1
|
Hashemi SS, Alizadeh R, Rafati A, Mohammadi A, Mortazavi M, Hashempur MH. Investigation of silicon oxide nanoparticle-enhanced self-healing hydrogel for cartilage repair and regeneration in rabbit earlobe models. J Drug Target 2025:1-13. [PMID: 40019486 DOI: 10.1080/1061186x.2025.2473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
This study developed an alginate, gelatine and chondroitin sulphate hydrogel incorporating silicon oxide nanoparticles to assess hydrogel morphology, cell proliferation and viability. The effectiveness of these hydrogels for cartilage repair was evaluated in vivo using male albino rabbits, divided into three groups: a control group without hydrogels, an observer group with hydrogels lacking nanoparticles and a treatment group with nanoparticle-enhanced hydrogels for post-injury repair. At 15, 30 and 60 days post-surgery, the rabbits were humanely euthanized and excised tissue samples were fixed in 10% formalin for histopathological analysis, then processed and embedded in paraffin for microscopic evaluation. Statistical analysis was performed using SPSS software with ANOVA and Tukey's post hoc test. Results indicated that the hydrogels supported cell viability and encouraged differentiation into chondrocyte-like phenotypes. Scanning electron microscopy confirmed the hydrogels' porosity and showed significant differences in cell survival rates compared to the control group, underscoring the potential of hydrogels in cartilage tissue engineering and regenerative repair strategies.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Alizadeh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rafati
- Division of Pharmacology and Pharmaceutical Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Aliakbar Mohammadi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
3
|
Lu Y, Hu M, Huang Y, Liao J, Zhao M, Zhou Y, Xia G, Zhan Q. Preparation of Multifunctional Hydrogels with In Situ Dual Network Structure and Promotion of Wound Healing. Biomacromolecules 2024; 25:4965-4976. [PMID: 39007721 DOI: 10.1021/acs.biomac.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.
Collapse
Affiliation(s)
- Yapeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Maojie Hu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yikai Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Jianwei Liao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yang Zhou
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yan G, Fan M, Zhou Y, Xie M, Shi J, Dong N, Wang Q, Qiao W. Chondroitin Sulfate Derivative Cross-Linking of Decellularized Heart Valve for the Improvement of Mechanical Properties, Hemocompatibility, and Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35936-35948. [PMID: 38958205 DOI: 10.1021/acsami.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.
Collapse
Affiliation(s)
- Ge Yan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Min Fan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, Hubei 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
5
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
6
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Hou X, Lin L, Li K, Jiang F, Qiao D, Zhang B, Xie F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv Colloid Interface Sci 2024; 325:103113. [PMID: 38387158 DOI: 10.1016/j.cis.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.
Collapse
Affiliation(s)
- Xinran Hou
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Lisong Lin
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
8
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
9
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
11
|
Zhang C, Ma P, Qin A, Wang L, Dai K, Liu Y, Zhao J, Lu Z. Current Immunotherapy Strategies for Rheumatoid Arthritis: The Immunoengineering and Delivery Systems. RESEARCH (WASHINGTON, D.C.) 2023; 6:0220. [PMID: 39902178 PMCID: PMC11789687 DOI: 10.34133/research.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 02/05/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease accompanied by persistent multiarticular synovitis and cartilage degradation. The present clinical treatments are limited to disease-modifying anti-rheumatic drugs (DMARDs) and aims to relieve pain and control the inflammation of RA. Despite considerable advances in the research of RA, the employment of current clinical procedure is enormous, hindered by systemic side effect, frequent administration, tolerance from long-lasting administration, and high costs. Emerging immunoengineering-based strategies, such as multiple immune-active nanotechnologies via mechanism-based immunology approaches, have been developed to improve specific targeting and to reduce adverse reactions for RA treatments. Here, we review recent studies in immunoengineering for the treatment of RA. The prospect of future immunoengineering treatment for RA has also been discussed.
Collapse
Affiliation(s)
- Chenyu Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Zuyan Lu
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
13
|
Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, Davaran S, Orive G. Injectable hydrogels for cartilage and bone tissue regeneration: A review. Int J Biol Macromol 2023; 246:125674. [PMID: 37406921 DOI: 10.1016/j.ijbiomac.2023.125674] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Annually, millions of patients suffer from irreversible injury owing to the loss or failure of an organ or tissue caused by accident, aging, or disease. The combination of injectable hydrogels and the science of stem cells have emerged to address this persistent issue in society by generating minimally invasive treatments to augment tissue function. Hydrogels are composed of a cross-linked network of polymers that exhibit a high-water retention capacity, thereby mimicking the wet environment of native cells. Due to their inherent mechanical softness, hydrogels can be used as needle-injectable stem cell carrier materials to mend tissue defects. Hydrogels are made of different natural or synthetic polymers, displaying a broad portfolio of eligible properties, which include biocompatibility, low cytotoxicity, shear-thinning properties as well as tunable biological and physicochemical properties. Presently, novel ongoing developments and native-like hydrogels are increasingly being used broadly to improve the quality of life of those with disabling tissue-related diseases. The present review outlines various future and in-vitro applications of injectable hydrogel-based biomaterials, focusing on the newest ongoing developments of in-situ forming injectable hydrogels for bone and cartilage tissue engineering purposes.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran; Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Alehosseini
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; University of the Basque Country, Spain.
| |
Collapse
|
14
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Popescu I, Constantin M, Bercea M, Coșman BP, Suflet DM, Fundueanu G. Poloxamer/Carboxymethyl Pullulan Aqueous Systems-Miscibility and Thermogelation Studies Using Viscometry, Rheology and Dynamic Light Scattering. Polymers (Basel) 2023; 15:polym15081909. [PMID: 37112056 PMCID: PMC10143542 DOI: 10.3390/polym15081909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol-gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Bogdan-Paul Coșman
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gheorghe Fundueanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
16
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
17
|
Farokhi M, Solouk A, Mirzadeh H, Herbert Teuschl A, Redl H. An Injectable Enzymatically Crosslinked and Mechanically Tunable Silk Fibroin/Chondroitin Sulfate Chondro‐Inductive Hydrogel. MACROMOLECULAR MATERIALS AND ENGINEERING 2023; 308. [DOI: 10.1002/mame.202200503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractAn injectable hybrid hydrogel is synthesized, comprising silk fibroin (SF) and chondroitin sulfate (CS) through di‐tyrosine formation bond of SF chains. CS and SF are reported with excellent biocompatibility as tissue engineering scaffolds. Nonetheless, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate articular cartilage. As CS is one of the cartilage extracellular matrix (ECM) components, it has the potential to enhance the biological activity of SF‐based hydrogel in terms of cartilage repair. Therefore, altering the CS concentrations (i.e., 0 wt%, 0.25 wt%, 0.5 wt%, 1 wt%, and 2 wt%), which are interpenetrated between SF β‐sheets and chains, can potentially adjust the physical, chemical, and mechanical features of these hybrid hydrogels. The formation of β‐sheets by 30 days of immersion in de‐ionized (DI) water can improve the compression strength of the SF/CS hybrid hydrogels in comparison with the same SF/CS hybrid hydrogels in the dried state. Biological investigation and observation depicts proper cell attachment, proliferation and cell viability for C28/I2 cells. Gene expression of sex‐determining region YBox 9 (SOX9), Collagen II α1, and Aggrecan (AGG) exhibits positive C3H10T1/2 growth and expression of cartilage‐specific genes in the 0.25 wt% and 0.5 wt% SF/CS hydrogels.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Atefeh Solouk
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Hamid Mirzadeh
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Hafez Tehran 15875‐4413 Iran
| | - Anderaes Herbert Teuschl
- Department of Life Science Engineering University of Applied Sciences Technikum Wien Höchstädtplatz 6 Vienna 1200 Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology AUVA Research Center Donaueschingenstrasse 13 Vienna 1200 Austria
| |
Collapse
|
18
|
Pan H, Li W, Qu Y, Li S, Yusufu A, Wang J, Yin L. Injectable enzyme-catalyzed crosslinking hydrogels as BMSCs-laden tunable scaffold for osteogenic differentiation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:463-481. [PMID: 36128775 DOI: 10.1080/09205063.2022.2127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone defects caused by trauma or tumor are a significant challenge in clinical practice. Hydrogel-based tissue engineering has been considered an effective strategy. This study successfully formed a series of injectable hydrogels by enzyme-catalyzed crosslinking hyaluronic acid-tyramine (HA-TA) and sodium alginate-tyramine (ALG-TA) under physiological conditions in the presence of both horseradish peroxidase and hydrogen peroxide. The morphology, mechanical properties, swelling properties, and biodegradation properties of hydrogels were investigated. The results showed that the mechanical properties, swelling properties and biodegradation of HA/ALG hydrogels varied with the precursor solution concentration. Furthermore, the proliferation and osteogenic differentiation of BMSCs within the HA/ALG hydrogels were evaluated in vitro. The results illustrated that the hydrogels could offer an excellent microenvironment for BMSCs growth and promote osteogenic differentiation. Therefore, the injectable hydrogels can be used as an effective 3 D scaffold for bone repair and regeneration.
Collapse
Affiliation(s)
- Hongwei Pan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Wanxin Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yue Qu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Simei Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Ayixiemu Yusufu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jia Wang
- Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Lihua Yin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.,Department of Oral Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Thinh Nguyen T, Hang Dang L, Nguyen P, Le-Buu Pham T, Khoa Le H, Ty Nguyen M, Thi Yen Nhi T, Feng S, Chen J, Quyen Tran N. Dual composition Chondroitin Sulfate and gelatin biomimetic hydrogel based on tyramine crosslinking for tissue regenerative medicine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
20
|
Uzieliene I, Bironaite D, Pachaleva J, Bagdonas E, Sobolev A, Tsai WB, Kvedaras G, Bernotiene E. Chondroitin Sulfate-Tyramine-Based Hydrogels for Cartilage Tissue Repair. Int J Mol Sci 2023; 24:3451. [PMID: 36834862 PMCID: PMC9961510 DOI: 10.3390/ijms24043451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The degradation of cartilage, due to trauma, mechanical load or diseases, results in abundant loss of extracellular matrix (ECM) integrity and development of osteoarthritis (OA). Chondroitin sulfate (CS) is a member of the highly sulfated glycosaminoglycans (GAGs) and a primary component of cartilage tissue ECM. In this study, we aimed to investigate the effect of mechanical load on the chondrogenic differentiation of bone marrow mesenchymal stem cells (BM-MCSs) encapsulated into CS-tyramine-gelatin (CS-Tyr/Gel) hydrogel in order to evaluate the suitability of this composite for OA cartilage regeneration studies in vitro. The CS-Tyr/Gel/BM-MSCs composite showed excellent biointegration on cartilage explants. The applied mild mechanical load stimulated the chondrogenic differentiation of BM-MSCs in CS-Tyr/Gel hydrogel (immunohistochemical collagen II staining). However, the stronger mechanical load had a negative effect on the human OA cartilage explants evaluated by the higher release of ECM components, such as the cartilage oligomeric matrix protein (COMP) and GAGs, compared to the not-compressed explants. Finally, the application of the CS-Tyr/Gel/BM-MSCs composite on the top of the OA cartilage explants decreased the release of COMP and GAGs from the cartilage explants. Data suggest that the CS-Tyr/Gel/BM-MSCs composite can protect the OA cartilage explants from the damaging effects of external mechanical stimuli. Therefore, it can be used for investigation of OA cartilage regenerative potential and mechanisms under the mechanical load in vitro with further perspectives of therapeutic application in vivo.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 104, Taiwan
| | - Giedrius Kvedaras
- Clinic of Rheumatology, Orthopaedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
21
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
22
|
Saito H, Shoji S, Kuroda A, Inoue G, Tazawa R, Sekiguchi H, Fukushima K, Miyagi M, Takaso M, Uchida K. In situ-formed hyaluronan gel/BMP-2/hydroxyapatite composite promotes bone union in refractory fracture model mice. Biomed Mater Eng 2023; 34:537-544. [PMID: 37334576 DOI: 10.3233/bme-230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND A combination of synthetic porous materials and BMP-2 has been used to promote fracture healing. For bone healing to be successful, it is important to use growth factor delivery systems that enable continuous release of BMP-2 at the fracture site. We previously reported that in situ-formed gels (IFGs) consisting of hyaluronan (HyA)-tyramine (TA), horseradish peroxidase and hydrogen peroxide enhance the bone formation ability of hydroxyapatite (Hap)/BMP-2 composites in a posterior lumbar fusion model. OBJECTIVE We examined the effectiveness of IFGs-HyA/Hap/BMP-2 composites for facilitating osteogenesis in refractory fracture model mice. METHODS After establishing the refractory fracture model, animals were either treated at the site of fracture with Hap harboring BMP-2 (Hap/BMP-2) or IFGs-HyA with Hap harboring BMP-2 (IFGs-HyA/Hap/BMP-2) (n = 10 each). Animals that underwent the fracture surgery but did not receive any treatment were considered the control group (n = 10). We determined the extent of bone formation at the fracture site according to findings on micro-computed tomography and histological studies four weeks following treatment. RESULTS Animals treated with IFGs-HyA/Hap/BMP-2 demonstrated significantly greater bone volume, bone mineral content and bone union than those treated with vehicle or IFG-HyA/Hap alone. CONCLUSIONS IFGs-HyA/Hap/BMP-2 could be an effective treatment option for refractory fractures.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Shintaro Shoji
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Akiyoshi Kuroda
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Ryo Tazawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Japan
| | - Kensuke Fukushima
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Japan
| |
Collapse
|
23
|
Sacramento MMA, Borges J, Correia FJS, Calado R, Rodrigues JMM, Patrício SG, Mano JF. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front Bioeng Biotechnol 2022; 10:1041102. [PMID: 36568299 PMCID: PMC9773402 DOI: 10.3389/fbioe.2022.1041102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, natural-origin polysaccharides have received increasing attention across different fields of application, including biomedicine and biotechnology, because of their specific physicochemical and biological properties that have afforded the fabrication of a plethora of multifunctional devices for healthcare applications. More recently, marine raw materials from fisheries and aquaculture have emerged as a highly sustainable approach to convert marine biomass into added-value polysaccharides for human benefit. Nowadays, significant efforts have been made to combine such circular bio-based approach with cost-effective and environmentally-friendly technologies that enable the isolation of marine-origin polysaccharides up to the final construction of a biomedical device, thus developing an entirely sustainable pipeline. In this regard, the present review intends to provide an up-to-date outlook on the current green extraction methodologies of marine-origin polysaccharides and their molecular engineering toolbox for designing a multitude of biomaterial platforms for healthcare. Furthermore, we discuss how to foster circular bio-based approaches to pursue the further development of added-value biomedical devices, while preserving the marine ecosystem.
Collapse
Affiliation(s)
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fernando J. S. Correia
- Laboratory of Scientific Illustration, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia G. Patrício
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
24
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
25
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. Potential of pectin for biomedical applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1866-1900. [PMID: 35699216 DOI: 10.1080/09205063.2022.2088525] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds. To enhance these properties, it can be modified or combined with other organic molecules or polymers and/or inorganic compounds. These materials can be prepared as nano sized drug carriers in the form of spheres, capsules, hydrogels, self assamled micelles, etc., for treatment purposes (mostly cancer). Different composites or blends of pectin can also be produced as membranes, sponges, hydrogels, or 3D printed matrices for tissue regeneration applications. This review is concentrated on the properties of pectin based materials and focus especially on the utilization of these materials as drug carriers and tissue engineering scaffolds, including 3D printed and 3D bioprinted systems covering the studies in the last decade and especially in the last 5 years.
Collapse
Affiliation(s)
- Nazlı Seray Bostancı
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Büyüksungur
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, (NEU), Lefkosa, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Engineering Sciences, METU, Ankara, Turkey
| |
Collapse
|
26
|
Bal T, Karaoglu IC, Murat FS, Yalcin E, Sasaki Y, Akiyoshi K, Kizilel S. Immunological response of polysaccharide nanogel-incorporating PEG hydrogels in an in vivo diabetic model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1794-1810. [PMID: 35549832 DOI: 10.1080/09205063.2022.2077512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Cell-based therapies hold significant advantages in comparison with the traditional drug-based or injection-based treatments. However, for long-term functional cellular implants, immune acceptance must be established. To accomplish the acceptance of the implanted cells, various biomaterial systems have been studied. Nanogels have shown great potential for modulation of cellular microenvironments, acting as a physical barrier between the immune system and the implant. However, internalization of nano-scale materials by implanted cells is not desirable and is yet to be overcome. In this study, we incorporated acrylate modified cholesterol-bearing pullulan (CHPOA) nanogels into poly (ethylene glycol) diacrylate (PEGDA) hydrogels through covalent crosslinking, where we used visible light-induced photopolymerization. We characterized morphology and swelling properties of CHPOA incorporated PEG composite hydrogels using FE-SEM and gravimetric analysis. Also, we investigated the biocompatibility properties of composite hydrogels in vivo, where we used both healthy and diabetic mice. We induced diabetes in mice using a low dose streptozotocin (STZ) injections and implanted composite hydrogels in both diabetic and healthy mice through subcutaneous route. Immune cell infiltration of the retrieved tissue was examined through histological analysis, where we observed minimum immune response levels of 0-2 rareness, according to ISO standard of biological evaluation of medical devices. Our observation suggests that the composite hydrogel developed here can be used to introduce nanostructured domains into bulk hydrogels and that this system has potential to be used as immunologically acceptable composite material in cellular therapy without internalization of nanoparticles.
Collapse
Affiliation(s)
- Tugba Bal
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Ismail Can Karaoglu
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Fusun Sevval Murat
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Esra Yalcin
- Biomedical Science and Engineering, Koc University, Istanbul, Sariyer, Turkey
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Kyoto, Japan
- Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Kyoto, Japan
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Istanbul, Sariyer, Turkey
- Biomedical Science and Engineering, Koc University, Istanbul, Sariyer, Turkey
| |
Collapse
|
27
|
Lu Y, Zhao M, Peng Y, He S, Zhu X, Hu C, Xia G, Zuo T, Zhang X, Yun Y, Zhang W, Shen X. A physicochemical double-cross-linked gelatin hydrogel with enhanced antibacterial and anti-inflammatory capabilities for improving wound healing. J Nanobiotechnology 2022; 20:426. [PMID: 36153602 PMCID: PMC9509571 DOI: 10.1186/s12951-022-01634-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Skin tissue is vital in protecting the body from injuries and bacterial infections. Wound infection caused by bacterial colonization is one of the main factors hindering wound healing. Wound infection caused by colonization of a large number of bacteria can cause the wound to enter a continuous stage of inflammation, which delays wound healing. Hydrogel wound dressing is composed of natural and synthetic polymers, which can absorb tissue fluid, improve the local microenvironment of wound, and promote wound healing. However, in the preparation process of hydrogel, the complex preparation process and poor biological efficacy limit the application of hydrogel wound dressing in complex wound environment. Therefore, it is particularly important to develop and prepare hydrogel dressings with simple technology, good physical properties and biological effects by using natural polymers. RESULTS In this study, a gelatin-based (Tsg-THA&Fe) hydrogel was created by mixing trivalent iron (Fe3+) and 2,3,4-trihydroxybenzaldehyde (THA) to form a complex (THA&Fe), followed by a simple Schiff base reaction with tilapia skin gelatin (Tsg). The gel time and rheological properties of the hydrogels were adjusted by controlling the number of complexes. The dynamic cross-linking of the coordination bonds (o-phthalmictriol-Fe3+) and Schiff base bonds allows hydrogels to have good self-healing and injectable properties. In vitro experiments confirmed that the hydrogel had good biocompatibility and biodegradability as well as adhesion, hemostasis, and antibacterial properties. The feasibility of Tsg-THA&Fe hydrogel was studied by treating rat skin trauma model. The results showed that compared with Comfeel® Plus Transparent dressing, the Tsg-THA&Fe hydrogel could obvious reduce the number of microorganisms, prevent bacterial colonization, reduce inflammation and accelerate wound healing. Local distribution of the Tsg-THA&Fe hydrogel in the skin tissue did not cause organ toxicity. CONCLUSIONS In summary, the preparation process of Tsg-THA&Fe hydrogel is simple, with excellent performance in physical properties and biological efficacy. It can effectively relieve inflammation and control the colonization of wound microbes, and can be used as a multi-functional dressing to improve wound healing.
Collapse
Affiliation(s)
- Yapeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Sizhe He
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Xiaopeng Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Chao Hu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China.
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Yonghuan Yun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Weimin Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan, 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
28
|
Ebrahimzadeh A, Khanalizadeh E, Khodabakhshaghdam S, Kazemi D, Baradar Khoshfetrat A. Influence of gelatin modification on enzymatically-gellable pectin-gelatin hydrogel properties for soft tissue engineering applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Injectable in situ-forming hydrogels appears to be a promising approach for tissue engineering applications. In this study, the effect of phenol moiety (Ph) addition to gelatin in enzymatically-gellable modified pectin hydrogel (Pec-Ph) was studied. Addition of gelatin-Ph to Pec-Ph (Pec-Ph/Gel-Ph) altered the physical properties of Pec-Ph-based hydrogels as compared to unmodified gelatin (Pec-Ph/Gel) addition. Swelling ratio and degradation rates of the Pec-Ph/Gel-Ph hydrogel decreased 35% and 50%, respectively, and the elasticity of Pec-Ph/Gel-Ph hydrogel was higher than the Pec-Ph/Gel hydrogels. Scanning electron microscopy images showed that the existence of phenolic groups in gelatin decreased the pore size of Pec-Ph/Gel-Ph hydrogels. Culture of chondrocyte cells in the Pec-Ph/Gel-Ph hydrogels showed more metabolic activity (4×) during a 14-day culture period. Hydrogels subcutaneously implanted in rats could also be identified readily without complete absorption and signs of toxicity or any untoward reactions after 1 month. The work showed the potential of Pec-Ph/Gel-Ph hydrogels as a promising in situ injectable hydrogel for soft tissue engineering applications.
Collapse
Affiliation(s)
- Asal Ebrahimzadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Elnaz Khanalizadeh
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | | | - Davoud Kazemi
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
29
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|
30
|
Taaca KLM, Prieto EI, Vasquez MR. Current Trends in Biomedical Hydrogels: From Traditional Crosslinking to Plasma-Assisted Synthesis. Polymers (Basel) 2022; 14:2560. [PMID: 35808607 PMCID: PMC9268762 DOI: 10.3390/polym14132560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
The use of materials to restore or replace the functions of damaged body parts has been proven historically. Any material can be considered as a biomaterial as long as it performs its biological function and does not cause adverse effects to the host. With the increasing demands for biofunctionality, biomaterials nowadays may not only encompass inertness but also specialized utility towards the target biological application. A hydrogel is a biomaterial with a 3D network made of hydrophilic polymers. It is regarded as one of the earliest biomaterials developed for human use. The preparation of hydrogel is often attributed to the polymerization of monomers or crosslinking of hydrophilic polymers to achieve the desired ability to hold large amounts of aqueous solvents and biological fluids. The generation of hydrogels, however, is shifting towards developing hydrogels through the aid of enabling technologies. This review provides the evolution of hydrogels and the different approaches considered for hydrogel preparation. Further, this review presents the plasma process as an enabling technology for tailoring hydrogel properties. The mechanism of plasma-assisted treatment during hydrogel synthesis and the current use of the plasma-treated hydrogels are also discussed.
Collapse
Affiliation(s)
- Kathrina Lois M. Taaca
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
- Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Eloise I. Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines;
| | - Magdaleno R. Vasquez
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
31
|
Amini N, Milan PB, Sarmadi VH, Derakhshanmehr B, Hivechi A, Khodaei F, Hamidi M, Ashraf S, Larijani G, Rezapour A. Microorganism-derived biological macromolecules for tissue engineering. Front Med 2022; 16:358-377. [PMID: 35687278 DOI: 10.1007/s11684-021-0903-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran. .,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran. .,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fateme Khodaei
- Burn Research Center, Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, 4477166595, Iran
| | - Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, 3715835155, Iran. .,Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, 3715835155, Iran.
| |
Collapse
|
32
|
Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr Polym 2022; 286:119305. [PMID: 35337491 DOI: 10.1016/j.carbpol.2022.119305] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
33
|
von Mentzer U, Corciulo C, Stubelius A. Biomaterial Integration in the Joint: Pathological Considerations, Immunomodulation, and the Extracellular Matrix. Macromol Biosci 2022; 22:e2200037. [PMID: 35420256 DOI: 10.1002/mabi.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Defects of articular joints are becoming an increasing societal burden due to a persistent increase in obesity and aging. For some patients suffering from cartilage erosion, joint replacement is the final option to regain proper motion and limit pain. Extensive research has been undertaken to identify novel strategies enabling earlier intervention to promote regeneration and cartilage healing. With the introduction of decellularized extracellular matrix (dECM), researchers have tapped into the potential for increased tissue regeneration by designing biomaterials with inherent biochemical and immunomodulatory signals. Compared to conventional and synthetic materials, dECM-based materials invoke a reduced foreign body response. It is therefore highly beneficial to understand the interplay of how these native tissue-based materials initiate a favorable remodeling process by the immune system. Yet, such an understanding also demands increasing considerations of the pathological environment and remodeling processes, especially for materials designed for early disease intervention. This knowledge would avoid rejection and help predict complications in conditions with inflammatory components such as arthritides. This review outlines general issues facing biomaterial integration and emphasizes the importance of tissue-derived macromolecular components in regulating essential homeostatic, immunological, and pathological processes to increase biomaterial integration for patients suffering from joint degenerative diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ula von Mentzer
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| | - Carmen Corciulo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation, Sahlgrenska Academy at the University of Gothenburg, Guldhedsgatan 10A, Gothenburg, 41296, Sweden
| | - Alexandra Stubelius
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, 41296, Sweden
| |
Collapse
|
34
|
Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022; 14:pharmaceutics14030574. [PMID: 35335950 PMCID: PMC8950534 DOI: 10.3390/pharmaceutics14030574] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are a promising and attractive option as polymeric gel networks, which have immensely fascinated researchers across the globe because of their outstanding characteristics such as elevated swellability, the permeability of oxygen at a high rate, good biocompatibility, easy loading, and drug release. Hydrogels have been extensively used for several purposes in the biomedical sector using versatile polymers of synthetic and natural origin. This review focuses on functional polymeric materials for the fabrication of hydrogels, evaluation of different parameters of biocompatibility and stability, and their application as carriers for drugs delivery, tissue engineering and other therapeutic purposes. The outcome of various studies on the use of hydrogels in different segments and how they have been appropriately altered in numerous ways to attain the desired targeted delivery of therapeutic agents is summarized. Patents and clinical trials conducted on hydrogel-based products, along with scale-up translation, are also mentioned in detail. Finally, the potential of the hydrogel in the biomedical sector is discussed, along with its further possibilities for improvement for the development of sophisticated smart hydrogels with pivotal biomedical functions.
Collapse
|
35
|
Tarrahi R, Khataee A, Karimi A, Yoon Y. The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair. CHEMOSPHERE 2022; 288:132529. [PMID: 34637866 DOI: 10.1016/j.chemosphere.2021.132529] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for their remarkable adaptability with three-dimensional polymeric structure. They are capable of mimicking tissue properties, which plays a key role in tissue engineering. Besides, concerns for environmental issues have motivated scientists to move toward eco-friendly materials and natural polymer-based materials for applications in the tissue engineering field these days. Therefore, cellulose as an appropriate substitute for common polymers based on crude coal, animal, and human-derived biomolecules is greatly considered for various applications in biomedical fields. Generally, natural biomaterials lack good mechanical properties for skin tissue engineering. But using modified cellulose-based biopolymers tackles these restrictions and prevents immunogenic responses. Moreover, tissue engineering is a quick promoting field focusing on the generation of novel biomaterials with modified characteristics to improve scaffold function through physical, biochemical, and chemical tailoring. Also, nanocellulose with a broad range of applications, particularly in tissue engineering, advanced wound dressing, and as a material for coupling with drugs and sensorics, has been reviewed here. Moreover, the potential cytotoxicity and immunogenicity of cellulose-based biomaterials are addressed in this review.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
36
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
37
|
Lazarus E, Bermudez-Lekerika P, Farchione D, Schofield T, Howard S, Mambetkadyrov I, Lamoca M, Rivero IV, Gantenbein B, Lewis CL, Wuertz-Kozak K. Sulfated Hydrogels in Intervertebral Disc and Cartilage Research. Cells 2021; 10:cells10123568. [PMID: 34944076 PMCID: PMC8700363 DOI: 10.3390/cells10123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Hydrogels are commonly used for the 3D culture of musculoskeletal cells. Sulfated hydrogels, which have seen a growing interest over the past years, provide a microenvironment that help maintain the phenotype of chondrocytes and chondrocyte-like cells and can be used for sustained delivery of growth factors and other drugs. Sulfated hydrogels are hence valuable tools to improve cartilage and intervertebral disc tissue engineering. To further advance the utilization of these hydrogels, we identify and summarize the current knowledge about different sulfated hydrogels, highlight their beneficial effects in cartilage and disc research, and review the biofabrication processes most suitable to secure best quality assurance through deposition fidelity, repeatability, and attainment of biocompatible morphologies.
Collapse
Affiliation(s)
- Emily Lazarus
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (E.L.); (I.V.R.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Daniel Farchione
- Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA;
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Taylor Schofield
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Sloan Howard
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Iskender Mambetkadyrov
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Mikkael Lamoca
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Iris V. Rivero
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (E.L.); (I.V.R.)
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Christopher L. Lewis
- Department of Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, NY 14632, USA;
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14632, USA; (T.S.); (S.H.); (I.M.); (M.L.)
- Schoen Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), 81547 Munich, Germany
- Correspondence: ; Tel.: +1-585-475-7355
| |
Collapse
|
38
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
40
|
Paneysar JS, Barton S, Ambre P, Coutinho E. Novel Temperature Responsive Films Impregnated with Silver Nano Particles (Ag-NPs) as Potential Dressings for Wounds. J Pharm Sci 2021; 111:810-817. [PMID: 34808215 DOI: 10.1016/j.xphs.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022]
Abstract
Silver nanoparticles have attracted wide interest in medicine on account of their antibacterial activity. We report in this paper, the antibacterial activity and biocompatibility of a temperature responsive topical film fabricated from pullulan-g-pNIPAM and impregnated with two different concentrations (15 ppm and 30 ppm) of silver nanoparticles (Ag-NPs). The release of silver from the film under the influence of temperature above the LCST has been studied and the in vitro release profile of the films has been compared with a marketed silver nano formulation, 'Meganano gel'. The release of silver from the films has a distinctive profile characterized by a sustained release over a period of 48 hrs, which is comparable to the marketed formulation. The films exhibit excellent swelling properties, making them ideal materials for absorption of exudates from wounds. The antibacterial activity of the films has been established at physiological temperature against gram-positive S. aureus and gram-negative E. coli and compared with the marketed formulation. A cytotoxicity evaluation on HeK293 cells has demonstrated their biocompatibility. The nanocomposite films are thus a new therapeutic device for management of non-healing wounds being constructed from temperature responsive polymers that release Ag-NPs when the temperature of the wound exudate is slightly higher than normal.
Collapse
Affiliation(s)
- Joginder Singh Paneysar
- Department of Pharmaceutical Chemistry, Vasvik Research Wing, Bombay College of Pharmacy (Autonomous), Mumbai 400 098, India
| | - Stephen Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, KT1 2EE, UK
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Vasvik Research Wing, Bombay College of Pharmacy (Autonomous), Mumbai 400 098, India.
| | - Evans Coutinho
- Department of Pharmaceutical Chemistry, Vasvik Research Wing, Bombay College of Pharmacy (Autonomous), Mumbai 400 098, India
| |
Collapse
|
41
|
Anand R, Nimi N, Sivadas VP, Merlin Rajesh Lal LP, Nair PD. Dual crosslinked pullulan-gelatin cryogel scaffold for chondrocyte-mediated cartilage repair: synthesis, characterization and in vitroevaluation. Biomed Mater 2021; 17. [PMID: 34700303 DOI: 10.1088/1748-605x/ac338b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
Cryogels, a subset of hydrogels, have recently drawn attention for cartilage tissue engineering due to its inherent microporous architecture and good mechanical properties. In this study a dual crosslinked pullulan-gelatin cryogel (PDAG) scaffold was synthesized by crosslinking gelatin with oxidized pullulan by Schiff's base reaction followed by cryogelation. Chondrocytes seeded within the PDAG scaffolds and cultured for 21 din vitrodemonstrated enhanced cell proliferation, enhanced production of cartilage-specific extracellular matrix and up-regulated sulfated glycosaminoglycan without altering the articular chondrocyte phenotype. Quantitative reverse transcription-polymerase chain reaction-based gene expression studies, immunofluorescence, and histological studies demonstrated that the PDAG scaffold significantly enhanced the expression of chondrogenic marker genes such as type II collagen, aggrecan, and SOX9. Taken together, these results demonstrated that PDAG scaffold prepared by sequential Schiff's base reaction and cryogelation would be a promising cell-responsive scaffold for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Resmi Anand
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.,Inter University Centre for Biomedical Research and Super Speciality Hospital, Kottayam, Kerala 686009, India
| | - N Nimi
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - V P Sivadas
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - L P Merlin Rajesh Lal
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
42
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
43
|
Jung H, McClellan P, Welter JF, Akkus O. Chondrogenesis of Mesenchymal Stem Cells through Local Release of TGF-β3 from Heparinized Collagen Biofabric. Tissue Eng Part A 2021; 27:1434-1445. [PMID: 33827271 PMCID: PMC8827115 DOI: 10.1089/ten.tea.2020.0383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritic degeneration of cartilage is a major social health problem. Tissue engineering of cartilage using combinations of scaffold and mesenchymal stem cells (MSCs) is emerging as an alternative to existing treatment options such as microfracture, mosaicplasty, allograft, autologous chondrocyte implantation, or total joint replacement. Induction of chondrogenesis in high-density pellets of MSCs is generally attained by soluble exogenous TGF-β3 in culture media, which requires lengthy in vitro culture period during which pellets gain mechanical robustness. On the other hand, a growth factor delivering and a mechanically robust scaffold material that can accommodate chondroid pellets would enable rapid deployment of pellets after seeding. Delivery of the growth factor from the scaffold locally would drive the induction of chondrogenic differentiation in the postimplantation period. Therefore, we sought to develop a biomaterial formulation that will induce chondrogenesis in situ, and compared its performance to soluble delivery in vitro. In this vein, a heparin-conjugated mechanically robust collagen fabric was developed for sustained delivery of TGF-β3. The amount of conjugated heparin was varied to enhance the amount of TGF-β3 uptake and release from the scaffold. The results showed that the scaffold delivered TGF-β3 for up to 8 days of culture, which resulted in 15-fold increase in GAG production, and six-fold increase in collagen synthesis with respect to the No TGF-β3 group. The resulting matrix was cartilage like, in that type II collagen and aggrecan were positive in the spheroids. Enhanced chondrogenesis under in situ TGF-β3 administration resulted in a Young's modulus of ∼600 kPa. In most metrics, there were no significant differences between the soluble delivery group and in situ heparin-mediated delivery group. In conclusion, heparin-conjugated collagen scaffold developed in this study guides chondrogenic differentiation of hMSCs in a mechanically competent tissue construct, which showed potential to be used for cartilage tissue regeneration. Impact statement The most significant finding of this study was that sustained release of TGF-β3 from heparinized collagen scaffold had chondroinductive effect on pelleted human mesenchymal stem cells (hMSCs). The effect was comparable to that observed in hMSC pellets that were cultured in chondrogenic media supplemented with TGF-β3. The stiffness of scaffolds at the baseline was about 50% that of native cartilage and over 28 days the combined stiffness of pellet/scaffold complex converged to the stiffness of native cartilage. These data indicate that the scaffold system can generate a load-bearing cartilage-like tissue by using hMSCs pellets in a mechanically competent framework.
Collapse
Affiliation(s)
- Hyungjin Jung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jean F. Welter
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Skeletal Research Center, Department of Case Western Reserve University, Cleveland, Ohio, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
44
|
Thomas J, Chopra V, Sharma A, Panwar V, Kaushik S, Rajput S, Mittal M, Guha R, Chattopadhyay N, Ghosh D. An injectable hydrogel having proteoglycan-like hierarchical structure supports chondrocytes delivery and chondrogenesis. Int J Biol Macromol 2021; 190:474-486. [PMID: 34508717 DOI: 10.1016/j.ijbiomac.2021.08.226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The ECM of cartilage is composed of proteoglycans (PG) that contain glycosaminoglycan (GAG), aggrecan, hyaluronic acid (HA) and other molecular components which play an important role in regulating chondrocyte functions via cell-matrix interactions, integrin-mediated signalling etc. Implantation of chondrocytes encapsulated in scaffolds that mimic the micro-architecture of proteoglycan, is expected to enhance cartilage repair. With an aim to create a hydrogel having macromolecular structure that resembles the cartilage-specific ECM, we constructed a hierarchal structure that mimic the PG. The bottle brush structure of the aggrecan was obtained using chondroitin sulphate and carboxymethyl cellulose which served as GAG and core protein mimic respectively. A proteoglycan-like structure was obtained by cross-linking it with modified chitosan that served as a HA substitute. The physico-chemical characteristics of the above cross-linked injectable hydrogel supported long term human articular chondrocyte subsistence and excellent post-injection viability. The chondrocytes encapsulated in the PMH expressed significant levels of articular cartilage specific markers like collagen II, aggrecan, GAGs etc., indicating the ability of the hydrogel to support chondrocyte differentiation. The biocompatibility and biodegradability of the hydrogels was confirmed using suitable in vivo studies. The results revealed that the PG-mimetic hydrogel could serve as a promising scaffold for chondrocyte implantation.
Collapse
Affiliation(s)
- Jijo Thomas
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vianni Chopra
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Anjana Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vineeta Panwar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Kaushik
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Monika Mittal
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Rajdeep Guha
- Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
45
|
Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021; 22:4262-4273. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelation in the presence of cells with minimum cytotoxicity is highly desirable for materials with applications in tissue engineering. Herein, the naturally occurring polysaccharide pullulan is functionalized with thiolactones that undergo ring-opening addition of amines. As a result, the modified pullulan can be cross-linked with diamines and/or amine-containing biological substrates enhancing the system's versatility (e.g., gelatin and cell-binding ligands GHK/GRGDS). Thiolactone degrees of substitution of 2.5 or 5.0 mol % are achieved, and respective hydrogels exhibit mesh sizes of 27.8 to 49.1 nm. Cell proliferation studies on chosen gels (G' ≅ 500 Pa, over 14 days) demonstrate that for normal human dermal fibroblasts (NHDFs), both gelatin and GRGDS equally support cell proliferation, while in the case of hepatocytes (HepG2), the presence of GRGDS and GHK improve cell proliferation 10-fold compared to gelatin. Cells remain viable and in one instance were successfully encapsulated by in situ gelation, altogether confirming the mild and biocompatible nature of this strategy to produce biogels using biologically active substrates as cross-linkers.
Collapse
Affiliation(s)
- Stefan Mommer
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - David Gehlen
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Helmut Keul
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Möller
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| |
Collapse
|
46
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Jafari H, Dadashzadeh A, Moghassemi S, Zahedi P, Amorim CA, Shavandi A. Ovarian Cell Encapsulation in an Enzymatically Crosslinked Silk-Based Hydrogel with Tunable Mechanical Properties. Gels 2021; 7:gels7030138. [PMID: 34563024 PMCID: PMC8482098 DOI: 10.3390/gels7030138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
An artificial ovary is a promising approach for preserving fertility in prepubertal girls and women who cannot undergo current cryopreservation strategies. However, this approach is in its infancy, due to the possible challenges of creating a suitable 3D matrix for encapsulating ovarian follicles and stromal cells. To maintain the ovarian stromal cell viability and proliferation, as a first step towards developing an artificial ovary, in this study, a double network hydrogel with a high water swelling capacity (swelling index 15–19) was developed, based on phenol conjugated chitosan (Cs-Ph) and silk fibroin (SF) through an enzymatic crosslinking method using horseradish peroxidase. The addition of SF (1%) to Cs (1%) decreased the storage modulus (G’) from 3500 Pa (Cs1) to 1600 Pa (Cs-SF1), and the hydrogels with a rapid gelation kinetic produced a spatially homogeneous distribution of ovarian cells that demonstrated 167% proliferation after 7 days. This new Cs-SF hydrogel benefits from the toughness and flexibility of SF, and phenolic chemistry could provide the potential microstructure for encapsulating human ovarian stromal cells.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
| | - Arezoo Dadashzadeh
- Pole de Recherche en Gynecologie, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.D.); (S.M.)
| | - Saeid Moghassemi
- Pole de Recherche en Gynecologie, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.D.); (S.M.)
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417613131, Iran;
| | - Christiani A. Amorim
- Pole de Recherche en Gynecologie, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.D.); (S.M.)
- Correspondence: (C.A.A.); (A.S.); Tel.: +32-650-3681 (A.S.)
| | - Amin Shavandi
- BioMatter Unit, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, B-1050 Brussels, Belgium;
- Correspondence: (C.A.A.); (A.S.); Tel.: +32-650-3681 (A.S.)
| |
Collapse
|
48
|
Thermosensitive Poloxamer- graft-Carboxymethyl Pullulan: A Potential Injectable Hydrogel for Drug Delivery. Polymers (Basel) 2021; 13:polym13183025. [PMID: 34577926 PMCID: PMC8466796 DOI: 10.3390/polym13183025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
A thermosensitive copolymer composed of amphiphilic triblock copolymer, poloxamer 407, grafted on hydrophilic pullulan with pendant carboxymethyl groups (CMP) was prepared and characterized. The structure of the new copolymer was assessed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The content of the poloxamer in the grafted copolymer was 83.8% (w/w). The effect of the copolymer concentration on the gelation behavior was analyzed by the vertical method and rheological tests; the gel phase of the copolymer occurred at a lower concentration (11%, w/v) as compared with poloxamer (18%, w/v). The starting gelation time under the simulated physiological conditions (phosphate buffer with a pH of 7.4, at 37 °C) was sensitive on the rest temperature before the test, this being 990 s and 280 s after 24 h rest at 4 °C and 20 °C, respectively. The rheological tests evidenced a high elasticity and excellent ability of the copolymer to recover the initial structure after the removal of the applied force or external stimuli. Moreover, the hydrogel has proved a sustained release of amoxicillin (taken as a model drug) over 168 h. Taken together, the results clearly indicate that this copolymer can be used as an injectable hydrogel.
Collapse
|
49
|
Huang Y, Zhou Z, Hu Y, He N, Li J, Han X, Zhao G, Liu H. Modified mannan for 3D bioprinting: a potential novel bioink for tissue engineering. Biomed Mater 2021; 16. [PMID: 34348252 DOI: 10.1088/1748-605x/ac1ab4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023]
Abstract
3D bioprinting technology displays many advantages for tissue engineering applications, but its utilization is limited by veryfew bioinks available for biofabrication. In this study, a novel type of bioink, which includes three methacryloyl modifiedmannans, was introduced to 3D bioprinting for tissue engineering applications. Yeast mannan (YM) was modified by reactingwith methacrylate anhydride (MA) at different concentrations, and three YM derived bioinks were obtained, which weretermed as YM-MA-1, YM-MA-2 and YM-MA-3 and were distinguished with different adjusted methacrylation degrees. TheYM derived bioink displayed an advantage that the mechanical properties of its photo-cured hydrogels can be enhanced withits methacrylation degree. Hence, YM derived bioinks are fitted for the mechanical requirements of most soft tissueengineering, including cartilage tissue engineering. By selecting chondrocytes as the testing cells, well cytocompatibility of YM-MA-1, YM-MA-2 had been confirmed by CCK-8 method. Following photo-crosslinking and implantation into SD rats for 4 weeks, thein vivobiocompatibility of the YM-MA-2 hydrogel is acceptable for tissue engineering applications. Hence, YM-MA-2 was chosen for 3D bioprinting. Our data demonstrated that hydrogel products with designed shape and living chondrocytes have been printed by applying YM-MA-2 as the bioink carrying chondrocytes. After the YM-MA-2 hydrogel with encapsulated chondrocytes was implanted subcutaneously in nude mice for 2 weeks, GAG and COLII secretion was confirmed by histological staining in YM-MA-2-H, indicating that the YM derived bioink can be potentially applied to tissue engineering by employing a 3D printer of stereolithography.
Collapse
Affiliation(s)
- Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Yingbing Hu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Ning He
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Jing Li
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Xiaoxiao Han
- State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, People's Republic of China
| | - Guoqun Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
50
|
Shoaib MH, Sikandar M, Ahmed FR, Ali FR, Qazi F, Yousuf RI, Irshad A, Jabeen S, Ahmed K. Applications of Polysaccharides in Controlled Release Drug Delivery System. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|