1
|
Elder E, Lemieux A, Legault LM, Caron M, Bertrand-Lehouillier V, Dupas T, Raynal NM, Bourque G, Sinnett D, Gévry N, McGraw S. Rescuing DNMT1 fails to fully reverse the molecular and functional repercussions of its loss in mouse embryonic stem cells. Nucleic Acids Res 2025; 53:gkaf130. [PMID: 39997223 PMCID: PMC11851107 DOI: 10.1093/nar/gkaf130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/27/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Epigenetic mechanisms are crucial for developmental programming and can be disrupted by environmental stressors, increasing susceptibility to disease. This has sparked interest in therapies for restoring epigenetic balance, but it remains uncertain whether disordered epigenetic mechanisms can be fully corrected. Disruption of DNA methyltransferase 1 (DNMT1), responsible for DNA methylation maintenance, has particularly devastating biological consequences. Therefore, here we explored if rescuing DNMT1 activity is sufficient to reverse the effects of its loss utilizing mouse embryonic stem cells. However, only partial reversal could be achieved. Extensive changes in DNA methylation, histone modifications, and gene expression were detected, along with transposable element derepression and genomic instability. Reduction of cellular size, complexity, and proliferation rate were observed, as well as lasting effects in germ layer lineages and embryoid bodies. Interestingly, by analyzing the impact on imprinted regions, we uncovered 20 regions exhibiting imprinted-like signatures. Notably, while many permanent effects persisted throughout Dnmt1 inactivation and rescue, others arose from the rescue intervention. Lastly, rescuing DNMT1 after differentiation initiation worsened outcomes, reinforcing the need for early intervention. Our findings highlight the far-reaching functions of DNMT1 and provide valuable perspectives on the repercussions of epigenetic perturbations during early development and the challenges of rescue interventions.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Anthony Lemieux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Maxime Caron
- University of Montreal Hospital Research Centre, Montreal, Quebec, H2X 0A9, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Thomas Dupas
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Noël J-M Raynal
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1Y2, Canada
- McGill Genome Centre, Montreal, Quebec, H3A 0G1, Canada
| | - Daniel Sinnett
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, H3T 1C5, Canada
| | - Nicolas Gévry
- Department of Biology, University of Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
- Azrieli Research Centre of Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Obstetrics and Gynecology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
2
|
Festuccia N, Vandormael-Pournin S, Chervova A, Geiselmann A, Langa-Vives F, Coux RX, Gonzalez I, Collet GG, Cohen-Tannoudji M, Navarro P. Nr5a2 is dispensable for zygotic genome activation but essential for morula development. Science 2024; 386:eadg7325. [PMID: 39361745 DOI: 10.1126/science.adg7325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/10/2024] [Accepted: 08/05/2024] [Indexed: 10/05/2024]
Abstract
Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF Nr5a2, we show that Nr5a2-/- embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects. Although NR5A2 plays a minor but measurable role during zygotic genome activation, it predominantly acts as a master regulator at the eight-cell stage, controlling expression of lineage-specifying TFs and genes involved in mitosis, telomere maintenance, and DNA repair. We conclude that NR5A2 coordinates proliferation, genome stability, and lineage specification to ensure correct morula development.
Collapse
Affiliation(s)
- Nicola Festuccia
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Sandrine Vandormael-Pournin
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Almira Chervova
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Anna Geiselmann
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Sorbonne Université, Complexité du Vivant, 75005 Paris, France
| | | | - Rémi-Xavier Coux
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Inma Gonzalez
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Guillaume Giraud Collet
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
- Université Paris Cité, BioSPC, 75013 Paris, France
| | - Michel Cohen-Tannoudji
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| | - Pablo Navarro
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France
| |
Collapse
|
3
|
Mwalilino L, Yamane M, Ishiguro KI, Usuki S, Endoh M, Niwa H. The role of Zfp352 in the regulation of transient expression of 2-cell specific genes in mouse embryonic stem cells. Genes Cells 2023; 28:831-844. [PMID: 37778747 DOI: 10.1111/gtc.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Mouse ES cell populations contain a minor sub-population that expresses genes specifically expressed in 2-cell stage embryos. This sub-population consists of 2-cell-gene labeled cells (2CLCs) generated by the transient activation of the 2-cell specific genes initiated by the master regulator, Dux. However, the mechanism regulating the transient expression remains largely unclear. Here we reported a novel function of Zfp352, one of the 2-cell specific genes, in regulating the 2CLC sub-population. Zfp352 encodes zinc-finger transcription factor belonging to the Klf family. Dux transiently activates Zfp352 after the activation of Zscan4c in a subset of the 2CLC subpopulation. Interestingly, in the reporter assay, the transcriptional activation of Zscan4c by Dux is strongly repressed by the co-expression of Zfp352. However, the knockout of Zfp352 resulted in the repression of a subset of the 2-cell-specific genes. These data suggest the dual roles of Zfp352 in regulating the transient activation of the 2-cell-specific genes.
Collapse
Affiliation(s)
- Lusubilo Mwalilino
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mariko Yamane
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Functional Genome Informatics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, Japan
| | - Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Seo BJ, Na SB, Choi J, Ahn B, Habib O, Park C, Hong K, Do JT. Metabolic and cell cycle shift induced by the deletion of Dnm1l attenuates the dissolution of pluripotency in mouse embryonic stem cells. Cell Mol Life Sci 2023; 80:302. [PMID: 37747543 PMCID: PMC11073397 DOI: 10.1007/s00018-023-04962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l-/- ESCs maintained major pluripotency characteristics. However, Dnm1l-/- ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l-/- ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l-/- ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.
Collapse
Affiliation(s)
- Bong Jong Seo
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung Bin Na
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Omer Habib
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Mao J, Zhang Q, Cong YS. Human endogenous retroviruses in development and disease. Comput Struct Biotechnol J 2021; 19:5978-5986. [PMID: 34849202 PMCID: PMC8604659 DOI: 10.1016/j.csbj.2021.10.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) represent ∼8% of human genome, deriving from exogenous retroviral infections of germ line cells occurred millions of years ago and being inherited by the offspring in a Mendelian fashion. Most of HERVs are nonprotein-coding because of the accumulation of mutations, insertions, deletions, and/or truncations. It has been long thought that HERVs were "junk DNA". However, it is now known that HERVs are involved in various biological processes through encoding proteins, acting as promoters/enhancers, or lncRNAs to affect human health and disease. In this review, we summarized recent findings about HERVs, with implications in embryonic development, pluripotency, cancer, aging, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
| |
Collapse
|
6
|
Nolte J. Lrrc34 Interacts with Oct4 and Has an Impact on Telomere Length in Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:1093-1102. [PMID: 34549596 DOI: 10.1089/scd.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere length maintenance in pluripotent stem cells (PSCs) is a main characteristic and a major premise for their undifferentiated long-term survival. However, little is known about the factors that control telomere length and elongation in these cells. Here, I describe Lrrc34 (leucine-rich repeat 34) as a novel telomere length regulating gene in murine embryonic stem cells. Downregulation of Lrrc34 results in significant reduction of telomerase activity and telomere length over time while also influencing the expression of known telomere length-associated genes. Generating induced PSCs (iPSCs) with Lrrc34 as a fifth factor in classical Yamanaka reprogramming increases the efficiency but did not have an impact on telomere length in the resulting iPSCs. Moreover, Lrrc34 was found to interact with Oct4, connecting the pluripotency network to telomere length regulation.
Collapse
Affiliation(s)
- Jessica Nolte
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Riveiro AR, Brickman JM. From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development 2020; 147:147/16/dev189845. [PMID: 32847824 DOI: 10.1242/dev.189845] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are derived from the pre-implantation mammalian blastocyst. At this point in time, the newly formed embryo is concerned with the generation and expansion of both the embryonic lineages required to build the embryo and the extra-embryonic lineages that support development. When used in grafting experiments, embryonic cells from early developmental stages can contribute to both embryonic and extra-embryonic lineages, but it is generally accepted that ESCs can give rise to only embryonic lineages. As a result, they are referred to as pluripotent, rather than totipotent. Here, we consider the experimental potential of various ESC populations and a number of recently identified in vitro culture systems producing states beyond pluripotency and reminiscent of those observed during pre-implantation development. We also consider the nature of totipotency and the extent to which cell populations in these culture systems exhibit this property.
Collapse
Affiliation(s)
- Alba Redó Riveiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
9
|
Atashpaz S, Samadi Shams S, Gonzalez JM, Sebestyén E, Arghavanifard N, Gnocchi A, Albers E, Minardi S, Faga G, Soffientini P, Allievi E, Cancila V, Bachi A, Fernández-Capetillo Ó, Tripodo C, Ferrari F, López-Contreras AJ, Costanzo V. ATR expands embryonic stem cell fate potential in response to replication stress. eLife 2020; 9:54756. [PMID: 32163370 PMCID: PMC7067586 DOI: 10.7554/elife.54756] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Unrepaired DNA damage during embryonic development can be potentially inherited by a large population of cells. However, the quality control mechanisms that minimize the contribution of damaged cells to developing embryos remain poorly understood. Here, we uncovered an ATR- and CHK1-mediated transcriptional response to replication stress (RS) in mouse embryonic stem cells (ESCs) that induces genes expressed in totipotent two-cell (2C) stage embryos and 2C-like cells. This response is mediated by Dux, a multicopy retrogene defining the cleavage-specific transcriptional program in placental mammals. In response to RS, DUX triggers the transcription of 2C-like markers such as murine endogenous retrovirus-like elements (MERVL) and Zscan4. This response can also be elicited by ETAA1-mediated ATR activation in the absence of RS. ATR-mediated activation of DUX requires GRSF1-dependent post-transcriptional regulation of Dux mRNA. Strikingly, activation of ATR expands ESCs fate potential by extending their contribution to both embryonic and extra-embryonic tissues. These findings define a novel ATR dependent pathway involved in maintaining genome stability in developing embryos by controlling ESCs fate in response to RS.
Collapse
Affiliation(s)
- Sina Atashpaz
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Negar Arghavanifard
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Andrea Gnocchi
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Eliene Albers
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Simone Minardi
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy.,Cogentech, IFOM-The FIRC Institute of Molecular Oncology Milan, Milan, Italy
| | - Giovanni Faga
- Experimental Therapeutics Program, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Elisa Allievi
- Cogentech, IFOM-The FIRC Institute of Molecular Oncology Milan, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine Palermo, Palermo, Italy
| | - Angela Bachi
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Óscar Fernández-Capetillo
- Spanish National Cancer Research Center, Madrid, Spain.,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine Palermo, Palermo, Italy
| | | | - Andrés Joaquin López-Contreras
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Costanzo
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Le R, Huang Y, Zhao A, Gao S. Lessons from expanded potential of embryonic stem cells: Moving toward totipotency. J Genet Genomics 2020; 47:123-130. [PMID: 32305172 DOI: 10.1016/j.jgg.2020.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess fascinating capacity of self-renewal and developmental potential, leading to significant progress in understanding the molecular basis of pluripotency, disease modeling, and reprogramming technology. Recently, 2-cell-like embryonic stem cells (ESCs) and expanded potential stem cells or extended pluripotent stem cells (EPSCs) generated from early-cleavage embryos display some features of totipotent embryos. These cell lines provide valuable in vitro models to study underlying principles of totipotency, cell plasticity, and lineage segregation. In this review, we summarize the current progress in this filed and highlight the application potentials of these cells in the future.
Collapse
Affiliation(s)
- Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yixin Huang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anqi Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Pandey S, Banks KM, Kumar R, Kuo A, Wen D, Hla T, Evans T. Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest. Stem Cells 2020; 38:613-623. [PMID: 31916656 PMCID: PMC7217063 DOI: 10.1002/stem.3145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022]
Abstract
Sphingosine‐1‐phosphate (S1P) is a bioactive lipid molecule regulating organogenesis, angiogenesis, cell proliferation, and apoptosis. S1P is generated by sphingosine kinases (SPHK1 and SPHK2) through the phosphorylation of ceramide‐derived sphingosine. Phenotypes caused by manipulating S1P metabolic enzymes and receptors suggested several possible functions for S1P in embryonic stem cells (ESCs), yet the mechanisms by which S1P and related sphingolipids act in ESCs are controversial. We designed a rigorous test to evaluate the requirement of S1P in murine ESCs by knocking out both Sphk1 and Sphk2 to create cells incapable of generating S1P. To accomplish this, we created lines mutant for Sphk2 and conditionally mutant (floxed) for Sphk1, allowing evaluation of ESCs that transition to double‐null state. The Sphk1/2‐null ESCs lack S1P and accumulate the precursor sphingosine. The double‐mutant cells fail to grow due to a marked cell cycle arrest at G2/M. Mutant cells activate expression of telomere elongation factor genes Zscan4, Tcstv1, and Tcstv3 and display longer telomeric repeats. Adding exogenous S1P to the medium had no impact, but the cell cycle arrest is partially alleviated by the expression of a ceramide synthase 2, which converts excess sphingosine into ceramide. The results indicate that sphingosine kinase activity is essential in mouse ESCs for limiting the accumulation of sphingosine that otherwise drives cell cycle arrest.
Collapse
Affiliation(s)
- Suveg Pandey
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Duancheng Wen
- Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
12
|
Zhang Q, Liu N, Bai J, Zhou Q, Mao J, Xu L, Liu J, Wei H, Ren C, Wu X, Wang M, Zhao B, Cong YS. Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway. FASEB J 2020; 34:4178-4188. [PMID: 31950551 DOI: 10.1096/fj.201902147r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
Abstract
Telomerase plays a pivotal role in tumorigenesis by maintaining telomere homeostasis, a hallmark of cancer. However, the mechanisms by which telomerase is reactivated or upregulated during tumorigenesis remain incompletely understood. Here, we report that the Hippo pathway effector Yes-associated protein (YAP) regulates the expression of human telomerase reverse transcriptase (hTERT). Ectopic expression or physiological activation of YAP increases hTERT expression, whereas knockdown of YAP decreases the expression of hTERT. YAP binds to the hTERT promoter through interaction with the TEA domain family transcription factors and activates hTERT transcription. Furthermore, sustained YAP hyperactivation promotes telomerase activity and extends telomere length, with increased hTERT expression. In addition, we show that hTERT expression is positively correlated with YAP activation in human liver cancer tissues. Together, our results demonstrate that YAP promotes hTERT expression, which could contribute to tumor progression.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Ning Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Junjie Bai
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Haibin Wei
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chengcheng Ren
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zhao T, Fu Y, Zhu J, Liu Y, Zhang Q, Yi Z, Chen S, Jiao Z, Xu X, Xu J, Duo S, Bai Y, Tang C, Li C, Deng H. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming. Cell Stem Cell 2018; 23:31-45.e7. [PMID: 29937202 DOI: 10.1016/j.stem.2018.05.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/20/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022]
Abstract
Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yao Fu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Jialiang Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Yifang Liu
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies and School of Life Sciences, Center for Statistical Science and Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zexuan Yi
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shi Chen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100083, China
| | - Zhonggang Jiao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaochan Xu
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junquan Xu
- CapitalBio Technology Corporation, Beijing 102206, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy Sciences, Beijing 100101, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100083, China
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies and School of Life Sciences, Center for Statistical Science and Center for Bioinformatics, Peking University, Beijing 100871, China.
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
14
|
Fu H, Tian CL, Ye X, Sheng X, Wang H, Liu Y, Liu L. Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports 2018; 11:70-87. [PMID: 29861168 PMCID: PMC6066961 DOI: 10.1016/j.stemcr.2018.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chemically induced pluripotent stem cells (CiPSCs) may provide an alternative and attractive source for stem cell-based therapy. Sufficient telomere lengths are critical for unlimited self-renewal and genomic stability of pluripotent stem cells. Dynamics and mechanisms of telomere reprogramming of CiPSCs remain elusive. We show that CiPSCs acquire telomere lengthening with increasing passages after clonal formation. Both telomerase activity and recombination-based mechanisms are involved in the telomere elongation. Telomere lengths strongly indicate the degree of reprogramming, pluripotency, and differentiation capacity of CiPSCs. Nevertheless, telomere damage and shortening occur at a late stage of lengthy induction, limiting CiPSC formation. We find that histone crotonylation induced by crotonic acid can activate two-cell genes, including Zscan4; maintain telomeres; and promote CiPSC generation. Crotonylation decreases the abundance of heterochromatic H3K9me3 and HP1α at subtelomeres and Zscan4 loci. Taken together, telomere rejuvenation links to reprogramming and pluripotency of CiPSCs. Crotonylation facilitates telomere maintenance and enhances chemically induced reprogramming to pluripotency. CiPSCs acquire telomere elongation after clonal formation with increasing passages Both telomerase and recombination mechanisms are involved in the telomere elongation Telomere damage and shortening can occur during late stage of lengthy induction Crotonylation activates Zscan4 and promotes telomere elongation and CiPSC induction
Collapse
Affiliation(s)
- Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Cheng-Lei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yifei Liu
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
15
|
Chan FL, Vinod B, Novy K, Schittenhelm RB, Huang C, Udugama M, Nunez-Iglesias J, Lin JI, Hii L, Chan J, Pickett HA, Daly RJ, Wong LH. Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity. Nucleic Acids Res 2017; 45:12340-12353. [PMID: 29040668 PMCID: PMC5716096 DOI: 10.1093/nar/gkx904] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023] Open
Abstract
AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity.
Collapse
Affiliation(s)
- Foong Lyn Chan
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin Vinod
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karel Novy
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Juan Nunez-Iglesias
- Life Sciences Computation Centre, University of Melbourne, Carlton, VIC 3010, Australia
| | - Jane I Lin
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Julie Chan
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Group, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales 2145, Australia
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Thompson PJ, Macfarlan TS, Lorincz MC. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol Cell 2016; 62:766-76. [PMID: 27259207 PMCID: PMC4910160 DOI: 10.1016/j.molcel.2016.03.029] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The life cycle of endogenous retroviruses (ERVs), also called long terminal repeat (LTR) retrotransposons, begins with transcription by RNA polymerase II followed by reverse transcription and re-integration into the host genome. While most ERVs are relics of ancient integration events, "young" proviruses competent for retrotransposition-found in many mammals, but not humans-represent an ongoing threat to host fitness. As a consequence, several restriction pathways have evolved to suppress their activity at both transcriptional and post-transcriptional stages of the viral life cycle. Nevertheless, accumulating evidence has revealed that LTR sequences derived from distantly related ERVs have been exapted as regulatory sequences for many host genes in a wide range of cell types throughout mammalian evolution. Here, we focus on emerging themes from recent studies cataloging the diversity of ERV LTRs acting as important transcriptional regulatory elements in mammals and explore the molecular features that likely account for LTR exaptation in developmental and tissue-specific gene regulation.
Collapse
Affiliation(s)
- Peter J Thompson
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
17
|
|