showed that the activities of the genes in the family remain significantly correlated, suggesting their functional correlation. Five hub PgHDZ genes were identified that might have central functions in ginseng biological processes and four of them were shown to be actively involved in plant response to environmental pH stress in ginseng. CONCLUSIONS The PgHDZ gene family was identified from ginseng and analyzed systematically. Five potential hub genes were identified and four of them were shown to be involved in ginseng response to environmental pH stress. The results provide new insights into the characteristics, diversity, evolution, and functionality of the PgHDZ gene family in ginseng and lay a foundation for comprehensive research of the gene family in plants.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Boxin Lv
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kaiyou Zang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Chaofan Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yanfang Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
17
|
Transcriptome and Phenotype Integrated Analysis Identifies Genes Controlling Ginsenoside Rb1 Biosynthesis and Reveals Their Interactions in the Process in Panax ginseng. Int J Mol Sci 2022; 23:ijms232214016. [PMID: 36430494 PMCID: PMC9698431 DOI: 10.3390/ijms232214016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Genes are the keys to deciphering the molecular mechanism underlying a biological trait and designing approaches desirable for plant genetic improvement. Ginseng is an important medicinal herb in which ginsenosides have been shown to be the major bioactive component; however, only a few genes involved in ginsenoside biosynthesis have been cloned through orthologue analysis. Here, we report the identification of 21 genes controlling Rb1 biosynthesis by stepwise ginseng transcriptome and Rb1 content integrated analysis. We first identified the candidate genes for Rb1 biosynthesis by integrated analysis of genes with the trait from four aspects, including gene transcript differential expression between highest- and lowest-Rb1 content cultivars, gene transcript expression-Rb1 content correlation, and biological impacts of gene mutations on Rb1 content, followed by the gene transcript co-expression network. Twenty-two candidate genes were identified, of which 21 were functionally validated for Rb1 biosynthesis by gene regulation, genetic transformation, and mutation analysis. These genes were strongly correlated in expression with the previously cloned genes encoding key enzymes for Rb1 biosynthesis. Based on the correlations, a pathway for Rb1 biosynthesis was deduced to indicate the roles of the genes in Rb1 biosynthesis. Moreover, the genes formed a strong co-expression network with the previously cloned Rb1 biosynthesis genes, and the variation in the network was associated with the variation in the Rb1 content. These results indicate that Rb1 biosynthesis is a process of correlative interactions among Rb1 biosynthesis genes. Therefore, this study provides new knowledge, 21 new genes, and 96 biomarkers for Rb1 biosynthesis useful for enhanced research and breeding in ginseng.
Collapse
|
18
|
Liu M, Pan Z, Yu J, Zhu L, Zhao M, Wang Y, Chen P, Liu C, Hu J, Liu T, Wang K, Wang Y, Zhang M. Transcriptome-wide characterization, evolutionary analysis, and expression pattern analysis of the NF-Y transcription factor gene family and salt stress response in Panax ginseng. BMC PLANT BIOLOGY 2022; 22:320. [PMID: 35787249 PMCID: PMC9252045 DOI: 10.1186/s12870-022-03687-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Jilin ginseng (Panax ginseng C. A. Meyer) has a long history of medicinal use worldwide. The quality of ginseng is governed by a variety of internal and external factors. Nuclear factor Y (NF-Y), an important transcription factor in eukaryotes, plays a crucial role in the plant response to abiotic stresses by binding to a specific promoter, the CCAAT box. However, the NF-Y gene family has not been reported in Panax ginseng. In this study, 115 PgNF-Y transcripts with 40 gene IDs were identified from the Jilin ginseng transcriptome database. These genes were classified into the PgNF-YA (13), PgNF-YB (14), and PgNF-YC (13) subgroups according to their subunit types, and their nucleotide sequence lengths, structural domain information, and amino acid sequence lengths were analyzed. The phylogenetic analysis showed that the 79 PgNF-Y transcripts with complete ORFs were divided into three subfamilies, NF-YA, NF-YB, and NF-YC. PgNF-Y was annotated to eight subclasses under three major functions (BP, MF, and CC) by GO annotation, indicating that these transcripts perform different functions in ginseng growth and development. Expression pattern analysis of the roots of 42 farm cultivars, 14 different tissues of 4-year-old ginseng plants, and the roots of 4 different-ages of ginseng plants showed that PgNF-Y gene expression differed across lineages and had spatiotemporal specificity. Coexpression network analysis showed that PgNF-Ys acted synergistically with each other in Jilin ginseng. In addition, the analysis of the response of PgNF-YB09, PgNF-YC02, and PgNF-YC07-04 genes to salt stress treatment was investigated by fluorescence quantitative PCR. The expression of these genes increased after salt stress treatment, indicating that they may be involved in the regulation of the response to salt stresses in ginseng. These results provide important functional genetic resources for the improvement and gene breeding of ginseng in the future.Conclusions: This study fills a knowledge gap regarding the NF-Y gene family in ginseng, provides systematic theoretical support for subsequent research on PgNF-Y genes, and provides data resources for resistance to salt stress in ginseng.
Collapse
Affiliation(s)
- Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Zhaoxi Pan
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Jie Yu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118 Jilin China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, 130118 Jilin China
| |
Collapse
|
19
|
Jiang Y, Liu L, Pan Z, Zhao M, Zhu L, Han Y, Li L, Wang Y, Wang K, Liu S, Wang Y, Zhang M. Genome-wide analysis of the C2H2 zinc finger protein gene family and its response to salt stress in ginseng, Panax ginseng Meyer. Sci Rep 2022; 12:10165. [PMID: 35715520 PMCID: PMC9206012 DOI: 10.1038/s41598-022-14357-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
The C2H2 zinc finger protein (C2H2-ZFP) gene family plays important roles in response to environmental stresses and several other biological processes in plants. Ginseng is a precious medicinal herb cultivated in Asia and North America. However, little is known about the C2H2-ZFP gene family and its functions in ginseng. Here, we identified 115 C2H2-ZFP genes from ginseng, defined as the PgZFP gene family. It was clustered into five groups and featured with eight conserved motifs, with each gene containing one to six of them. The family genes are categorized into 17 gene ontology subcategories and have numerous regulatory elements responsive to a variety of biological process, suggesting their functional differentiation. The 115 PgZFP genes were spliced into 228 transcripts at seed setting stage and varied dramatically in expression across tissues, developmental stages, and genotypes, but they form a co-expression network, suggesting their functional correlation. Furthermore, four genes, PgZFP31, PgZFP78-01, PgZFP38, and PgZFP39-01, were identified from the gene family that were actively involved in plant response to salt stress. These results provide new knowledge on origin, differentiation, evolution, and function of the PgZFP gene family and new gene resources for C2H2-ZFP gene research and application in ginseng and other plant species.
Collapse
Affiliation(s)
- Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Zhaoxi Pan
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanfang Wang
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, 130118, Jilin, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
20
|
Fang X, Wang M, Zhou X, Wang H, Wang H, Xiao H. Effects of growth years on ginsenoside biosynthesis of wild ginseng and cultivated ginseng. BMC Genomics 2022; 23:325. [PMID: 35461216 PMCID: PMC9035264 DOI: 10.1186/s12864-022-08570-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Ginsenoside, as the main active substance in ginseng, has the function of treating various diseases. However, the ginsenosides content of cultivated ginseng is obviously affected by the growth years, but the molecular mechanism is not clear. In addition, there are significant differences in morphology and physiology between wild ginseng and cultivated ginseng, and the effect of growth years on ginsenoside synthesis not yet understood in wild ginseng. RESULTS Transcriptome sequencing on the roots, stems and leaves of cultivated ginseng and wild ginseng with different growth years was performed in this study, exploring the effect of growth years on gene expression in ginseng. The number of differentially expressed genes (DEGs) from comparison groups in cultivated ginseng was higher than that in wild ginseng. The result of weighted gene co-expression network analysis (WGCNA) showed that growth years significantly affected the gene expression of Mitogen-activated protein kinases (MAPK) signaling pathway and terpenoid backbone biosynthesis pathway in cultivated ginseng, but had no effects in wild ginseng. Furthermore, the growth years had significant effects on the genes related to ginsenoside synthesis in cultivated ginseng, and the effects were different in the roots, stems and leaves. However, it had little influence on the expression of genes related to ginsenoside synthesis in wild ginseng. Growth years might affect the expression of genes for ginsenoside synthesis by influencing the expression of these transcription factors (TFs), like my elob lastosis (MYB), NAM, ATAF1 and 2, and CUC2 (NAC), APETALA2/ethylene-responsive factor (AP2/ERF), basic helix-loop-helix (bHLH) and WRKY, etc., thereby affecting the content of ginsenosides. CONCLUSIONS This study complemented the gaps in the genetic information of wild ginseng in different growth periods and helped to clarify the potential mechanisms of the effect of growth years on the physiological state in wild ginseng and cultivated ginseng, which also provided a new insight into the mechanism of ginsenoside regulation.
Collapse
Affiliation(s)
- Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Manqi Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xinteng Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huan Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
21
|
Zhang H, Hua X, Zheng D, Wu H, Li C, Rao P, Wen M, Choi YE, Xue Z, Wang Y, Li Y. De Novo Biosynthesis of Oleanane-Type Ginsenosides in Saccharomyces cerevisiae Using Two Types of Glycosyltransferases from Panax ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2231-2240. [PMID: 35148079 DOI: 10.1021/acs.jafc.1c07526] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oleanane-type ginsenosides are highly biologically active substances in Panax ginseng, a popular Chinese dietary plant. Lack of key enzymes for glycosylation reactions has hindered de novo synthesis of these bioactive molecules. We mined candidate glycosyltransferases (GTs) of the ginseng database by combining key metabolites and transcriptome coexpression analyses and verified their function using in vitro enzymatic assays. The PgCSyGT1, a cellulose synthase-like GT rather than a UDP-dependent glucuronosyltransferase (UGT), was verified as the key enzyme for transferring a glucuronosyl moiety to the free C3-OH of oleanolic acid to synthesize calenduloside E. Two UGTs (PgUGT18 and PgUGT8) were first identified as, respectively, catalyzing the glycosylation reaction of the second sugar moiety of C3 and the C28 in the oleanane-type ginsenoside biosynthetic pathway. Then, we integrated these GTs in combinations into Saccharomyces cerevisiae genome and realized de novo biosynthesis of oleanane-type ginsenosides with a yield of 1.41 μg/L ginsenoside Ro in shake flasks. This report provides a basis for effective biosynthesis of diverse oleanane-type ginsenosides in microbial cell factories.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Dongran Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hao Wu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chuanwang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pan Rao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mengliang Wen
- Yunnan Enov Bioengineering Co., Ltd, 2nd Floor, Building B2, 16 PuFa Road, Export Processing Zone, Economic Development Zone, Kunming, Yunnan 650217, China
| | - Yong-Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
22
|
Di P, Wang P, Yan M, Han P, Huang X, Yin L, Yan Y, Xu Y, Wang Y. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genomics 2021; 22:834. [PMID: 34794386 PMCID: PMC8600734 DOI: 10.1186/s12864-021-08145-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China. .,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Min Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Peng Han
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Xinyi Huang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Le Yin
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yan Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yonghua Xu
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China.
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| |
Collapse
|
23
|
Optimization of Protein Isolation and Label-Free Quantitative Proteomic Analysis in Four Different Tissues of Korean Ginseng. PLANTS 2021; 10:plants10071409. [PMID: 34371612 PMCID: PMC8309323 DOI: 10.3390/plants10071409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Korean ginseng is one of the most valuable medicinal plants worldwide. However, our understanding of ginseng proteomics is largely limited due to difficulties in the extraction and resolution of ginseng proteins because of the presence of natural contaminants such as polysaccharides, phenols, and glycosides. Here, we compared four different protein extraction methods, namely, TCA/acetone, TCA/acetone-MeOH/chloroform, phenol-TCA/acetone, and phenol-MeOH/chloroform methods. The TCA/acetone-MeOH/chloroform method displayed the highest extraction efficiency, and thus it was used for the comparative proteome profiling of leaf, root, shoot, and fruit by a label-free quantitative proteomics approach. This approach led to the identification of 2604 significantly modulated proteins among four tissues. We could pinpoint differential pathways and proteins associated with ginsenoside biosynthesis, including the methylerythritol 4-phosphate (MEP) pathway, the mevalonate (MVA) pathway, UDP-glycosyltransferases (UGTs), and oxidoreductases (CYP450s). The current study reports an efficient and reproducible method for the isolation of proteins from a wide range of ginseng tissues and provides a detailed organ-based proteome map and a more comprehensive view of enzymatic alterations in ginsenoside biosynthesis.
Collapse
|
24
|
Yin X, Hu H, Shen X, Li X, Pei J, Xu J. Ginseng Omics for Ginsenoside Biosynthesis. Curr Pharm Biotechnol 2021; 22:570-578. [PMID: 32767915 DOI: 10.2174/1389201021666200807113723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Ginseng, also known as the king of herbs, has been regarded as an important traditional medicine for several millennia. Ginsenosides, a group of triterpenoid saponins, have been characterized as bioactive compounds of ginseng. The complexity of ginsenosides hindered ginseng research and development both in cultivation and clinical research. Therefore, deciphering the ginsenoside biosynthesis pathway has been a focus of interest for researchers worldwide. The new emergence of biological research tools consisting of omics and bioinformatic tools or computational biology tools are the research trend in the new century. Ginseng is one of the main subjects analyzed using these new quantification tools, including tools of genomics, transcriptomics, and proteomics. Here, we review the current progress of ginseng omics research and provide results for the ginsenoside biosynthesis pathway. Organization and expression of the entire pathway, including the upstream MVA pathway, the cyclization of ginsenoside precursors, and the glycosylation process, are illustrated. Regulatory gene families such as transcriptional factors and transporters are also discussed in this review.
Collapse
Affiliation(s)
- Xianmei Yin
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Distinctive Chinese Medicine Resources in Southwest China, Chengdu 611137, China
| | - Haoyu Hu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaofeng Shen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangyan Li
- Changchun University of Traditional Chinese Medicine, Changchun 13000, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Distinctive Chinese Medicine Resources in Southwest China, Chengdu 611137, China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institution of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
25
|
Nguyen TM, Jeevan JJ, Xu N, Chen JY. Polar Gini Curve: A Technique to Discover Gene Expression Spatial Patterns from Single-cell RNA-seq Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:493-503. [PMID: 34958962 PMCID: PMC8864247 DOI: 10.1016/j.gpb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
In this work, we describe the development of Polar Gini Curve, a method for characterizing cluster markers by analyzing single-cell RNA sequencing (scRNA-seq) data. Polar Gini Curve combines the gene expression and the 2D coordinates ("spatial") information to detect patterns of uniformity in any clustered cells from scRNA-seq data. We demonstrate that Polar Gini Curve can help users characterize the shape and density distribution of cells in a particular cluster, which can be generated during routine scRNA-seq data analysis. To quantify the extent to which a gene is uniformly distributed in a cell cluster space, we combine two polar Gini curves (PGCs)-one drawn upon the cell-points expressing the gene (the "foreground curve") and the other drawn upon all cell-points in the cluster (the "background curve"). We show that genes with highly dissimilar foreground and background curves tend not to uniformly distributed in the cell cluster-thus having spatially divergent gene expression patterns within the cluster. Genes with similar foreground and background curves tend to uniformly distributed in the cell cluster-thus having uniform gene expression patterns within the cluster. Such quantitative attributes of PGCs can be applied to sensitively discover biomarkers across clusters from scRNA-seq data. We demonstrate the performance of the Polar Gini Curve framework in several simulation case studies. Using this framework to analyze a real-world neonatal mouse heart cell dataset, the detected biomarkers may characterize novel subtypes of cardiac muscle cells. The source code and data for Polar Gini Curve could be found at http://discovery.informatics.uab.edu/PGC/ or https://figshare.com/projects/Polar_Gini_Curve/76749.
Collapse
Affiliation(s)
- Thanh Minh Nguyen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacob John Jeevan
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nuo Xu
- Collat School of Business, the University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jake Y Chen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
26
|
Li L, Wang Y, Zhao M, Wang K, Sun C, Zhu L, Han Y, Chen P, Lei J, Wang Y, Zhang M. Integrative transcriptome analysis identifies new oxidosqualene cyclase genes involved in ginsenoside biosynthesis in Jilin ginseng. Genomics 2021; 113:2304-2316. [PMID: 34048908 DOI: 10.1016/j.ygeno.2021.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/07/2020] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Jilin ginseng, Panax ginseng, is a valuable medicinal herb whose ginsenosides are its major bioactive components. The ginseng oxidosqualene cyclase (PgOSC) gene family is known to play important roles in ginsenoside biosynthesis, but few members of the gene family have been functionally studied. METHODS The PgOSC gene family has been studied by an integrated analysis of gene expression-ginsenoside content correlation, gene mutation-ginsenoside content association and gene co-expression network, followed by functional analysis through gene regulation. RESULTS We found that five of the genes in the PgOSC gene family, including two published ginsenoside biosynthesis genes and three new genes, were involved in ginsenoside biosynthesis. Not only were the expressions of these genes significantly correlated with ginsenoside contents, but also their nucleotide mutations significantly influenced ginsenoside contents. These results were further verified by regulation analysis of the genes by methyl jasmonate (MeJA) in ginseng hairy roots. Four of these five PgOSC genes were mapped to the ginsenoside biosynthesis pathway. These PgOSC genes expressed differently across tissues, but relatively consistent across developmental stages. These PgOSC genes formed a single co-expression network with those published ginsenoside biosynthesis genes, further confirming their roles in ginsenoside biosynthesis. When the network varied, ginsenoside biosynthesis was significantly influenced, thus revealing the molecular mechanism of ginsenoside biosynthesis. CONCLUSION At least five of the PgOSC genes, including the three newly identified and two published PgOSC genes, are involved in ginsenoside biosynthesis. These results provide gene resources and knowledge essential for enhanced research and applications of ginsenoside biosynthesis in ginseng.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Engineering, Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Engineering, Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Engineering, Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China; Jilin Engineering, Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
27
|
Han Y, Zhu L, Li L, Wang Y, Zhao M, Wang K, Sun C, Chen J, Liu L, Chen P, Lei J, Wang Y, Zhang M. Characteristics of RNA alternative splicing and its potential roles in ginsenoside biosynthesis in a single plant of ginseng, Panax ginseng C.A. Meyer. Mol Genet Genomics 2021; 296:971-983. [PMID: 34008042 DOI: 10.1007/s00438-021-01792-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
RNA alternative splicing (AS) is prevalent in higher organisms and plays a paramount role in biology; therefore, it is crucial to have comprehensive knowledge on AS to understand biology. However, knowledge is limited about how AS activates in a single plant and functions in a biological process. Ginseng is one of the most widely used medicinal herbs that is abundant in a number of medicinal bioactive components, especially ginsenosides. In this study, we sequenced the transcripts of 14 organs from a 4-year-old ginseng plant and quantified their ginsenoside contents. We identified AS genes by analyzing their transcripts with the ginseng genome and verified their AS events by PCR. The plant had a total of 13,863 AS genes subjected to 30,801 AS events with five mechanisms: skipped exon, retained intron, alternative 5'splice site, alternative 3' splice site, and mutually exclusive exon. The genes that were more conserved, had more exons, and/or expressed across organs were more likely to be subjected to AS. AS genes were enriched in over 500 GO terms in the plant even though the number of AS gene-enriched GO terms varied across organs. At least 24 AS genes were found to be involved in ginsenoside biosynthesis. These AS genes were significantly up-enriched and more likely to form a co-expression network, thus suggesting the functions of AS and correlations of the AS genes in the process. This study provides comprehensive insights into the molecular characteristics and biological functions of AS in a single plant; thus, helping better understand biology.
Collapse
Affiliation(s)
- Yilai Han
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanfang Wang
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Lingyu Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Province, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
28
|
Li H, Chen J, Zhao Q, Han Y, Li L, Sun C, Wang K, Wang Y, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Basic leucine zipper (bZIP) transcription factor genes and their responses to drought stress in ginseng, Panax ginseng C.A. Meyer. BMC Genomics 2021; 22:316. [PMID: 33932982 PMCID: PMC8088647 DOI: 10.1186/s12864-021-07624-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ginseng is an important medicinal herb in Asia and Northern America. The basic leucine zipper (bZIP) transcription factor genes play important roles in many biological processes and plant responses to abiotic and biotic stresses, such as drought stress. Nevertheless, the genes remain unknown in ginseng. RESULTS Here, we report 91 bZIP genes identified from ginseng, designated PgbZIP genes. These PgbZIP genes were alternatively spliced into 273 transcripts. Phylogenetic analysis grouped the PgbZIP genes into ten groups, including A, B, C, D, E, F, G, H, I and S. Gene Ontology (GO) categorized the PgbZIP genes into five functional subcategories, suggesting that they have diversified in functionality, even though their putative proteins share a number of conserved motifs. These 273 PgbZIP transcripts expressed differentially across 14 tissues, the roots of different ages and the roots of different genotypes. However, the transcripts of the genes expressed coordinately and were more likely to form a co-expression network. Furthermore, we studied the responses of the PgbZIP genes to drought stress in ginseng using a random selection of five PgbZIP genes, including PgbZIP25, PgbZIP38, PgbZIP39, PgbZIP53 and PgbZIP54. The results showed that all five PgbZIP genes responded to drought stress in ginseng, indicating that the PgbZIP genes play important roles in ginseng responses to drought stress. CONCLUSIONS These results provide knowledge and gene resources for deeper functional analysis of the PgbZIP genes and molecular tools for enhanced drought tolerance breeding in ginseng.
Collapse
Affiliation(s)
- Hongjie Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Qi Zhao
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yanfang Wang
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
| |
Collapse
|
29
|
Wang K, Zhang Z, Li S, Hu J, Liu T, Jiang Y, Wu J, Lu M, Zhao M, Li L, Zhu L, Wang Y, Wang Y, Zhang M. Transcriptome-Wide Analysis for Ginsenoside Rb3 Synthesis-Related Genes and Study on the Expression of Methyl Jasmonate Treatment in Panax ginseng. Life (Basel) 2021; 11:life11050387. [PMID: 33923073 PMCID: PMC8146951 DOI: 10.3390/life11050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Panax ginseng C. A. Meyer is a kind of renascent herb that belongs to the genus Panax in the family Araliaceae. It is a traditional Chinese precious herbal medicine with a long history of medicinal use. Ginsenoside Rb3 is one of the important active ingredients in ginseng and has important physiological activity in the treatment of many diseases. In this study, we screened and systematically analyzed the candidate genes related to ginsenoside Rb3 synthesis through bioinformatics methods; discussed the functions, expression patterns, and interactions of the genes related to ginsenoside Rb3 synthesis; and finally, selected seven genes, mainly PgRb3, that directly contribute to the synthesis of ginsenoside Rb3. This study provides a reference for revealing the expression rules of ginsenoside Rb3 synthesis-related genes and elucidating the regulatory mechanism of methyl jasmonate, lays a theoretical foundation for the research of ginsenoside Rb3 synthesis, and provides theoretical and technical support for the factory production of ginsenoside monomer saponins.
Collapse
Affiliation(s)
- Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Zixuan Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Shaokun Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Tao Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Jun Wu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Minghai Lu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- Correspondence: (Y.W.); (M.Z.)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (K.W.); (Z.Z.); (S.L.); (J.H.); (T.L.); (Y.J.); (J.W.); (M.L.); (M.Z.); (L.L.); (L.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
- Correspondence: (Y.W.); (M.Z.)
| |
Collapse
|
30
|
Liu S, Zhao J, Liu Y, Li N, Wang Z, Wang X, Liu X, Jiang L, Liu B, Fu X, Li X, Li L. High Chromosomal Stability and Immortalized Totipotency Characterize Long-Term Tissue Cultures of Chinese Ginseng ( Panax Ginseng). Genes (Basel) 2021; 12:genes12040514. [PMID: 33807422 PMCID: PMC8067114 DOI: 10.3390/genes12040514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Chinese ginseng (Panax ginseng C. A. Meyer) is a highly cherished traditional Chinese medicine, with several confirmed medical effects and many more asserted health-boosting functions. Somatic chromosomal instability (CIN) is a hallmark of many types of human cancers and also related to other pathogenic conditions such as miscarriages and intellectual disabilities, hence, the study of this phenomenon is of wide scientific and translational medical significance. CIN also ubiquitously occurs in cultured plant cells, and is implicated as a major cause of the rapid decline/loss of totipotency with culture duration, which represents a major hindrance to the application of transgenic technologies in crop improvement. Here, we report two salient features of long-term cultured callus cells of ginseng, i.e., high chromosomal stability and virtually immortalized totipotency. Specifically, we document that our callus of ginseng, which has been subcultured for 12 consecutive years, remained highly stable at the chromosomal level and showed little decline in totipotency. We show that these remarkable features of cultured ginseng cells are likely relevant to the robust homeostasis of the transcriptional expression of specific genes (i.e., genes related to tissue totipotency and chromosomal stability) implicated in the manifestation of these two complex phenotypes. To our knowledge, these two properties of ginseng have not been observed in any animals (with respect to somatic chromosomal stability) and other plants. We posit that further exploration of the molecular mechanisms underlying these unique properties of ginseng, especially somatic chromosomal stability in protracted culture duration, may provide novel clues to the mechanistic understanding of the occurrence of CIN in human disease.
Collapse
Affiliation(s)
- Sitong Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Zhenhui Wang
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, China;
| | - Xinfeng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Xiaodong Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
- Jilin Academy of Agricultural Science, Changchun 130118, China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Correspondence: (X.F.); (X.L.); (L.L.)
| | - Xiaomeng Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (J.Z.); (Y.L.); (N.L.); (X.L.); (L.J.); (B.L.)
- Correspondence: (X.F.); (X.L.); (L.L.)
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
- Correspondence: (X.F.); (X.L.); (L.L.)
| |
Collapse
|
31
|
Zhang D, Li W, Chen ZJ, Wei FG, Liu YL, Gao LZ. SMRT- and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng. Sci Rep 2020; 10:15310. [PMID: 32943706 PMCID: PMC7499265 DOI: 10.1038/s41598-020-72291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Panax notoginseng is one of the most widely used traditional Chinese herbs with particularly valued roots. Triterpenoid saponins are mainly specialized secondary metabolites, which medically act as bioactive components. Knowledge of the ginsenoside biosynthesis in P. notoginseng, which is of great importance in the industrial biosynthesis and genetic breeding program, remains largely undetermined. Here we combined single molecular real time (SMRT) and Second-Generation Sequencing (SGS) technologies to generate a widespread transcriptome atlas of P. notoginseng. We mapped 2,383 full-length non-chimeric (FLNC) reads to adjacently annotated genes, corrected 1,925 mis-annotated genes and merged into 927 new genes. We identified 8,111 novel transcript isoforms that have improved the annotation of the current genome assembly, of which we found 2,664 novel lncRNAs. We characterized more alternative splicing (AS) events from SMRT reads (20,015 AS in 6,324 genes) than Illumina reads (18,498 AS in 9,550 genes), which contained a number of AS events associated with the ginsenoside biosynthesis. The comprehensive transcriptome landscape reveals that the ginsenoside biosynthesis predominantly occurs in flowers compared to leaves and roots, substantiated by levels of gene expression, which is supported by tissue-specific abundance of isoforms in flowers compared to roots and rhizomes. Comparative metabolic analyses further show that a total of 17 characteristic ginsenosides increasingly accumulated, and roots contained the most ginsenosides with variable contents, which are extraordinarily abundant in roots of the three-year old plants. We observed that roots were rich in protopanaxatriol- and protopanaxadiol-type saponins, whereas protopanaxadiol-type saponins predominated in aerial parts (leaves, stems and flowers). The obtained results will greatly enhance our understanding about the ginsenoside biosynthetic machinery in the genus Panax.
Collapse
Affiliation(s)
- Dan Zhang
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Li
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China
| | - Zhong-Jian Chen
- Wenshan Sanqi Institute of Science and Technology, Wenshan University, Wenshan, 663000, China
| | - Fu-Gang Wei
- Wenshan Miaoxiang Notoginseng Industral Co., LTD, Wenshan, 663000, China
| | - Yun-Long Liu
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, 510642, China. .,Plant Germplasm and Genomics Center, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
32
|
Analysis of the genes controlling three quantitative traits in three diverse plant species reveals the molecular basis of quantitative traits. Sci Rep 2020; 10:10074. [PMID: 32572040 PMCID: PMC7308372 DOI: 10.1038/s41598-020-66271-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
Most traits of agricultural importance are quantitative traits controlled by numerous genes. However, it remains unclear about the molecular mechanisms underpinning quantitative traits. Here, we report the molecular characteristics of the genes controlling three quantitative traits randomly selected from three diverse plant species, including ginsenoside biosynthesis in ginseng (Panax ginseng C.A. Meyer), fiber length in cotton (Gossypium hirsutum L. and G. barbadense L.) and grain yield in maize (Zea mays L.). We found that a vast majority of the genes controlling a quantitative trait were significantly more likely spliced into multiple transcripts while they expressed. Nevertheless, only one to four, but not all, of the transcripts spliced from each of the genes were significantly correlated with the phenotype of the trait. The genes controlling a quantitative trait were multiple times more likely to form a co-expression network than other genes expressed in an organ. The network varied substantially among genotypes of a species and was associated with their phenotypes. These findings indicate that the genes controlling a quantitative trait are more likely pleiotropic and functionally correlated, thus providing new insights into the molecular basis underpinning quantitative traits and knowledge necessary to develop technologies for efficient manipulation of quantitative traits.
Collapse
|
33
|
Liu Q, Sun C, Han J, Li L, Wang K, Wang Y, Chen J, Zhao M, Wang Y, Zhang M. Identification, characterization and functional differentiation of the NAC gene family and its roles in response to cold stress in ginseng, Panax ginseng C.A. Meyer. PLoS One 2020; 15:e0234423. [PMID: 32525906 PMCID: PMC7289381 DOI: 10.1371/journal.pone.0234423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/26/2020] [Indexed: 11/18/2022] Open
Abstract
The NAC gene family is one of the important plant-specific transcription factor families involved in variety of physiological processes. It has been found in several plant species; however, little is known about the gene family in ginseng, Panax ginseng C.A. Meyer. Here we report identification and systematic analysis of this gene family in ginseng. A total of 89 NAC genes, designated PgNAC01 to PgNAC89, are identified. These genes are alternatively spliced into 251 transcripts at fruiting stage of a four-year-old ginseng plant. The genes of this gene family have five conserved motifs and are clustered into 11 subfamilies, all of which are shared with the genes of the NAC gene families identified in the dicot and monocot model plant species, Arabidopsis and rice. This result indicates that the PgNAC gene family is an ancient and evolutionarily inactive gene family. Gene ontology (GO) analysis shows that the functions of the PgNAC gene family have been substantially differentiated; nevertheless, over 86% the PgNAC transcripts remain functionally correlated. Finally, five of the PgNAC genes, PgNAC05-2, PgNAC41-2, PgNAC48, PgNAC56-1, and PgNAC59, are identified to be involved in plant response to cold stress, suggesting that this gene family plays roles in response to cold stress in ginseng. These results, therefore, provide new insights into functional differentiation and evolution of a gene family in plants and gene resources necessary to comprehensively determine the functions of the PgNAC gene family in response to cold and other abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jiazhuang Han
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yanfang Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Research Center for Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, China
- * E-mail: (YW); (MZ)
| |
Collapse
|
34
|
The bHLH gene family and its response to saline stress in Jilin ginseng, Panax ginseng C.A. Meyer. Mol Genet Genomics 2020; 295:877-890. [PMID: 32239329 DOI: 10.1007/s00438-020-01658-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 02/04/2023]
Abstract
Basic helix-loop-helix (bHLH) gene family is a gene family of transcription factors that plays essential roles in plant growth and development, secondary metabolism and response to biotic and abiotic stresses. Therefore, a comprehensive knowledge of the bHLH gene family is paramount to understand the molecular mechanisms underlying these processes and develop advanced technologies to manipulate the processes efficiently. Ginseng, Panax ginseng C.A. Meyer, is a well-known medicinal herb; however, little is known about the bHLH genes (PgbHLH) in the species. Here, we identified 137 PgbHLH genes from Jilin ginseng cultivar, Damaya, widely cultivated in Jilin, China, of which 50 are newly identified by pan-genome analysis. These 137 PgbHLH genes were phylogenetically classified into 26 subfamilies, suggesting their sequence diversification. They are alternatively spliced into 366 transcripts in a 4-year-old plant and involved in 11 functional subcategories of the gene ontology, indicating their functional differentiation in ginseng. The expressions of the PgbHLH genes dramatically vary spatio-temporally and across 42 genotypes, but they are still somehow functionally correlated. Moreover, the PgbHLH gene family, at least some of its genes, is shown to have roles in plant response to the abiotic stress of saline. These results provide a new insight into the evolution and functional differentiation of the bHLH gene family in plants, new bHLH genes to the PgbHLH gene family, and saline stress-responsive genes for genetic improvement in ginseng and other plant species.
Collapse
|
35
|
Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS One 2020; 15:e0226055. [PMID: 32176699 PMCID: PMC7075567 DOI: 10.1371/journal.pone.0226055] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022] Open
Abstract
The APETALA2/Ethylene Responsive Factor (AP2/ERF) gene family has been shown to play a crucial role in plant growth and development, stress responses and secondary metabolite biosynthesis. Nevertheless, little is known about the gene family in ginseng (Panax ginseng C.A. Meyer), an important medicinal herb in Asia and North America. Here, we report the systematic analysis of the gene family in ginseng using several transcriptomic databases. A total of 189 putative AP2/ERF genes, defined as PgERF001 through PgERF189, were identified and these PgERF genes were spliced into 397 transcripts. The 93 PgERF genes that have complete AP2 domains in open reading frame were classified into five subfamilies, DREB, ERF, AP2, RAV and Soloist. The DREB subfamily and ERF subfamily were further clustered into four and six groups, respectively, compared to the 12 groups of these subfamilies found in Arabidopsis thaliana. Gene ontology categorized these 397 transcripts of the 189 PgERF genes into eight functional subcategories, suggesting their functional differentiation, and they have been especially enriched for the subcategory of nucleic acid binding transcription factor activity. The expression activity and networks of the 397 PgERF transcripts have substantially diversified across tissues, developmental stages and genotypes. The expressions of the PgERF genes also significantly varied, when ginseng was subjected to cold stress, as tested using six PgERF genes, PgERF073, PgERF079, PgERF110, PgERF115, PgERF120 and PgERF128, randomly selected from the DREB subfamily. This result suggests that the DREB subfamily genes play an important role in plant response to cold stress. Finally, we studied the responses of the PgERF genes to methyl jasmonate (MeJA). We found that 288 (72.5%) of the 397 PgERF gene transcripts responded to the MeJA treatment, with 136 up-regulated and 152 down-regulated, indicating that most members of the PgERF gene family are responsive to MeJA. These results, therefore, provide new resources and knowledge necessary for family-wide functional analysis of the PgERF genes in ginseng and related species.
Collapse
|
36
|
Till 2018: a survey of biomolecular sequences in genus Panax. J Ginseng Res 2020; 44:33-43. [PMID: 32095095 PMCID: PMC7033366 DOI: 10.1016/j.jgr.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.
Collapse
|
37
|
Lee J, Park J, Lee YY, Lee Y. Comparative transcriptome analysis of the protective effects of Korean Red Ginseng against the influence of bisphenol A in the liver and uterus of ovariectomized mice. J Ginseng Res 2020; 44:519-526. [PMID: 32372874 PMCID: PMC7195581 DOI: 10.1016/j.jgr.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bisphenol A (BPA), known as an endocrine disruptor, is widely used in the world. BPA is reported to cause inflammation-related diseases. Korean Red Ginseng (KRG) has been used safely in human for a long time for the treatment of diverse diseases. KRG has been reported of its mitigating effect on menopausal symptoms and suppress adipose inflammation. Here, we investigate the protective effect of orally administered KRG on the impacts of BPA in the liver and uterus of menopausal mice model. Methods The transcriptome analysis for the effects of BPA on mice liver was evaluated by Gene Expression Omnibus (GEO) database–based data (GSE26728). In vivo assay to evaluate the protective effect of KRG on BPA impact in ovariectomized (OVX) mice were designed and analyzed by RNA sequencing. Results We first demonstrated that BPA induced 12 kinds of gene set in the liver of normal mice. The administration of BPA and KRG did not change body, liver, and uterine weight in OVX mice. KRG downregulated BPA-induced inflammatory response and chemotaxis-related gene expression. Several gene set enrichment analysis (GSEA)–derived inflammatory response genes increased by BPA were inhibited by KRG in OVX mice. Conclusion Our data suggest that BPA has commonly influenced inflammatory response effects on both normal and OVX mice. KRG protects against BPA impact of inflammatory response and chemotaxis in OVX mouse models. Our comparative analysis will provide new insight into the efficacy of KRG on endocrine disrupting chemicals and OVX mouse.
Collapse
Affiliation(s)
- Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
38
|
Wang N, Wang K, Li S, Jiang Y, Li L, Zhao M, Jiang Y, Zhu L, Wang Y, Su Y, Wang Y, Zhang M. Transcriptome-Wide Identification, Evolutionary Analysis, and GA Stress Response of the GRAS Gene Family in Panax ginseng C. A. Meyer. PLANTS 2020; 9:plants9020190. [PMID: 32033157 PMCID: PMC7076401 DOI: 10.3390/plants9020190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/22/2022]
Abstract
GRAS transcription factors are a kind of plant-specific transcription factor that have been found in a variety of plants. According to previous studies, GRAS proteins are widely involved in the physiological processes of plant signal transduction, stress, growth and development. The Jilin ginseng (Panax ginseng C.A. Meyer) is a heterogeneous tetraploid perennial herb of the Araliaceae family, ginseng genus. Important information regarding the GRAS transcription factors has not been reported in ginseng. In this study, 59 Panax ginseng GRAS (PgGRAS) genes were obtained from the Jilin ginseng transcriptome data and divided into 13 sub-families according to the classification of Arabidopsis thaliana. Through systematic evolution, structural variation, function and gene expression analysis, we further reveal GRAS’s potential function in plant growth processes and its stress response. The expression of PgGRAS genes responding to gibberellin acids (GAs) suggests that these genes could be activated after application concentration of GA. The qPCR analysis result shows that four PgGRAS genes belonging to the DELLA sub-family potentially have important roles in the GA stress response of ginseng hairy roots. This study provides not only a preliminary exploration of the potential functions of the GRAS genes in ginseng, but also valuable data for further exploration of the candidate PgGRAS genes of GA signaling in Jilin ginseng, especially their roles in ginseng hairy root development and GA stress response.
Collapse
Affiliation(s)
- Nan Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Shaokun Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Li Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yue Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Lei Zhu
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
| | - Yanfang Wang
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yingjie Su
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- Correspondence: (Y.W.); (M.Z.)
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, Jilin, China; (N.W.); (K.W.); (S.L.); (Y.J.); (L.L.); (M.Z.); (Y.J.); (L.Z.); (Y.S.)
- Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, Jilin, China;
- Correspondence: (Y.W.); (M.Z.)
| |
Collapse
|
39
|
Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform 2019; 21:1857-1874. [PMID: 32706024 DOI: 10.1093/bib/bbz132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yijun Meng
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Tian Xie
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China
| |
Collapse
|
40
|
Li XY, Sun LW, Zhao DQ. Current Status and Problem-Solving Strategies for Ginseng Industry. Chin J Integr Med 2019; 25:883-886. [DOI: 10.1007/s11655-019-3046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
41
|
Wei G, Yang F, Wei F, Zhang L, Gao Y, Qian J, Chen Z, Jia Z, Wang Y, Su H, Dong L, Xu J, Chen S. Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng. J Ginseng Res 2019; 44:757-769. [PMID: 33192118 PMCID: PMC7655499 DOI: 10.1016/j.jgr.2019.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng. Conclusions These results provided the visual and quantitative profiles of and confirmed the pivotal transcripts of CYPs and UGTs regulating the saponin distribution in the root tissues of P. quinquefolius and P. notoginseng.
Collapse
Key Words
- AACT, Acetoacetyl-CoA acyltransferase
- DS, Dammarenediol-II synthase
- DXPR, 1-deoxy-o-xylulose 5-phosphate reductoisomerase
- DXPS, 1-deoxy-o-xylulose 5-phosphate synthase
- FDR, False discovery rate
- FPP, Farnesyl diphosphate
- FPS, Farnesyl pyrophosphate synthase
- GDPS, Gerenyl diphosphatesynthase
- GO, Gene Ontology
- HDS, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphatesynthase
- HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase
- HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase
- HPLC-UV, High-performance liquid chromatography-ultraviolet detection
- IPP, Isoprenyl diphosphate
- IPPI, Isopentenyl pyrophosphate isomerase
- ISPD, 2-C-methylerythritol 4-phosphatecytidyl transferase
- ISPE, 4-(cytidine-5′-diphospho)-2-C-methylerythritol kinase
- ISPH, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase
- MALDI-MS, Matrix-assisted laser desorption/ionization–mass spectrometry
- MECPS, 2-C-methylerythritol-2,4-cyclophosphate synthase
- MEP, 2-C-methyl-D-erythritol-4-phosphate
- MVA, Mevalonate acid
- MVD, Mevalonate diphosphate decarboxylase
- MVK, Mevalonate kinase
- Metabolome
- NCBI Nr, NCBI Non-redundant protein
- OPLS-DA, Orthogonal partial least squares-discriminant analysis
- ORF, Open read frame
- P450, P450-monooxygenase
- PMK, Phosphomevalonate kinase
- Panax plants
- Root tissues
- SE, Squalene epoxidase
- SS, Squalene synthase
- Saponin distribution
- Transcriptome
- UGTs, UDP-glycosyltransferases
- UPLC-MS, Ultrahigh-performance liquid chromatography quadrupole time of flight-mass spectrometry
- WGCNA, Weighted gene coexpression network analysis
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Lianjuan Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - He Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wu W, Lin X, Wang C, Ke J, Wang L, Liu H. Transcriptome of white shrimp Litopenaeus vannamei induced with rapamycin reveals the role of autophagy in shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1009-1018. [PMID: 30586633 DOI: 10.1016/j.fsi.2018.12.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Autophagy plays a vital role in innate and adaptive immunity against invading microorganisms, such as virus and bacteria. However, the mechanism underlying autophagy in shrimp is still limited. In our study, we challenged white shrimp L. vannamei with rapamycin to induce autophagy and employed Solexa/Illumina high-throughput RNA-seq method to examine the differences of transcriptome from gills of shrimps treated with or without rapamycin. More than 22.64 Gb raw data were produced, which were assembled into 62, 503 unigenes, with 14,126 unigenes over 1 kb in length. We then performed differential expression analysis and identified a total of 3050 differentially expressed genes (DEGs). Among them, 1456 were upregulated and 1594 were downregulated. We further annotated DEGs by matching against non-redundant protein sequence (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups of proteins (COG), euKaryotic Orthologous Groups (KOG), Gene ontology (GO), and Pfam databases. The assembled and annotated DEGs will facilitate our understanding of the molecular mechanism underlying autophagy and promote the studies on the role of autophagy in innate immunity of L. vannamei and other crustaceans.
Collapse
Affiliation(s)
- Wenlin Wu
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Xiaosi Lin
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Cuifang Wang
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Jiaying Ke
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, PR China; Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Xiamen University), State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen, 361102, Fujian, PR China.
| |
Collapse
|
43
|
Fan H, Li K, Yao F, Sun L, Liu Y. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots. BMC PLANT BIOLOGY 2019; 19:82. [PMID: 30782123 PMCID: PMC6381674 DOI: 10.1186/s12870-019-1682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND There exist differences in morphological traits and phytochemical compositions between field- and mountain-cultivated Panax ginseng (FCG and MCG), which might be attributed to variations of terpenoids metabolism adapting to different growth conditions. The present work aims to uncover these variations. RESULTS Among 26,648 differentially expressed genes, 496 genes distributed in seven dominant terpenoids pathways were identified. Diterpenoids and triterpenoids biosynthesis genes were significantly higher-expressed in FCG root. Conversely, biosynthesis of carotenoids was significantly more active in MCG root. Additionally, terpenoids backbones, monoterpenoids, sesquiterpenoids, and terpenoid-quinones biosyntheses were neither obviously inclined. Our determination also revealed that there were more gibberellins and steroids accumulated in FCG root which might be responsible for its quick vegetative growth, and enriched abscisic acid and germacrenes as well as protopanaxatriol-type ginsenosides might be major causes of enhanced stress-resistance in MCG root. CONCLUSIONS The study firstly provided an overview of terpenoids metabolism in roots of FCG and MCG in elucidating the underlying mechanisms for their different morphological appearances and phytochemical compositions.
Collapse
Affiliation(s)
- Hang Fan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Ke Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
- Research Institute of Advanced Eco-Environmental Protection Technology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| |
Collapse
|
44
|
Transcriptome analysis identifies strong candidate genes for ginsenoside biosynthesis and reveals its underlying molecular mechanism in Panax ginseng C.A. Meyer. Sci Rep 2019; 9:615. [PMID: 30679448 PMCID: PMC6346045 DOI: 10.1038/s41598-018-36349-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/11/2018] [Indexed: 11/09/2022] Open
Abstract
Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal herbs for human health and medicine in which ginsenosides are known to play critical roles. The genes from the cytochrome P450 (CYP) gene superfamily have been shown to play important roles in ginsenoside biosynthesis. Here we report genome-wide identification of the candidate PgCYP genes for ginsenoside biosynthesis, development of functional SNP markers for its manipulation and systems analysis of its underlying molecular mechanism. Correlation analysis identified 100 PgCYP genes, including all three published ginsenoside biosynthesis PgCYP genes, whose expressions were significantly correlated with the ginsenoside contents. Mutation association analysis identified that six of these 100 PgCYP genes contained SNPs/InDels that were significantly associated with ginsenosides biosynthesis (P ≤ 1.0e-04). These six PgCYP genes, along with all ten published ginsenoside biosynthesis genes from the PgCYP and other gene families, formed a strong co-expression network, even though they varied greatly in spatio-temporal expressions. Therefore, this study has identified six new ginsenoside biosynthesis candidate genes, provided a genome-wide insight into how they are involved in ginsenoside biosynthesis and developed a set of functional SNP markers useful for enhanced ginsenoside biosynthesis research and breeding in ginseng and related species.
Collapse
|
45
|
Lee JS, Goh CJ, Park D, Hahn Y. Identification of a novel plant RNA virus species of the genus Amalgavirus in the family Amalgaviridae from chia (Salvia hispanica). Genes Genomics 2019; 41:10.1007/s13258-019-00782-1. [PMID: 30649686 DOI: 10.1007/s13258-019-00782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chia (Salvia hispanica) is a flowering plant in the family Lamiaceae, which produces seeds that are a rich source of various nutritional compounds. OBJECTIVE To identify a novel RNA virus potentially associated with chia. METHODS Transcriptome data obtained from developing chia seeds were assembled into contigs. Sequence contigs containing an open reading frame (ORF) that showed amino acid identities with a viral RNA-dependent RNA polymerase (RdRp) were identified and analyzed. RESULTS A genomic sequence of a novel plant RNA virus named Salvia hispanica RNA virus 1 (ShRV1) was identified in a chia seed transcriptome dataset. The ShRV1 genome sequence has two ORFs that showed high sequence identities with ORFs of known members of the genus Amalgavirus in the family Amalgaviridae. Amalgaviridae is a family of positive-sense double-stranded non-segmented RNA viruses that infect plants, fungi, and animals. The ShRV1 genome encodes two proteins: a putative replication factory matrix-like protein from ORF1 and an RdRp from the fused ORF of ORF1 and ORF2 by a + 1 programmed ribosomal frameshifting (PRF) mechanism. A conserved + 1 PRF motif sequence UUU_CGU was found at the ORF1/ORF2 boundary. A comparison of 31 amalgavirus ORF1 + 2 fusion proteins revealed that only three positions were repeatedly used as a + 1 PRF site during amalgavirus evolution. CONCLUSION ShRV1 is a novel virus found to be associated with chia and may be useful for studying the molecular features of amalgaviruses.
Collapse
Affiliation(s)
- Ji Seok Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Chul Jun Goh
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
46
|
Jung JH, Kim HY, Kim HS, Jung SH. Transcriptome analysis of Panax ginseng response to high light stress. J Ginseng Res 2019; 44:312-320. [PMID: 32148414 PMCID: PMC7031748 DOI: 10.1016/j.jgr.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 11/28/2022] Open
Abstract
Background Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.
Collapse
Affiliation(s)
- Je Hyeong Jung
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Ho-Youn Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Hyoung Seok Kim
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea.,Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| | - Sang Hoon Jung
- Center for Natural Products Convergence Research, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea
| |
Collapse
|
47
|
Genome-Wide Identification and Comparative Analysis for OPT Family Genes in Panax ginseng and Eleven Flowering Plants. Molecules 2018; 24:molecules24010015. [PMID: 30577553 PMCID: PMC6337337 DOI: 10.3390/molecules24010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Herb genomics and comparative genomics provide a global platform to explore the genetics and biology of herbs at the genome level. Panax ginseng C.A. Meyer is an important medicinal plant for a variety of bioactive chemical compounds of which the biosynthesis may involve transport of a wide range of substrates mediated by oligopeptide transporters (OPT). However, information about the OPT family in the plant kingdom is still limited. Only 17 and 18 OPT genes have been characterized for Oryza sativa and Arabidopsisthaliana, respectively. Additionally, few comprehensive studies incorporating the phylogeny, gene structure, paralogs evolution, expression profiling, and co-expression network between transcription factors and OPT genes have been reported for ginseng and other species. In the present study, we performed those analyses comprehensively with both online tools and standalone tools. As a result, we identified a total of 268 non-redundant OPT genes from 12 flowering plants of which 37 were from ginseng. These OPT genes were clustered into two distinct clades in which clade-specific motif compositions were considerably conservative. The distribution of OPT paralogs was indicative of segmental duplication and subsequent structural variation. Expression patterns based on two sources of RNA-Sequence datasets suggested that some OPT genes were expressed in both an organ-specific and tissue-specific manner and might be involved in the functional development of plants. Further co-expression analysis of OPT genes and transcription factors indicated 141 positive and 11 negative links, which shows potent regulators for OPT genes. Overall, the data obtained from our study contribute to a better understanding of the complexity of the OPT gene family in ginseng and other flowering plants. This genetic resource will help improve the interpretation on mechanisms of metabolism transportation and signal transduction during plant development for Panax ginseng.
Collapse
|
48
|
Wang Y, Li X, Lin Y, Wang Y, Wang K, Sun C, Lu T, Zhang M. Structural Variation, Functional Differentiation, and Activity Correlation of the Cytochrome P450 Gene Superfamily Revealed in Ginseng. THE PLANT GENOME 2018; 11:170106. [PMID: 30512034 DOI: 10.3835/plantgenome2017.11.0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ginseng ( C.A. Mey.) is one of the most important medicinal herbs for human health and medicine, for which ginsenosides are the major bioactive components. The cytochrome P450 genes, , form a large gene superfamily; however, only three genes have been identified from ginseng and shown to be involved in ginsenoside biosynthesis, indicating the importance of the gene superfamily in the process. Here we report genome-wide identification and systems analysis of the genes in ginseng, defined as genes. We identified 414 genes, including the three published genes. These genes formed a superfamily consisting of 41 gene families, with a substantial diversity in phylogeny and dramatic variation in spatiotemporal expression. Gene ontology (GO) analysis categorized the gene superfamily into 12 functional subcategories distributing among all three primary functional categories, suggesting its functional differentiation. Nevertheless, the majority of its gene members expressed correlatively and tended to form a coexpression network and some of them were commonly regulated in expression across tissues and developmental stages. These results have led to genome-wide identification of genes useful for genome-wide identification of the genes involved in ginsenoside biosynthesis in ginseng and provided the first insight into how a gene superfamily functionally differentiates and acts correlatively in plants.
Collapse
|
49
|
Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, Zhang J, Zhang Y, Zhang X, Wu M, Zhang J, Li G, Zhang L, Chang Z, Zhang Y, Jia Z, Liu Z, Afreh D, Nahurira R, Zhang L, Cheng R, Zhu Y, Zhu G, Rao W, Zhou C, Qiao L, Huang Z, Cheng YC, Chen S. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 2018; 6:1-15. [PMID: 29048480 PMCID: PMC5710592 DOI: 10.1093/gigascience/gix093] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/22/2017] [Indexed: 11/14/2022] Open
Abstract
Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.
Collapse
Affiliation(s)
- Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Qian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingli Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guozheng Li
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhixiang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Daniel Afreh
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Ruth Nahurira
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Lianjuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Rao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Chao Zhou
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Lirui Qiao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
50
|
Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm Sin B 2018; 8:666-677. [PMID: 30109190 PMCID: PMC6089850 DOI: 10.1016/j.apsb.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is one of the best-selling herbal medicines, with ginsenosides as its main pharmacologically active constituents. Although extensive chemical and pharmaceutical studies of these compounds have been performed, genome-wide studies of the basic helix-loop-helix (bHLH) transcription factors of ginseng are still limited. The bHLH transcription factor family is one of the largest transcription factor families found in eukaryotic organisms, and these proteins are involved in a myriad of regulatory processes. In our study, 169 bHLH transcription factor genes were identified in the genome of P. ginseng, and phylogenetic analysis indicated that these PGbHLHs could be classified into 24 subfamilies. A total of 21 RNA-seq data sets, including two sequencing libraries for jasmonate (JA)-responsive and 19 reported libraries for organ-specific expression analyses were constructed. Through a combination of gene-specific expression patterns and chemical contents, 6 PGbHLH genes from 4 subfamilies were revealed to be potentially involved in the regulation of ginsenoside biosynthesis. These 6 PGbHLHs, which had distinct target genes, were further divided into two groups depending on the absence of MYC-N structure. Our results would provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factor action in P. ginseng.
Collapse
Affiliation(s)
- Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding authors.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding authors.
| |
Collapse
|