1
|
Lee K, Hyun JO, Cho HT. An inquiry into the radial patterning of root hair cell distribution in eudicots. THE NEW PHYTOLOGIST 2024; 244:1931-1946. [PMID: 39327901 DOI: 10.1111/nph.20148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
The root epidermis of tracheophytes consists of hair-forming cells (HCs) and nonhair cells (NCs). The HC distribution pattern is classified into three types: random (Type I), vertically alternating (Type II), and radial (Type III). Type III is found only in core eudicots and is known to be position-dependent in superrosids with HCs positioned between two underlying cortical cells. However, the evolution of Type III and the universality of its position dependency in eudicots remain unclear. We surveyed the HC distribution in basal and Type III-exhibiting core eudicots and conducted genomic analyses to get insight into whether eudicots share the same genetic network to establish Type III. Our survey revealed no canonical Type III in basal eudicots but a reverse Type III, with NCs between two cortical cells and HCs on a single cortical cell, in Papaveraceae of basal eudicots. Type III-exhibiting species from both superrosids and superasterids showed the canonical position dependency of HCs. However, some key components for Type III determination were absent in the genomes of Papaveraceae and Type III-exhibiting superasterids. Our findings identify a novel position-dependent type of HC patterning, reverse Type III, and suggest that Type III emerged independently or diversified during eudicot evolution.
Collapse
Affiliation(s)
- Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin-Oh Hyun
- Northeastern Asia Biodiversity Institute, Gyeonggi-do, 12982, Korea
| | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
2
|
Guan Y, Jiang L, Wang Y, Liu G, Wu J, Luo H, Chen S, Chen F, Niinemets Ü, Chen F, Jiang Y. CmMYC2-CmMYBML1 module orchestrates the resistance to herbivory by synchronously regulating the trichome development and constitutive terpene biosynthesis in Chrysanthemum. THE NEW PHYTOLOGIST 2024; 244:914-933. [PMID: 39223898 DOI: 10.1111/nph.20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Trichomes are specialized epidermal outgrowths covering the aerial parts of most terrestrial plants. There is a large species variability in occurrence of different types of trichomes such that the molecular regulatory mechanism underlying the formation and the biological function of trichomes in most plant species remain unexplored. Here, we used Chrysanthemum morifolium as a model plant to explore the regulatory network in trichome formation and terpenoid synthesis and unravel the physical and chemical roles of trichomes in constitutive defense against herbivore feeding. By analyzing the trichome-related genes from transcriptome database of the trichomes-removed leaves and intact leaves, we identified CmMYC2 to positively regulate both development of T-shaped and glandular trichomes as well as the content of terpenoids stored in glandular trichomes. Furthermore, we found that the role of CmMYC2 in trichome formation and terpene synthesis was mediated by interaction with CmMYBML1. Our results reveal a sophisticated molecular mechanism wherein the CmMYC2-CmMYBML1 feedback inhibition loop regulates the formation of trichomes (non-glandular and glandular) and terpene biosynthesis, collectively contributing to the enhanced resistance to Spodoptera litura larvae feeding. Our findings provide new insights into the novel regulatory network by which the plant synchronously regulates trichome density for the physical and chemical defense against herbivory.
Collapse
Affiliation(s)
- Yaqin Guan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - You Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayi Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Luo
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Wu JW, Wang XY, Yan RY, Zheng GM, Zhang L, Wang Y, Zhao YJ, Wang BH, Pu ML, Zhang XS, Zhao XY. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC PLANT BIOLOGY 2024; 24:458. [PMID: 38797860 PMCID: PMC11129368 DOI: 10.1186/s12870-024-05163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.
Collapse
Affiliation(s)
- Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiao Yi Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Meng Lin Pu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
4
|
Shen Y, Mao L, Zhou Y, Sun Y, Lv J, Deng M, Liu Z, Yang B. Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1090. [PMID: 38674502 PMCID: PMC11054266 DOI: 10.3390/plants13081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Trichomes are specialized organs located in the plant epidermis that play important defense roles against biotic and abiotic stresses. However, the mechanisms regulating the development of pepper epidermal trichomes and the related regulatory genes at the molecular level are not clear. Therefore, we performed transcriptome analyses of A114 (less trichome) and A115 (more trichome) to dig deeper into the genes involved in the regulatory mechanisms of epidermal trichome development in peppers. In this study, the epidermal trichome density of A115 was found to be higher by phenotypic observation and was highest in the leaves at the flowering stage. A total of 39,261 genes were quantified by RNA-Seq, including 11,939 genes not annotated in the previous genome analysis and 18,833 differentially expressed genes. Based on KEGG functional enrichment, it was found that DEGs were mainly concentrated in three pathways: plant-pathogen interaction, MAPK signaling pathway-plant, and plant hormone signal transduction. We further screened the DEGs associated with the development of epidermal trichomes in peppers, and the expression of the plant signaling genes GID1B-like (Capana03g003488) and PR-6 (Capana09g001847), the transcription factors MYB108 (Capana05g002225) and ABR1-like (Capana04g001261), and the plant resistance genes PGIP-like (Capana09g002077) and At5g49770 (Capana08g001721) in the DEGs were higher at A115 compared to A114, and were highly expressed in leaves at the flowering stage. In addition, based on the WGCNA results and the establishment of co-expression networks showed that the above genes were highly positively correlated with each other. The transcriptomic data and analysis of this study provide a basis for the study of the regulatory mechanisms of pepper epidermal trichomes.
Collapse
Affiliation(s)
- Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (M.D.)
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.M.); (Y.Z.); (Y.S.)
| |
Collapse
|
5
|
Fan H, Xu J, Ao D, Jia T, Shi Y, Li N, Jing R, Sun D. QTL Mapping of Trichome Traits and Analysis of Candidate Genes in Leaves of Wheat ( Triticum aestivum L.). Genes (Basel) 2023; 15:42. [PMID: 38254932 PMCID: PMC10815787 DOI: 10.3390/genes15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Trichome plays an important role in heat dissipation, cold resistance, water absorption, protection of leaves from mechanical damage, and direct exposure to ultraviolet rays. It also plays an important role in the photosynthesis, transpiration, and respiration of plants. However, the genetic basis of trichome traits is not fully understood in wheat. In this study, wheat DH population (Hanxuan 10 × Lumai 14) was used to map quantitative trait loci (QTL) for trichome traits in different parts of flag leaf at 10 days after anther with growing in Zhao County, Hebei Province, and Taigu County, Shanxi Province, respectively. The results showed that trichome density (TD) was leaf center > leaf tip > leaf base and near vein > middle > edge, respectively, in both environments. The trichome length (TL) was leaf tip > leaf center > leaf base and edge > middle > near vein. Significant phenotypic positive correlations were observed between the trichome-related traits of different parts. A total of 83 QTLs for trichome-related traits were mapped onto 18 chromosomes, and each one accounted for 2.41 to 27.99% of the phenotypic variations. Two QTL hotspots were detected in two marker intervals: AX-95232910~AX-95658735 on 3A and AX-94850949~AX-109507404 on 7D. Six possible candidate genes (TraesCS3A02G406000, TraesCS3A02G414900, TraesCS3A02G440900, TraesCS7D02G145200, TraesCS7D02G149200, and TraesCS7D02G152400) for trichome-related traits of wheat leaves were screened out according to their predicted expression levels in wheat leaves. The expression of these genes may be induced by a variety of abiotic stresses. The results provide the basis for further validation and functional characterization of the candidate genes.
Collapse
Affiliation(s)
- Hua Fan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, Jinzhong 030800, China
| | - Jianchao Xu
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Dan Ao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Tianxiang Jia
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Yugang Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ning Li
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| | - Ruilian Jing
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100000, China;
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030800, China; (H.F.); (J.X.); (D.A.); (T.J.); (Y.S.); (N.L.)
| |
Collapse
|
6
|
Wu G, Cao A, Wen Y, Bao W, She F, Wu W, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-Related Genes in Arabidopsis thaliana. Genes (Basel) 2023; 14:2026. [PMID: 38002969 PMCID: PMC10671209 DOI: 10.3390/genes14112026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The MYB (v-Myb avivan myoblastsis virus oncogene homolog) transcription factor family is one of the largest families of plant transcription factors which plays a vital role in many aspects of plant growth and development. MYB-related is a subclass of the MYB family. Fifty-nine Arabidopsis thaliana MYB-related (AtMYB-related) genes have been identified. In order to understand the functions of these genes, in this review, the promoters of AtMYB-related genes were analyzed by means of bioinformatics, and the progress of research into the functions of these genes has been described. The main functions of these AtMYB-related genes are light response and circadian rhythm regulation, root hair and trichome development, telomere DNA binding, and hormone response. From an analysis of cis-acting elements, it was found that the promoters of these genes contained light-responsive elements and plant hormone response elements. Most genes contained elements related to drought, low temperature, and defense and stress responses. These analyses suggest that AtMYB-related genes may be involved in A. thaliana growth and development, and environmental adaptation through plant hormone pathways. However, the functions of many genes do not occur independently but instead interact with each other through different pathways. In the future, the study of the role of the gene in different pathways will be conducive to a comprehensive understanding of the function of the gene. Therefore, gene cloning and protein functional analyses can be subsequently used to understand the regulatory mechanisms of AtMYB-related genes in the interaction of multiple signal pathways. This review provides theoretical guidance for the follow-up study of plant MYB-related genes.
Collapse
Affiliation(s)
- Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (A.C.); (Y.W.); (W.B.); (F.S.); (W.W.); (S.Z.); (N.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yan C, Yang T, Wang B, Yang H, Wang J, Yu Q. Genome-Wide Identification of the WD40 Gene Family in Tomato ( Solanum lycopersicum L.). Genes (Basel) 2023; 14:1273. [PMID: 37372453 DOI: 10.3390/genes14061273] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
WD40 proteins are a superfamily of regulatory proteins widely found in eukaryotes that play an important role in regulating plant growth and development. However, the systematic identification and characterization of WD40 proteins in tomato (Solanum lycopersicum L.) have not been reported. In the present study, we identified 207 WD40 genes in the tomatoes genome and analyzed their chromosomal location, gene structure and evolutionary relationships. A total of 207 tomato WD40 genes were classified by structural domain and phylogenetic tree analyses into five clusters and 12 subfamilies and were found to be unevenly distributed across the 12 tomato chromosomes. We identified six tandem duplication gene pairs and 24 segmental duplication pairs in the WD40 gene family, with segmental duplication being the major mode of expansion in tomatoes. Ka/Ks analysis revealed that paralogs and orthologs of WD40 family genes underwent mainly purifying selection during the evolutionary process. RNA-seq data from different tissues and developmental periods of tomato fruit development showed tissue-specific expression of WD40 genes. In addition, we constructed four coexpression networks according to the transcriptome and metabolome data for WD40 proteins involved in fruit development that may be related to total soluble solid formation. The results provide a comprehensive overview of the tomato WD40 gene family and will provide valuable information for the validation of the function of tomato WD40 genes in fruit development.
Collapse
Affiliation(s)
- Cunyao Yan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Haitao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830000, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi 830000, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830000, China
| |
Collapse
|
8
|
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci 2022; 23:ijms23169262. [PMID: 36012533 PMCID: PMC9409031 DOI: 10.3390/ijms23169262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Dong
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lulu Tian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-182-2348-0008
| |
Collapse
|
9
|
Ma S, Yang Z, Wu F, Ma J, Fan J, Dong X, Hu R, Feng G, Li D, Wang X, Nie G, Zhang X. R2R3-MYB gene family: Genome-wide identification provides insight to improve the content of proanthocyanidins in Trifolium repens. Gene 2022; 829:146523. [PMID: 35452706 DOI: 10.1016/j.gene.2022.146523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The R2R3-MYB family is one of largest transcription factor families in plants playing significant roles in regulating anthocyanin and proanthocyanidin biosynthesis. Proanthocyanidins are one of major objectives to improve the quality of white clover (Trifolium repens L.), which have a beneficial effect on ruminant to prevent the lethal pasture bloat. A total of 133 TrR2R3-MYB genes were identified and distributed on all 16 chromosomes based on the whole genome information of white clover. Also, by exploring the gene structure, motifs and duplication events of TrR2R3-MYBs, as well as the evolutionary relationship with TrR2R3-MYB genes of other species, 10 TrR2R3-MYB genes with the potential to regulate the anthocyanins and proanthocyanidins biosynthesis were screened. These TrR2R3-MYB genes responded significantly to low temperature in white clover. In addition, they have different expression patterns in leaves, petioles and inflorescences of white clover. Importantly, TrMYB116 and TrMYB118 may positively regulate anthocyanin accumulation and low temperature response in white clover. TrMYB118 may also be associated with anthocyanin pigmentation pattern in Purple leaves. This study provides a basis for verifying the function of TrR2R3-MYB and breeding white clover cultivars with high proanthocyanidins.
Collapse
Affiliation(s)
- Sainan Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhongfu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Feifei Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jieyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jinwan Fan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xintan Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruchang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xia Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
10
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Chen Y, Wu P, Zhang C, Guo Y, Liao B, Chen Y, Li M, Wu G, Wang Y, Jiang H. Ectopic Expression of JcCPL1, 2, and 4 Affects Epidermal Cell Differentiation, Anthocyanin Biosynthesis and Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23041924. [PMID: 35216041 PMCID: PMC8872631 DOI: 10.3390/ijms23041924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The CAPRICE (CPC)-like (CPL) genes belong to a single-repeat R3 MYB family, whose roles in physic nut (Jatropha curcas L.), an important energy plant, remain unclear. In this study, we identified a total of six CPL genes (JcCPL1–6) in physic nut. The JcCPL3, 4, and 6 proteins were localized mainly in the nucleus, while proteins JcCPL1, 2, and 5 were localized in both the nucleus and the cytoplasm. Ectopic overexpression of JcCPL1, 2, and 4 in Arabidopsis thaliana resulted in an increase in root hair number and decrease in trichome number. Consistent with the phenotype of reduced anthocyanin in shoots, the expression levels of anthocyanin biosynthesis genes were down-regulated in the shoots of these three transgenic A. thaliana lines. Moreover, we observed that OeJcCPL1, 2, 4 plants attained earlier leaf senescence, especially at the late developmental stage. Consistent with this, the expression levels of several senescence-associated and photosynthesis-related genes were, respectively, up-regulated and down-regulated in leaves. Taken together, our results indicate functional divergence of the six CPL proteins in physic nut. These findings also provide insight into the underlying roles of CPL transcription factors in leaf senescence.
Collapse
Affiliation(s)
- Yanbo Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Y.C.); (B.L.)
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture/Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Yali Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
| | - Bingbing Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Y.C.); (B.L.)
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (Y.C.); (B.L.)
- Correspondence: (Y.W.); (H.J.)
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (P.W.); (Y.G.); (Y.C.); (M.L.); (G.W.)
- Correspondence: (Y.W.); (H.J.)
| |
Collapse
|
12
|
Xin Y, Pan W, Chen X, Liu Y, Zhang M, Chen X, Yang F, Li J, Wu J, Du Y, Zhang X. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. PLANT CELL REPORTS 2021; 40:1889-1906. [PMID: 34259890 DOI: 10.1007/s00299-021-02753-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.
Collapse
Affiliation(s)
- Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Liu
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengping Yang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
13
|
Wang Y, Tian H, Wang W, Wang X, Zheng K, Hussain S, Lin R, Wang T, Wang S. The Carboxyl-Terminus of TRANSPARENT TESTA GLABRA1 Is Critical for Its Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms221810039. [PMID: 34576199 PMCID: PMC8467004 DOI: 10.3390/ijms221810039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The Arabidopsis WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulates cell fate determination, including trichome initiation and root hair formation, as well as secondary metabolism such as flavonoid biosynthesis and seed coat mucilage production. TTG1 regulates different processes via regulating the expression of its downstream target genes by forming MYB-bHLH-WD40 (MBW) activator complexes with different R2R3 MYB and bHLH transcription factors. Here, we report the identification of the carboxyl (C)-terminus as a critical domain for TTG1′s functions in Arabidopsis. We found that the ttg1Δ15aa mutant shows pleiotropic phenotypes identical to a TTG1 loss-of-function mutant. Gene sequencing indicates that a single nucleotide substitution in TTG1 led to a premature stop at the W327 residue, leading to the production of a truncated TTG1 protein with a deletion of the last 15 C-terminal amino acids. The expression of TTG1 under the control of its native promoter fully restored the ttg1Δ15aa mutant phenotypes. Consistent with these observations, the expression levels of TTG1 downstream genes such as GLABRA2 (GL2) and CAPRICE (CPC) were reduced in the ttg1Δ15aa mutant. Assays in Arabidopsis protoplast show that TTG1Δ15aa failed to interact with the bHLH transcription factor GL3, and the deletion of the last 3 C-terminal amino acids or the 339L amino acid alone fully abolished the interaction of TTG1 with GL3. Furthermore, the expression of TTG1Δ3aa under the control of TTG1 native promoter failed to restore the ttg1Δ15aa mutant phenotypes. Taken together, our results suggest that the C-terminal domain of TTG1 is required for its proper function in Arabidopsis.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (H.T.); (K.Z.); (S.H.); (R.L.); (T.W.)
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (Y.W.); (W.W.); (X.W.)
- Correspondence:
| |
Collapse
|
14
|
Li J, Tang B, Li Y, Li C, Guo M, Chen H, Han S, Li J, Lou Q, Sun W, Wang P, Guo H, Ye W, Zhang Z, Zhang H, Yu S, Zhang L, Li Z. Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1521-1537. [PMID: 34038040 DOI: 10.1111/jipb.13140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Trichomes function in plant defenses against biotic and abiotic stresses; examination of glabrous lines, which lack trichomes, has revealed key aspects of trichome development and function. Tests of allelism in 51 glabrous rice (Oryza sativa) accessions collected worldwide identified OsSPL10 and OsWOX3B as regulators of trichome development in rice. Here, we report that OsSPL10 acts as a transcriptional regulator controlling trichome development. Haplotype and transient expression analyses revealed that variation in the approximately 700-bp OsSPL10 promoter region is the primary cause of the glabrous phenotype in the indica cultivar WD-17993. Disruption of OsSPL10 by genome editing decreased leaf trichome density and length in the NIL-HL6 background. Plants with genotype OsSPL10WD-17993 /HL6 generated by crossing WD-17993 with NIL-HL6 also had fewer trichomes in the glumes. HAIRY LEAF6 (HL6) encodes another transcription factor that regulates trichome initiation and elongation, and OsSPL10 directly binds to the HL6 promoter to regulate its expression. Moreover, the transcript levels of auxin-related genes, such as OsYUCCA5 and OsPIN-FORMED1b, were altered in OsSPL10 overexpression and RNAi transgenic lines. Feeding tests using locusts (Locusta migratoria) demonstrated that non-glandular trichomes affect feeding by this herbivore. Our findings provide a molecular framework for trichome development and an ecological perspective on trichome functions.
Collapse
Affiliation(s)
- Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bo Tang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yingxiu Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenguang Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Minjie Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haiyang Chen
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shichen Han
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qijin Lou
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wei Ye
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Zheng K, Wang X, Wang Y, Wang S. Conserved and non-conserved functions of the rice homologs of the Arabidopsis trichome initiation-regulating MBW complex proteins. BMC PLANT BIOLOGY 2021; 21:234. [PMID: 34034660 PMCID: PMC8145838 DOI: 10.1186/s12870-021-03035-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. RESULTS Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. CONCLUSION These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China.
| |
Collapse
|
16
|
Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Sci Rep 2021; 11:10764. [PMID: 34031482 PMCID: PMC8144589 DOI: 10.1038/s41598-021-90205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Leaf trichomes play vital roles in plant resistance and the quality of tea. Basic helix-loop-helix (bHLH) transcription factors (TFs) play an important role in regulating plant development and growth. In this study, a total of 134 CsbHLH proteins were identified in the Camellia sinensis var. sinensis (CSS) genome. They were divided into 17 subgroups according to the Arabidopsis thaliana classification. Phylogenetic tree analysis indicated that members of subgroups IIIc-I and IIIc-II might be associated with trichome formation. The expression patterns of CsbHLH116, CsbHLH133, CsbHLH060, CsbHLH028, CsbHLH024, CsbHLH112 and CsbHLH053 from clusters 1, 3 and 5 were similar to the trichome distribution in tea plants. CsbHLH024 and CsbHLH133 were located in the cell nucleus and possessed transcriptional activation ability. They could interact with CsTTG1, which is a regulator of tea trichome formation. This study provides useful information for further research on the function of CsbHLHs in trichome formation.
Collapse
|
17
|
Chen Z, Zhao J, Song J, Han S, Du Y, Qiao Y, Liu Z, Qiao J, Li W, Li J, Wang H, Xing B, Pan Q. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. PLoS One 2021; 16:e0244856. [PMID: 33395448 PMCID: PMC7781479 DOI: 10.1371/journal.pone.0244856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Graphene reportedly exerts positive effects on plant root growth and development, although the corresponding molecular response mechanism remains to be elucidated. Maize seeds were randomly divided into a control and experimental group, and the roots of Zea mays L. seedlings were watered with different concentrations (0-100 mg/L) of graphene to explore the effects and molecular mechanism of graphene on the growth and development of Z. mays L. Upon evaluating root growth indices, 50 mg/L graphene remarkably increased total root length, root volume, and the number of root tips and forks of maize seedlings compared to those of the control group. We observed that the contents of nitrogen and potassium in rhizosphere soil increased following the 50 mg/L graphene treatment. Thereafter, we compared the transcriptome changes in Z. mays roots in response to the 50 mg/L graphene treatment. Transcriptional factor regulation, plant hormone signal transduction, nitrogen and potassium metabolism, as well as secondary metabolism in maize roots subjected to graphene treatment, exhibited significantly upregulated expression, all of which could be related to mechanisms underlying the response to graphene. Based on qPCR validations, we proposed several candidate genes that might have been affected with the graphene treatment of maize roots. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying graphene and maize root interaction.
Collapse
Affiliation(s)
- Zhiwen Chen
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- * E-mail: (ZC); (JZ)
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
- * E-mail: (ZC); (JZ)
| | - Jie Song
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Shenghua Han
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Yaqin Du
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Yuying Qiao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Zehui Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Jun Qiao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Weijia Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Jingwei Li
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Haiyan Wang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Baoyan Xing
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Qiliang Pan
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| |
Collapse
|
18
|
Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110704. [PMID: 33288017 DOI: 10.1016/j.plantsci.2020.110704] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 05/27/2023]
Abstract
Arabidopsis thaliana TRY is a negative regulator of trichome differentiation that promotes root hair differentiation. Here, we established that LbTRY, from the recretohalophyte Limonium bicolor, is a typical MYB transcription factor that exhibits transcriptional activation activity and locates in nucleus. By in situ hybridization in L. bicolor, LbTRY may be specifically positioned in salt gland of the expanded leaves. LbTRY expression was the highest in mature leaves and lowest under NaCl treatment. For functional assessment, we heterologously expressed LbTRY in wild-type and try29760 mutant Arabidopsis plants. Epidermal differentiation was remarkably affected in the transgenic wild-type line, as was increased root hair development. Complementation of try29760 with LbTRY under both 35S and LbTRY specific promoter restored the wild-type phenotype. qRT-PCR analysis suggested that AtGL3 and AtZFP5 promote root hair cell fate in lines heterologously producing LbTRY. In addition, four genes (AtRHD6, AtRSL1, AtLRL2, and AtLRL3) involved in root hair initiation and elongation were upregulated in the transgenic lines. Furthermore, LbTRY specifically increased the salt sensitivity of the transgenic lines. The transgenic and complementation lines showed poor germination rates and reduced root lengths, whereas the mutant unexpectedly fared the best under a range of NaCl treatments. Under salt stress, the transgenic seedlings accumulated more MDA and Na+ and less proline and soluble sugar than try29760. Thus, when heterologously expressed in Arabidopsis, LbTRY participates in hair development, similar to other MYB proteins, and specifically reduces salt tolerance by increasing ion accumulation and reducing osmolytes. The expression of salt-tolerance marker genes (SOS1, SOS2, SOS3 and P5CS1) was significant reduced in the transgenic lines. More will be carried by downregulating expression of TRY homologs in crops to improve salt tolerance.
Collapse
Affiliation(s)
- Bingying Leng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China; Maize Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, PR China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China.
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, PR China.
| |
Collapse
|
19
|
Liu S, Zhong H, Meng X, Sun T, Li Y, Pinson SRM, Chang SKC, Peng Z. Genome-wide association studies of ionomic and agronomic traits in USDA mini core collection of rice and comparative analyses of different mapping methods. BMC PLANT BIOLOGY 2020; 20:441. [PMID: 32972357 PMCID: PMC7513512 DOI: 10.1186/s12870-020-02603-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rice is an important human staple food vulnerable to heavy metal contamination leading to serious concerns. High yield with low heavy metal contamination is a common but highly challenging goal for rice breeders worldwide due to lack of genetic knowledge and markers. RESULTS To identify candidate QTLs and develop molecular markers for rice yield and heavy metal content, a total of 191 accessions from the USDA Rice mini-core collection with over 3.2 million SNPs were employed to investigate the QTLs. Sixteen ionomic and thirteen agronomic traits were analyzed utilizing two univariate (GLM and MLM) and two multivariate (MLMM and FarmCPU) GWAS methods. 106, 47, and 97 QTLs were identified for ionomics flooded, ionomics unflooded, and agronomic traits, respectively, with the criterium of p-value < 1.53 × 10- 8, which was determined by the Bonferroni correction for p-value of 0.05. While 49 (~ 20%) of the 250 QTLs were coinciding with previously reported QTLs/genes, about 201 (~ 80%) were new. In addition, several new candidate genes involved in ionomic and agronomic traits control were identified by analyzing the DNA sequence, gene expression, and the homologs of the QTL regions. Our results further showed that each of the four GWAS methods can identify unique as well as common QTLs, suggesting that using multiple GWAS methods can complement each other in QTL identification, especially by combining univariate and multivariate methods. CONCLUSIONS While 49 previously reported QTLs/genes were rediscovered, over 200 new QTLs for ionomic and agronomic traits were found in the rice genome. Moreover, multiple new candidate genes for agronomic and ionomic traits were identified. This research provides novel insights into the genetic basis of both ionomic and agronomic variations in rice, establishing the foundation for marker development in breeding and further investigation on reducing heavy-metal contamination and improving crop yields. Finally, the comparative analysis of the GWAS methods showed that each method has unique features and different methods can complement each other.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Hua Zhong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA
| | - Tong Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shannon R M Pinson
- Dale Bumpers National Rice Research Center, USDA ARS, Stuttgart, AR, 72160, USA
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Coastal and Research Extension Center, Mississippi State University, Pascagoula, MS, 39567, USA
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
20
|
Ma J, Yang S, Wang D, Tang K, Feng XX, Feng XZ. Genetic Mapping of a Light-Dependent Lesion Mimic Mutant Reveals the Function of Coproporphyrinogen III Oxidase Homolog in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:557. [PMID: 32457787 PMCID: PMC7227399 DOI: 10.3389/fpls.2020.00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/14/2020] [Indexed: 05/30/2023]
Abstract
Lesion mimic mutants provide ideal genetic materials for elucidating the molecular mechanism of cell death and disease resistance. Here, we isolated a Glycine max lesion mimic mutant 2-1 (Gmlmm2-1), which displayed a light-dependent cell death phenotype. Map-based cloning revealed that GmLMM2 encods a coproporphyrinogen III oxidase and participates in tetrapyrrole biosynthesis. Knockout of GmLMM2 led to necrotic spots on developing leaves of CRISPR/Cas9 induced mutants. The GmLMM2 defect decreased the chlorophyll content by disrupting tetrapyrrole biosynthesis and enhanced resistance to Phytophthora sojae. These results suggested that GmLMM2 gene played an important role in the biosynthesis of tetrapyrrole and light-dependent defense in soybeans.
Collapse
Affiliation(s)
- Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Dongmei Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Zhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
21
|
OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice. Biochem Biophys Res Commun 2020; 522:448-455. [DOI: 10.1016/j.bbrc.2019.11.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022]
|
22
|
Chen S, Wang S. GLABRA2, A Common Regulator for Epidermal Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2019; 20:ijms20204997. [PMID: 31601032 PMCID: PMC6834157 DOI: 10.3390/ijms20204997] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
Epidermal cell fate determination—including trichome initiation, root hair formation, and flavonoid and mucilage biosynthesis in Arabidopsis (Arabidopsis thaliana)—are controlled by a similar transcriptional regulatory network. In the network, it has been proposed that the MYB-bHLH-WD40 (MBW) activator complexes formed by an R2R3 MYB transcription factor, a bHLH transcription factor and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1) regulate the expression of downstream genes required for cell fate determination, flavonoid or mucilage biosynthesis, respectively. In epidermal cell fate determination and mucilage biosynthesis, the MBW activator complexes activate the expression of GLABRA2 (GL2). GL2 is a homeodomain transcription factor that promotes trichome initiation in shoots, mucilage biosynthesis in seeds, and inhibits root hair formation in roots. The MBW activator complexes also activate several R3 MYB genes. The R3 MYB proteins, in turn, competing with the R2R3 MYBs for binding bHLH transcription factors, therefore inhibiting the formation of the MBW activator complexes, lead to the inhibition of trichome initiation in shoots, and promotion of root hair formation in roots. In flavonoid biosynthesis, the MBW activator complexes activate the expression of the late biosynthesis genes in the flavonoid pathway, resulting in the production of anthocyanins or proanthocyanidins. Research progress in recent years suggests that the transcriptional regulatory network that controls epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis is far more complicated than previously thought. In particular, more regulators of GL2 have been identified, and GL2 has been shown to be involved in the regulation of anthocyanin biosynthesis. This review focuses on the research progress on the regulation of GL2 expression, and the roles of GL2 in the regulation of epidermal cell fate determination and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276005, China.
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
23
|
Hayashi N, Rongkavilit N, Tetsumura T, Sawa S, Wada T, Tominaga-Wada R. Effect of the CLE14 polypeptide on GLABRA2 homolog gene expression in rice and tomato roots. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:205-208. [PMID: 31768124 PMCID: PMC6854340 DOI: 10.5511/plantbiotechnology.19.0725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The CLAVATA3/ESR (CLE) plant polypeptides act as peptide hormones in various physiological and developmental aspects in a diverse array of land plants. One of the CLE family of genes, CLE14, is reported to induce root hair formation in Arabidopsis thaliana roots. Previously, we demonstrated that the application of synthetic CLE14 polypeptide treatment induced excess root hairs, and reduced the expression level of the non-hair cell fate determinant gene, GLABRA2 (GL2) in Arabidopsis roots. In this study, we investigated the function of synthetic CLE14 polypeptide in rice (Oryza sativa) and tomato (Solanum lycopersicum) roots. We measured the expression levels of the OsGL2 and SlGL2 genes, i.e., homologs of the Arabidopsis GL2 gene, in rice and tomato seedlings, respectively. Although CLE14 polypeptide treatment induced excess root hair formation in rice roots, substantial root hair induction was not observed in tomato roots. However, the CLE14 polypeptide treatment significantly inhibited the expression of the GL2 homolog genes of rice (OsGL2) and tomato (SlGL2). Our findings thus indicated that CLE14 can inhibit the GL2 gene expression in both rice and tomato plants, similar to the effect seen in Arabidopsis.
Collapse
Affiliation(s)
- Naoto Hayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Natthanon Rongkavilit
- Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Ladyao Chatuchak, Bangkok 10900, Thailand
| | - Takuya Tetsumura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Takuji Wada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Rumi Tominaga-Wada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
24
|
Zhou Q, Jia C, Ma W, Cui Y, Jin X, Luo D, Min X, Liu Z. MYB transcription factors in alfalfa ( Medicago sativa): genome-wide identification and expression analysis under abiotic stresses. PeerJ 2019; 7:e7714. [PMID: 31576246 PMCID: PMC6753925 DOI: 10.7717/peerj.7714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Alfalfa is the most widely cultivated forage legume and one of the most economically valuable crops in the world. Its survival and production are often hampered by environmental changes. However, there are few studies on stress-resistance genes in alfalfa because of its incomplete genomic information and rare expression profile data. The MYB proteins are characterized by a highly conserved DNA-binding domain, which is large, functionally diverse, and represented in all eukaryotes. The role of MYB proteins in plant development is essential; they function in diverse biological processes, including stress and defense responses, and seed and floral development. Studies on the MYB gene family have been reported in several species, but they have not been comprehensively analyzed in alfalfa. Methods To identify more comprehensive MYB transcription factor family genes, the sequences of 168 Arabidopsis thaliana, 430 Glycine max, 185 Medicago truncatula, and 130 Oryza sativa MYB proteins were downloaded from the Plant Transcription Factor Database. These sequences were used as queries in a BLAST search against the M. sativa proteome sequences provided by the Noble Research Institute. Results In the present study, a total of 265 MsMYB proteins were obtained, including 50 R1-MYB, 186 R2R3-MYB, 26 R1R2R3-MYB, and three atypical-MYB proteins. These predicted MsMYB proteins were divided into 12 subgroups by phylogenetic analysis, and gene ontology (GO) analysis indicated that most of the MsMYB genes are involved in various biological processes. The expression profiles and quantitative real-time PCR analysis indicated that some MsMYB genes might play a crucial role in the response to abiotic stresses. Additionally, a total of 170 and 914 predicted protein–protein and protein-DNA interactions were obtained, respectively. The interactions between MsMYB043 and MSAD320162, MsMYB253 and MSAD320162, and MsMYB253 and MSAD308489 were confirmed by a yeast two-hybrid system. This work provides information on the MYB family in alfalfa that was previously lacking and might promote the cultivation of stress-resistant alfalfa.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wenxue Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yue Cui
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Shan X, Li Y, Yang S, Gao R, Zhou L, Bao T, Han T, Wang S, Gao X, Wang L. A functional homologue of Arabidopsis TTG1 from Freesia interacts with bHLH proteins to regulate anthocyanin and proanthocyanidin biosynthesis in both Freesia hybrida and Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:60-72. [PMID: 31128564 DOI: 10.1016/j.plaphy.2019.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 05/15/2023]
Abstract
The MBW complex, consisting of MYB, basic helix-loop-helix (bHLH) and WD40 proteins, regulates multiple traits in plants, such as anthocyanin and proanthocyanidin biosynthesis and cell fate determination. The complex has been widely identified in dicot plants, whereas few studies are concentrated on monocot plants which are of crucial importance to decipher its functional diversities among angiosperms during evolution. In present study, a WD40 gene from Freesia hybrida, designated as FhTTG1, was cloned and functionally characterized. Real-time PCR analysis indicated that it was expressed synchronously with the accumulation of both proanthocyanidins and anthocyanins in Freesia flowers. Transient protoplast transfection and biomolecular fluorescence complementation (BiFC) assays demonstrated that FhTTG1 could interact with FhbHLH proteins (FhTT8L and FhGL3L) to constitute the MBW complex. Moreover, the transportation of FhTTG1 to nucleus was found to rely on FhbHLH factors. Outstandingly, FhTTG1 could highly activate the anthocyanin or proanthocyanidin biosynthesis related gene promoters when co-transfected with MYB and bHLH partners, implying that FhTTG1 functioned as a member of MBW complex to control the anthocyanin or proanthocyanidin biosynthesis in Freesia hybrida. Further ectopic expression assays in Arabidopsis ttg1-1 showed the defective phenotypes of ttg1-1 were partially restored. Molecular biological assays validated FhTTG1 might interact with the endogenous bHLH factors to up-regulate genes responsible for anthocyanin and proanthocyanidin biosynthesis and trichome formation, indicating that FhTTG1 might perform exchangeable roles with AtTTG1. These results will not only contribute to the characterization of FhTTG1 in Freesia but also shed light on the establishment of flavonoid regulatory system in monocot plants, especially in Freesia hybrida.
Collapse
Affiliation(s)
- Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Liudi Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Taotao Han
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China; National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China.
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
26
|
Worthen JM, Yamburenko MV, Lim J, Nimchuk ZL, Kieber JJ, Schaller GE. Type-B response regulators of rice play key roles in growth, development and cytokinin signaling. Development 2019; 146:dev.174870. [PMID: 31160418 DOI: 10.1242/dev.174870] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Cytokinins are plant hormones with crucial roles in growth and development. Although cytokinin signaling is well characterized in the model dicot Arabidopsis, we are only beginning to understand its role in monocots, such as rice (Oryza sativa) and other cereals of agronomic importance. Here, we used primarily a CRISPR/Cas9 gene-editing approach to characterize the roles of a key family of transcription factors, the type-B response regulators (RRs), in cytokinin signaling in rice. Results from the analysis of single rr mutants as well as higher-order rr21/22/23 mutant lines revealed functional overlap as well as subfunctionalization within members of the gene family. Mutant phenotypes associated with decreased activity of rice type-B RRs included effects on leaf and root growth, inflorescence architecture, flower development and fertilization, trichome formation and cytokinin sensitivity. Development of the stigma brush involved in pollen capture was compromised in the rr21/22/23 mutant, whereas anther development was compromised in the rr24 mutant. Novel as well as conserved roles for type-B RRs in the growth and development of a monocot compared with dicots were identified.
Collapse
Affiliation(s)
- Jennifer M Worthen
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maria V Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jeewoo Lim
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
27
|
Zheng K, Wang Y, Wang S. The non-DNA binding bHLH transcription factor Paclobutrazol Resistances are involved in the regulation of ABA and salt responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:239-245. [PMID: 30921735 DOI: 10.1016/j.plaphy.2019.03.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 05/15/2023]
Abstract
Abscisic acid (ABA) is the key hormone that regulating plant responses to abiotic stresses. Several basic helix-loop-helix (bHLH) transcription factors have been reported to regulate ABA signaling in Arabidopsis. Paclobutrazol Resistances (PREs) are non-DNA binding bHLH transcription factors involved in the regulation of plant response to several different plant hormones including gibberellin, brassinosteroid and auxin. Here, we show that PREs are involved in the regulation of ABA and salt responses in Arabidopsis. Quantitative RT-PCR results showed that the expression levels of PRE6 as well as several other PRE genes were reduced in response to ABA treatment, but increased to salt treatment. Seed germination assays indicated that ABA sensitivity is reduced in the pre6 mutants, but increased in transgenic plants overexpressing PRE6. On the other hand, the 35S:PRE6 transgenic plants showed enhanced tolerance to salt, whereas little, if any changes were observed in the pre6 mutants. Similar responses to ABA and salt treatments were observed in the pre2 mutants and the transgenic plants overexpressing PRE2, and a slight increased resistance to ABA in seed germination was observed in the pre2 pre6 double mutants. Taken together, our results suggest that at least some of the PRE genes are ABA responsive genes, and PREs may function redundantly to regulate ABA and salt responses in Arabidopsis.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China; Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China; College of Life Science, Linyi University, Linyi, China.
| |
Collapse
|
28
|
Zhang Y, Zhang J, Shao C, Bao Z, Liu G, Bao M. Single-repeat R3 MYB transcription factors from Platanus acerifolia negatively regulate trichome formation in Arabidopsis. PLANTA 2019; 249:861-877. [PMID: 30448862 DOI: 10.1007/s00425-018-3042-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Four R3 MYB genes were cloned and identified from Platanus acerifolia and analysed according to endogenous gene expression profiles, protein-protein interaction patterns, phenotypic effects and related gene expression profiles in transgenic Arabidopsis, suggesting that London plane R3 MYB genes inhibit trichome formation in Arabidopsis. The CPC-like MYB transcription factors including CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2 and 3 (ETC1, ETC2 and ETC3), TRICHOMELESS1 (TCL1) and TRICHOMELESS2(TCL2) play important roles in controlling trichome patterning in Arabidopsis. In this study, four sequences homologous with the Arabidopsis CPC family were identified from London plane and named PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3. Over-expression of PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3 in Arabidopsis resulted in glabrous phenotypes. In addition, expression of endogenous GL2, GL1, MYB23, TTG2 and a set of R3 MYB-encoding genes was markedly reduced. Furthermore, the protein products of PaTRY, PaCPC-like1, PaCPC-like2 and PaCPC-like3 were shown to interact with PaGL3 in yeast two-hybrid assays. Together, these results likely suggest that the mechanisms of trichome regulation in London plane have similarities with those in Arabidopsis.
Collapse
Affiliation(s)
- Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guofeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
29
|
Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC PLANT BIOLOGY 2019; 19:53. [PMID: 30813891 PMCID: PMC6393967 DOI: 10.1186/s12870-019-1640-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The variation in structure and function of gene regulatory networks (GRNs) participating in organisms development is a key for understanding species-specific evolutionary strategies. Even the tiniest modification of developmental GRN might result in a substantial change of a complex morphogenetic pattern. Great variety of trichomes and their accessibility makes them a useful model for studying the molecular processes of cell fate determination, cell cycle control and cellular morphogenesis. Nowadays, a large number of genes regulating the morphogenesis of A. thaliana trichomes are described. Here we aimed at a study the evolution of the GRN defining the trichome formation, and evaluation its importance in other developmental processes. RESULTS In study of the evolution of trichomes formation GRN we combined classical phylogenetic analysis with information on the GRN topology and composition in major plants taxa. This approach allowed us to estimate both times of evolutionary emergence of the GRN components which are mainly proteins, and the relative rate of their molecular evolution. Various simplifications of protein structure (based on the position of amino acid residues in protein globula, secondary structure type, and structural disorder) allowed us to demonstrate the evolutionary associations between changes in protein globules and speciations/duplications events. We discussed their potential involvement in protein-protein interactions and GRN function. CONCLUSIONS We hypothesize that the divergence and/or the specialization of the trichome-forming GRN is linked to the emergence of plant taxa. Information about the structural targets of the protein evolution in the GRN may predict switching points in gene networks functioning in course of evolution. We also propose a list of candidate genes responsible for the development of trichomes in a wide range of plant species.
Collapse
Affiliation(s)
- Alexey V. Doroshkov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Dmitrij A. Afonnikov
- The Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), The Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University (NSU), Novosibirsk, Russia
| | - Konstantin V. Gunbin
- Novosibirsk State University (NSU), Novosibirsk, Russia
- School of Life Science, Immanuel Kant Federal Baltic University, Kaliningrad, Russia
- Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
30
|
Zhang N, Yang L, Luo S, Wang X, Wang W, Cheng Y, Tian H, Zheng K, Cai L, Wang S. Genetic evidence suggests that GIS functions downstream of TCL1 to regulate trichome formation in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:63. [PMID: 29653514 PMCID: PMC5899377 DOI: 10.1186/s12870-018-1271-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 03/26/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. RESULTS By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. CONCLUSIONS In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Li Yang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Sha Luo
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Wei Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ling Cai
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, 130024 China
| |
Collapse
|
31
|
Identification and Characterization of Anthocyanin Biosynthesis-Related Genes in Kohlrabi. Appl Biochem Biotechnol 2017; 184:1120-1141. [PMID: 28965308 DOI: 10.1007/s12010-017-2613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Kohlrabi (Brassica oleracea var. gongylodes L.) is an important vegetable of the Brassicaceae family. The main edible part of kohlrabi is the swollen stem. The purple cultivars make anthocyanin mainly in the peel of the swollen stem, while in the leaf, it is limited to the midrib, but green cultivars do not. Anthocyanins are advantageous for both plants as well as humans. Two anthocyanin compounds were detected by high pressure liquid chromatography (HPLC) only in the peel of the purple kohlrabi cultivar. Three MYBs, three bHLHs, and one WD40 TF were identified as the candidate regulatory genes in kohlrabi. There was an abundance of transcript levels for the late biosynthetic genes more specifically for BoF3'H, BoDFR, BoLDOX, and BoGST in the purple peel while scarcely detectable in other tissues for both cultivars. The expression of BoPAP2 and BoTT8 was higher in the peel of the purple cultivar than the green cultivar. The expression of BoMYBL2.2 orthologue of Arabidopsis MYBL2, a negative regulator of anthocyanins, was dramatically decreased in the purple peel. The expression of BoACO1, a key gene for ethylene biosynthesis, and BoNCED3, an important gene of the ABA pathway, was down- and upregulated, respectively, in the peel of purple kohlrabi.
Collapse
|
32
|
Root hair development in grasses and cereals (Poaceae). Curr Opin Genet Dev 2017; 45:76-81. [DOI: 10.1016/j.gde.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 11/23/2022]
|
33
|
Tian H, Wang X, Guo H, Cheng Y, Hou C, Chen JG, Wang S. NTL8 Regulates Trichome Formation in Arabidopsis by Directly Activating R3 MYB Genes TRY and TCL1. PLANT PHYSIOLOGY 2017; 174:2363-2375. [PMID: 28649093 PMCID: PMC5543959 DOI: 10.1104/pp.17.00510] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/19/2017] [Indexed: 05/17/2023]
Abstract
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8 Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xianling Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyan Guo
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Chunjiang Hou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
34
|
Zheng K, Wang Y, Zhang N, Jia Q, Wang X, Hou C, Chen JG, Wang S. Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1813. [PMID: 29114256 PMCID: PMC5660721 DOI: 10.3389/fpls.2017.01813] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Auxin regulates nearly all aspects of plant growth and development including cell division, cell elongation and cell differentiation, which are achieved largely by rapid regulation of auxin response genes. However, the functions of a large number of auxin response genes remain uncharacterized. Paclobutrazol Resistance (PRE) proteins are non-DNA binding basic helix-loop-helix transcription factors that have been shown to be involved in gibberellin and brassinosteroid signaling, and light responses in Arabidopsis. Here, we provide molecular and genetic evidence that PRE6, one of the six PRE genes in Arabidopsis, is an auxin response gene, and that PRE6 is involved in the regulation of auxin signaling. By using quantitative RT-PCR, we showed that the expression level of PRE6 was increased in response to exogenously applied IAA. GUS staining results also showed that the expression of GUS reporter gene in the PRE6p:GUS transgenic seedlings was elevated in response to auxin. Phenotypic analysis showed that overexpression of PRE6 in Arabidopsis resulted in auxin-related phenotypes including elongated hypocotyl and primary roots, and reduced number of lateral roots when compared with the Col wild type seedlings, whereas opposite phenotypes were observed in the pre6 mutants. Further analysis showed that PRE6 overexpression plants were hyposensitive, whereas pre6 mutants were hypersensitive to auxin in root and hypocotyl elongation and lateral root formation assays. By using protoplasts transfection, we showed that PRE6 functions as a transcriptional repressor. Consistent with this, the expression of the auxin response reporter DR5:GUS was decreased in PRE6 overexpression lines, but increased in pre6 mutants. When co-transfected into protoplasts, ARF5 and ARF8 activated the expression of the PRE6p:GUS reporter. Chromatin immunoprecipitation assays showed that ARF5 and ARF8 can be recruited to the promoter regions of PRE6. Taken together, these results suggest that PRE6 is an auxin response gene whose expression is directly regulated by ARF5 and ARF8, and that PRE6 is a transcriptional repressor that negatively regulates auxin responses in Arabidopsis.
Collapse
Affiliation(s)
- Kaijie Zheng
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Chunjiang Hou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Shucai Wang,
| |
Collapse
|
35
|
Bhattacharjee A, Sharma R, Jain M. Over-Expression of OsHOX24 Confers Enhanced Susceptibility to Abiotic Stresses in Transgenic Rice via Modulating Stress-Responsive Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:628. [PMID: 28484484 PMCID: PMC5399076 DOI: 10.3389/fpls.2017.00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/07/2017] [Indexed: 05/20/2023]
Abstract
Homeobox transcription factors play critical roles in plant development and abiotic stress responses. In the present study, we raised rice transgenics over-expressing stress-responsive OsHOX24 gene (rice homeodomain-leucine zipper I sub-family member) and analyzed their response to various abiotic stresses at different stages of development. At the seed germination stage, rice transgenics over-expressing OsHOX24 exhibited enhanced sensitivity to abiotic stress conditions and abscisic acid as compared to wild-type (WT). OsHOX24 over-expression rice seedlings showed reduced root and shoot growth under salinity and desiccation stress (DS) conditions. Various physiological and phenotypic assays confirmed higher susceptibility of rice transgenics toward abiotic stresses as compared to WT at mature and reproductive stages of rice development too. Global gene expression profiling revealed differential regulation of several genes in the transgenic plants under control and DS conditions. Many of these differentially expressed genes were found to be involved in transcriptional regulatory activities, besides carbohydrate, nucleic acid and lipid metabolic processes and response to abiotic stress and hormones. Taken together, our findings highlighted the role of OsHOX24 in regulation of abiotic stress responses via modulating the expression of stress-responsive genes in rice.
Collapse
Affiliation(s)
| | | | - Mukesh Jain
- National Institute of Plant Genome ResearchNew Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Mukesh Jain, ;
| |
Collapse
|