1
|
Katoh K. Integrin and Its Associated Proteins as a Mediator for Mechano-Signal Transduction. Biomolecules 2025; 15:166. [PMID: 40001469 PMCID: PMC11853369 DOI: 10.3390/biom15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Mechano-signal transduction is a process in which cells perceive extracellular mechanical signals, convert them into intracellular biochemical signals, and produce a response. Integrins are cell surface receptors that sense the extracellular mechanical cues and bind to the extracellular matrix (ECM). This binding induces integrin clustering and activation. Cytoplasmic tails of activated integrins interact and induce cytoskeleton tensions via several adaptor proteins. Integrins monitor extracellular stiffness via cytoskeleton tensions and modulate ECM stiffness via downstream signaling pathways regulating the expression of genes of ECM components. Integrin-mediated mechano-transduction is very crucial for the cell as it regulates the cell physiology both in normal and diseased conditions according to extracellular mechanical cues. It regulates cell proliferation, survival, and migration. Abnormal mechanical cues such as extreme and prolonged mechanical stress result in pathological conditions including fibrosis, cancers, skin, and autoimmune disorders. This paper aims to explore the role of integrins and their associated proteins in mechano-signal transduction. It highlights the integrins and their associated proteins as targets for therapy development. Furthermore, it also presents the challenges to the targeted drug development, which can be drug resistance and cytotoxicity. It is concluded in this paper that research on integrin-mediated mechano-signal transduction and its relationship with cell physiology and pathologies will be an important step towards the development of effective therapies.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
2
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
3
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Maher S, Bayachou M, Fu P, Hijaz A, Liu G. Focal adhesion kinase activation is involved in contractile stimulation-induced detrusor muscle contraction in mice. Eur J Pharmacol 2023; 952:175807. [PMID: 37236435 PMCID: PMC10330804 DOI: 10.1016/j.ejphar.2023.175807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Recent studies suggested smooth muscle contraction may involve mechanisms besides the myosin regulatory light chain (MLC) phosphorylation-induced actomyosin crossbridge cycling. This study aims to determine if focal adhesion kinase (FAK) activation is involved in mouse detrusor muscle contraction. The mouse detrusor muscle strips were preincubated with PF-573228 (2 μM), latrunculin B (1 μM), or the same volume of vehicle (DMSO) for 30 min. The contractile responses to KCl (90 mM), electrical field stimulation (EFS, 2-32 Hz), or carbachol (CCh, 10-7.5-10-4.5 M) were measured. In a separate experiment, the phosphorylated FAK (p-FAK) and MLC (p-MLC) levels were measured in the detrusor strips stimulated with CCh (10 μM) after incubation with PF-573228 or vehicle (DMSO) compared to those with vehicle incubation but without CCh stimulation. KCl-induced contractile responses decreased significantly after incubation with PF-573228 or latrunculin B compared to the corresponding vehicle-treated strips (p < 0.0001). The contractile responses induced by EFS were markedly inhibited by preincubation with PF-573228 at 8, 16, and 32 Hz (p < 0.05) or latrunculin B at 16 and 32 Hz (p < 0.01). Following the application of PF-573228 or Latrunculin B, CCh-induced dose-response contractions were lower than the corresponding vehicle group (p = 0.0021 and 0.0003, respectively). Western blot examination showed that CCh stimulation enhanced the expression of p-FAK and p-MLC, while preincubation with PF-573228 prevented the increase of p-FAK but not p-MLC. In conclusion, FAK activation involves tension development induced by contractile stimulation in the mouse detrusor muscle. This effect is likely caused by promoting actin polymerization rather than elevating MLC phosphorylation.
Collapse
Affiliation(s)
- Shaimaa Maher
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA; Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
6
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
8
|
Chen Q, Zhou W, Huang Y, Tian Y, Wong SY, Lam WK, Ying KY, Zhang J, Chen H. Umbelliferone and scopoletin target tyrosine kinases on fibroblast-like synoviocytes to block NF-κB signaling to combat rheumatoid arthritis. Front Pharmacol 2022; 13:946210. [PMID: 35959425 PMCID: PMC9358226 DOI: 10.3389/fphar.2022.946210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune condition primarily affecting synovial joints, which targeted synthetic drugs have damaging safety issues. Saussurea laniceps, a reputed anti-rheumatic medicinal herb, is an excellent place to start looking for natural products as safe, effective, targeted therapeutics for RA. Via biomimetic ultrafiltration, umbelliferone and scopoletin were screened as two anti-rheumatic candidates with the highest specific affinities towards the membrane proteomes of rheumatic fibroblast-like synoviocytes (FLS), the pivotal effector cells in RA. In vitro assays confirmed that the two compounds, to varying extents, inhibited RA-FLS proliferation, migration, invasion, and NF-κB signaling. Network pharmacology analysis and molecular docking analysis jointly revealed that umbelliferone and scopoletin act on multiple targets, mostly tyrosine kinases, in combating RA. Taken together, our present study identified umbelliferone and scopoletin as two major anti-rheumatic components from SL that may bind and inhibit tyrosine kinases and subsequently inactivate NF-κB in RA-FLSs. Our integrated drug discovery strategy could be valuable in finding other multi-target bioactive compounds from complex matrices for treating multifactorial diseases.
Collapse
Affiliation(s)
- Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Wenmin Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Sum Yi Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Wing Ki Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Ka Yee Ying
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Filhol O, Hesse AM, Bouin AP, Albigès-Rizo C, Jeanneret F, Battail C, Pflieger D, Cochet C. CK2β Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Front Mol Biosci 2022; 9:900947. [PMID: 35847979 PMCID: PMC9280835 DOI: 10.3389/fmolb.2022.900947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/αʹ catalytic subunits and two CK2β regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2β compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2β in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2β loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2β as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.
Collapse
Affiliation(s)
- Odile Filhol
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
| | - Anne-Pascale Bouin
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Florian Jeanneret
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Christophe Battail
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| | - Claude Cochet
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| |
Collapse
|
10
|
Duan B, Qin Z, Gu X, Li Y. Migfilin: Cell Adhesion Effect and Comorbidities. Onco Targets Ther 2022; 15:411-422. [PMID: 35469339 PMCID: PMC9034862 DOI: 10.2147/ott.s357355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.
Collapse
Affiliation(s)
- Baoyu Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ziyao Qin
- Department of Research and Development, Shanghai Institute of Biological Products Co., Ltd., Shanghai, People’s Republic of China
| | - Xuefeng Gu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
- Xuefeng Gu, Department of Pharmacy, 279 Zhouzhu Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180, Email
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
- Correspondence: Yanfei Li, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180 Email
| |
Collapse
|
11
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
12
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Xu Q, Zhang J, Telfer BA, Zhang H, Ali N, Chen F, Risa B, Pearson AJ, Zhang W, Finegan KG, Ucar A, Giurisato E, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene 2021; 40:3929-3941. [PMID: 33981002 PMCID: PMC8195737 DOI: 10.1038/s41388-021-01798-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
There is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.
Collapse
Affiliation(s)
- Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Blanca Risa
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
14
|
Mayoral-Varo V, Sánchez-Bailón MP, Calcabrini A, García-Hernández M, Frezza V, Martín ME, González VM, Martín-Pérez J. The Relevance of the SH2 Domain for c-Src Functionality in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:462. [PMID: 33530373 PMCID: PMC7865352 DOI: 10.3390/cancers13030462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
The role of Src family kinases (SFKs) in human tumors has been always associated with tyrosine kinase activity and much less attention has been given to the SH2 and SH3 adapter domains. Here, we studied the role of the c-Src-SH2 domain in triple-negative breast cancer (TNBC). To this end, SUM159PT and MDA-MB-231 human cell lines were employed as model systems. These cells conditionally expressed, under tetracycline control (Tet-On system), a c-Src variant with point-inactivating mutation of the SH2 adapter domain (R175L). The expression of this mutant reduced the self-renewal capability of the enriched population of breast cancer stem cells (BCSCs), demonstrating the importance of the SH2 adapter domain of c-Src in the mammary gland carcinogenesis. In addition, the analysis of anchorage-independent growth, proliferation, migration, and invasiveness, all processes associated with tumorigenesis, showed that the SH2 domain of c-Src plays a very relevant role in their regulation. Furthermore, the transfection of two different aptamers directed to SH2-c-Src in both SUM159PT and MDA-MB-231 cells induced inhibition of their proliferation, migration, and invasiveness, strengthening the hypothesis that this domain is highly involved in TNBC tumorigenesis. Therefore, the SH2 domain of c-Src could be a promising therapeutic target and combined treatments with inhibitors of c-Src kinase enzymatic activity may represent a new therapeutic strategy for patients with TNBC, whose prognosis is currently very negative.
Collapse
Affiliation(s)
- Víctor Mayoral-Varo
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
| | - María Pilar Sánchez-Bailón
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Annarica Calcabrini
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marta García-Hernández
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Valerio Frezza
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - María Elena Martín
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Víctor M. González
- Grupo de Aptámeros, Servicio Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal. Ctra. Colmenar Viejo km 9100, 28034 Madrid, Spain; (M.G.-H.); (V.F.); (M.E.M.); (V.M.G.)
| | - Jorge Martín-Pérez
- Instituto de Investigaciones Biomédicas A, Sols/Dpto. Bioquímica (CSIC/UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.M.-V.); (M.P.S.-B.); (A.C.)
- Instituto de Investigaciones Sanitarias del Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
15
|
Kerjouan A, Boyault C, Oddou C, Hiriart-Bryant E, Grichine A, Kraut A, Pezet M, Balland M, Faurobert E, Bonnet I, Coute Y, Fourcade B, Albiges-Rizo C, Destaing O. Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage. J Cell Sci 2021; 134:237349. [PMID: 33495358 DOI: 10.1242/jcs.254599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
Collapse
Affiliation(s)
- Adèle Kerjouan
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Edwige Hiriart-Bryant
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne University, UMR 168, 75005 Paris, France
| | - Yohann Coute
- Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France
| | - Bertrand Fourcade
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| |
Collapse
|
16
|
Antoniades I, Kyriakou M, Charalambous A, Kalalidou K, Christodoulou A, Christoforou M, Skourides PA. FAK displacement from focal adhesions: a promising strategy to target processes implicated in cancer progression and metastasis. Cell Commun Signal 2021; 19:3. [PMID: 33413438 PMCID: PMC7791867 DOI: 10.1186/s12964-020-00671-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed or activated in several advanced-stage solid cancers. It is known to play both kinase-dependent and -independent roles in promoting tumor progression and metastasis. Numerous inhibitors, targeting either the enzymatic or scaffolding activities of FAK have been generated, with varying degree of success. Here, we describe a novel approach to site-specifically target both kinase-dependent and -independent FAK functions at focal adhesions (FAs), the primary sites at which the kinase exerts its activity. METHODS We took advantage of the well-characterized interactions between the paxillin LD motifs and the FAK FAT domain and generated a polypeptide (LD2-LD3-LD4) expected to compete with interactions with paxillin. Co-immunoprecipitation experiments were performed to examine the interaction between the LD2-LD3-LD4 polypeptide and FAK. The effects of LD2-LD3-LD4 in the localization and functions of FAK, as well as FA composition, were evaluated using quantitative immunofluorescence, cell fractionation, FA isolation and Western Blot analysis. Live cell imaging, as well as 2-D migration and cell invasion assays were used to examine the effects on FA turnover and tumor cell migration and invasion. RESULTS Expression of the LD2-LD3-LD4 polypeptide prevents FAK localization at FAs, in a controlled and dose-dependent manner, by competing with endogenous paxillin for FAK binding. Importantly, the LD2-LD3-LD4 peptide did not otherwise affect FA composition or integrin activation. LD2-LD3-LD4 inhibited FAK-dependent downstream integrin signaling and, unlike existing inhibitors, also blocked FAK's scaffolding functions. We further show that LD2-LD3-LD4 expression markedly reduces FA turnover and inhibits tumor cell migration and invasion. Finally, we show that dimers of a single motif, linked through a flexible linker of the proper size, are sufficient for the displacement of FAK from FAs and for inhibition of tumor cell migration. This work raises the possibility of using a synthetic peptide as an antimetastatic agent, given that effective displacement of FAK from FAs only requires dimers of a single LD motif linked by a short flexible linker. CONCLUSION In conclusion, these results suggest that FAK displacement from FAs is a promising new strategy to target critical processes implicated in cancer progression and metastasis. Video abstract.
Collapse
Affiliation(s)
- Ioanna Antoniades
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Maria Kyriakou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Anna Charalambous
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Katerina Kalalidou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Maria Christoforou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| |
Collapse
|
17
|
Ethaeb AM, Mohammad MA, Madkhali Y, Featherby S, Maraveyas A, Greenman J, Ettelaie C. Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling. Apoptosis 2020; 25:29-41. [PMID: 31654241 PMCID: PMC6965344 DOI: 10.1007/s10495-019-01576-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulation of tissue factor (TF) within cells leads to cellular apoptosis mediated through p38 and p53 pathways. In this study, the involvement of Src1 in the induction of TF-mediated cell apoptosis, and the mechanisms of Src1 activation were investigated. Human coronary artery endothelial cell (HCAEC) were transfected with plasmids to express the wild-type TF (TFWt-tGFP), or a mutant (Ser253 → Ala) which is incapable of being released from cells (TFAla253-tGFP). The cells were then activated with PAR2-agonist peptide (SLIGKV-NH) and the phosphorylation of Src and Rac, and also the kinase activity of Src were assessed. Transfected cells were also pre-incubated with pp60c Src inhibitor, FAK inhibitor-14, or a blocking anti-β1-integrin antibody prior to activation and the phosphorylation of p38 as well as cellular apoptosis was examined. Finally, cells were co-transfected with the plasmids, together with a Src1-specific siRNA, activated as above and the cellular apoptosis measured. Activation of PAR2 lead to the phosphorylation of Src1 and Rac1 proteins at 60 min regardless of TF expression. Moreover, Src phosphorylation and kinase activity was prolonged up to 100 min in the presence of TF, with a significantly higher magnitude when the non-releasable TFAla253-tGFP was expressed in HCAEC. Inhibition of Src with pp60c, or suppression of Src1 expression in cells, reduced p38 phosphorylation and prevented cellular apoptosis. In contrast, inhibition of FAK had no significant influence on Src kinase activity or cellular apoptosis. Finally, pre-incubation of cells with an inhibitory anti-β1-integrin antibody reduced both Src1 activation and cellular apoptosis. Our data show for the first time that the over-activation of Src1 is a mediator of TF-induced cellular apoptosis in endothelial cells through a mechanism that is dependent on its interaction with β1-integrin.
Collapse
Affiliation(s)
- Ali M Ethaeb
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.,College of Veterinary Medicine, University of Wasit, Kut, Iraq
| | | | - Yahya Madkhali
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.,Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia
| | - Sophie Featherby
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - John Greenman
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Camille Ettelaie
- Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
18
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
19
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
20
|
Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells. Int J Mol Sci 2020; 21:ijms21114074. [PMID: 32517296 PMCID: PMC7312583 DOI: 10.3390/ijms21114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading cause of death. Most previous studies have been based on traditional cell-culturing methods. However, lung cells are periodically subjected to mechanical forces during breathing. Understanding the mechanisms underlying the cyclic stretching induced in lung cells may be important for lung cancer therapy. Here, we applied cyclic stretching to stimulate the continual contraction that is present under physiological conditions in lung cells. We first uncovered the stretching-induced phosphoproteome in lung cancer cell line A549 and fibroblast cell line IMR-90. We identified 2048 and 2604 phosphosites corresponding to 837 and 1008 phosphoproteins in A549 and IMR-90, respectively. Furthermore, we combined our phosphoproteomics and public gene expression data to identify the biological functions in response to cyclic stretching. Interestingly, cytoskeletal and mitochondrial reorganization were enriched. We further used cell imaging analysis to validate the profiling results and found that this physical force changed cell alignment and mitochondrial length. This study not only reveals the molecular mechanism of cyclic stretching but also provides evidence that cell stretching causes cellular rearrangement and mitochondrial length change.
Collapse
|
21
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
22
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
23
|
Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L, Feng G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 2020; 106:22-33. [PMID: 31926336 DOI: 10.1016/j.actbio.2019.12.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) ceramics have been widely used for bone regeneration because of their ability to induce osteogenesis. Surface properties, including chemical composition and surface structure, are known to play a crucial role in osteoconduction and osteoinduction. This review systematically analyzes the effects of surface properties, in particular the surface structure, of CaP scaffolds on cell behavior and new bone formation. We also summarize the possible signaling pathways involved in the osteogenic differentiation of bone-related cells when cultured on surfaces with various structures in vitro. The significant immune response initiated by surface structure involved in osteogenic differentiation of cells is also discussed in this review. Taken together, the new biological principle for advanced biomaterials is not only to directly stimulate osteogenic differentiation of bone-related cells but also to modulate the immune response in vivo. Although the reaction mechanism responsible for bone formation induced by CaP surface structure is not clear yet, the insights on surface structure-mediated osteogenic differentiation and osteoimmunomodulation could aid the optimization of CaP-based biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: CaP ceramics have similar inorganic composition with natural bone, which have been widely used for bone tissue scaffolds. CaP themselves are not osteoinductive; however, osteoinductive properties could be introduced to CaP materials by surface engineering. This paper systematically summarizes the effects of surface properties, especially surface structure, of CaP scaffolds on bone formation. Additionally, increasing evidence has proved that the bone healing process is not only affected by the osteogenic differentiation of bone-related cells, but also relevant to the the cooperation of immune system. Thus, we further review the possible signaling pathways involved in the osteogenic differentiation and immune response of cells cultured on scaffold surface. These insights into surface structure-mediated osteogenic differentiation and osteoimmunomodulated-based strategy could aid the optimization of CaP-based biomaterials.
Collapse
|
24
|
FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Biomolecules 2020; 10:biom10020179. [PMID: 31991559 PMCID: PMC7072507 DOI: 10.3390/biom10020179] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase with key roles in the regulation of cell adhesion migration, proliferation and survival. In cancer FAK is a major driver of invasion and metastasis and its upregulation is associated with poor patient prognosis. FAK is autoinhibited in the cytosol, but activated upon localisation into a protein complex, known as focal adhesion complex. This complex forms upon cell adhesion to the extracellular matrix (ECM) at the cytoplasmic side of the plasma membrane at sites of ECM attachment. FAK is anchored to the complex via multiple sites, including direct interactions with specific membrane lipids and connector proteins that attach focal adhesions to the actin cytoskeleton. In migrating cells, the contraction of actomyosin stress fibres attached to the focal adhesion complex apply a force to the complex, which is likely transmitted to the FAK protein, causing stretching of the FAK molecule. In this review we discuss the current knowledge of the FAK structure and how specific structural features are involved in the regulation of FAK signalling. We focus on two major regulatory mechanisms known to contribute to FAK activation, namely interactions with membrane lipids and stretching forces applied to FAK, and discuss how they might induce structural changes that facilitate FAK activation.
Collapse
|
25
|
Lin YC, Ke ZY, Liao PH, Tseng CY, Kong KV. Reversible detection of phosphorylation and dephosphorylation by tip-enhanced Raman spectroscopy using a cyclopentadienyl ruthenium nanotag functionalized tip. Chem Commun (Camb) 2020; 56:936-939. [PMID: 31850409 DOI: 10.1039/c9cc08269g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detection of cancer invasion is crucial for diagnosis. In this report, we employed a TERS tip and SERS nanotags to create a cell signaling based nano-sensing system. This system is capable of creating a reversible phosphorylation/de-phosphorylation cycle for TERS measurement. The reversible TERS sensing is then paired with a downstream binding domain, Src homology region 2 (SH2), which is associated with the cell signaling for cancer cell invasion. Such a system offers the advantages of convenient detection of nanotags and high sensitivity as validated in a cell model.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | | | | | | | | |
Collapse
|
26
|
Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019; 10:720. [PMID: 31558699 PMCID: PMC6763430 DOI: 10.1038/s41419-019-1947-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Yongqiu Zeng
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan, China. .,Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yang Cao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Zhao
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lifan Xiao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Man Jia
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Tian
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Yu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yansen Cai
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
27
|
Kim T, Lei L, Seong J, Suh J, Jang Y, Jung SH, Sun J, Kim D, Wang Y. Matrix Rigidity-Dependent Regulation of Ca 2+ at Plasma Membrane Microdomains by FAK Visualized by Fluorescence Resonance Energy Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801290. [PMID: 30828523 PMCID: PMC6382294 DOI: 10.1002/advs.201801290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Indexed: 05/13/2023]
Abstract
The dynamic regulation of signal transduction at plasma membrane microdomains remains poorly understood due to limitations in current experimental approaches. Genetically encoded biosensors based on fluorescent resonance energy transfer (FRET) can provide high spatiotemporal resolution for imaging cell signaling networks. Here, distinctive regulation of focal adhesion kinase (FAK) and Ca2+ signals are visualized at different membrane microdomains by FRET using membrane-targeting biosensors. It is shown that rigidity-dependent FAK and Ca2+ signals in human mesenchymal stem cells (hMSCs) are selectively activated at detergent-resistant membrane (DRM or rafts) microdomains during the cell-matrix adhesion process, with minimal activities at non-DRM domains. The rigidity-dependent Ca2+ signal at the DRM microdomains is downregulated by either FAK inhibition or lipid raft disruption, suggesting that FAK and lipid raft integrity mediate the in situ Ca2+ activation. It is further revealed that transient receptor potential subfamily M7 (TRPM7) participates in the mobilization of Ca2+ signals within DRM regions. Thus, the findings provide insights into the underlying mechanisms that regulate Ca2+ and FAK signals in hMSCs under different mechanical microenvironments.
Collapse
Affiliation(s)
- Tae‐Jin Kim
- Neuroscience Program and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Bioengineering and Institute of Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
- Department of Biological SciencesIntegrated Biological Scienceand Institute of Systems BiologyPusan National UniversityPusan46241Republic of Korea
| | - Lei Lei
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of California at San DiegoLa JollaCA92093USA
| | - Jihye Seong
- Neuroscience Program and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Convergence Research Center for Diagnosis Treatment Care of DementiaKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Jung‐Soo Suh
- Department of Integrated Biological SciencePusan National UniversityPusan46241Republic of Korea
| | - Yoon‐Kwan Jang
- Department of Integrated Biological SciencePusan National UniversityPusan46241Republic of Korea
| | - Sang Hoon Jung
- Natural Products Research CenterKorea Institute of Science and Technology (KIST)Gangneung25451Republic of Korea
| | - Jie Sun
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
- Institute of HematologyZhejiang University and Zhejiang Engineering Laboratory for Stem Cell and ImmunotherapyHangzhou310058China
| | - Deok‐Ho Kim
- Department of Bioengineering and Institute of Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWA98195USA
| | - Yingxiao Wang
- Neuroscience Program and the Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of BioengineeringInstitute of Engineering in MedicineUniversity of California at San DiegoLa JollaCA92093USA
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
28
|
Cheng HW, Hsiao CT, Chen YQ, Huang CM, Chan SI, Chiou A, Kuo JC. Centrosome guides spatial activation of Rac to control cell polarization and directed cell migration. Life Sci Alliance 2019; 2:2/1/e201800135. [PMID: 30737247 PMCID: PMC6369537 DOI: 10.26508/lsa.201800135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023] Open
Abstract
The centrosome acts as a controller by balancing the formation of centrosomal and acentrosomal microtubules, the modulation of focal adhesion signaling and the activation of local Rac1 at the cell front, which then coordinates cell polarization during directed cell migration. Directed cell migration requires centrosome-mediated cell polarization and dynamical control of focal adhesions (FAs). To examine how FAs cooperate with centrosomes for directed cell migration, we used centrosome-deficient cells and found that loss of centrosomes enhanced the formation of acentrosomal microtubules, which failed to form polarized structures in wound-edge cells. In acentrosomal cells, we detected higher levels of Rac1-guanine nucleotide exchange factor TRIO (Triple Functional Domain Protein) on microtubules and FAs. Acentrosomal microtubules deliver TRIO to FAs for Rac1 regulation. Indeed, centrosome disruption induced excessive Rac1 activation around the cell periphery via TRIO, causing rapid FA turnover, a disorganized actin meshwork, randomly protruding lamellipodia, and loss of cell polarity. This study reveals the importance of centrosomes to balance the assembly of centrosomal and acentrosomal microtubules and to deliver microtubule-associated TRIO proteins to FAs at the cell front for proper spatial activation of Rac1, FA turnover, lamillipodial protrusion, and cell polarization, thereby allowing directed cell migration.
Collapse
Affiliation(s)
- Hung-Wei Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Seng-I Chan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan .,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Rigiracciolo DC, Santolla MF, Lappano R, Vivacqua A, Cirillo F, Galli GR, Talia M, Muglia L, Pellegrino M, Nohata N, Di Martino MT, Maggiolini M. Focal adhesion kinase (FAK) activation by estrogens involves GPER in triple-negative breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:58. [PMID: 30728047 PMCID: PMC6364402 DOI: 10.1186/s13046-019-1056-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a cytoplasmatic protein tyrosine kinase that associates with both integrins and growth factor receptors toward the adhesion, migration and invasion of cancer cells. The G-protein coupled estrogen receptor (GPER) has been involved in the stimulatory action of estrogens in breast tumor. In this study, we have investigated the engagement of FAK by GPER signaling in triple negative breast cancer (TNBC) cells. METHODS Publicly available large-scale database and patient data sets derived from "The Cancer Genome Atlas" (TCGA; www.cbioportal.org ) were used to assess FAK expression in TNBC, non-TNBC tumors and normal breast tissues. MDA-MB 231 and SUM159 TNBC cells were used as model system. The levels of phosphorylated FAK, other transduction mediators and target genes were detected by western blotting analysis. Focal adhesion assay was carried out in order to determine the focal adhesion points and the formation of focal adhesions (FAs). Luciferase assays were performed to evaluate the promoters activity of c-FOS, EGR1 and CTGF upon GPER activation. The mRNA expression of the aforementioned genes was measured by real time-PCR. Boyden chamber and wound healing assays were used in order to evaluate cell migration. The statistical analysis was performed by ANOVA. RESULTS We first determined by bioinformatic analysis that the mRNA expression levels of the gene encoding FAK, namely PTK2, is higher in TNBC respect to non-TNBC and normal breast tissues. Next, we found that estrogenic GPER signaling triggers Y397 FAK phosphorylation as well as the increase of focal adhesion points (FAs) in TNBC cells. Besides, we ascertained that GPER and FAK activation are involved in the STAT3 nuclear accumulation and gene expression changes. As biological counterpart, we show that FAK inhibition prevents the migration of TNBC cells upon GPER activation. CONCLUSIONS The present data provide novel insights regarding the action of FAK in TNBC. Moreover, on the basis of our findings estrogenic GPER signaling may be considered among the transduction mechanisms engaging FAK toward breast cancer progression.
Collapse
Affiliation(s)
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giulia Raffaella Galli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
30
|
Gawel AM, Godlewska M, Grech-Baran M, Stachurska A, Gawel D. MIX2: A Novel Natural Multi-Component Modulator of Multidrug-Resistance and Hallmarks of Cancer Cells. Nutr Cancer 2019; 71:334-347. [PMID: 30676767 DOI: 10.1080/01635581.2018.1560480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multidrug resistance is one of the key barriers suppressing the effectiveness of drug therapies of malignant tumors. Here, we report a study on the effect of a mix of natural extracts (MIX2) prepared from fresh fruits of Prunus spinosa, Crataegus monogyna, Sorbus aucuparia, and Euonymus europaeus on the classic hallmarks of cancer cells and the expression of multidrug resistance proteins. In the studies, HeLa and T98G cell lines, and classic methods of molecular biology, including RT-qPCR, Western blot, flow cytometry, and confocal imaging, were used. Additionally, migration, adhesion, and proliferation assays were performed. The obtained results indicate that the MIX2 cocktail presents strong anti-cancer properties. MIX2 is not toxic, but at the same time significantly alters the migration, proliferation, and adhesion of tumor cells. Furthermore, it was found that cells exposed to the mixture presented a significantly reduced expression level of genes associated with MDR, including ABCB1, which encodes for glycoprotein P. In vitro data showed that MIX2 effectively sensitizes tumor cells to doxorubicin. We postulate that modulation of the multidrug resistance phenotype of tumors with the use of MIX2 may be considered as a safe and applicable tool in sustaining drug delivery therapies of malignancies.
Collapse
Affiliation(s)
- Agata M Gawel
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Marlena Godlewska
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Marta Grech-Baran
- b Laboratory of Plant Pathogenesis , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Stachurska
- c Department of Immunohematology , Centre of Postgraduate Medical Education , Warsaw , Poland
| | - Damian Gawel
- a Department of Biochemistry and Molecular Biology , Centre of Postgraduate Medical Education , Warsaw , Poland
| |
Collapse
|
31
|
Ibrahim M, Schoelermann J, Mustafa K, Cimpan MR. TiO
2
nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast‐like cells in a size dependent manner. J Biomed Mater Res A 2018; 106:2582-2593. [DOI: 10.1002/jbm.a.36448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/07/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergen Norway
| | - Julia Schoelermann
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- BerGenBio ASBergen Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| | - Mihaela R. Cimpan
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| |
Collapse
|
32
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
33
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
34
|
Sun X, Qi H, Zhang X, Li L, Zhang J, Zeng Q, Laszlo GS, Wei B, Li T, Jiang J, Mogilner A, Fu X, Zhao M. Src activation decouples cell division orientation from cell geometry in mammalian cells. Biomaterials 2018; 170:82-94. [PMID: 29653289 DOI: 10.1016/j.biomaterials.2018.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
Orientation of cell division plane plays a crucial role in morphogenesis and regeneration. Misoriented cell division underlies many important diseases, such as cancer. Studies with Drosophila and C. elegance models show that Src, a proto-oncogene tyrosine-protein kinase, is a critical regulator of this aspect of mitosis. However, the role for Src in controlling cell division orientation in mammalian cells is not well understood. Using genetic and pharmacological approaches and two extracellular signals to orient cell division, we demonstrated a critical role for Src. Either knockout or pharmacological inhibition of Src would retain the fidelity of cell division orientation with the long-axis orientation of mother cells. Conversely, re-expression of Src would decouple cell division orientation from the pre-division orientation of the long axis of mother cells. Cell division orientation in human breast and gastric cancer tissues showed that the Src activation level correlated with the degree of mitotic spindle misorientation relative to the apical surface. Examination of proteins associated with cortical actin revealed that Src activation regulated the accumulation and local density of adhesion proteins on the sites of cell-matrix attachment. By analyzing division patterns in the cells with or without Src activation and through use of a mathematical model, we further support our findings and provide evidence for a previously unknown role for Src in regulating cell division orientation in relation to the pre-division geometry of mother cells, which may contribute to the misoriented cell division.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA; Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, P.R. China
| | - Hongsheng Qi
- Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55 Zhongguancun East Road, Beijing 100190, P.R. China
| | - Xiuzhen Zhang
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA
| | - Li Li
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA; Department of Respiratory Disease, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Jiaping Zhang
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA
| | - Qunli Zeng
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA
| | - George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, Seattle, USA
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, P.R. China
| | - Tianhong Li
- Division of Hematology/Oncology, University of California Davis Comprehensive Cancer Center, 4501 X St #3016, Sacramento, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury Research, Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Alex Mogilner
- Courant Institute, Department of Biology, New York University, 251 Mercer St, New York, USA
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Trauma Center of Postgraduate Medical School, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, P.R. China.
| | - Min Zhao
- Institute for Regenerative Cures, University of California, Davis, CA, USA; Department of Dermatology, University of California, Davis, CA, USA; Department of Ophthalmology, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
He JY, Han P, Zhang Y, Liu YD, Song SJ, Feng GK, An Y, Zhou AJ, Wang HB, Yuan L, Lin ZR, Xia TL, Li MZ, Liu YM, Huang XM, Zhang H, Zhong Q. Overexpression of Nogo receptor 3 (NgR3) correlates with poor prognosis and contributes to the migration of epithelial cells of nasopharyngeal carcinoma patients. J Mol Med (Berl) 2018; 96:265-279. [PMID: 29327067 DOI: 10.1007/s00109-017-1618-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Lymph node metastasis (N classification) is one of the most important prognostic factors of nasopharyngeal carcinoma (NPC), and nerve involvement is associated with the transition of the N category in NPC patients. Although the nervous system has been reported to participate in many types of cancer progression, its functions in NPC progression remains unknown. Through analysis of gene profiling data, we demonstrate an enrichment of genes associated with neuronal development and differentiation in NPC tissues and cell lines. Among these genes, Nogo receptor 3 (NgR3), which was originally identified in the nervous system and plays a role in nerve development and regeneration, was inappropriately overexpressed in NPC cells and tissues. Immunohistochemical analysis demonstrated that the overexpression of NgR3 was correlated with poor prognosis in NPC patients. Overexpression of NgR3 promoted, and knocking down NgR3 inhibited, NPC cell migration and invasion in vitro and metastasis in vivo. The ability of NgR3 to promote cell migration was triggered by the downregulation of E-cadherin and enhanced cytoskeletal rearrangement and cell polarity, which were correlated with the activation of focal adhesion kinase (FAK). Collectively, NgR3 is a novel indicator of poor outcomes in NPC patients and plays an important role in driving the progression of NPC. These results suggest a potential link between the nervous system and NPC progression. KEY MESSAGES Genes involved in the neuronal biological process are enriched in nasopharyngeal carcinoma. Overexpression of NgR3 correlates with poor prognosis of nasopharyngeal carcinoma. NgR3 promotes NPC cell migration by downregulating E-cadherin. NgR3 promotes NPC cell polarity and enhances the formation of NPC cell pseudopodia by activating FAK/Src pathway.
Collapse
Affiliation(s)
- Jiang-Yi He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Dong Liu
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shi-Jian Song
- Guangdong Experimental High School, 51 Zhongshan 4th Road, Guangzhou, 510375, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ai-Jun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hong-Bo Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Man-Zhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Min Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiao-Ming Huang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
36
|
Abstract
Cell adhesion to components of the cellular microenvironment via cell-surface adhesion receptors controls many aspects of cell behavior in a range of physiological and pathological processes. Multimolecular complexes of scaffolding and signaling proteins are recruited to the intracellular domains of adhesion receptors such as integrins, and these adhesion complexes tether the cytoskeleton to the plasma membrane and compartmentalize cellular signaling events. Integrin adhesion complexes are highly dynamic, and their assembly is tightly regulated. Comprehensive, unbiased, quantitative analyses of the composition of different adhesion complexes over the course of their formation will enable better understanding of how the dynamics of adhesion protein recruitment influence the functions of adhesion complexes in fundamental cellular processes. Here, a pipeline is detailed integrating biochemical isolation of integrin adhesion complexes during a time course, quantitative proteomic analysis of isolated adhesion complexes, and computational analysis of temporal proteomic data. This approach enables the characterization of adhesion complex composition and dynamics during complex assembly.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
37
|
Yue Y, Song M, Qiao Y, Li P, Yuan Y, Lian J, Wang S, Zhang Y. Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling. Oncotarget 2017; 8:105222-105237. [PMID: 29285246 PMCID: PMC5739633 DOI: 10.18632/oncotarget.22160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common digestive malignant tumors worldwide. Over the past decades, there have been minimal improvements in outcomes for patients with EC. New targets and novel therapies are needed to improve outcomes for these patients. This study aimed to explore the molecular mechanisms of EC by integrated bioinformatic analyses of the feature genes associated with EC and correlative gene functions which can distinguish cancerous tissues from non-cancerous tissues. Gene expression profile GSE20347 was downloaded from Gene Expression Omnibus (GEO) database, including 17 EC samples and their paired adjacent non-cancerous samples. The differentially expressed genes (DEGs) between EC and normal specimens were identified and then applied to analyze the GO enrichment on gene functions and KEGG pathways. Corresponding Pathway Relation Network (Pathway-net) and Gene Signal Network (signal-net) of DEGs were established based on the data collected from GCBI datasets. The results showed that DEGs mainly participated in the process of cell adhesion, cell proliferation, survival, invasion, metastasis and angiogenesis. Aberrant expression of PTK2, MAPK signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway and MET were closely associated with EC carcinogenesis. Importantly, Interleukin 8 (IL8) and C-X-C chemokine receptor type 7 (CXCR-7) were predicted to be significantly related to EC. These findings were further validated by analyzing both TCGA database and our clinical samples of EC. Our discovery provides a registry of genes and pathways that are disrupted in EC, which has the potential to be used in clinic for diagnosis and target therapy of EC in future.
Collapse
Affiliation(s)
- Ying Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- The No.7. People's Hospital of Zhengzhou, Zhengzhou, Henan 450016, China
| | - Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yamin Qiao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pupu Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yiqiang Yuan
- The No.7. People's Hospital of Zhengzhou, Zhengzhou, Henan 450016, China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Suying Wang
- Clinical Laboratory, Hebi People's Hospital, Hebi 458030, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
38
|
Lu D, Yao Q, Zhan C, Le-Meng Z, Liu H, Cai Y, Tu C, Li X, Zou Y, Zhang S. MicroRNA-146a promote cell migration and invasion in human colorectal cancer via carboxypeptidase M/src-FAK pathway. Oncotarget 2017; 8:22674-22684. [PMID: 28186967 PMCID: PMC5410254 DOI: 10.18632/oncotarget.15158] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, and microRNAs play important roles in CRC progression. This study aimed to investigate the roles of miR-146a-5p in human CRC and their molecular mechanisms. First, we found that miR-146a-5p was significantly upregulated in CRC tissues and promoted the migration of CRC cells. Then, we identified carboxypeptidase M (CPM) as a direct target of miR-146a-5p, and found that it inhibited the migration and invasion of CRC cells. Our results also showed that CPM expression was positively correlated with overall survival and negatively correlated with recurrence, lymph node invasion, and N stage. Furthermore, we demonstrated that both miR-146a-5p and CPM regulated Src and FAK expression, while the Src-FAK signaling pathway is widely known to be associated with the migration and invasion of multiple tumor cells. This study is the first to demonstrate the functional and mechanistic relationship of the miR-146a-5p/CPM/Src-FAK axis and its effect on the migration and invasion of CRC cells. Thus, miR-146a-5p represents potential targets for CRC diagnosis and therapy.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qunyan Yao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhang Le-Meng
- Department of The Affiliated Cancer Hospital, Xiang Ya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Cai
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuantao Tu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanting Zou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
39
|
Andersen JI, Pennisi CP, Fink T, Zachar V. Focal Adhesion Kinase Activation Is Necessary for Stretch-Induced Alignment and Enhanced Differentiation of Myogenic Precursor Cells. Tissue Eng Part A 2017; 24:631-640. [PMID: 28741418 DOI: 10.1089/ten.tea.2017.0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myogenic precursors sense and dynamically respond to mechanical stimulation through complex integrin-mediated mechanotransduction, in which focal adhesion kinase (FAK) is a fundamental intracellular signaling mediator. When skeletal myoblasts are exposed to uniaxial cyclic tensile strain (UCTS), they display uniform alignment and an enhanced rate of differentiation. In this work, we explored the role of FAK activation by using C2C12 myoblasts that were grown on flexible culture plates and exposed to UCTS during the early differentiation phase. After 24 h, the cells oriented perpendicularly to the direction of strain and exhibited an enhanced differentiation profile. Next, the cells were exposed to a strain field that was either kept in the same direction or rotated 90°, in the presence or not of an FAK phosphorylation inhibitor. On reorientation of the strain field by 90°, the cells reassembled their focal adhesions and actin cytoskeleton to regain the perpendicular position with respect to the engaging stress. After blocking the FAK, however, the cells failed to respond to the reoriented strain field and their differentiation was abrogated. Interestingly, when the strain field remained in the same direction, the FAK inhibitor compromised the differentiation, even though there was no evident change in cell orientation. Our data indicate that during exposure to UCTS, the activation of FAK is necessary for the myoblasts to undergo alignment and enhanced differentiation.
Collapse
Affiliation(s)
- Jens Isak Andersen
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | - Trine Fink
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University , Aalborg, Denmark
| |
Collapse
|
40
|
Durand N, Bastea LI, Döppler H, Eiseler T, Storz P. Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Sci Rep 2017; 7:9524. [PMID: 28842658 PMCID: PMC5573332 DOI: 10.1038/s41598-017-10210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Dependent on their cellular localization, Protein Kinase D (PKD) enzymes regulate different processes including Golgi transport, cell signaling and response to oxidative stress. The localization of PKD within cells is mediated by interaction with different lipid or protein binding partners. With the example of PKD2, we here show that phosphorylation events can also contribute to localization of subcellular pools of this kinase. Specifically, in the present study, we show that tyrosine phosphorylation of PKD2 at residue Y87 defines its localization to the focal adhesions and leads to activation. This phosphorylation occurs downstream of RhoA signaling and is mediated via Src. Moreover, mutation of this residue blocks PKD2's interaction with Focal Adhesion Kinase (FAK). The presence and regulation of PKD2 at focal adhesions identifies a novel function for this kinase as a modulator of cell adhesion and migration.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, D-89081, Ulm, Germany
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA.
| |
Collapse
|
41
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
42
|
Kratimenos P, Koutroulis I, Syriopoulou V, Michailidi C, Delivoria-Papadopoulos M, Klijanienko J, Theocharis S. FAK-Src-paxillin system expression and disease outcome in human neuroblastoma. Pediatr Hematol Oncol 2017; 34:221-230. [PMID: 29040002 DOI: 10.1080/08880018.2017.1360969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neuroblastoma (NB) often presents with metastatic disease and poor survival. The need for new prognostic markers remains invaluable. The FAK-Src-Paxillin protein system is associated with aggressive phenotype in adult malignancies but is largely unexplored in pediatric NB. OBJECTIVE To assess FAK-Src-Paxillin protein expression in human NB cell lines and clinical cytology material and to delineate its association with survival. DESIGN/METHODS Western blot and immunohistochemistry were applied for FAK-Src-Paxillin expression in NB cell lines and 23 human cytology specimens, respectively. Protein expression in human clinical samples was correlated with clinicopathological parameters, MYCN amplification and survival. RESULTS FAK, Src and Paxillin proteins are expressed in human NB cells lines, and can be detected in clinical cytology specimens from NB patients, (59%, 32% and 33% respectively). Simultaneous FAK-Src-Paxillin expression was noted in 30% of NB patients. Children with concomitant positivity FAK, Src, and Paxillin tumors, as well as MYCN amplification, had increased mortality compared to those without. CONCLUSIONS FAK-Src-Paxillin system is a marker of unfavorable prognosis for human NB patients but also a promising therapeutic target.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- a Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Children's National Medical Center , The George Washington University, School of Medicine and Health Sciences , Washington, DC , USA.,b First Department of Pathology , National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | - Ioannis Koutroulis
- c Department of Pediatrics, Division of Emergency Medicine, Children's National Medical Center , The George Washington University, School of Medicine and Health Sciences , Washington, DC , USA
| | - Vasiliki Syriopoulou
- f National and Kapodistrian University of Athens , School of Medicine, Children's Hospital of Athens, Department of Pediatrics , Athens , Greece
| | - Christina Michailidi
- a Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Children's National Medical Center , The George Washington University, School of Medicine and Health Sciences , Washington, DC , USA
| | | | | | - Stamatios Theocharis
- a Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Children's National Medical Center , The George Washington University, School of Medicine and Health Sciences , Washington, DC , USA.,d Department of Pathology , Institut Curie , Paris , France
| |
Collapse
|
43
|
Mapping Heart Development in Flies: Src42A Acts Non-Autonomously to Promote Heart Tube Formation in Drosophila. Vet Sci 2017; 4:vetsci4020023. [PMID: 29056682 PMCID: PMC5606601 DOI: 10.3390/vetsci4020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart.
Collapse
|