1
|
Bikharudin A, Okada M, Sung PC, Matsumoto T. Co-precipitating calcium phosphate as oral detoxification of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137307. [PMID: 39847936 DOI: 10.1016/j.jhazmat.2025.137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
Collapse
Affiliation(s)
- Ahmad Bikharudin
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| | - Ping-Chin Sung
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| |
Collapse
|
2
|
Chen Z, Qu H, Sun J, Wang T, Yuan Y, Gu J, Bian J, Liu Z, Zou H. CPT1 deficiency blocks autophagic flux to promote lipid accumulation induced by co-exposure to polystyrene microplastic and cadmium. Front Pharmacol 2025; 15:1533188. [PMID: 39834803 PMCID: PMC11743451 DOI: 10.3389/fphar.2024.1533188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms. Methods In this study, C57BL/6 mice and AML12 cells were used to establish in vivo and in vitro models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms. Results The results showed that the combined effects of PS-MPs and Cd caused significantly more liver damage than exposure alone. As observed by transmission electron microscopy (TEM), the number of autophagosomes was significantly increased in the PS-MPs and Cd co-treated group. In addition, autophagic flux was assayed by RFP-GFP-LC3, a reporter system expressing dual fluorescent proteins, which showed an overwhelming enhancement of autophagic flux damage by co-exposure to PS-MPs and Cd compared to exposure alone. To further investigate the involvement of carnitine palmitoyltransferase1(CPT1) in liver injury induced by co-exposure to Cd and PS-MPs, we co-exposed Baicalin, an activator of CPT1, with PS-MPs and Cd, and showed that activation of CPT1 alleviated the impairment of autophagic fluxes induced by co-exposure of Cd and PS-MPs and further alleviated the changes in lipid accumulation and associated protein levels. Discussion In conclusion, the concurrent exposure of PS-MPs and Cd resulted in the blockage of hepatic lipid accumulation and autophagic pathway and further aggravated the toxic damage to the liver. Activation of CPT1 could alleviate the PS-MPs and Cd-induced lipid accumulation and autophagy pathway blockage thus reducing liver injury.
Collapse
Affiliation(s)
- Zhixuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huayi Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
3
|
Zhao D, Wang P, Zhao FJ. Toxic Metals and Metalloids in Food: Current Status, Health Risks, and Mitigation Strategies. Curr Environ Health Rep 2024; 11:468-483. [PMID: 39352604 PMCID: PMC11588791 DOI: 10.1007/s40572-024-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Exposure to toxic metals/metalloids, such as arsenic (As), cadmium (Cd), and lead (Pb), through food consumption is a global public health concern. This review examines the contamination status of these metals/metalloids in food, assesses dietary intake across different populations, and proposes strategies to reduce metal/metalloid exposures throughout the food chain. RECENT FINDINGS For the general population, dietary intake of metals/metalloids is generally lower than health-based guidance values. However, for vulnerable populations, such as infants, children, and pregnant women, their dietary intake levels are close to or even higher than the guidance values. Among different food categories, seafood shows higher total As, but largely present as organic species. Rice accumulates higher As concentration than other cereals, with inorganic As (iAs) and dimethylarsinic acid (DMA) being the main As species. Methylated thioarsenate species, such as dimethylmonothioarsenate, have also been detected in rice. The distribution of iAs and DMA in rice shows geographical variation. Additionally, seafood and cocoa products generally contain more Cd than other food, but seafood consumption does not significantly increase in adverse health effects due to its high zinc and iron content. Compared to As and Cd, Pb concentrations in food are generally lower. To minimize the health risks of metal/metalloid exposure, several strategies are proposed. Food contamination with toxic metals/metalloids poses significant concerns for human health, particularly for vulnerable populations. This review provides scientific evidence and suggestions for policy makers to reduce human exposure of metals/metalloids via dietary intake.
Collapse
Affiliation(s)
- Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Zhang J, Wang J, Gu Z, Liu X. Study on the Mechanism and Potential of Corbicula fluminea (Asian Clam) in Removing Copper and Cadmium from Aquaculture Ponds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:2. [PMID: 39560786 DOI: 10.1007/s10126-024-10389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
The issue of heavy metal pollution in aquaculture ponds is becoming increasingly severe, posing a significant threat to the healthy development of the aquaculture industry. Heavy metals such as cadmium and copper accumulate in ponds, not only exerting toxic effects on aquatic organisms and affecting their growth and reproduction but also endangering human health through the food chain. Bioremediation, as a green and environmentally friendly technology, utilizes specific organisms to absorb, transform, and immobilize heavy metals. We examined metal accumulation, traditional metal-related biomarkers, alongside transcriptomic and tissue histological analyses, in the hepatopancreas of Corbicula fluminea following a 14-day exposure to copper (20 µg/L), cadmium (20 µg/L), or combined copper-cadmium treatments (20 µg/L Cu and 20 µg/L Cd). Metal exposure led to notable metal accumulation in the clam's hepatopancreas. Analysis of traditional biomarkers revealed signs of cellular injury and oxidative stress in clams post-metal exposure. Transcriptomic analysis across the three treatment groups revealed disruptions in immune response, response to metal ion, and energy metabolism, characterized by differential expression levels of key genes such as ABCA3, MYD88, TOLLIP, TBK1, C2, C4, c-Myc, SYK, and SAMHD1. These findings deepen our understanding of the adverse effects of metal exposure on freshwater organisms and evaluate the potential of Corbicula fluminea for removing heavy metals from aquaculture ponds.
Collapse
Affiliation(s)
- Jiahua Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China.
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Jie Wang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhaojun Gu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
5
|
Romero-Freire A, De Marchi L, Freitas R, Velo A, Babarro JMF, Cobelo-García A. Ocean acidification impact on the uptake of trace elements by mussels and their biochemical effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106882. [PMID: 38442506 DOI: 10.1016/j.aquatox.2024.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.
Collapse
Affiliation(s)
- A Romero-Freire
- Department of Soil Science and Agriculture Chemistry, University of Granada (UGR), Granada, Spain; Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| | - L De Marchi
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal; Department of Veterinary, University of Pisa, Via Derna 1 56126 Pisa, Italy
| | - R Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - A Velo
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - J M F Babarro
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain
| | - A Cobelo-García
- Institute of Marine Research - Spanish National Research Council (IIM-CSIC), Vigo, Galicia, Spain.
| |
Collapse
|
6
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
7
|
Yao R, Qiu L, Zhu L, Chen X, Zhai J, Wang W, Qi P, Liao Z, Buttino I, Yan X, Guo B. The Functional Significance of McMafF_G_K in Molluscs: Implications for Nrf2-Mediated Oxidative Stress Response. Int J Mol Sci 2023; 24:16800. [PMID: 38069123 PMCID: PMC10706432 DOI: 10.3390/ijms242316800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal regulator of antioxidant gene expression in mammals, forming heterodimer complexes with small Maf proteins through its BZip domain. However, the underlying mechanism of Nrf2 action in molluscs remains poorly understood. The thick shell mussel, Mytilus coruscus, represents a model organism for the marine environment and molluscs interaction research. In this study, we used in silico cloning to obtain a small Maf homologue called McMafF_G_K from M. coruscus. McMafF_G_K possesses a typical BZip domain, suggesting its affiliation with the traditional small Maf family and its potential involvement in the Nrf2 signaling pathway. Transcriptional analysis revealed that McMafF_G_K exhibited a robust response to benzo[a]pyrene (Bap) in the digestive glands. However, this response was down-regulated upon interference with McMafF_G_K-siRNA. Interestingly, the expression levels of Nrf2, NAD(P)H: quinone oxidoreductase (NQO-1), and Glutathione Peroxidase (GPx), which are key players in oxidative stress response, showed a positive correlation with McMafF_G_K in digested adenocytes of M. coruscus. Furthermore, in vitro analysis of antioxidant capacity in digestive gland cells demonstrated that Bap exposure led to an increase in reactive oxygen species (ROS) levels, accompanied by an elevation in total antioxidant capacity (T-AOC), potentially counterbalancing the excessive ROS. Strikingly, transfection of McMafF_G_K siRNA resulted in a significant rise in ROS level and a down-regulation of T-AOC level. To validate the functional relevance of McMafF_G_K, a glutathione S-transferase (GST) pull-down assay confirmed its interaction with McNrf2, providing compelling evidence of their protein interaction. This study significantly contributes to our understanding of the functional role of McMafF_G_K in the Nrf2 signaling pathway and sheds light on its potential as a target for further research in oxidative stress response.
Collapse
Affiliation(s)
- Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Xinglu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Jiaying Zhai
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro n.38, 57122 Livorno, Italy;
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China; (R.Y.); (L.Q.); (L.Z.); (X.C.); (J.Z.); (W.W.); (P.Q.); (Z.L.); (X.Y.)
| |
Collapse
|
8
|
Jafari F, Naeemi AS, Sohani MM, Noorinezhad M. Effect of elevated temperature, sea water acidification, and phenanthrene on the expression of genes involved in the shell and pearl formation of economic pearl oyster (Pinctada radiata). MARINE POLLUTION BULLETIN 2023; 196:115603. [PMID: 37793272 DOI: 10.1016/j.marpolbul.2023.115603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Our study aims to examine the effect of some stressors on the gene expression levels of shell matrix proteins in a pearl oyster. Oysters were exposed to the different combinations of the temperature, pH, and phenanthrene concentration is currently measured in the Persian Gulf and the predicted ocean warming and acidification for 28 days. The expression of all the studied genes was significantly downregulated. Time and temperature had the greatest effects on the decreases in n19 and n16 genes expression, respectively. Aspein and msi60 genes expression were highly influenced by pH. Pearlin was affected by double interaction temperature and phenanthrene. Moreover, a correlation was observed among the expression levels of studied genes. This study represents basic data on the relationship between mRNA transcription genes involved in the shell and pearl formation and climate changes in pollutant presence conditions and acclimatizing mechanism of the oyster to the future scenario as well.
Collapse
Affiliation(s)
- Fatemeh Jafari
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran
| | - Akram Sadat Naeemi
- University of Guilan, Faculty of Sciences, Department of Biology, Rasht, Iran.
| | - Mohammad Mehdi Sohani
- University of Guilan, Faculty of Agricultural Sciences, Department of Biotechnology, Rasht, Iran
| | - Mohsen Noorinezhad
- Iranian Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education & Extension Organization (AREEO), Bushehr, Iran
| |
Collapse
|
9
|
Samarajeewa U. Emerging challenges in maintaining marine food-fish availability and food safety. Compr Rev Food Sci Food Saf 2023; 22:4734-4757. [PMID: 37732477 DOI: 10.1111/1541-4337.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The marine finfish and crustaceans contribute immensely to human nutrition. Harvesting marine food-fish to meet the global demand has become a challenge due to reduction of the fishery areas and food safety hazards associated with increased pre-harvest and post-harvest contaminations. The causes of low fish availability and contaminations were reviewed following the published literature from 2000 to 2023. The marine fish yields are stressed due to spread of contaminants triggered by rising sea temperatures, transport of microorganisms by marine vessels across the oceans, anthropogenic activities leading to increase in the toxic microorganisms, and the entry of toxic chemicals and antibiotic residues into the seawater through rivers or directly. Processing adds pyrogenic chemicals to foods. The hazardous materials may accumulate in the food-fish, beyond tolerance limits permitted for human foods. While the research and control measures focus on minimizing the hazards due to pathogenic microorganisms and chemicals in market fish, there is less discussion on the unhealthy changes occurring in the oceans affecting the quantity and quality of food-fish, and the origins of microbial and chemical contaminations. This review examines the factors affecting availability of wild food-fish and increased contaminations. It aims to bridge the knowledge gaps between the spread of hazardous agents in the marine environment, and their effects on the food-fish. Meeting the future human food security and safety through marine fish and fish products may need marine cage farming, introduction of genetically modified high yielding food-fish, and cultured contaminant free finless fish muscles as options.
Collapse
Affiliation(s)
- Upali Samarajeewa
- Department of Food Science & Technology, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
10
|
Lu L, Huang W, Han Y, Tong D, Sun S, Yu Y, Liu G, Shi W. Toxicity of microplastics and triclosan, alone and in combination, to the fertilisation success of a broadcast spawning bivalve Tegillarca granosa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104208. [PMID: 37390575 DOI: 10.1016/j.etap.2023.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 07/02/2023]
Abstract
Since most marine invertebrates adopted external fertilisation, their fertilisation process is particularly vulnerable to aquatic pollutants. Both antimicrobial ingredients and microplastics (MPs) are ubiquitous in aquatic environments; however, their synergistic effects on the fertilisation of marine invertebrates remain unclear. Therefore, in this study, the fertilisation toxicity of MPs and triclosan (TCS), alone and in combination, was investigated in the broadcast spawning bivalve Tegillarca granosa. Results showed that MPs and TCS significantly suppressed the fertilisation success of T. granosa. As the fertilisation success of broadcast spawning invertebrates depends on successful gamete collisions, gamete fusion, and egg activation, sperm swimming velocity, viability, gamete collision probability, ATP status, and ion-transport enzyme activities were also analysed to further ascertain the underlying toxicity mechanisms. In summary, our findings indicate that the presence of MPs may enhance the fertilisation toxicity of TCS by hampering sperm-egg collision probability, reducing gamete fusion efficiency, and restricting Ca2+ oscillation formation.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China; Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou, PR China.
| |
Collapse
|
11
|
Gentès S, Minet A, Lopes C, Tessier E, Gassie C, Guyoneaud R, Swarzenski PW, Bustamante P, Metian M, Amouroux D, Lacoue-Labarthe T. In Vivo Mercury (De)Methylation Metabolism in Cephalopods under Different pCO 2 Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5761-5770. [PMID: 36976251 DOI: 10.1021/acs.est.2c08513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 μatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.
Collapse
Affiliation(s)
- Sophie Gentès
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Antoine Minet
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622 Villeurbanne, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Claire Gassie
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Peter W Swarzenski
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - Paco Bustamante
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Marc Metian
- Radioecology Laboratory, International Atomic Energy Agency, Marine Environment Laboratories, Monaco 98000, Monaco
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR, 5254 Pau, France
| | - Thomas Lacoue-Labarthe
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
12
|
Milan M, Bernardini I, Bertolini C, Dalla Rovere G, Manuzzi A, Pastres R, Peruzza L, Smits M, Fabrello J, Breggion C, Sambo A, Boffo L, Gallocchio L, Carrer C, Sorrentino F, Bettiol C, Lodi GC, Semenzin E, Varagnolo M, Matozzo V, Bargelloni L, Patarnello T. Multidisciplinary long-term survey of Manila clam grown in farming sites subjected to different environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160796. [PMID: 36528093 DOI: 10.1016/j.scitotenv.2022.160796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy.
| | - Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Camilla Bertolini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Roberto Pastres
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Cristina Breggion
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Andrea Sambo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Loretta Gallocchio
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Claudio Carrer
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Francesco Sorrentino
- Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento, San Polo 19, 30124 Venezia, Italy)
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Carolina Lodi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Maurizio Varagnolo
- Societa' Agricola Kappa S. S. di Varagnolo Maurizio E. C., Chioggia, VE, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| |
Collapse
|
13
|
Zhan J, Sun T, Wang X, Wu H, Yu J. Meta-analysis reveals the species-, dose- and duration-dependent effects of cadmium toxicities in marine bivalves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160164. [PMID: 36395852 DOI: 10.1016/j.scitotenv.2022.160164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a typical pollutant in marine environment. Increasing studies have focused on the toxicological effects of Cd in marine bivalves. However, there were many conflicting findings of toxicological effects of Cd in marine bivalves. An integrated analysis performed on the published data of Cd toxicity in marine bivalves is still absent. In this study, a meta-analysis was performed on the toxic endpoints in bivalves exposed to aqueous-phase Cd from 87 studies screened from 1519 papers. Subgroup analyses were conducted according to the categories of species, tissue, exposure dose and duration. The results showed significant species-, duration- and dose-dependent responses in bivalves to aqueous-phase Cd exposure. In details, clams were more sensitive to Cd than oysters, mussels and scallops, indicated by the largest effect size in clams. Gill, hepatopancreas and hemolymph were top three tissues used to indicate Cd-induced toxicity and did not present a significant tissue-specific manner among them. With regard to toxicological effect subgroups, oxidative stress and detoxification were top two subgroups indicating Cd toxicities. Detoxification and genotoxicity subgroups presented higher response magnitudes. What is more, toxicological effect subgroups presented multiple dose- and duration-dependent curves. Oxidative stress and genotoxicity related endpoints presented significant increase trends with Cd exposure dose and were preferable biomarkers to marine Cd pollution. Detoxification and energy metabolism related endpoints showed inverted U-shaped and U-shaped dose-response curves, both of which could be explained by hormesis. The linear decrease in oxidative stress and energy metabolism related endpoints over time suggested their involvement into the adaptive mechanism in bivalves. Overall, this study provided not only a better understanding the responsive mechanisms of marine bivalves to Cd stress, but also a selection reference for biomarkers to aqueous-phase Cd pollution in marine environment.
Collapse
Affiliation(s)
- Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xuehong Wang
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junbao Yu
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
14
|
Zhang YM, Lin CY, Li BZ, Dong WR, Shu MA. Bioaccumulation of Cd and comparative transcriptome analysis after the antagonism of Se in the hepatopancreas of estuary mud crab (Scylla paramamosain). Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109474. [PMID: 36184038 DOI: 10.1016/j.cbpc.2022.109474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 04/17/2023]
Abstract
Cadmium (Cd) is a heavy metal contaminant and can be toxic to environment. What's more, Selenium (Se) protects organism as heavy metal antagonist. The present study aimed to investigate whether inorganic (Na2SeO3) or organic (L-SeMc) Se have an effect on the Cd bioaccumulation, antioxidant and immunity of the mud crab (Scylla paramamosain) under Cd exposure. The study showed that the concentration of Cd in hepatopancreas under Cd exposure was higher than the inorganic or organic Se group (P < 0.05), notably, Cd concentration of hepatopancreas in organic Se treatment is less than that in inorganic Se treatment (P < 0.05). Furthermore, this study analyzed 28 gene expression about antioxidant and immune from transcriptome, the result indicated that L-SeMc (organic Se) can reduced intracellular ROS production and oxidative damage. Furthermore, apoptosis was enhanced after Cd exposure, but Se could protect against apoptosis via expression of cathepsin B. Consequently, Organic Se may have a better effect than inorganic Se on reducing Cd toxicity. This study could provide the molecular basis that Se might alleviate Cd toxicity and increases the understanding of the environmental contaminant on crustaceans.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
Expression of ABCA3 transporter gene in Tegillarca granosa and its association with cadmium accumulation. Gene 2022; 845:146865. [PMID: 36067865 DOI: 10.1016/j.gene.2022.146865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Exposure to cadmium (Cd), a heavy metal, can cause strong and toxic side effects. Cd can enter the body of organisms in several ways, leading to various pathological reactions in the body. Tegillarca granosa is a kind of bivalve shellfish favored by people in the coastal areas of China. Bivalve shellfish can easily absorb heavy metal pollutants from water bodies while filter feeding. T. granosa is considered a hyper-accumulator of Cd, and the TgABCA3 gene is highly expressed in individuals with a high content of Cd-exposed blood clam. However, it is unclear whether TgABCA3 is involved in Cd ion transport in blood clam and the molecular mechanism for the mechanism of the Cd-induced responses for maintaining cell homeostasis. In this study, the complete cDNA of the TgABCA3 gene was analyzed to provide insights into the roles of TgABCA3 in resistance against Cd in blood clam. The complete sequence of TgABCA3 showed high identity to that of TgABCA3 from other bivalves and contained some classical motifs of ATP-binding cassette transport proteins. TgABCA3 expression in different tissues was measured using real-time quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. The tissue-specific expression showed that TgABCA3 expression was highest in the gill tissue. The TgABCA3 expression in the gill tissue was silenced using the RNA interference technique. After TgABCA3 silencing, the TgABCA3 expression decreased, the Cd content increased, the oxygen consumption and ammonia excretion rates increased, and the ingestion rate decreased. These results showing that the extents of Cd accumulation and resulting toxic effects are related to expression levels and activity of TgABCA3 indicate that TgABCA3 has a protective function against Cd in the clam. This increase in Cd accumulation results in serious damage to the body, leading to the enhancement of its physiological metabolism. Therefore, the findings of the study demonstrated that TgABCA3 can participate in the transport of Cd ions in the blood clam through active transport and play a vital role in Cd detoxification.
Collapse
|
17
|
Reamer MB. Communicating ocean and human health connections: An agenda for research and practice. Front Public Health 2022; 10:1033905. [PMID: 36530715 PMCID: PMC9755358 DOI: 10.3389/fpubh.2022.1033905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
The emergence of ocean and human health (OHH) science as a distinct scholarly discipline has led to increased research outputs from experts in both the natural and social sciences. Formal research on communication strategies, messaging, and campaigns related to OHH science remains limited despite its importance as part of the social processes that can make knowledge actionable. When utilized to communicate visible, local issues for targeting audiences, OHH themes hold the potential to motivate action in pursuit of solutions to environmental challenges, supplementing efforts to address large-scale, abstract, or politicized issues such as ocean acidification or climate change. Probing peer-reviewed literature from relevant areas of study, this review article outlines and reveals associations between society and the quality of coastal and marine ecosystems, as well as key themes, concepts, and findings in OHH science and environmental communication. Recommendations for future work concerning effective ocean and human health science communication are provided, creating a platform for innovative scholarship, evidence-based practice, and novel collaboration across disciplines.
Collapse
|
18
|
Sahoo TP, Vasavdutta S, Chanchpara A, Sahu N, Thiyagarajan I, Ray S, Chatterjee S, Thorat RB, Haldar S, Madhava AK. Pre-to-post COVID-19 lockdown and their environmental impacts on Ghoghla beach and Somnath beach, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82140-82155. [PMID: 35750909 PMCID: PMC9244305 DOI: 10.1007/s11356-022-21586-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/16/2022] [Indexed: 05/22/2023]
Abstract
Environmental impact of COVID-19 imposed lockdown (2020) and the new normal condition (2021) on two different beaches of India (Ghoghla beach, Diu and Somnath beach, Veraval) were compared with the pre-lockdown era, 2013. The lockdown phase favored the natural restoration of the beaches and showed infinitesimal values of the parameters tested when compared with the pre-lockdown regime. However, the new normal situation in 2021 opened up the accessibility of these beaches to the tourists and pilgrims resulting in significant changes of water quality. The release of diluted sewage mixed with freshwater from the Somnath town to the sea has led to the drastic change in beach water quality. The mean cadmium concentration increased drastically in beach waters (Ghoghla: 1.35, 0.28 and 7.09 μg/L; Somnath: 0.45, 0.28 and 0.58 μg/L) during pre-to-post lockdown, respectively. However, post-lockdown resulted in the rise of toxic heavy metals in the sediments of Somnath beach but Ghoghla beach remained to be pristine which may be due to the Blue Flagship status. The total number of marine bacteria was higher during 2013 and 2021 when compared during lockdown describing greater human interventions. For instance, Vibrio spp. count in Ghoghla beach water during pre-lockdown phase was 7733 CFU/mL and this value reduced to 70 and 5 CFU/mL in the lockdown and post-lockdown phases. Interestingly, the diversity of planktonic and benthic components showed a different trend from pre-to-post lockdown due to significant change in the inorganic nutrients and metal bioaccumulation. To our knowledge, this will be the first comprehensive assessment to report the environmental and ecological health of Ghoghla beach and Somnath beach during the pre-to-post lockdown.
Collapse
Affiliation(s)
- Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sonpal Vasavdutta
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Amit Chanchpara
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Nosad Sahu
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Indirapriyatharsini Thiyagarajan
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shruti Chatterjee
- Applied Phycology and Biotechnology, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| | - Ravikumar Bhagawan Thorat
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Anil Kumar Madhava
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
19
|
Zhang YM, Lin CY, Li BZ, Cheng YX, Xu WB, Xiao Y, Chen DY, Dong WR, Shu MA. The health risk for consumers under heavy metal scenarios: Reduce bioaccumulation of Cd in estuary mud crab (Scylla paramamosain) through the antagonism of Se. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157149. [PMID: 35798109 DOI: 10.1016/j.scitotenv.2022.157149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution has gained increasing attention over past years, and notably, cadmium (Cd) is a non-essential heavy metal that can be toxic to human and wildlife. Furthermore, selenium (Se) is a component of the selenoproteins and influences the toxicity of Cd in different organisms, and protect organisms as a kind of heavy metal antagonist. This study exposed mud crab to 5.0 mg/L Cd for 28 days, and investigated whether different concentrations (0.1, 0.2, 0.3 mg/kg) of selenite (Na2SeO3) or selenomethionine (SeMet) affect the bioaccumulation of Cd, serum biochemical index, antioxidant and stress-response genes of S. paramamosain. The results showed that the Cd concentration in Cd group was significantly higher than the organic or inorganic Se group. Serum biochemical index demonstrated that Se might relieve the damage or dysfunction of hepatopancreas caused by both Cd accumulation and toxicity. Furthermore, Se improved CAT, GPx T-AOC and SOD activity, and decreased MDA concentrations and the lipid peroxidation levels, antagonistic to Cd. Then, this study analyzed the expression of 26 stress-related genes, the results indicated that the inorganic and organic Se might reduce the damage of cell and the toxicity of heavy metals in the hepatopancreas after Cd exposure. Therefore, this study indicated that Se might alleviate Cd toxicity via the different antioxidative mechanisms, and increased the understanding of environmental toxins on estuary crustaceans.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Wei H, Qian J, Xie ZX, Lin L, Wang DZ, Wang MH. Diel Fluctuation Superimposed on Steady High pCO 2 Generates the Most Serious Cadmium Toxicity to Marine Copepods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13179-13188. [PMID: 36044019 DOI: 10.1021/acs.est.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coastal systems experience diel fluctuation of pCO2 and cadmium (Cd) pollution; nevertheless, the effect of fluctuating pCO2 on Cd biotoxicity is poorly known. In this study, we initially performed the isotopically enriched organism bioassay to label Tigriopus japonicus with 113Cd (5 μg/L) to determine the Cd accumulation rate constant (kaccu) under ambient (400 μatm) and steadily (1000 μatm) and fluctuatingly elevated (1000 ± 600 μatm) pCO2 conditions for 48 h. Next, T. japonicus was interactively subjected to the above pCO2 exposures at Cd (control, 5, and 500 μg/L) treatments for 7 d. Biochemical and physiological responses for copepods were analyzed. The results showed that steadily increased pCO2 facilitated Cd bioaccumulation compared to ambient pCO2, and it was more under fluctuating acidification conditions. Despite compensatory reactions (e.g., increased energy production), Cd ultimately induced oxidative damage and apoptosis. Meanwhile, combined treatment exhibited higher toxicity (e.g., increased apoptosis) relative to Cd exposure, and even more if fluctuating acidification was considered. Intriguingly, fluctuating acidification inhibited Cd exclusion in Cd-treated copepods compared to steady acidification, linking to higher Cd kaccu and bioaccumulation. Collectively, CO2-driven acidification could aggravate Cd toxicity, providing a mechanistic understanding of the interaction between seawater acidification and Cd pollution in marine copepods.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Jing Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen361102, China
| |
Collapse
|
21
|
Zhao D, Hu G, Chen R, Xiao G, Teng S. Molecular cloning, characterization, and tissue distribution of c-Myc from blood clam Tegillarca granosa and its role in cadmium-induced stress response. Gene 2022; 834:146611. [PMID: 35618219 DOI: 10.1016/j.gene.2022.146611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) pollution threatens the cultivation of the blood clam Tegillarca granosa (T. granosa) in coastal regions of the East China Sea. The molecular mechanisms regulating Cd stress response and detoxification in blood clams are largely unclear. In the present study, the full-length T. granosa c-Myc (Tgc-Myc) cDNA was cloned for the first time. The 3063-bp cDNA consisted of a 129-bp 5' untranslated region (UTR), a 1746-bp 3' UTR, and a 1188-bp open reading frame encoding a predicted protein of 395 amino acid residues. The predicted protein had a calculated molecular weight of 44.9 kDa and an estimated isoelectric point of 6.82. The predicted protein contained an N-terminal transactivation domain and a C-terminal basic helix-loop-helix leucine zipper domain, which are conserved functional domains of c-Myc proteins. Tgc-Myc showed broad tissue distribution in blood clams, with the highest expression detected in the gill and hepatopancreas. Exposure to Cd, a major heavy metal pollutant in coastal regions of the East China Sea, induced Tgc-Myc expression in gill tissues. Tgc-Myc knockdown led to reduced expression of a variety of stress response/detoxification genes in blood clams cultivated in Cd-contaminated seawater. Tgc-Myc knockdown also led to decreased expression of IGF1R, a proto-oncogene that promotes cell proliferation. These findings indicated that Tgc-Myc regulates Cd-induced stress response and detoxification in blood clams. The upregulation of Tgc-Myc may serve as an approach to generate strains with an enhanced detoxification response and consequently a low heavy metal buildup.
Collapse
Affiliation(s)
- Defeng Zhao
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China; Zhejiang Ocean University, Zhoushan 316022, China
| | - Gaoyu Hu
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China
| | - Ran Chen
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China; Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuangshuang Teng
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China.
| |
Collapse
|
22
|
Mhungu F, Chen K, Wang Y, Liu Y, Zhang Y, Pan X, Cheng Y, Liu Y, Zhang W. Probabilistic Risk Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China-Young Children Potentially at a Health Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9572. [PMID: 35954928 PMCID: PMC9367776 DOI: 10.3390/ijerph19159572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd) and its compounds are hazardous environmental pollutants with renal toxicity and human carcinogenicity, with ingestion of contaminated foods representing the major mode of exposure. There have been a number of reports evaluating the Cd content in various foods; however, regarding the actual risk posed by dietary cadmium exposure, only a few reports are available in which single point evaluation (less accurate than multiple point evaluation) was employed. In this study, we used a margin of exposure (MOE) model and @RISK software (for multiple evaluation) to evaluate Cd-related health risk in the local Guangzhou residents at varying ages, through a comparison between the estimated monthly exposures and the provisional tolerable monthly intake (0.025 mg/kg body weight (b.w.)), based on the Cd contents in various food categories available locally (a total of 3964 food samples were collected from each of the 13 districts of Guangzhou between 2015 and 2019), which were determined by using inductively coupled plasma mass spectrometry. In this study, Cd was detected in 69.6% of the samples (averaged 0.120 mg/kg), and rice and its products, leafy vegetables, bivalves, and shrimp and crabs contributed most to Cd exposure (8.63, 3.18, 2.79, and 1.48 ng/kg b.w./day, respectively). The MOE values demonstrated the following tendency: the younger age group, the lower MOE, and its 95% confidence range for the (youngest) 3~6 year old group started from 0.92, indicating a health risk of young children, while that for the other age groups were all above 1.0. Our preliminary findings warrant further clarification using biomarker assays in the relevant population.
Collapse
Affiliation(s)
- Florence Mhungu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Yanyan Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Yufei Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Yuhua Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Yanfang Cheng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| | - Yungang Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
- Institute of Public Health, Guangzhou Medical University, Guangzhou 510440, China
| |
Collapse
|
23
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153591. [PMID: 35122849 DOI: 10.1016/j.scitotenv.2022.153591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Botté A, Seguin C, Nahrgang J, Zaidi M, Guery J, Leignel V. Lead in the marine environment: concentrations and effects on invertebrates. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:194-207. [PMID: 35037181 DOI: 10.1007/s10646-021-02504-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a non-essential metal naturally present in the environment and often complexed with other elements (e.g., copper, selenium, zinc). This metal has been used since ancient Egypt and its extraction has grown in the last centuries. It has been used until recently as a fuel additive and is currently used in the production of vehicle batteries, paint, and plumbing. Marine ecosystems are sinks of terrestrial contaminations; consequently, lead is detected in oceans and seas. Furthermore, lead is not biodegradable. It remains in soil, atmosphere, and water inducing multiple negative impacts on marine invertebrates (key species in trophic chain) disturbing ecological ecosystems. This review established our knowledge on lead accumulation and its effects on marine invertebrates (Annelida, Cnidaria, Crustacea, Echinodermata, and Mollusca). Lead may affect different stages of development from fertilization to larval development and can also lead to disturbance in reproduction and mortality. Furthermore, we discussed changes in the seawater chemistry due to Ocean Acidification, which can affect the solubility, speciation, and distribution of the lead, increasing potentially its toxicity to marine invertebrates.
Collapse
Affiliation(s)
- A Botté
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - C Seguin
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - J Nahrgang
- UiT, University Arctic of Norway, Department of Marine Biology, Tromsø, Norway
| | - M Zaidi
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France
| | - J Guery
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 5283, Le Mans Université, Le Mans, France
| | - V Leignel
- Laboratoire Biologie des organismes, Stress, Santé, Environnement (BIOSSE), Le Mans Université, Le Mans, France.
| |
Collapse
|
25
|
Tong S, Bambrick H, Beggs PJ, Chen L, Hu Y, Ma W, Steffen W, Tan J. Current and future threats to human health in the Anthropocene. ENVIRONMENT INTERNATIONAL 2022; 158:106892. [PMID: 34583096 DOI: 10.1016/j.envint.2021.106892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
It has been widely recognised that the threats to human health from global environmental changes (GECs) are increasing in the Anthropocene epoch, and urgent actions are required to tackle these pressing challenges. A scoping review was conducted to provide an overview of the nine planetary boundaries and the threats to population health posed by human activities that are exceeding these boundaries in the Anthropocene. The research progress and key knowledge gaps were identified in this emerging field. Over the past three decades, there has been a great deal of research progress on health risks from climate change, land-use change and urbanisation, biodiversity loss and other GECs. However, several significant challenges remain, including the misperception of the relationship between human and nature; assessment of the compounding risks of GECs; strategies to reduce and prevent the potential health impacts of GECs; and uncertainties in fulfilling the commitments to the Paris Agreement. Confronting these challenges will require rigorous scientific research that is well-coordinated across different disciplines and various sectors. It is imperative for the international community to work together to develop informed policies to avert crises and ensure a safe and sustainable planet for the present and future generations.
Collapse
Affiliation(s)
- Shilu Tong
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
| | - Hilary Bambrick
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Paul J Beggs
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | | | - Yabin Hu
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Will Steffen
- The Australian National University, Canberra, Australia
| | - Jianguo Tan
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| |
Collapse
|
26
|
Wei H, Bai Z, Xie D, Chen Y, Wang M. CO 2-driven seawater acidification increases cadmium toxicity in a marine copepod. MARINE POLLUTION BULLETIN 2021; 173:113145. [PMID: 34800761 DOI: 10.1016/j.marpolbul.2021.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Here, we examined the 48-h acute toxicity of cadmium (Cd) in the marine copepod Tigriopus japonicus under two pCO2 concentrations (400 and 1000 μatm). Subsequently, T. japonicus was interactively exposed to different pCO2 (400, 1000 μatm) and Cd (control, 500 μg/L) treatments for 48 h. After exposure, biochemical and physiological responses were analyzed for the copepods. The results showed that the 48-h LC50 values of Cd were calculated as 12.03 mg/L and 9.08 mg/L in T. japonicus, respectively, under 400 and 1000 μatm pCO2 conditions. Cd exposure significantly promoted Cd exclusion/glycolysis, detoxification/stress response, and oxidative stress/apoptosis while it depressed that of antioxidant capacity. Intriguingly, CO2-driven acidification enhanced Cd bioaccumulation and its toxicity in T. japonicus. Overall, our study provides a mechanistic understanding about the interaction between seawater acidification and Cd pollution in marine copepods.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhuoan Bai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), Xiamen 361008, China.
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
27
|
Gopi N, Rekha R, Vijayakumar S, Liu G, Monserrat JM, Faggio C, Nor SAM, Vaseeharan B. Interactive effects of freshwater acidification and selenium pollution on biochemical changes and neurotoxicity in Oreochromis mossambicus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109161. [PMID: 34375731 DOI: 10.1016/j.cbpc.2021.109161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 12/01/2022]
Abstract
Effect of selenium and acidification in freshwater environment was assessed solitary but no reports are available on the impacts of both factors act together. In the present study, effects of combined simultaneous exposure to selenium (Se) and low pH were assessed in Mozambique tilapia, Oreochromis mossambicus. Responses were measured based on antioxidant defenses (enzymatic SOD, CAT, GPx and non-enzymatic GSH), biotransformation enzyme (GST), metallothionein levels (MT), oxidative damage (LPO, CP), Na+/K+-ATPase (NKA) activity in gills and liver tissues and neurotoxicity (acetylcholinesterase, AChE) response in brain tissue. Fish were exposed to combined treatment at different pH levels (7.5, control (optimum pH for tilapia growth); 5.5, low pH) and Se concentrations (0, 10, and 100 μg L-1). Toxicity levels of Se were not significantly different under control and low pH indicating that pH did not affect Se toxicity. Levels of GSH and MT were enhanced in Se-exposed fish at both pH. Combined effects of high Se concentration and low pH decreased SOD and CAT activities and increased those of GPx and GST. However, organisms were not able to prevent cellular damage (LPO and CP), indicating a condition of oxidative stress. Furthermore, inhibition of Na+/K+-ATPase activity was showed. Additionally, neurotoxicity effect was observed by inhibition of cholinesterase activity in organisms exposed to Se at both pH conditions. As a result, the combined stress of selenium and freshwater acidification has a slight impact on antioxidant defense mechanisms while significantly inhibiting cholinesterase and Na+/K + -ATPase activity in fish. The mechanisms of freshwater acidification mediating the toxic effects of trace non-metal element on freshwater fish need to investigate further.
Collapse
Affiliation(s)
- Narayanan Gopi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ravichandran Rekha
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India; Marine College, Shandong University, Weihai 264209, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - José Maria Monserrat
- Universidade Federal do Rio Grande- FURG, Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Aquacultura, Rio Grande, RS, Brazil
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6(th) Floor, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
28
|
Kibria G, Nugegoda D, Rose G, Haroon AKY. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. MARINE POLLUTION BULLETIN 2021; 167:112364. [PMID: 33933897 DOI: 10.1016/j.marpolbul.2021.112364] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This article provides an overview of the impacts of climate change stressors (temperature, ocean acidification, sea-level rise, and hypoxia) on estuarine and marine biota (algae, crustaceans, molluscs, corals, and fish). It also assessed possible/likely interactive impacts (combined impacts of climate change stressors and pollutants) on pollutants mobilization, pollutants toxicity (effects on growth, reproduction, mortality) and pollutants bioaccumulation in estuarine and marine biota. An increase in temperature and extreme events may enhance the release, degradation, transportation, and mobilization of both hydrophobic and hydrophilic pollutants in the estuarine and marine environments. Based on the available pollutants' toxicity trend data and information it reveals that the toxicity of several high-risk pollutants may increase with increasing levels of climate change stressors. It is likely that the interactive effects of climate change and pollutants may enhance the bioaccumulation of pollutants in seafood organisms. There is a paucity of literature relating to realistic interactive effects of climate change and pollutants. Therefore, future research should be directed towards the combined effects of climate change stressors and pollutants on estuarine and marine bota. A sustainable solution for pollution control caused by both greenhouse gas emissions (that cause climate change) and chemical pollutants would be required to safeguard the estuarine and marine biota.
Collapse
Affiliation(s)
- Golam Kibria
- School of Science, RMIT University, Australia; Global Artificial Mussels Pollution Watch Programme, Australia.
| | | | - Gavin Rose
- Kinvara Scientific P/L, Kinvara, NSW 2478, Australia
| | - A K Yousuf Haroon
- Food and Agriculture Organisation of the UN (FAO), Dhaka, Bangladesh
| |
Collapse
|
29
|
Mani R, Rose S, Suresh A, Sambantham S, Anandan B, Ibrahim M, Meena B. Cellular alterations and damage to the renal tissue of marine catfish Arius arius following Cd exposure and the possible sequestrant role of Metallothionein. MARINE POLLUTION BULLETIN 2021; 163:111930. [PMID: 33373888 DOI: 10.1016/j.marpolbul.2020.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Cd is a non-degradable heavy metal pollutant with no known biological role. When taken up by living organisms from the environment, it causes extensive tissue damage. Here, we studied the effects of exposure to 20 mg/L-1CdCl2for 0, 24, 48, and 72 h on the renal tissue of marine catfish Arius arius. Cd uptake, metallothionein (MT) induction, microarchitectural alterations, DNA fragmentation, and caspase-3 activity were studied. Cd and MT levels were time-dependent and positively correlated. The diameter of the Bowman's capsule and tubules was significantly increased. Meanwhile, the density, diameter, and volume of the glomerulus as well as the density and volume of tubules decreased. Cd induced apoptosis though elevatedcaspase-3 activity. These results support the notion that exposure to sublethal Cd levels induces oxidative stress, leading to structural and functional impairment of the kidneys. Cd uptake and MT induction can serve as useful environmental biomarkers.
Collapse
Affiliation(s)
- Ramalingam Mani
- Department of Biotechnology, St. Peter's University, Chennai 600 054, India; Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India
| | - Sumit Rose
- Department of Zoology, Presidency College (Autonomous), Chennai 600 005, India
| | - Ayothi Suresh
- Department of Zoology, Presidency College (Autonomous), Chennai 600 005, India
| | | | | | - Muhammed Ibrahim
- Department of Anatomy, Dr. ALMPG IBMS, University of Madras, Chennai, Tamil Nadu, India
| | - Boominathan Meena
- Department of Zoology, Presidency College (Autonomous), Chennai 600 005, India.
| |
Collapse
|
30
|
Rowlands E, Galloway T, Manno C. A Polar outlook: Potential interactions of micro- and nano-plastic with other anthropogenic stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142379. [PMID: 33254857 DOI: 10.1016/j.scitotenv.2020.142379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Polar marine ecosystems may have higher sensitivity than other ecosystems to plastic pollution due to recurrent physical and biological features; presence of ice and high UV radiation, slow growth rates and weak genetic differentiation of resident biota, accumulation of persistent organic pollutants and heavy metals, and fast rates of warming and global ocean acidification. Here, we discuss potential sources of and exposure to micro- and nano-plastic in polar marine ecosystems and potential mixture effects of micro- and nano-plastic coupled with chemical and climate related stressors. We address the anthropogenic contaminants likely to be 'high risk' for interactions in Arctic and Antarctic waters for reasons such as accumulation under sea-ice, a known sink for plastic particulates. Consequently, we address the potential for localised plastic-chemical interactions and possible seasonal fluctuations in interactions associated with freeze-thaw events. The risks for keystone polar species are also considered, incorporating the behavioural and physiological traits of biota and addressing potential 'hotspot' areas. Finally, we discuss a possible direction for future research.
Collapse
Affiliation(s)
- Emily Rowlands
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland; University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland.
| | - Tamara Galloway
- University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
31
|
Malik S, Alizada N, Muzaffar SB. Bioaccumulation of trace elements in tissues of Indian oil sardine (Sardinella longiceps) from the northern United Arab Emirates. MARINE POLLUTION BULLETIN 2020; 161:111771. [PMID: 33099057 DOI: 10.1016/j.marpolbul.2020.111771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Small, partially enclosed gulfs are especially vulnerable to coastal pollution. The Arabian Gulf is a shallow, hypersaline, warm gulf with rising levels of pollution caused by rapid development and industrialization. We measured 19 trace elements in the gastrointestinal tract, liver and muscle of Indian oil sardines (Sardinella longiceps) from three sites from the United Arab Emirates in the southern Arabian Gulf. Concentrations of cadmium, chromium, copper and zinc exceeded international maximum permissible limits (MPL) in all three tissues in most sites. High concentrations in muscle raises concerns about the risk to humans, as muscles are widely consumed by humans. Discriminant Function Analysis showed that the three study sites (Sharjah, Ajman and Umm Al Quwain) could be discriminated based on a combination of elements. Improved monitoring of pollutants is needed to ascertain the concentration of pollutants in species at different trophic levels. We recommend better control measures to reduce the discharge of pollutants into this fragile marine ecosystem.
Collapse
Affiliation(s)
- Shaima Malik
- The National Water Center and Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates, PO Box 15551
| | - Nuray Alizada
- The National Water Center and Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates, PO Box 15551
| | - Sabir Bin Muzaffar
- The National Water Center and Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates, PO Box 15551.
| |
Collapse
|
32
|
Bowden TJ, Kraev I, Lange S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel ( Mytilus edulis), Soft Shell Clam ( Mya arenaria), Eastern Oyster ( Crassostrea virginica) and Atlantic Jacknife Clam ( Ensis leei). BIOLOGY 2020; 9:biology9120416. [PMID: 33255637 PMCID: PMC7760292 DOI: 10.3390/biology9120416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Simple Summary Oysters and clams form an important component of the food chain and food security and are of considerable commercial value worldwide. They are affected by pollution and climate change, as well as a range of infections, some of which are opportunistic. For aquaculture purposes they are furthermore of great commercial value and changes in their immune responses can also serve as indicators of changes in ocean environments. Therefore, studies into understanding new factors in their immune systems may aid new biomarker discovery and are of considerable value. This study assessed new biomarkers relating to changes in protein function in four economically important marine molluscs, the blue mussel, soft shell clam, Eastern oyster, and Atlantic jacknife clam. These findings indicate novel regulatory mechanisms of important metabolic and immunology related pathways in these mollusks. The findings provide new understanding to how these pathways function in diverse ways in different animal species as well as aiding new biomarker discovery for Mollusca aquaculture. Abstract Oysters and clams are important for food security and of commercial value worldwide. They are affected by anthropogenic changes and opportunistic pathogens and can be indicators of changes in ocean environments. Therefore, studies into biomarker discovery are of considerable value. This study aimed at assessing extracellular vesicle (EV) signatures and post-translational protein deimination profiles of hemolymph from four commercially valuable Mollusca species, the blue mussel (Mytilus edulis), soft shell clam (Mya arenaria), Eastern oyster (Crassostrea virginica), and Atlantic jacknife clam (Ensis leei). EVs form part of cellular communication by transporting protein and genetic cargo and play roles in immunity and host–pathogen interactions. Protein deimination is a post-translational modification caused by peptidylarginine deiminases (PADs), and can facilitate protein moonlighting in health and disease. The current study identified hemolymph-EV profiles in the four Mollusca species, revealing some species differences. Deiminated protein candidates differed in hemolymph between the species, with some common targets between all four species (e.g., histone H3 and H4, actin, and GAPDH), while other hits were species-specific; in blue mussel these included heavy metal binding protein, heat shock proteins 60 and 90, 2-phospho-D-glycerate hydrolyase, GTP cyclohydrolase feedback regulatory protein, sodium/potassium-transporting ATPase, and fibrinogen domain containing protein. In soft shell clam specific deimination hits included dynein, MCM3-associated protein, and SCRN. In Eastern oyster specific deimination hits included muscle LIM protein, beta-1,3-glucan-binding protein, myosin heavy chain, thaumatin-like protein, vWFA domain-containing protein, BTB domain-containing protein, amylase, and beta-catenin. Deiminated proteins specific to Atlantic jackknife clam included nacre c1q domain-containing protein and PDZ domain-containing protein In addition, some proteins were common as deiminated targets between two or three of the Bivalvia species under study (e.g., EP protein, C1q domain containing protein, histone H2B, tubulin, elongation factor 1-alpha, dominin, extracellular superoxide dismutase). Protein interaction network analysis for the deiminated protein hits revealed major pathways relevant for immunity and metabolism, providing novel insights into post-translational regulation via deimination. The study contributes to EV characterization in diverse taxa and understanding of roles for PAD-mediated regulation of immune and metabolic pathways throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J. Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME 04469-5735, USA;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
33
|
Ma Z, Zheng X, Fu Z, Lin S, Yu G, Qin JG. Transcriptional analysis reveals physiological response to acute acidification stress of barramundi Lates calcarifer (Bloch) in coastal areas. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1729-1741. [PMID: 32533395 DOI: 10.1007/s10695-020-00824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
To understand the physiological response of estuarine fish to acidification, barramundi (Lates calcarifer) juveniles were exposed to acidified seawater in experimental conditions. The molecular response of barramundi to acidification stress was assessed by RNA-seq analysis. A total of 2188 genes were identified as differential expression genes. The gene ontology classification system and Kyoto Encyclopedia of Genes and Genomes database analysis showed that acidification caused differential expressions of genes and pathways in the gills of barramundi. Acidification had a great influence on the signal transduction pathway in cell process. Furthermore, we detected that numerous unigenes involved in the pathways associated with lipid metabolism, carbohydrate metabolism, amino acid metabolism, glycan biosynthesis and metabolism specific and non-specific immunity were changed. This study indicates that the physiological responses in barramundi especially the immune system and energy allocation correspond to the variation of environmental pH. This study reveals the necessity for assessment of the potential of estuarine fishes to cope with acidification of the environment and the need to develop strategies for fish conservation in coastal areas.
Collapse
Affiliation(s)
- Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Siqi Lin
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
34
|
Chen SC, Lin HC, Chen WY. Risks of consuming cadmium-contaminated shellfish under seawater acidification scenario: Estimates of PBPK and benchmark dose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110763. [PMID: 32505759 DOI: 10.1016/j.ecoenv.2020.110763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We aim to assess the risks of renal dysfunction and osteoporosis that is attributed to the seawater acidification caused cadmium (Cd) level increase in human consumed shellfish. A physiology-based pharmacokinetic model was used to estimate Cd concentrations in urine and blood among shellfish-only consumers and among the general population. We used the benchmark dose (BMD) method to determine the threshold limits of Cd in urine for renal dysfunction and in blood for osteoporosis for assessing the human health risk. Our results revealed that seawater acidification could increase the Cd accumulation in shellfish by 10-13% compared to the situations under current pH levels. Under the lower seawater pH level, the daily intake of Cd could increase by 21%-67% among shellfish-only consumers, and by 13%-17% among the general population. Our findings indicated that seawater acidification would lead to a marginal increase in Cd intake among humans in shellfish-only consumers. The results of BMDs of urinary Cd showed that the threshold limits for renal dysfunction at 5% were 3.00 μg g-1 in males and 12.35 μg g-1 in females. For osteoporosis, the estimated BMDs of blood Cd were 7.95 μg L-1 in males and 1.23 μg L-1 in females. These results of the risk of Cd intake showed that the consumption of Cd-contaminated shellfish in the general population is largely unaffected by changes in seawater pH levels. Notably, the potential impact of seawater acidification on renal dysfunction for males in shellfish-only consumers face a 14% increase of risk.
Collapse
Affiliation(s)
- Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung, 40242, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 40242, Taiwan
| | - Hsing-Chieh Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
35
|
Zhang X, Xu D, Huang S, Wang S, Han W, Liang C, Zhang Y, Fan X, Zhang X, Wang Y, Wang W, Egan S, Saha M, Li F, Ye N. The effect of elevated pCO 2 on cadmium resistance of a globally important diatom. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122749. [PMID: 32361134 DOI: 10.1016/j.jhazmat.2020.122749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) pollution is a widespread threat to marine life, and ongoing ocean acidification (OA) is predicted to impact bio-toxicity of Cd compounds. However, the cascading effects of changed Cd toxicity to marine primary producers are not well characterized. Here, we studied the impact of OA on Cd toxicity responses in a globally important diatom Phaeodactylum tricornutum under both ambient and elevated pCO2 conditions. We found that increased pCO2 alleviated the impact of additive Cd toxicity on P. tricornutum not only under controlled indoor experiments but also in outdoor mesocosm experiments that reflect more natural growth conditions. Transcriptome analysis suggested that genes involved in Cd efflux and phytochelatin production were up-regulated and genes involved in Cd influx were down-regulated in long-term selected lineages under elevated pCO2. We further found a significant reduction of Cd transfer across trophic level, when the scallop Argopecten irradians was fed with Cd-exposed P. tricornutum previously cultured under elevated pCO2. Our results indicate that after long-term selection of P. tricornutum exposed to future OA conditions (i.e. elevated pCO2), the diatom alters its Cd detoxification strategy, which could have broader impacts on the bio-geochemical cycle of Cd in the marine ecosystem.
Collapse
Affiliation(s)
- Xiansheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shujie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shaohua Wang
- Rongcheng Comprehensive Technology Transfer Center, Rongcheng, China
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Chengwei Liang
- Qingdao University of Science and Technology, Qingdao, China
| | - Yan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
| | - Mahasweta Saha
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, PL13DH Plymouth, UK
| | - Fang Li
- Qingdao University of Science and Technology, Qingdao, China.
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
36
|
Joy A, Anoop PP, Rajesh R, Mathew J, Mathew A, Gopinath A. Geochemical fractionation of trace elements in the coral reef sediments of the Lakshadweep Archipelago, Indian Ocean. MARINE POLLUTION BULLETIN 2020; 158:111409. [PMID: 32753193 DOI: 10.1016/j.marpolbul.2020.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Geochemical fractionation of seven trace elements (Cr, Mn, Fe, Cu, Zn, Cd, and Pb) was investigated in the surficial coral reef sediments of three inhabited islands (Kavaratti, Kadmat, and Agatti) belonging to the Lakshadweep Archipelago. The observations indicated that the metals showed their highest contents in the residual fraction of geological origin. The extent of risk, bioavailability, and contamination of trace elements was assessed by risk assessment codes and contamination factors. Based on the results, medium potential adverse effects were observed in the sediments of Kavaratti and Agatti. The concentration of Cd in the exchangeable and carbonate-bound fractions was above its global average shale value in the sediments of Kavaratti and Agatti, suggesting its high mobility and bioavailability and thus an environmental threat to the coral reef ecosystem.
Collapse
Affiliation(s)
- Anu Joy
- Department of Chemistry and Research Centre, St Albert's College, Ernakulam, India
| | - P P Anoop
- Department of Chemistry and Research Centre, St Albert's College, Ernakulam, India
| | - R Rajesh
- Department of Chemistry and Research Centre, St Albert's College, Ernakulam, India
| | - Jose Mathew
- Department of Chemistry and Research Centre, St Albert's College, Ernakulam, India
| | - Angel Mathew
- Department of Statistics, Maharaja's College, Ernakulam, India
| | - Anu Gopinath
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| |
Collapse
|
37
|
Bank MS, Metian M, Swarzenski PW. Defining Seafood Safety in the Anthropocene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8506-8508. [PMID: 32643368 DOI: 10.1021/acs.est.0c03505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Michael S Bank
- Department of Contaminants and Biohazards, Institute of Marine Research, Bergen NO-5817, Norway
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Marc Metian
- International Atomic Energy Agency, Principality of Monaco, 98000 Monaco
| | - Peter W Swarzenski
- International Atomic Energy Agency, Principality of Monaco, 98000 Monaco
| |
Collapse
|
38
|
Ocean Acidification and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124563. [PMID: 32599924 PMCID: PMC7344635 DOI: 10.3390/ijerph17124563] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
The ocean provides resources key to human health and well-being, including food, oxygen, livelihoods, blue spaces, and medicines. The global threat to these resources posed by accelerating ocean acidification is becoming increasingly evident as the world's oceans absorb carbon dioxide emissions. While ocean acidification was initially perceived as a threat only to the marine realm, here we argue that it is also an emerging human health issue. Specifically, we explore how ocean acidification affects the quantity and quality of resources key to human health and well-being in the context of: (1) malnutrition and poisoning, (2) respiratory issues, (3) mental health impacts, and (4) development of medical resources. We explore mitigation and adaptation management strategies that can be implemented to strengthen the capacity of acidifying oceans to continue providing human health benefits. Importantly, we emphasize that the cost of such actions will be dependent upon the socioeconomic context; specifically, costs will likely be greater for socioeconomically disadvantaged populations, exacerbating the current inequitable distribution of environmental and human health challenges. Given the scale of ocean acidification impacts on human health and well-being, recognizing and researching these complexities may allow the adaptation of management such that not only are the harms to human health reduced but the benefits enhanced.
Collapse
|
39
|
Berman I, Zereik E, Kapitonov A, Bonsignorio F, Khassanov A, Oripova A, Lonshakov S, Bulatov V. Trustable Environmental Monitoring by Means of Sensors Networks on Swarming Autonomous Marine Vessels and Distributed Ledger Technology. Front Robot AI 2020; 7:70. [PMID: 33501237 PMCID: PMC7805745 DOI: 10.3389/frobt.2020.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
The article describes a highly trustable environmental monitoring system employing a small scalable swarm of small-sized marine vessels equipped with compact sensors and intended for the monitoring of water resources and infrastructures. The technological foundation of the process which guarantees that any third party can not alter the samples taken by the robot swarm is based on the Robonomics platform. This platform provides encrypted decentralized technologies based on distributed ledger tools, and market mechanisms for organizing the work of heterogeneous multi-vendor cyber-physical systems when automated economical transactions are needed. A small swarm of robots follows the autonomous ship, which is in charge of maintaining the secure transactions. The swarm implements a version of Reynolds' Boids model based on the Belief Space Planning approach. The main contributions of our work consist of: (1) the deployment of a secure sample certification and logging platform based on the blockchain with a small-sized swarm of autonomous vessels performing maneuvers to measure chemical parameters of water in automatic mode; (2) the coordination of a leader-follower framework for the small platoon of robots by means of a Reynolds' Boids model based on a Belief Space Planning approach. In addition, the article describes the process of measuring the chemical parameters of water by using sensors located on the vessels. Both technology testing on experimental vessel and environmental measurements are detailed. The results have been obtained through real world experiments of an autonomous vessel, which was integrated as the “leader” into a mixed reality simulation of a swarm of simulated smaller vessels.The design of the experimental vessel physically deployed in the Volga river to demonstrate the practical viability of the proposed methods is shortly described.
Collapse
Affiliation(s)
- Ivan Berman
- Faculty of Control Systems and Robotics, ITMO University, Saint Petersburg, Russia
| | - Enrica Zereik
- Institute of Marine Engineering, Italian National Research Council, Genova, Italy
| | - Aleksandr Kapitonov
- Faculty of Control Systems and Robotics, ITMO University, Saint Petersburg, Russia
| | | | | | - Aziza Oripova
- Faculty of Food Biotechnologies and Engineering, ITMO University, Saint Petersburg, Russia
| | | | - Vitaly Bulatov
- M2M Economy, Inc. ("Merklebot"), San Francisco, CA, United States
| |
Collapse
|
40
|
Zhao X, Han Y, Chen B, Xia B, Qu K, Liu G. CO 2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. CHEMOSPHERE 2020; 243:125415. [PMID: 31770697 DOI: 10.1016/j.chemosphere.2019.125415] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Oceanic uptake of atmospheric CO2 is reducing seawater pH and shifting carbonate chemistry within, a process termed as ocean acidification (OA). Marine mussels are a family of ecologically and economically significant bivalves that are widely distributed along coastal areas worldwide. Studies have demonstrated that OA greatly disrupts mussels' physiological functions. However, the underlying molecular responses (e.g., whether there were any molecular compensation mechanisms) and the extent to which OA affects mussel shell defense capacity remain largely unknown. In this study, the thick shell mussels Mytilus coruscus were exposed to the ambient pH (8.1) or one of two lowered pH levels (7.8 and 7.4) for 40 days. The results suggest that future OA will damage shell structure and weaken shell strength and shell closure strength, ultimately reducing mussel shell defense capacity. In addition, future OA will also disrupt haemolymph pH and Ca2+ homeostasis, leading to extracellular acidosis and Ca2+ deficiency. Mantle transcriptome analyses indicate that mussels will adopt a series of molecular compensatory responses to mitigate these adverse effects; nevertheless, weakened shell defense capacity will increase mussels' susceptibility to predators, parasites and pathogens, and thereby reduce their fitness. Overall, the findings of this study have significant ecological and economic implications, and will enhance our understanding of the future of the mussel aquaculture industry and coastal ecosystems.
Collapse
Affiliation(s)
- Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environment Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
41
|
Determination of cadmium induced acute and chronic reproductive toxicity with Raman spectroscopy. Lasers Med Sci 2020; 35:1919-1926. [PMID: 32026165 DOI: 10.1007/s10103-020-02976-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is one of the toxic heavy metals which is confirmed to be related to male sterile. Here, confocal Raman spectroscopy was employed to detect biomolecular composition and changes in testis under acute and chronic Cd treatment. Specific Raman shifts associated with mitochondria, nucleic acids, proteins, lipids, and cholesterol were identified which were distinguishing among groups undergoing different Cd treatment times. Supporting evidences were provided by conventional experimental detections. The relevant biochemical parameters, pathological changes, and protein expression related to testosterone synthesis were all changed and consistent with Raman spectrum information. In conclusion, confocal Raman spectroscopy presents a reliable data and provides a novel method which is expected to be a promising strategy in reproduction toxicity research.
Collapse
|
42
|
Shang Y, Wu F, Wei S, Guo W, Chen J, Huang W, Hu M, Wang Y. Specific dynamic action of mussels exposed to TiO 2 nanoparticles and seawater acidification. CHEMOSPHERE 2020; 241:125104. [PMID: 31629245 DOI: 10.1016/j.chemosphere.2019.125104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Both nanoparticles (NPs) and ocean acidification (OA) pose threats to marine animals as well as marine ecosystems. The present study aims to evaluate the combined effects of NPs and OA on specific dynamic action (SDA) of mussels. The thick shell mussels Mytilus coruscus were exposed to two levels of pH (7.3 and 8.1) and three concentrations of TiO2 NPs (0, 2.5, and 10 mg L-1) for 14 days followed by a 7-day recovery period. The SDA parameters, including standard metabolic rate, peak metabolic rate, aerobic metabolic scope, SDA slope, time to peak, SDA duration and SDA, were measured. The results showed that TiO2 NPs and low pH significantly affected all parameters throughout the experiment. When the mussels were exposed to seawater acidification or TiO2 NPs conditions, standard metabolic rate, aerobic metabolic scope, SDA slope and SDA significantly decreased, whereas peak metabolic rate, time to peak and SDA duration significantly increased. In addition, interactive effects between TiO2 NPs and pH were observed in SDA parameters except time to peak and SDA. Therefore, the synergistic effect of TiO2 NPs and low pH can adversely affect the feeding metabolism of mussels.
Collapse
Affiliation(s)
- Yueyong Shang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, China
| | - Fangli Wu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, China
| | - Shuaishuai Wei
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, China
| | - Wen Guo
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, 266002, China
| | - Jianfang Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Menghong Hu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, China
| | - Youji Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, Qingdao, 266002, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306, China.
| |
Collapse
|
43
|
Martinez-Albores A, Lopez-Santamarina A, Rodriguez JA, Ibarra IS, Mondragón ADC, Miranda JM, Lamas A, Cepeda A. Complementary Methods to Improve the Depuration of Bivalves: A Review. Foods 2020; 9:E129. [PMID: 31991702 PMCID: PMC7074382 DOI: 10.3390/foods9020129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Bivalves are filter feeders that can accumulate and concentrate waterborne contaminants present in the water in which they live. Biotoxins, pathogenic bacteria, viruses, and heavy metals present in the aquaculture environment constitute the main hazards for human health. The most common method employed for combating waterborne pollutants in bivalves is depuration with purified seawater. Although this method is effective at increasing the microbiological quality of bivalves, in most cases, it is ineffective at eliminating other risks, such as, for example, viruses or heavy metals. Biological (bacteriocins and bacteriophages), physical (UV light, ozone, and gamma-irradiation), chemical (metallothioneins and chitosan), and other industrial processing methods have been found to be useful for eliminating some contaminants from seawater. The aim of this work was to provide a review of academic articles concerning the use of treatments complementary to conventional depuration, aiming to improve depuration process efficiency by reducing depuration times and decreasing the levels of the most difficult-to-erase contaminants. We conclude that there are different lab-tested strategies that can reduce depuration times and increase the food safety of bivalve produce, with possible short- and long-term industrial applications that could improve the competitivity of the aquaculture industry.
Collapse
Affiliation(s)
- Antía Martinez-Albores
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| | - José Antonio Rodriguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, 42076 Pachuca, Hidalgo, Mexico; (J.A.R.); (I.S.I.)
| | - Israel Samuel Ibarra
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, 42076 Pachuca, Hidalgo, Mexico; (J.A.R.); (I.S.I.)
| | - Alicia del Carmen Mondragón
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| | - Jose Manuel Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| | - Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.M.-A.); (A.L.-S.); (A.d.C.M.); (J.M.M.); (A.L.)
| |
Collapse
|
44
|
Soon TK, Zheng H. Climate Change and Bivalve Mass Mortality in Temperate Regions. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:109-129. [PMID: 31289937 DOI: 10.1007/398_2019_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the fastest-growing global food sectors is the bivalve aquaculture industry. Bivalves particularly oysters, mussels and clams are important sources of animal protein (Tan and Ransangan 2016a, b). Bivalve aquaculture represents 14-16% of the average per capita animal protein for 1.5 billion people and supports over 200,000 livelihoods, mostly in developing countries (FAO 2018). Most of the bivalves produced around the world (89%) are from aquaculture (FAO 2016). To date, mollusc aquaculture have accounted for 21.42% (17.14 million tonnes) of the total aquaculture production, with Asia being the largest contributor (92.27%) (FAO 2018).
Collapse
Affiliation(s)
- Tan Kar Soon
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, China.
| |
Collapse
|
45
|
Shen R, Li Y, Yu L, Wu H, Cui R, Liu S, Song Y, Wang D. Ex vivo detection of cadmium-induced renal damage by using confocal Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900157. [PMID: 31407491 DOI: 10.1002/jbio.201900157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal which is harmful to environment and organisms. The reabsorption of Cd in kidney leads it to be the main damaged organ in animals under the Cd exposure. In this work, we applied confocal Raman spectroscopy to map the pathological changes in situ in normal and Cd-exposed mice kidney. The renal tissue from Cd-exposed group displayed a remarkable decreasing in the intensity of typical peaks related to mitochondria, DNA, proteins and lipids. On the contrary, the peaks of collagen in Cd-exposed group elevated significantly. The components in each tissue were identified and distinguished by principal component analysis. Furthermore, all the biological investigations in this study were consistent with the Raman spectrum detection, which revealed the progression and degree of lesion induced by Cd. The confocal Raman spectroscopy provides a new perspective for in situ monitoring of substances changes in tissues, which exhibits more comprehensive understanding of the pathogenic mechanisms of heavy metals in molecular toxicology.
Collapse
Affiliation(s)
- Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yuee Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Linghui Yu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haining Wu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Rong Cui
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sha Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
46
|
Guan X, Tang Y, Zha S, Han Y, Shi W, Ren P, Yan M, Pan Q, Hu Y, Fang J, Zhang J, Liu G. Exogenous Ca 2+ mitigates the toxic effects of TiO 2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1764-1771. [PMID: 31295695 DOI: 10.1016/j.envpol.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Phagocytosis suppression induced by nanoparticles (NPs) exposure is increasingly reported in marine species. However, the mechanisms underlying this impact remain poorly understood. In order to improve our present understanding of the immunotoxicity of NPs, acute (96 h) TiO2 NP exposure and rescue trials via exogenous supply of Ca2+ were performed in the blood clam, Tegillarca granosa. The results show that the phagocytosis rate, cell viability, and intracellular Ca2+ concentration of haemocytes were significantly suppressed, whereas the intracellular ROS concentration of haemocytes significantly increased upon nTiO2 exposure. Exposure to nTiO2 also led to the significant downregulation of Caspase-3, Caspase-6, apoptosis regulator Bcl-2, Bcl-2-associated X, calmodulin kinase II, and calmodulin kinase kinase II. Furthermore, the toxic impacts of nTiO2 were partially mitigated by the addition of exogenous Ca2+, as indicated by the recovery tendency in almost all the measured parameters. The present study indicates that Ca2+ signaling could be one of the key pathways through which nTiO2 attacks phagocytosis.
Collapse
Affiliation(s)
- Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Peng Ren
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Maocang Yan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Qicun Pan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Yuan Hu
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jun Fang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jiongming Zhang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
48
|
Shi W, Han Y, Guan X, Rong J, Du X, Zha S, Tang Y, Liu G. Anthropogenic Noise Aggravates the Toxicity of Cadmium on Some Physiological Characteristics of the Blood Clam Tegillarca granosa. Front Physiol 2019; 10:377. [PMID: 31001147 PMCID: PMC6456685 DOI: 10.3389/fphys.2019.00377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Widespread applications of cadmium (Cd) in various products have caused Cd contamination in marine ecosystems. Meanwhile, human activities in the ocean have also generated an increasing amount of noise in recent decades. Although anthropogenic noise and Cd contaminants could be present simultaneously in marine environments, the physiological responses of marine bivalve mollusks upon coexposure to anthropogenic noise and toxic metal contaminants, including Cd remain unclear. Therefore, the combined effects of anthropogenic noise and Cd on the physiological characteristics of the blood clam Tegillarca granosa were investigated in this study. The results showed that 10 days of coexposure to anthropogenic noise and Cd can enhance adverse impacts on metabolic processes, as indicated by the clearance rate, respiration rate, ammonium excretion rate, and O:N ratio of T. granosa. In addition, both the ATP content, ATP synthase activity and genes encoding important enzymes in ATP synthesis significantly declined after coexposures to anthropogenic noise and Cd, which have resulted from reduced feeding activity and respiration. Furthermore, the expressions of neurotransmitter-related genes (MAO, AChE, and mAChR3) were all significantly down-regulated after coexposure to anthropogenic noise and Cd, which suggests an enhanced neurotoxicity under coexposure. In conclusion, our study demonstrated that anthropogenic noise and Cd would have synergetic effects on the feeding activity, metabolism, and ATP synthesis of T. granosa, which may be due to the add-on of stress responses and neurotransmitter disturbances.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jiahuan Rong
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xueying Du
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu Tang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO 2) in edible bivalve mollusks and poses a potential threat to seafood safety. Sci Rep 2019; 9:3516. [PMID: 30837670 PMCID: PMC6401146 DOI: 10.1038/s41598-019-40047-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/08/2019] [Indexed: 11/08/2022] Open
Abstract
Large amounts of anthropogenic CO2 in the atmosphere are taken up by the ocean, which leads to ‘ocean acidification’ (OA). In addition, the increasing application of nanoparticles inevitably leads to their increased release into the aquatic environment. However, the impact of OA on the bioaccumulation of nanoparticles in marine organisms still remains unknown. This study investigated the effects of OA on the bioaccumulation of a model nanoparticle, titanium dioxide nanoparticles (nTiO2), in three edible bivalves. All species tested accumulated significantly greater amount of nTiO2 in pCO2-acidified seawater. Furthermore, the potential health threats of realistic nTiO2 quantities accumulated in bivalves under future OA scenarios were evaluated with a mouse assay, which revealed evident organ edema and alterations in hematologic indices and blood chemistry values under future OA scenario (pH at 7.4). Overall, this study suggests that OA would enhance the accumulation of nTiO2 in edible bivalves and may therefore increase the health risk for seafood consumers.
Collapse
|
50
|
Teng Y, Zhou Q. Adsorption-desorption of hydrophilic contaminants rhodamine B with/without Cd 2+ on a coastal soil: implications for mariculture and seafood safety. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34636-34643. [PMID: 30315535 DOI: 10.1007/s11356-018-3358-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
An experimental study on adsorption and desorption behaviors of rhodamine B (RhB) with/without cadmium ion (Cd2+) on a coastal soil was carried out in the face of the scarce studies on its environmental behaviors, especially its combined pollution with metal ions. The implications on mariculture and seafood safety, rarely concerned either, were also analyzed for providing a new insight between azo dyes and them. It showed that the adsorption of RhB on the tested soil was affected by Cd2+ and could be better fitted by the Freundlich model and dominantly identified as chemical adsorption according to the threshold of ΔG0 (40 kJ/mol). There is a positive hysteresis on the desorption of RhB, which was generally strengthened with the increasing concentration of RhB but generally weakened in the presence of Cd2+. The azo dyes including RhB and heavy metals such as Cd, as the major class of typical pollutants in coastal environment, are closely related to the mariculture and seafood safety. In the consideration of three aspects including potential pollutants for the mariculture, potential risks for seafood safety, and potential relationships between dyes and mariculture and seafood safety, their implications were further clarified.
Collapse
Affiliation(s)
- Yong Teng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350, China.
| |
Collapse
|