1
|
Li H, Wu S, Liu J, Chen Y, Meng L, Li B. Effects of CO 2 elevation on life-history traits of two insecticide-resistant strains of planthopper Nilaparvata lugens on rice. INSECT SCIENCE 2025; 32:701-711. [PMID: 39034425 DOI: 10.1111/1744-7917.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/11/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 μL/L as compared to 390 μL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 μL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 μL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 μL/L but higher at 780 μL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 μL/L compared to 390 μL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.
Collapse
Affiliation(s)
- Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yong Chen
- College of Life and Environment Science, Huangshan College, Huangshan, Anhui, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
3
|
Fonseca MG, Auad AM, Resende TT, Veríssimo BA, Oliveira CM. Exposure of insects and host plants to different concentrations of CO2 affects the performance of Mahanarva spectabilis (Hemiptera: Cercopidae) in successive insect generations. BRAZ J BIOL 2023; 83:e273470. [PMID: 37851770 DOI: 10.1590/1519-6984.273470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
The performance of three successive generations of Mahanarva spectabilis (Distant) (Hemiptera: Cercopidae) fed on four forages exposed to environments with different CO2 concentrations was evaluated. In the first bioassay, we utilized the following scenarios: A) plants and insects were kept at high and constant CO2 (700 ppm) and B) the insects were kept at CO2 700 ppm and fed on plants from the greenhouse (average of 390 ppm). In the second bioassay, we utilized the following scenarios: C) plants and insects were kept in a greenhouse and D) the insects were kept in the greenhouse and fed on plants kept at CO2 700 ppm. The survival and duration of the nymphal and adult stages and the number of eggs/female of M. spectabilis were evaluated. It was only possible to evaluate the cumulative effects of the increase of CO2 on three successive generations of M. spectabilis kept in a greenhouse, due to the reduced survival of the insects in the first generation in the laboratory. A greater direct than indirect effect of the CO2 level on the performance of M. spectabilis was observed. Furthermore, it should be considered that the effect of CO2 elevation on the survival, periods of development, and fecundity, when taken together, can significantly impact the population dynamics of M. spectabilis in future climate scenarios.
Collapse
Affiliation(s)
- M G Fonseca
- Embrapa Gado de Leite, Laboratório de Entomologia, Juiz de Fora, MG, Brasil
| | - A M Auad
- Embrapa Gado de Leite, Laboratório de Entomologia, Juiz de Fora, MG, Brasil
| | - T T Resende
- Embrapa Gado de Leite, Laboratório de Entomologia, Juiz de Fora, MG, Brasil
| | - B A Veríssimo
- Universidade Federal de Juiz de Fora, Departamento de Biodiversidade e Conservação da Natureza, Juiz de Fora, MG, Brasil
| | | |
Collapse
|
4
|
Li JY, Chen YT, Zheng LZ, Fu JW, Shi MZ. Effects of Elevated CO2 on the Fitness Parameters of Individually- and Group-Reared Agasicles hygrophila (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:119-126. [PMID: 36440699 DOI: 10.1093/jee/toac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae) is a natural enemy of Alternanthera philoxeroides (Mart.) Griseb (Amaranthaceae: Alternanthera), a worldwide invasive weed. Elevated atmospheric CO2 concentrations may have significant impacts plants, herbivorous insects, and natural enemies. To assess the concurrent effect of elevated CO2 on the development time, fecundity, and population parameters of A. hygrophila, the age-stage, two-sex life table was used to understand the fitness and population parameters of individually-reared and group-reared A. hygrophila under elevated CO2 concentration. In individually-reared population, the development time of preadults, adult pre-oviposition period, and total pre-oviposition period of A. hygrophila in the elevated CO2 (eCO2, 750 ppm) treatment were shorter than those in the ambient CO2 (aCO2, 420 ppm) treatment. In group-reared population, the developmental time of preadults, female adult longevity, female proportion, adult pre-oviposition period, and total pre-oviposition period of A. hygrophila in eCO2 were longer than those in aCO2. Additionally, in both individually-reared and group-reared population, fecundity and oviposition days of A. hygrophila in eCO2 were higher than those in aCO2, and a higher intrinsic rate of increase, finite rate of increase, and the net reproductive rate of A. hygrophila were observed at eCO2. Moreover, shorter preadult development time, adult pre-oviposition period, total pre-oviposition period, male adult longevity, and higher fecundity were found in group-reared cohort at both aCO2 and eCO2. The results indicates that elevated CO2 has effects on the growth and reproduction of A. hygrophila, and the population growth rate of group-reared was faster and produced more offspring.
Collapse
Affiliation(s)
- Jian-Yu Li
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Yan-Ting Chen
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Li-Zhen Zheng
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
| | - Jian-Wei Fu
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou 350001, China
| | - Meng-Zhu Shi
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Engineering Research Center for Green Pest Management, Fuzhou 350013, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou 350001, China
| |
Collapse
|
5
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
6
|
Nancarrow N, Aftab M, Hollaway G, Rodoni B, Trębicki P. Symptomless turnip yellows virus infection causes grain yield loss in lentil and field pea: A three-year field study in south-eastern Australia. FRONTIERS IN PLANT SCIENCE 2022; 13:1049905. [PMID: 36507432 PMCID: PMC9727233 DOI: 10.3389/fpls.2022.1049905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Turnip yellows virus (TuYV) is a damaging virus that is persistently transmitted by aphids and infects a wide range of grain hosts including lentil (Lens culinaris Medik), field pea (Pisum sativum L.) and canola (Brassica napus L., oilseed rape). Although information is available about the effects of TuYV infection on grain yield in canola, data about its impact on yield in pulses is lacking. In this study, field experiments quantifying the effects of TuYV infection on the grain yield of lentil and field pea were conducted over three consecutive years (2018-2020) with varying weather conditions. Plants artificially inoculated with TuYV using viruliferous green peach aphid (Myzus persicae, Sulzer) were grown under typical field conditions in south-eastern Australia. At maturity, grain yield, along with associated grain and plant growth parameters, were measured. Compared to the non-inoculated control treatment, early TuYV infection reduced grain yield by up to 36% in lentil and 45% in field pea, while late TuYV infection had no significant impact on yield. Despite a high incidence of TuYV infection and significant yield losses recorded in inoculated plots, no obvious symptoms of virus infection were observed in the inoculated plots in any of the six experiments; this lack of visible symptoms in lentil and field pea has significant implications for crop health assessments, demonstrating the importance of testing for virus instead of relying solely on the presence of visual symptoms, and may also be leading to an underestimation of the importance of TuYV in pulses in Australia.
Collapse
Affiliation(s)
- Narelle Nancarrow
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Mohammad Aftab
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Grant Hollaway
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Piotr Trębicki
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Peters JS, Aguirre BA, DiPaola A, Power AG. Ecology of Yellow Dwarf Viruses in Crops and Grasslands: Interactions in the Context of Climate Change. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:283-305. [PMID: 36027939 DOI: 10.1146/annurev-phyto-020620-101848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our understanding of the ecological interactions between plant viruses, their insect vectors, and their host plants has increased rapidly over the past decade. The suite of viruses known collectively as the yellow dwarf viruses infect an extensive range of cultivated and noncultivated grasses worldwide and is one of the best-studied plant virus systems. The yellow dwarf viruses are ubiquitous in cereal crops, where they can significantly limit yields, and there is growing recognition that they are also ubiquitous in grassland ecosystems, where they can influence community dynamics. Here, we discuss recent research that has explored (a) the extent and impact of yellow dwarf viruses in a diversity of plant communities, (b) the role of vector behavior in virus transmission, and (c) the prospects for impacts of climate change-including rising temperatures, drought, and elevated CO2-on the epidemiology of yellow dwarf viruses.
Collapse
Affiliation(s)
- Jasmine S Peters
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Beatriz A Aguirre
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Anna DiPaola
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | - Alison G Power
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
9
|
Elevated CO2 Altered Rice VOCs Aggravate Population Occurrence of Brown Planthoppers by Improving Host Selection Ability. BIOLOGY 2022; 11:biology11060882. [PMID: 35741403 PMCID: PMC9219841 DOI: 10.3390/biology11060882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years, the atmospheric CO2 concentration was increasing continuously, which has led to the change in the photosynthesis and chemical composition of rice plants. The growth and development of brown planthopper (BPH) Nilaparvata lugens are further affected. Plants release volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. Therefore, here we aim to explore the effect of rice VOCs on the host selection ability of BPH under elevated CO2. Among the identified thirty-six rice VOCs, the contents of heptadecane, linalool and limonene from rice plants were significantly decreased under elevated CO2. Moreover, we found that the VOCs of rice damaged by BPH were also changed. Undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants, which might lead to enhancement of the host selection ability of BPH, eventually aggravating the damage caused by BPH. However, the role of these VOCs in host selection ability of BPH is not clear, and more experiments are needed to verify their function. Abstract It is predicted that plant volatile organic compounds (VOCs) are affected by the atmospheric CO2 levels rising globally, which further affects the interaction between plants and herbivorous insects, especially the host selection behavior of herbivorous insects. In this study, the effects of elevated CO2 on the host-selection behavior of the brown planthopper (BPH) Nilaparvata lugens, and the emission of VOCs from the healthy and BPH-damaged rice plants were studied simultaneously to make clear the population occurrence of BPH under global climate change. Compared with ambient CO2, elevated CO2 significantly increased the host selection percent of BPH for the healthy (CK) and BPH-damaged rice plants, and the host selection percent of BPH for the BPH-damaged rice plants was significantly higher than that for the healthy rice plants under elevated CO2, which might be regulated by the transcription levels of OBP1, OBP2 and CSP8 in BPH due to the upregulated transcriptional levels of these three genes of BPH under elevated CO2. In addition, we analyzed and quantified the emission of VOCs in rice plants grown under ambient CO2 and elevated CO2 by GS-MS. A total of 36 VOCs from rice plants were identified into eight categories, including alkanes, alkenes, alcohols, aldehydes, ketones, esters, phenols and aromatic hydrocarbons. Elevated CO2 significantly decreased the contents of heptadecane, linalool and limonene from rice plants compared with ambient CO2. Besides, the contents of linalool, phytol, decanal, 1-methyldecalin and 2,6-diphenylphenol from BPH-damaged rice plants under ambient CO2, and undecane, hexadecane, nonanal and 2,6-diphenylphenol from BPH-damaged rice plants under elevated CO2 were all significantly higher than those from healthy rice plants. The percentage composition of phenols was positively correlated with the host selection rate of BPH. Our study indicates that elevated CO2 is beneficial to promote the host selection ability of BPH for rice plants damaged by BPHs due to the changed plant VOCs.
Collapse
|
10
|
Resistance Management through Brassica Crop–TuMV–Aphid Interactions: Retrospect and Prospects. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Turnip mosaic virus (TuMV) is an important threat to the yield and quality of brassica crops in China, and has brought serious losses to brassica crops in the Far East, including China and the north. Aphids (Hemiptera, Aphidoidea) are the main mediators of TuMV transmission in field production, and not only have strong virus transmission ability (small individuals, strong concealment, and strong fecundity), but are also influenced by the environment, making them difficult to control. Till now, there have been few studies on the resistance to aphids in brassica crops, which depended mainly on pesticide control in agriculture production. However, the control effect was temporarily effective, which also brought environmental pollution, pesticide residues in food products, and destroyed the ecological balance. This study reviews the relationship among brassica crop–TuMV, TuMV–aphid, and brassica crop–aphid interactions, and reveals the influence factors (light, temperature, and CO2 concentration) on brassica crop–TuMV–aphid interactions, summarizing the current research status and main scientific problems about brassica crop–TuMV–aphid interactions. It may provide theoretical guidance for opening up new ways of aphid and TuMV management in brassica crops.
Collapse
|
11
|
Bergès SE, Vile D, Yvon M, Masclef D, Dauzat M, van Munster M. Water deficit changes the relationships between epidemiological traits of Cauliflower mosaic virus across diverse Arabidopsis thaliana accessions. Sci Rep 2021; 11:24103. [PMID: 34916537 PMCID: PMC8677750 DOI: 10.1038/s41598-021-03462-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Sandy E Bergès
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.
| | - Michel Yvon
- PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
12
|
Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7909-7926. [PMID: 34545935 PMCID: PMC8664589 DOI: 10.1093/jxb/erab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Studies on plant-mediated interactions between root parasitic nematodes and aboveground herbivores are rapidly increasing. However, outcomes for the interacting organisms vary, and the mechanisms involved remain ambiguous. We hypothesized that the impact of root infection by the root-knot nematode Meloidogyne incognita on the performance of the aboveground caterpillar Spodoptera exigua is modulated by the nematode's infection cycle. We challenged root-knot nematode-infected tomato plants with caterpillars when the nematode's infection cycle was at the invasion, galling, and reproduction stages. We found that M. incognita root infection enhanced S. exigua performance during the galling stage, while it did not affect the caterpillar's performance at the invasion and reproduction stages. Molecular and chemical analyses performed at the different stages of the nematode infection cycle revealed that M. incognita root infection systemically affected the jasmonic acid-, salicylic acid-, and abscisic acid-related responses, as well as the changes in the leaf metabolome triggered during S. exigua feeding. The M. incognita-induced leaf responses varied over the nematode's root infection cycle. These findings suggest that specific leaf responses triggered systemically by the nematode at its different life-cycle stages underlie the differential impact of M. incognita on plant resistance against the caterpillar S. exigua.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas, 40, 37008, Salamanca, Spain
| |
Collapse
|
13
|
Barton M, Parry H, Ward S, Hoffmann AA, Umina PA, van Helden M, Macfadyen S. Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Sadras V, Vázquez C, Garzo E, Moreno A, Medina S, Taylor J, Fereres A. The role of plant labile carbohydrates and nitrogen on wheat-aphid relations. Sci Rep 2021; 11:12529. [PMID: 34131178 PMCID: PMC8206072 DOI: 10.1038/s41598-021-91424-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Interactions between plants and herbivores are key drivers of evolution and ecosystem complexity. We investigated the role of plant labile carbohydrates and nitrogen on wheat-aphid relations in a 22 factorial combining [CO2] and nitrogen supply. We measured life history traits (assay 1) and feeding behaviour (assay 2) of bird-cherry oat aphid (Rhopalosiphum padi L.) and English grain aphid (Sitobion avenae F.) forced to feed on single leaf laminae, and reproduction of R. padi in a setting where insects moved freely along the plant (assay 3). Experimental setting impacted aphid traits. Where aphids were constrained to single leaf, high nitrogen reduced their fitness and discouraged phloem feeding. Where aphids could move throughout the plant, high nitrogen enhanced their reproduction. Aphid responses to the interaction between nitrogen and [CO2] varied with experimental setting. The number of R. padi adults varied tenfold with plant growing conditions and correlated negatively with molar concentration of sugars in stem (assay 3). This finding has two implications. First, the common interpretation that high nitrogen favours insect fitness because protein-rich animal bodies have to build from nitrogen-poor plant food needs expanding to account for the conspicuous association between low nitrogen and high concentration of labile carbohydrates in plant, which can cause osmotic stress in aphids. Second, the function of labile carbohydrates buffering grain growth needs expanding to account for the osmotic role of carbohydrates in plant resistance to aphids.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, Adelaide, Australia. .,School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia.
| | - Carolina Vázquez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Julian Taylor
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
15
|
Shi XB, Yan S, Zhang C, Zheng LM, Zhang ZH, Sun SE, Gao Y, Tan XQ, Zhang DY, Zhou XG. Aphid endosymbiont facilitates virus transmission by modulating the volatile profile of host plants. BMC PLANT BIOLOGY 2021; 21:67. [PMID: 33514310 PMCID: PMC7846988 DOI: 10.1186/s12870-021-02838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Most plant viruses rely on vectors for their transmission and spread. One of the outstanding biological questions concerning the vector-pathogen-symbiont multi-trophic interactions is the potential involvement of vector symbionts in the virus transmission process. Here, we used a multi-factorial system containing a non-persistent plant virus, cucumber mosaic virus (CMV), its primary vector, green peach aphid, Myzus persicae, and the obligate endosymbiont, Buchnera aphidicola to explore this uncharted territory. RESULTS Based on our preliminary research, we hypothesized that aphid endosymbiont B. aphidicola can facilitate CMV transmission by modulating plant volatile profiles. Gene expression analyses demonstrated that CMV infection reduced B. aphidicola abundance in M. persicae, in which lower abundance of B. aphidicola was associated with a preference shift in aphids from infected to healthy plants. Volatile profile analyses confirmed that feeding by aphids with lower B. aphidicola titers reduced the production of attractants, while increased the emission of deterrents. As a result, M. persicae changed their feeding preference from infected to healthy plants. CONCLUSIONS We conclude that CMV infection reduces the B. aphidicola abundance in M. persicae. When viruliferous aphids feed on host plants, dynamic changes in obligate symbionts lead to a shift in plant volatiles from attraction to avoidance, thereby switching insect vector's feeding preference from infected to healthy plants.
Collapse
Affiliation(s)
- Xiao-Bin Shi
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shuo Yan
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Chi Zhang
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Li-Min Zheng
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Shu-E Sun
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yang Gao
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xin-Qiu Tan
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - De-Yong Zhang
- Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
16
|
Moreno-Delafuente A, Morales I, Garzo E, Fereres A, Viñuela E, Medina P. Changes in melon plant phytochemistry impair Aphis gossypii growth and weight under elevated CO 2. Sci Rep 2021; 11:2186. [PMID: 33500456 PMCID: PMC7838277 DOI: 10.1038/s41598-021-81167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Elevated CO2 (eCO2) modifies plant primary and secondary metabolism that subsequently impacts herbivore insect performance due to changes in its nutritional requirements. This laboratory study evaluated interactions between Aphis gossypii Glover (Hemiptera: Aphididae) and melon (Cucumis melo L., Cucurbitaceae), previously acclimated two or six weeks to different CO2 levels, eCO2 (700 ppm) or ambient CO2 (400 ppm). Under eCO2, melon plants decreased nitrogen foliar concentration and increased carbon to nitrogen ratio, independently of acclimation period, significantly reducing the content of some amino acids (alanine, asparagine, glycine, isoleucine, lysine, serine, threonine, and valine) and increasing the carbohydrate (sucrose) content in melon leaves. The dilution in some essential amino acids for aphid nutrition could have aggravated the reduction in A. gossypii population growth reared on melon previously acclimated two weeks to eCO2, as well as the loss of aphid body mass from two successive generations of A. gossypii reared under eCO2 on plants previously acclimated two or six weeks to eCO2. The response to eCO2 of phloem feeders, such as aphids, is actually variable, but this study highlights a negative response of A. gossypii to this climate change driver. Potential implications on control of this pest in a global change scenario are discussed.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Ignacio Morales
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Elisa Garzo
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Alberto Fereres
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Pilar Medina
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain.
| |
Collapse
|
17
|
Carreras Navarro E, Lam SK, Trębicki P. Elevated Carbon Dioxide and Nitrogen Impact Wheat and Its Aphid Pest. FRONTIERS IN PLANT SCIENCE 2020; 11:605337. [PMID: 33335537 PMCID: PMC7736075 DOI: 10.3389/fpls.2020.605337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/10/2020] [Indexed: 05/14/2023]
Abstract
The rise in atmospheric carbon dioxide (CO2) generally increases wheat biomass and grain yield but decreases its nutritional value. This, in turn, can alter the metabolic rates, development, and performance of insect pests feeding on the crop. However, it is unclear how elevated CO2 (eCO2) and nitrogen (N) input affect insect pest biology through changes in wheat growth and tissue N content. We investigated the effect of three different N application rates (low, medium, and high) and two CO2 levels (ambient and elevated) on wheat growth and quality and the development and performance of the bird cherry-oat aphid, a major cereal pest worldwide, under controlled environmental conditions. We found that eCO2 significantly decreased total aphid fecundity and wheat N content by 22 and 39%, respectively, when compared to ambient CO2 (aCO2). Greater N application significantly increased total aphid fecundity and plant N content but did not offset the effects of eCO2. Our findings provide important information on aphid threats under future CO2 conditions, as the heavy infestation of the bird cherry-oat aphid is detrimental to wheat grain yield and quality.
Collapse
Affiliation(s)
- Eva Carreras Navarro
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu Kee Lam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Piotr Trębicki
- Agriculture Victoria, Horsham, VIC, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Moreno-Delafuente A, Viñuela E, Fereres A, Medina P, Trębicki P. Simultaneous Increase in CO 2 and Temperature Alters Wheat Growth and Aphid Performance Differently Depending on Virus Infection. INSECTS 2020; 11:E459. [PMID: 32707938 PMCID: PMC7469198 DOI: 10.3390/insects11080459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023]
Abstract
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and temperature on the interactions among wheat (Triticum aestivum L.), Barley yellow dwarf virus species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid (Rhopalosiphum padi L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO2 and temperature = 400 ppm and 20 °C), and future predicted (elevated CO2 and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO2 and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased R. padi fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as R. padi is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant-vector-virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Elisa Viñuela
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Alberto Fereres
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo., 28006 Madrid, Spain;
| | - Pilar Medina
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Piotr Trębicki
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| |
Collapse
|
19
|
Dampc J, Kula-Maximenko M, Molon M, Durak R. Enzymatic Defense Response of Apple Aphid Aphis pomi to Increased Temperature. INSECTS 2020; 11:E436. [PMID: 32664609 PMCID: PMC7411948 DOI: 10.3390/insects11070436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/24/2023]
Abstract
Climate change, and in particular the increase in temperature we are currently observing, can affect herbivorous insects. Aphids, as poikilothermic organisms, are directly exposed to temperature increases that influence their metabolism. Heat stress causes disturbances between the generations and the neutralization of reactive oxygen species (ROS). The aim of this work is focused on explaining how the aphid, using the example of Aphis pomi, responds to abiotic stress caused by temperature increase. The experiment was carried out under controlled conditions at three temperatures: 20, 25, and 28 °C. In the first stage, changes in the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) were determined in aphid tissues, at each temperature. In the second stage, microcalorimetry monitored changes in heat emitted by aphids, at each temperature. Our results showed that A. pomi defense responses varied depending on temperature and were highest at 28 °C. The flexible activity of enzymes and increase in the metabolic rate played the role of adaptive mechanisms and ran more effectively at higher temperatures. The A. pomi thus protected itself against ROS excessive induction and the aphids were able to respond quickly to environmental stress.
Collapse
Affiliation(s)
- Jan Dampc
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland;
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Roma Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Pigonia 1, 35-310 Rzeszów, Poland;
| |
Collapse
|
20
|
Trebicki P. Climate change and plant virus epidemiology. Virus Res 2020; 286:198059. [PMID: 32561376 DOI: 10.1016/j.virusres.2020.198059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Changes in global climate driven by anthropogenic activities, especially the burning of fossil fuels and deforestation, have been progressively increasing and are projected to intensify. Increasing concentrations of atmospheric carbon dioxide and temperature will have significant consequences for future food production, quality, distribution and security. The epidemiology of plant viruses will be altered in the future as a result of climate change. Elevated atmospheric carbon dioxide, increased temperature, changes to water availability and more frequent extreme weather events will have direct and indirect effects on plant viruses through changes in hosts and vectors. Predicted climatic changes will affect the distribution and survival of plant viruses and their vectors, which are expected to increase in many geographic regions. Furthermore, climate change can affect the virulence and pathogenicity of plant viruses, consequently increasing the frequency and scale of disease outbreaks. Thus, greater understanding of plant virus epidemiology is needed to better anticipate challenges ahead and to develop effective and robust control strategies that will aid in securing global food production for the future.
Collapse
Affiliation(s)
- Piotr Trebicki
- Agriculture Victoria, 110 Natimuk Rd, Horsham, Victoria, 3400, Australia.
| |
Collapse
|
21
|
Tenllado F, Canto T. Effects of a changing environment on the defenses of plants to viruses. Curr Opin Virol 2020; 42:40-46. [PMID: 32531746 DOI: 10.1016/j.coviro.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Since their appearance, plants have lived and evolved within changing environments that were determined by a host of abiotic and biotic factors. It is in this evolutionary context that both, the mechanisms of defense by plants against viruses and the viral reprogramming of plant routes were established, which combined define the outcomes of compatible infections. Current alterations in the chemistry of the atmosphere are causing changes in the global context in which plants and viruses interact that are unprecedented not in their nature but in their pace. We discuss here the potential reach of environment changes taking place now, and how the main abiotic parameters that are driving them can affect defense responses of plants to viruses in compatible infections.
Collapse
Affiliation(s)
- Francisco Tenllado
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomas Canto
- Department of Environmental Biology, Margarita Salas Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
22
|
Peñalver-Cruz A, Garzo E, Prieto-Ruiz I, Díaz-Carro M, Winters A, Moreno A, Fereres A. Feeding behavior, life history, and virus transmission ability of Bemisia tabaci Mediterranean species (Hemiptera: Aleyrodidae) under elevated CO 2. INSECT SCIENCE 2020; 27:558-570. [PMID: 30672655 DOI: 10.1111/1744-7917.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 05/27/2023]
Abstract
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant-mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.
Collapse
Affiliation(s)
- Ainara Peñalver-Cruz
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Elisa Garzo
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Inés Prieto-Ruiz
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Miguel Díaz-Carro
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Aránzazu Moreno
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| | - Alberto Fereres
- Departamento de Protección vegetal, Instituto de Ciencias Agrarias (ICA-CSIC), Madrid, Spain
| |
Collapse
|
23
|
Effect of elevated levels of CO 2 on powdery mildew development in five cucurbit species. Sci Rep 2020; 10:4986. [PMID: 32193424 PMCID: PMC7081298 DOI: 10.1038/s41598-020-61790-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2020] [Indexed: 11/08/2022] Open
Abstract
The environment is the key factor that influences the host-parasite relationship. Elevated CO2 levels resulting from various anthropogenic sources may directly affect the surroundings around pathogens and plants. It is hypothesized that plants may respond differently to pathogens in the environment containing an elevated concentration of CO2. To test the hypothesis an experiment was conducted to examine the effects of intermittent exposures of elevated levels of CO2 viz., 400, 500 and 600 ppm (5 hr/day on alternate days) on the development of Sphaerotheca fuliginea causing powdery mildew disease on five cucurbits species using open-top chambers. The elevated levels of CO2 acted as a growth promoter and significantly enhanced the plant growth of all five cucurbit species. Inoculation with the fungus incited specific mildew symptoms on the leaves and decreased the plant growth and biomass production of the cucurbits tested except bitter gourd. The intermittent exposures with elevated levels of CO2 aggravated the disease development. As a result, severe mildew developed on all five cucurbits, including bitter gourd, which expressed tolerance to the pathogen. Fungus colonization in terms of the number of conidia/cm2 leaf surface was significantly greater on the plants exposed to 500 or 600 ppm CO2. The stomata and trichome density and stomatal pore width were increased in the leaves of CO2 exposed plants. The CO2 exposures also accelerated the photosynthesis rate, but transpiration, stomatal conductance, salicylic acid and total phenols were decreased; fungus inoculation caused the effects just reverse of CO2. Interaction between S. fuliginea and CO2 was found synergistic at 500 ppm, whereas with rest of the concentrations it was near to additive.
Collapse
|
24
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
25
|
Yan HY, Guo HG, Sun YC, Ge F. Plant phenolics mediated bottom-up effects of elevated CO 2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. INSECT SCIENCE 2020; 27:170-184. [PMID: 29938899 DOI: 10.1111/1744-7917.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Elevated concentrations of atmospheric CO2 can alter plant secondary metabolites, which play important roles in the interactions among plants, herbivorous insects and natural enemies. However, few studies have examined the cascading effects of host plant secondary metabolites on tri-trophic interactions under elevated CO2 (eCO2 ). In this study, we determined the effects of eCO2 on the growth and foliar phenolics of Medicago truncatula and the cascading effects on two color genotypes of Acyrthosiphon pisum (pink vs. green) and their parasitoid Aphidius avenae in the field open-top chambers. Our results showed that eCO2 increased photosynthetic rate, nodule number, yield and the total phenolic content of M. truncatula. eCO2 had contrasting effects on two genotypes of A. pisum; the green genotype demonstrated increased population abundance, fecundity, growth and feeding efficiency, while the pink genotype showed decreased fitness and these were closely associated with the foliar genstein content. Furthermore, eCO2 decreased the parasitic rate of A. avenae independent of aphid genotypes. eCO2 prolonged the emergence time and reduced the emergence rate and percentage of females when associated with the green genotype, but little difference, except for increased percentage of females, was observed in A. avenae under eCO2 when associated with the pink genotype, indicating that parasitoids can perceive and discriminate the qualities of aphid hosts. We concluded that eCO2 altered plant phenolics and thus the performance of aphids and parasitoids. Our results indicate that plant phenolics vary by different abiotic and biotic stimuli and could potentially deliver the cascading effects of eCO2 to the higher trophic levels. Our results also suggest that the green genotype is expected to perform better in future eCO2 because of decreased plant resistance after its infestation and decreased parasitic rate.
Collapse
Affiliation(s)
- Hong-Yu Yan
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Gang Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Cheng Sun
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
The Probing Behavior Component of Disease Transmission in Insect-Transmitted Bacterial Plant Pathogens. INSECTS 2019; 10:insects10070212. [PMID: 31331012 PMCID: PMC6681269 DOI: 10.3390/insects10070212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Insects can be effective vectors of plant diseases and this may result in billions of dollars in lost agricultural productivity. New, emerging or introduced diseases will continue to cause extensive damage in afflicted areas. Understanding how the vector acquires the pathogen and inoculates new hosts is critical in developing effective management strategies. Management may be an insecticide applied to kill the vector or a host plant resistance mechanism to make the host plant less suitable for the vector. In either case, the tactic must act before the insect performs the key behavior(s) resulting in either acquisition or transmission. This requires knowledge of the timing of behaviors the insect uses to probe the plant and commence ingestion. These behaviors are visualized using electropenetrography (EPG), wherein the plant and insect become part of an electrical circuit. With the tools to define specific steps in the probing process, we can understand the timing of acquisition and inoculation. With that understanding comes the potential for more relevant testing of management strategies, through insecticides or host plant resistance. The primary example will be Candidatus Liberibacter asiaticus transmitted by Diaphorina citri Kuwayama in the citrus agroecosystem, with additional examples used as appropriate.
Collapse
|
27
|
Abstract
Viral diseases provide a major challenge to twenty-first century agriculture worldwide. Climate change and human population pressures are driving rapid alterations in agricultural practices and cropping systems that favor destructive viral disease outbreaks. Such outbreaks are strikingly apparent in subsistence agriculture in food-insecure regions. Agricultural globalization and international trade are spreading viruses and their vectors to new geographical regions with unexpected consequences for food production and natural ecosystems. Due to the varying epidemiological characteristics of diverent viral pathosystems, there is no one-size-fits-all approach toward mitigating negative viral disease impacts on diverse agroecological production systems. Advances in scientific understanding of virus pathosystems, rapid technological innovation, innovative communication strategies, and global scientific networks provide opportunities to build epidemiologic intelligence of virus threats to crop production and global food security. A paradigm shift toward deploying integrated, smart, and eco-friendly strategies is required to advance virus disease management in diverse agricultural cropping systems.
Collapse
Affiliation(s)
- Roger A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, Western Australia 6009, Australia; .,Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350, USA;
| |
Collapse
|
28
|
Del Toro FJ, Choi KS, Rakhshandehroo F, Aguilar E, Tenllado F, Canto T. Ambient conditions of elevated temperature and CO 2 levels are detrimental to the probabilities of transmission by insects of a Potato virus Y isolate and to its simulated prevalence in the environment. Virology 2019; 530:1-10. [PMID: 30753975 DOI: 10.1016/j.virol.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/17/2022]
Abstract
Conditions of elevated temperature and CO2 levels [30 °C and 970 parts-per-million (ppm), respectively] reduced the systemic titers of a potato virus Y (PVY) isolate in Nicotiana benthamiana plants, relative to standard conditions (25 °C, ~405 ppm CO2). Under controlled conditions we studied how these growing environments affected the transmission of infection by aphids. Probabilities of transmission of infection by insects that fed on infected donor plants kept at either standard conditions, or at 30 °C and 970 ppm CO2 were both determined and found to positively correlate with titers in donor leaves, independently of the ambient conditions in which recipient plantlets would grow. With these data, viral prevalence was simulated under conditions of elevated temperature and CO2 levels and found that for it to remain comparable to that simulated under standard conditions, insect arrivals to recipient plants in the former scenario would have to increase several-fold in their frequency.
Collapse
Affiliation(s)
- F J Del Toro
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - K S Choi
- Research Institute for Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA, Jeju 690-150, Republic of Korea
| | - F Rakhshandehroo
- Department of Plant Protection, College of Agricultural Sciences and Food Technologies, Science and Research Branch, Islamic Azad University, P. O. Box 14515-775, Tehran, Iran
| | - E Aguilar
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - F Tenllado
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - T Canto
- Department of Microbial and Plant Biotechnology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
29
|
Xiang H, Rasul S, Scott K, Portoles J, Cumpson P, Yu EH. Enhanced selectivity of carbonaceous products from electrochemical reduction of CO2 in aqueous media. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah MA, Parajulee MN, Chen F. Molecular Evidence for the Fitness of Cotton Aphid, Aphis gossypii in Response to Elevated CO 2 From the Perspective of Feeding Behavior Analysis. Front Physiol 2018; 9:1444. [PMID: 30483140 PMCID: PMC6240613 DOI: 10.3389/fphys.2018.01444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Rising atmospheric carbon dioxide (CO2) concentration is likely to influence insect-plant interactions. Aphid, as a typical phloem-feeding herbivorous insect, has shown consistently more positive responses in fitness to elevated CO2 concentrations than those seen in leaf-chewing insects. But, little is known about the mechanism of this performance. In this study, the foliar soluble constituents of cotton and the life history of the cotton aphid Aphis gossypii and its mean relative growth rate (MRGR) and feeding behavior were measured, as well as the relative transcript levels of target genes related appetite, salivary proteins, molting hormone (MH), and juvenile hormone, to investigate the fitness of A. gossypii in response to elevated CO2 (800 ppm vs. 400 ppm). The results indicated that elevated CO2 significantly stimulated the increase in concentrations of soluble proteins in the leaf and sucrose in seedlings. Significant increases in adult longevity, lifespan, fecundity, and MRGR of A. gossypii were found under elevated CO2 in contrast to ambient CO2. Furthermore, the feeding behavior of A. gossypii was significantly affected by elevated CO2, including significant shortening of the time of stylet penetration to phloem position and significant decrease in the mean frequency of xylem phase. It is presumed that the fitness of A. gossypii can be enhanced, resulting from the increases in nutrient sources and potential increase in the duration of phloem ingestion under elevated CO2 in contrast to ambient CO2. In addition, the qPCR results also demonstrated that the genes related to appetite and salivary proteins were significantly upregulated, whereas, the genes related to MH were significantly downregulated under elevated CO2 in contrast to ambient CO2, this is in accordance with the performance of A. gossypii in response to elevated CO2. In conclusion, rise in atmospheric CO2 concentration can enhance the fitness of A. gossypii by increasing their ingestion of higher quantity and higher quality of host plant tissues and by simultaneously upregulating the transcript expression of the genes related to appetite and salivary proteins, and then this may increase the control risk of A. gossypii under conditions of climate change in the future.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Personnel Department, Qingdao Agricultural University, Qingdao, China
| | - Yang Dai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yongqing Lu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuqin Fan
- Qidong Agricultural Commission, Qidong, China
| | - Yanmin Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Adnan Bodlah
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Megha N. Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, United States
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Vassiliadis S, Plummer KM, Powell KS, Rochfort SJ. Elevated CO 2 and virus infection impacts wheat and aphid metabolism. Metabolomics 2018; 14:133. [PMID: 30830473 DOI: 10.1007/s11306-018-1425-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The aphid Rhopalosiphum padi L. is a vector of Barley yellow dwarf virus (BYDV) in wheat and other economically important cereal crops. Increased atmospheric CO2 has been shown to alter plant growth and metabolism, enhancing BYDV disease in wheat. However, the biochemical influences on aphid metabolism are not known. OBJECTIVES This work aims to determine whether altered host-plant quality, influenced by virus infection and elevated CO2, impacts aphid weight and metabolism. METHODS Untargeted 1H NMR metabolomics coupled with multivariate statistics were employed to profile the metabolism of R. padi reared on virus-infected and non-infected (sham-inoculated) wheat grown under ambient CO2 (aCO2, 400 µmol mol-1) and future, predicted elevated CO2 (eCO2, 650 µmol mol-1) concentrations. Un-colonised wheat was also profiled to observe changes to host-plant quality (i.e., amino acids and sugars). RESULTS The direct impacts of virus or eCO2 were compared. Virus presence increased aphid weight under aCO2 but decreased weight under eCO2; whilst eCO2 increased non-viruliferous (sham) aphid weight but decreased viruliferous aphid weight. Discriminatory metabolites due to eCO2 were succinate and sucrose (in sham wheat), glucose, choline and betaine (in infected wheat), and threonine, lactate, alanine, GABA, glutamine, glutamate and asparagine (in aphids), irrespective of virus presence. Discriminatory metabolites due to virus presence were alanine, GABA, succinate and betaine (in wheat) and threonine and lactate (in aphids), irrespective of CO2 treatment. CONCLUSION This study confirms that virus and eCO2 alter host-plant quality, and these differences are reflected by aphid weight and metabolism.
Collapse
Affiliation(s)
- Simone Vassiliadis
- Agriculture Research Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| | | | - Simone J Rochfort
- Agriculture Research Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
32
|
Tu KY, Tsai SF, Guo TW, Lin HH, Yang ZW, Liao CT, Chuang WP. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant. ENVIRONMENTAL ENTOMOLOGY 2018; 47:857-866. [PMID: 29762698 DOI: 10.1093/ee/nvy066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 05/16/2023]
Abstract
Atmospheric temperature increases along with increasing atmospheric CO2 concentration. This is a major concern for agroecosystems. Although the impact of an elevated temperature or increased CO2 has been widely reported, there are few studies investigating the combined effect of these two environmental factors on plant-insect interactions. In this study, plant responses (phenological traits, defensive enzyme activity, secondary compounds, defense-related gene expression and phytohormone) of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) -susceptible and resistant rice under various conditions (environment, soil type, variety, C. medinalis infestation) were used to examine the rice-C. medinalis interaction. The results showed that leaf chlorophyll content and trichome density in rice were variety-dependent. Plant defensive enzyme activities were affected environment, variety, or C. medinalis infestation. In addition, total phenolic content of rice leaves was decreased by elevated CO2 and temperature and C. medinalis infestation. Defense-related gene expression patterns were affected by environment, soil type, or C. medinalis infestation. Abscisic acid and salicylic acid content were decreased by C. medinalis infestation. However, jasmonic acid content was increased by C. medinalis infestation. Furthermore, under elevated CO2 and temperature, rice plants had higher abscisic acid content than plants under ambient conditions. The adult morphological traits of C. medinalis also were affected by environment. Under elevated CO2 and temperature, C. medinalis adults had greater body length in the second and third generations. Taken together these results indicated that elevated CO2 and temperature not only affects plants but also the specialized insects that feed on them.
Collapse
Affiliation(s)
- Kun-Yu Tu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Shin-Fu Tsai
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Tzu-Wei Guo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Hou-Ho Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Zhi-Wei Yang
- Crop Improvement Division, Taoyuan District Agricultural Research and Extension Station, Houzhuang, Sinwu District, Taoyuan City, Taiwan (R.O.C.)
| | - Chung-Ta Liao
- Crop Enviroment Division, Taichung District Agricultural Research and Extension Station, COA, Dacun Township, Changhua County, Taiwan (R.O.C.)
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
33
|
Yan H, Guo H, Yuan E, Sun Y, Ge F. Elevated CO 2 and O 3 alter the feeding efficiency of Acyrthosiphon pisum and Aphis craccivora via changes in foliar secondary metabolites. Sci Rep 2018; 8:9964. [PMID: 29967388 PMCID: PMC6028383 DOI: 10.1038/s41598-018-28020-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/15/2018] [Indexed: 11/20/2022] Open
Abstract
Elevated CO2 and O3 can affect aphid performance via altering plant nutrients, however, little is known about the role of plant secondary metabolites in this process, especially for aphids feeding behaviors. We determined the effects of elevated CO2 and O3 on the growth and phenolics of alfalfa (Medicago sativa) and feeding behaviors of the pea aphids (Acyrthosiphon pisum) and cowpea aphids (Aphis craccivora). Elevated CO2 improved plant growth, but could not completely offset the negative effects of elevated O3. Elevated O3 increased foliar genistin content at the vegetative stage, increased ferulic acid at the reproductive stage, and elevated CO2 increased those at both stages. Simultaneously elevated CO2 and O3 increased foliar ferulic acid content at the reproductive stage and increased genistin content at both stages. For pea aphids, feeding efficiency was reduced under elevated CO2 at the reproductive stage and decreased under elevated O3 at the vegetative stage. For cowpea aphids, feeding efficiency was increased under elevated CO2 at the vegetative stage and decreased under elevated O3 at both stages. Simultaneously elevated CO2 and O3 decreased both aphids feeding efficiency. We concluded that CO2 and O3 independently or interactively had different effects on two aphids feeding behaviors through altering foliar ferulic acid and genistin contents.
Collapse
Affiliation(s)
- Hongyu Yan
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Honggang Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
34
|
Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2018; 9:703. [PMID: 29881396 PMCID: PMC5976794 DOI: 10.3389/fpls.2018.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.
Collapse
Affiliation(s)
- Sandy E. Bergès
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| | - Cecilia Vazquez-Rovere
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LABINTEX Europe, Instituto Nacional de Tecnología Agropecuária, Montpellier, France
| | - Stéphane Blanc
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alexis Bédiée
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Myriam Dauzat
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Manuella van Munster
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| |
Collapse
|
35
|
Trębicki P, Dáder B, Vassiliadis S, Fereres A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. INSECT SCIENCE 2017; 24:975-989. [PMID: 28843026 DOI: 10.1111/1744-7917.12531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 05/02/2023]
Abstract
Carbon dioxide (CO2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions.
Collapse
Affiliation(s)
- Piotr Trębicki
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources (DEDJTR), Horsham, VIC, Australia
| | - Beatriz Dáder
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Campus International de Baillarguet, Montpellier, France
| | - Simone Vassiliadis
- Biosciences Research, DEDJTR, La Trobe University, AgriBio Centre, 5 Ring Road, Bundoora, VIC, Australia
| | | |
Collapse
|
36
|
Del Toro FJ, Rakhshandehroo F, Larruy B, Aguilar E, Tenllado F, Canto T. Effects of simultaneously elevated temperature and CO 2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific. Virology 2017; 511:184-192. [PMID: 28866237 DOI: 10.1016/j.virol.2017.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 02/03/2023]
Abstract
We have studied how simultaneously elevated temperature and CO2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO2] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO2 combined on properties of the pathosystems studied were overall cumulative.
Collapse
Affiliation(s)
- Francisco J Del Toro
- Department of Environmental Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Farshad Rakhshandehroo
- Department of Plant Pathology, College of Agriculture and Natural Resources, Islamic Azad University, P. O. Box 14515-775, Tehran, Iran
| | - Beatriz Larruy
- Department of Environmental Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Emmanuel Aguilar
- Department of Environmental Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Francisco Tenllado
- Department of Environmental Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Tomás Canto
- Department of Environmental Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
37
|
Effect of elevated CO 2 and O 3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. SCIENCE CHINA-LIFE SCIENCES 2017; 60:816-825. [PMID: 28785951 DOI: 10.1007/s11427-017-9126-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.
Collapse
|
38
|
Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Res 2017; 241:131-136. [PMID: 28756104 DOI: 10.1016/j.virusres.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Application of a severe water deficit to Arabidopsis thaliana plants infected with a mutant of Turnip yellows virus (TuYV, Family Luteoviridae) triggers a significant alteration of several plant phenology traits and strongly reduces the transmission efficiency of the virus by aphids. Although virus accumulation in water-stressed plants was similar to that in plants grown under well-watered conditions, virus accumulation was reduced in aphids fed on plants under water deficit. These results suggest alteration of the aphid feeding behavior on plants under water deficit.
Collapse
|
39
|
Trębicki P, Nancarrow N, Bosque-Pérez NA, Rodoni B, Aftab M, Freeman A, Yen A, Fitzgerald GJ. Virus incidence in wheat increases under elevated CO 2: A 4-year study of yellow dwarf viruses from a free air carbon dioxide facility. Virus Res 2017; 241:137-144. [PMID: 28684156 DOI: 10.1016/j.virusres.2017.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/05/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022]
Abstract
The complexities behind the mechanisms associated with virus-host-vector interactions of vector-transmitted viruses, and their consequences for disease development need to be understood to reduce virus spread and disease severity. Climate has a substantial effect on viruses, vectors, host plants and their interactions. Increased atmospheric carbon dioxide (CO2) is predicted to impact the interactions between them. This study, conducted under ambient and elevated CO2 (550μmolmol-1), in the Australian Grains Free Air Carbon Enrichment facility reports on natural yellow dwarf virus incidence on wheat (including Barley/Cereal yellow dwarf viruses (B/CYDV)). A range of wheat cultivars was tested using tissue blot immunoassay to determine the incidence of four yellow dwarf virus species from 2013 to 2016. In 2013, 2014 and 2016, virus incidence was high, reaching upwards of 50%, while in 2015 it was relatively low, with a maximum incidence of 3%. Across all years and most cultivars, BYDV-PAV was the most prevalent virus species. In the years with high virus incidence, a majority plots with the elevated levels of CO2 (eCO2) were associated with increased levels of virus relative to the plots with ambient CO2. In 2013, 2014 and 2016 the recorded mean percent virus incidence was higher under elevated CO2 when compared to ambient CO2 by 33%, 14% and 34%, respectively. The mechanism behind increased yellow dwarf virus incidence under elevated CO2 is not well understood. Potential factors involved in the higher virus incidence under elevated CO2 conditions are discussed.
Collapse
Affiliation(s)
- Piotr Trębicki
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources, (DEDJTR), 110 Natimuk Rd, Horsham, VIC, 3400, Australia.
| | - Narelle Nancarrow
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources, (DEDJTR), 110 Natimuk Rd, Horsham, VIC, 3400, Australia
| | - Nilsa A Bosque-Pérez
- Department of Plant, Soil and Entomological Sciences, University of Idaho,875 Perimeter Drive MS 2339, Moscow, ID 83844-2339, USA
| | - Brendan Rodoni
- Biosciences Research, DEDJTR, AgriBio Centre,5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Mohammad Aftab
- Biosciences Research, Department of Economic Development Jobs, Transport and Resources, (DEDJTR), 110 Natimuk Rd, Horsham, VIC, 3400, Australia
| | - Angela Freeman
- Biosciences Research, DEDJTR, AgriBio Centre,5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Alan Yen
- Biosciences Research, DEDJTR, AgriBio Centre,5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Glenn J Fitzgerald
- DEDJTR, Agricultural Research, 402-404 Mair St, Ballarat, Victoria, 3350, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 4 Water Street, Creswick Victoria 3363, Australia
| |
Collapse
|
40
|
van Munster M, Yvon M, Vile D, Dader B, Fereres A, Blanc S. Water deficit enhances the transmission of plant viruses by insect vectors. PLoS One 2017; 12:e0174398. [PMID: 28467423 PMCID: PMC5414972 DOI: 10.1371/journal.pone.0174398] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 12/02/2022] Open
Abstract
Drought is a major threat to crop production worldwide and is accentuated by global warming. Plant responses to this abiotic stress involve physiological changes overlapping, at least partially, the defense pathways elicited both by viruses and their herbivore vectors. Recently, a number of theoretical and empirical studies anticipated the influence of climate changes on vector-borne viruses of plants and animals, mainly addressing the effects on the virus itself or on the vector population dynamics, and inferring possible consequences on virus transmission. Here, we directly assess the effect of a severe water deficit on the efficiency of aphid-transmission of the Cauliflower mosaic virus (CaMV) or the Turnip mosaic virus (TuMV). For both viruses, our results demonstrate that the rate of vector-transmission is significantly increased from water-deprived source plants: CaMV transmission reproducibly increased by 34% and that of TuMV by 100%. In both cases, the enhanced transmission rate could not be explained by a higher virus accumulation, suggesting a more complex drought-induced process that remains to be elucidated. The evidence that infected plants subjected to drought are much better virus sources for insect vectors may have extensive consequences for viral epidemiology, and should be investigated in a wide range of plant-virus-vector systems.
Collapse
Affiliation(s)
| | | | | | - Beatriz Dader
- BGPI UMR385, INRA Montpellier, France
- Department de Protección Vegetal, Instituto de Ciencias Agrarias, Madrid, Spain
| | - Alberto Fereres
- Department de Protección Vegetal, Instituto de Ciencias Agrarias, Madrid, Spain
| | | |
Collapse
|
41
|
Guo H, Huang L, Sun Y, Guo H, Ge F. The Contrasting Effects of Elevated CO 2 on TYLCV Infection of Tomato Genotypes with and without the Resistance Gene, Mi-1.2. FRONTIERS IN PLANT SCIENCE 2016; 7:1680. [PMID: 27881989 PMCID: PMC5101426 DOI: 10.3389/fpls.2016.01680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/25/2016] [Indexed: 05/26/2023]
Abstract
Elevated atmospheric CO2 typically enhances photosynthesis of C3 plants and alters primary and secondary metabolites in plant tissue. By modifying the defensive signaling pathways in host plants, elevated CO2 could potentially affect the interactions between plants, viruses, and insects that vector viruses. R gene-mediated resistance in plants represents an efficient and highly specific defense against pathogens and herbivorous insects. The current study determined the effect of elevated CO2 on tomato plants with and without the nematode resistance gene Mi-1.2, which also confers resistance to some sap-sucking insects including whitefly, Bemisia tabaci. Furthermore, the subsequent effects of elevated CO2 on the performance of the vector whiteflies and the severity of Tomato yellow leaf curl virus (TYLCV) were also determined. The results showed that elevated CO2 increased the biomass, plant height, and photosynthetic rate of both the Moneymaker and the Mi-1.2 genotype. Elevated CO2 decreased TYLCV disease incidence and severity for Moneymaker plants but had the opposite effect on Mi-1.2 plants whether the plants were agroinoculated or inoculated via B. tabaci feeding. Elevated CO2 increased the salicylic acid (SA)-dependent signaling pathway on Moneymaker plants but decreased the SA-signaling pathway on Mi-1.2 plants when infected by TYLCV. Elevated CO2 did not significantly affect B. tabaci fitness or the ability of viruliferous B. tabaci to transmit virus regardless of plant genotype. The results indicate that elevated CO2 increases the resistance of Moneymaker plants but decreases the resistance of Mi-1.2 plants against TYLCV, whether the plants are agroinoculated or inoculated by the vector. Our results suggest that plant genotypes containing the R gene Mi-1.2 will be more vulnerable to TYLCV and perhaps to other plant viruses under elevated CO2 conditions.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Lichao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
- Tourism and Air Service College, Guizhou Minzu UniversityGuizhou, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Honggang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
42
|
Blanc S, Michalakis Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. CURRENT OPINION IN INSECT SCIENCE 2016; 16:36-43. [PMID: 27720048 DOI: 10.1016/j.cois.2016.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 05/15/2023]
Abstract
The effect of environmental factors on the efficiency of plant virus transmission is extremely difficult to predict, because they obviously impact concomitantly multiple steps of the complex three-way plant-virus-vector interaction. This review summarizes the diversity of the relationship between plants, viruses and insect vectors, and highlights the numerous phases of this process that can be altered by the virus in ways that can potentially enhance its transmission success. Many of the reported cases are often considered to be possible viral manipulations acting through modifications of the physiology of the host plant, indirectly reaching to the insect vector. Plants are extremely responsive to environmental fluctuations and so interferences with these putative viral manipulations are highly expected. The role of environmental factors in plant virus transmission can thus be envisaged solely in the context of this complexity. It is only briefly evoked here because this field of research is in its infancy and currently suffers from an impressive lack of experimental data.
Collapse
|
43
|
McKenzie SW, Johnson SN, Jones TH, Ostle NJ, Hails RS, Vanbergen AJ. Root Herbivores Drive Changes to Plant Primary Chemistry, but Root Loss Is Mitigated under Elevated Atmospheric CO2. FRONTIERS IN PLANT SCIENCE 2016; 7:837. [PMID: 27379129 PMCID: PMC4906026 DOI: 10.3389/fpls.2016.00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/27/2016] [Indexed: 05/29/2023]
Abstract
Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enrichment would increase the amount (biomass) and quality (C:N ratio) of crop plant resources for above- and belowground herbivore species. In a controlled environment facility, we conducted a microcosm experiment using the large raspberry aphid (Amphorophora idaei), the root feeding larvae of the vine weevil (Otiorhynchus sulcatus), and the raspberry (Rubus idaeus) host-plant. There were four herbivore treatments (control, aphid only, weevil only and a combination of both herbivores) and an ambient (aCO2) or elevated (eCO2) CO2 treatment (390 versus 650 ± 50 μmol/mol) assigned to two raspberry cultivars (cv Glen Ample or Glen Clova) varying in resistance to aphid herbivory. Contrary to our predictions, eCO2 did not increase crop biomass or the C:N ratio of the plant tissues, nor affect herbivore abundance either directly or via the host-plant. Root herbivory reduced belowground crop biomass under aCO2 but not eCO2, suggesting that crops could tolerate attack in a CO2 enriched environment. Root herbivory also increased the C:N ratio in leaf tissue at eCO2, potentially due to decreased N uptake indicated by lower N concentrations found in the roots. Root herbivory greatly increased root C concentrations under both CO2 treatments. Our findings confirm that responses of crop biomass and biochemistry to climate change need examining within the context of herbivory, as biotic interactions appear as important as direct effects of eCO2 on crop productivity.
Collapse
Affiliation(s)
- Scott W. McKenzie
- Centre for Ecology and Hydrology, EdinburghUK
- The James Hutton Institute, DundeeUK
- Centre for Ecology and Hydrology, WallingfordUK
- School of Biosciences, Cardiff University, CardiffUK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSWAustralia
| | | | - Nick J. Ostle
- Lancaster Environment Centre, Lancaster University, LancasterUK
| | | | | |
Collapse
|
44
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016; 7:657. [PMID: 27242858 PMCID: PMC4865672 DOI: 10.3389/fpls.2016.00657] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
45
|
Sun Y, Guo H, Ge F. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior. FRONTIERS IN PLANT SCIENCE 2016; 7:502. [PMID: 27148325 PMCID: PMC4829579 DOI: 10.3389/fpls.2016.00502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/29/2016] [Indexed: 05/18/2023]
Abstract
Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies.
Collapse
Affiliation(s)
| | | | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
46
|
Abstract
Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.
Collapse
Affiliation(s)
- R A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia; Department of Agriculture and Food Western Australia, South Perth, WA, Australia.
| |
Collapse
|
47
|
Trębicki P, Vandegeer RK, Bosque-Pérez NA, Powell KS, Dader B, Freeman AJ, Yen AL, Fitzgerald GJ, Luck JE. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci Rep 2016; 6:22785. [PMID: 26941044 PMCID: PMC4778167 DOI: 10.1038/srep22785] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022] Open
Abstract
Atmospheric carbon dioxide (CO2) concentration has increased significantly and is projected to double by 2100. To increase current food production levels, understanding how pests and diseases respond to future climate driven by increasing CO2 is imperative. We investigated the effects of elevated CO2 (eCO2) on the interactions among wheat (cv. Yitpi), Barley yellow dwarf virus and an important pest and virus vector, the bird cherry-oat aphid (Rhopalosiphum padi), by examining aphid life history, feeding behavior and plant physiology and biochemistry. Our results showed for the first time that virus infection can mediate effects of eCO2 on plants and pathogen vectors. Changes in plant N concentration influenced aphid life history and behavior, and N concentration was affected by virus infection under eCO2. We observed a reduction in aphid population size and increased feeding damage on noninfected plants under eCO2 but no changes to population and feeding on virus-infected plants irrespective of CO2 treatment. We expect potentially lower future aphid populations on noninfected plants but no change or increased aphid populations on virus-infected plants therefore subsequent virus spread. Our findings underscore the complexity of interactions between plants, insects and viruses under future climate with implications for plant disease epidemiology and crop production.
Collapse
Affiliation(s)
- Piotr Trębicki
- Biosciences Research, Department of Economic Development, (DED), 110 Natimuk Rd, Horsham, VIC, 3400, Australia
| | - Rebecca K Vandegeer
- Biosciences Research, DED, 5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Nilsa A Bosque-Pérez
- Department of Plant, Soil and Entomological Sciences, University of Idaho, 875 Perimeter Drive, MS 2339, Moscow, ID 83844-2339 USA
| | - Kevin S Powell
- Biosciences Research, DED, 124, Chiltern Valley Road, Rutherglen, VIC, 3685, Australia
| | - Beatriz Dader
- Biosciences Research, Department of Economic Development, (DED), 110 Natimuk Rd, Horsham, VIC, 3400, Australia.,Institute of Agricultural Sciences-CSIC, Calle Serrano 115 dpdo., 28006, Madrid, Spain
| | - Angela J Freeman
- Biosciences Research, DED, 5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Alan L Yen
- Biosciences Research, DED, 5 Ring Road, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Glenn J Fitzgerald
- Agriculture Research, DED, 110 Natimuk Rd, Horsham, VIC, 3400, Australia
| | - Jo E Luck
- Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce ACT, Australia
| |
Collapse
|
48
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242858 DOI: 10.3389/fpls.20116.00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China; Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|