1
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Tanabe S, Boonstra E, Hong T, Quader S, Ono R, Cabral H, Aoyagi K, Yokozaki H, Perkins EJ, Sasaki H. Molecular Networks of Platinum Drugs and Their Interaction with microRNAs in Cancer. Genes (Basel) 2023; 14:2073. [PMID: 38003016 PMCID: PMC10671144 DOI: 10.3390/genes14112073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Eger Boonstra
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan;
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki 210-9501, Japan;
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan (T.H.); (H.C.)
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Hiroshi Yokozaki
- Department of Pathology, Kobe University of Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Edward J. Perkins
- US Army Engineer Research and Development Center, Vicksburg, MS 39180, USA;
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
3
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Cai Y, Liu Z, Zhang G, Yang Y, Zhang Y, Wang F, Deng M. miR-101-5p overexpression suppresses the proliferation of goat spermatogonial stem cells by targeting EZH2. Anim Reprod Sci 2023; 255:107281. [PMID: 37352705 DOI: 10.1016/j.anireprosci.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
MicroRNAs (miRNAs), as post-transcriptional gene mediators, regulate the biological characteristics of spermatogonial stem cells (SSCs), including proliferation, differentiation and apoptosis. However, the potential roles and mechanisms by which miR-101-5p affected the biological characters of goat SSCs have not been fully elucidated. Herein, we reported that miR-101-5p overexpression decreased cell viability (P < 0.01), arrested cell cycle in the G1 phase (P < 0.05), and aggravated apoptosis of goat SSCs (P < 0.01) compared with negative control (NC), as determined by CCK-8 assay and flow cytometry analysis. Additionally, PCNA protein expression was attenuated by miR-101-5p overexpression (P < 0.05). Notably, the expression of SSCs specific genes Oct4 (P < 0.05), PLZF (P < 0.01) and DAZL (P < 0.01) were decreased in miR-101-5p overexpressed SSCs. Furthermore, the dual luciferase reporter assay showed that, when co-transfected with miR-101-5p mimics, the relative luciferase activity of EZH2 wide-type (WT) was inhibited (P < 0.05) compared with the transfection of EZH2 mutant (MUT). EZH2 expression was negatively correlated with miR-101-5p expression in goat SSCs. Collectively, our data implicates that miR-101-5p overexpression aggravates cell apoptosis, and suppresses cell proliferation of goat SSCs via targeting EZH2, which may impair spermatogenesis.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Todorović L, Stanojević B. VHL tumor suppressor as a novel potential candidate biomarker in papillary thyroid carcinoma. BIOMOLECULES AND BIOMEDICINE 2023; 23:26-36. [PMID: 36036061 PMCID: PMC9901892 DOI: 10.17305/bjbms.2022.7850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 02/03/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of endocrine cancer, with an increasing incidence worldwide. The treatment of PTC is currently the subject of clinical controversy, making it critically important to identify molecular markers that would help improve the risk stratification of PTC patients and optimize the therapeutic approach. The VHL tumor suppressor gene has been implicated in tumorigenesis of various types of carcinoma and linked with their aggressive biological behavior. The role of VHL in the origin and development of PTC has only recently begun to be revealed. In this narrative review we attempt to summarize the existing knowledge that implicates VHL in PTC pathogenesis and to outline its potential significance as a candidate molecular biomarker for the grouping of PTC patients into high and low risk groups.
Collapse
Affiliation(s)
- Lidija Todorović
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Correspondence to Lidija Todorović:
| | - Boban Stanojević
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King’s College London, London, UK,Virocell Biologics, Department of Cell and Gene Therapy, Great Ormond Street Hospital for Children, Zayed Centre for Research into Rare Disease in Children, London, UK
| |
Collapse
|
6
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
7
|
Liu N, Yang C, Gao A, Sun M, Lv D. MiR-101: An Important Regulator of Gene Expression and Tumor Ecosystem. Cancers (Basel) 2022; 14:cancers14235861. [PMID: 36497343 PMCID: PMC9739992 DOI: 10.3390/cancers14235861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
MiRNAs are small single-stranded non-coding RNAs. MiRNA contributes to the transcriptional and post-transcriptional regulation of mRNA in different cell types, including mRNA transcription inhibition and mRNA decay and phenotypes via the effect of several essential oncogenic processes and tumor microenvironment. MiR-101 is a highly conserved miRNA that was found to alter the expression in various human cancers. MiR-101 has been reported to have tumor oncogenic and suppressive effects to regulate tumorigenesis and tumor progression. In this review, we summarize the new findings about the roles of miR-101 in cancers and the underlying mechanisms of targeting genes degradation and microenvironment regulation, which will improve biological understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Ang Gao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
- Correspondence: (M.S.); (D.L.)
| | - Deguan Lv
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Correspondence: (M.S.); (D.L.)
| |
Collapse
|
8
|
Yu C, Huang W, Zhou Z, Liang S, Zhou Z, Liu J, Zhao H, Liu L, Dong H, Zou F, Cai S. Short isoform thymic stromal lymphopoietin reduces inflammation and aerobic glycolysis of asthmatic airway epithelium by antagonizing long isoform thymic stromal lymphopoietin. Respir Res 2022; 23:75. [PMID: 35351157 PMCID: PMC8966346 DOI: 10.1186/s12931-022-01979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Up-regulation of aerobic glycolysis has been reported as a characterization of asthma and facilitates airway inflammation. We has been previously reported that short isoform thymic stromal lymphopoietin (sTSLP) could reduce inflammation in asthmatic airway epithelial cells. Here we wanted to investigate whether the inhibition of sTSLP on asthma is related to aerobic glycolysis. Methods Asthmatic model was established in challenging Male BALB/c mice and 16-HBE (human bronchial epithelial) cell line with house dust mite (HDM). Indicators of glycolysis were assessed to measure whether involve in sTSLP regulating airway epithelial cells inflammation in asthmatic model in vivo and in vitro. Results sTSLP decreased inflammation of asthmatic airway and aerobic glycolysis in mice. HDM or long isoform thymic stromal lymphopoietin (lTSLP) promoted HIF-1α expression and aerobic glycolysis by miR-223 to target and inhibit VHL (von Hippel-Lindau) expression 16-HBE. Inhibition of aerobic glycolysis restrained HDM- and lTSLP-induced inflammatory cytokines production. sTSLP along had almost no potential to alter aerobic glycolysis of 16-HBE. But sTSLP decreased LDHA (lactate dehydrogenase A) and LD (Lactic acid) levels in BALF, and HIF-1α and LDHA protein levels in airway epithelial cells of asthma mice model. lTSLP and sTSLP both induced formation of TSLPR and IL-7R receptor complex, and lTSLP obviously facilitated phosphorylation of JAK1, JAK2 and STAT5, while sTSLP induced a little phosphorylation of JAK1 and STAT5. Conclusion We identified a novel mechanism that lTSLP could promote inflammatory cytokines production by miR-223/VHL/HIF-1α pathway to upregulate aerobic glycolysis in airway epithelial cells in asthma. This pathway is suppressed by sTSLP through occupying binding site of lTSLP in TSLPR and IL-7R receptor complex.
Collapse
Affiliation(s)
- Changhui Yu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wufeng Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zicong Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shixiu Liang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieyi Liu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijing Zhao
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Laiyu Liu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Zhou P, Liu B, Luan M, Li N, Tang B. A fluorescence nanoprobe for detecting the effect of different oxygen and nutrient conditions on breast cancer cells' migration and invasion. Biomater Sci 2021; 9:4428-4432. [PMID: 34075953 DOI: 10.1039/d1bm00619c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer cell migration and invasion are initial steps for tumor metastasis, which increases patient mortality. The tumor microenvironment is characterized as being hypoxic and nutrient deficient. Previous studies have suggested that hypoxia induces tumor metastasis, while the low nutrient content is not beneficial for tumor metastasis. Thus, it is necessary to develop a simple probe to study the changes in cancer migration and invasion. Herein, we designed a nanoprobe based on gold nanoparticles (Au NPs) to monitor the effect of different oxygen and nutrient conditions on the migration and invasion of breast cancer cells through detecting the changes in levels of RAB-22a and MMP-2 mRNA in living cells. After incubating MCF-7 and MDA-MB-231 cells with different concentrations of oxygen and nutrients, fluorescence imaging assays were used to evaluate migration and invasion. This work provides a new insight in the effect of different tumor microenvironments on cell migration and invasion.
Collapse
Affiliation(s)
- Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P.R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
10
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2020; 236:5080-5097. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Interaction with p53 explains a pro-proliferative function for VHL in cancer. J Mol Med (Berl) 2020; 98:1269-1278. [PMID: 32725274 DOI: 10.1007/s00109-020-01951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
The von Hippel-Lindau (VHL) protein binds and degrades hypoxia-inducible factors (HIF) hydroxylated by prolyl-hydroxylases under normoxia. Although originally described as a tumor suppressor, there is growing evidence that VHL may paradoxically promote tumor growth. The significance of its described interactions with many other proteins remains unclear. We found that VHL interacts with p53, preventing its tetramerization, promoter binding and expression of its target genes p21, PUMA, and Bax. VHL limited the decrease in proliferation and increase in apoptosis caused by p53 activation, independent of prolyl-hydroxylation and HIF activity, and its presence in tumors caused a resistance to p53-inducing chemotherapy in vivo. We propose that VHL has both anti-tumor function, via HIF degradation, and a new pro-tumor function via p53 target (p21, PUMA, Bax) inhibition. Because p53 plays a critical role in tumor biology, is activated by many chemotherapies, and because VHL levels vary among different tumors and its function can even be lost by mutations in some tumors, our results have important clinical applications. KEY MESSAGES: VHL and p53 physically interact and VHL inhibits p53 activity by limiting the formation of p53 tetramers. VHL attenuates the expression of p53 target genes in response to p53 stimuli. The inhibition of p53 by VHL is independent of HIF and prolyl-hydroxylation.
Collapse
|
13
|
Cava C, Novello C, Martelli C, Lodico A, Ottobrini L, Piccotti F, Truffi M, Corsi F, Bertoli G, Castiglioni I. Theranostic application of miR-429 in HER2+ breast cancer. Am J Cancer Res 2020; 10:50-61. [PMID: 31903105 PMCID: PMC6929607 DOI: 10.7150/thno.36274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed/amplified in one third of breast cancers (BCs), and is associated with the poorer prognosis and the higher metastatic potential in BC. Emerging evidences highlight the role of microRNAs (miRNAs) in the regulation of several cellular processes, including BC. Methods: Here we identified, by in silico approach, a group of three miRNAs with central biological role (high degree centrality) in HER2+ BC. We validated their dysregulation in HER2+ BC and we analysed their functional role by in vitro approaches on selected cell lines and by in vivo experiments in an animal model. Results: We found that their expression is dysregulated in both HER2+ BC cell lines and human samples. Focusing our study on the only upregulated miRNA, miR-429, we discovered that it acts as an oncogene and its upregulation is required for HER2+ cell proliferation. It controls the metastatic potential of HER2+ BC subtype by regulating migration and invasion of the cell. Conclusions: In HER2+ BC oncogenic miR-429 is able to regulate HIF1α pathway by directly targeting VHL mRNA, a molecule important for the degradation of HIF1α. The overexpression of miR-429, observed in HER2+ BC, causes increased proliferation and migration of the BC cells. More important, silencing miR-429 succeeds in delaying tumor growth, thus miR-429 could be proposed as a therapeutic probe in HER2+ BC tumors.
Collapse
|
14
|
Huang Z, Wu X, Li J. miR-101 suppresses colon cancer cell migration through regulation of EZH2. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 113:255-260. [DOI: 10.17235/reed.2020.6800/2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Sun J, Jiang Z, Li Y, Wang K, Chen X, Liu G. Downregulation of miR-21 inhibits the malignant phenotype of pancreatic cancer cells by targeting VHL. Onco Targets Ther 2019; 12:7215-7226. [PMID: 31564905 PMCID: PMC6732742 DOI: 10.2147/ott.s211535] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miR)-21 is overexpressed in numerous types of malignancy and participates in the development of cancer. However, the basic mechanism of the influence of miR-21 on the malignant phenotype of pancreatic cancer remains unclear. Purpose The present study aimed to investigate the role of miR-21 in pancreatic cancer development and explore its molecular mechanism. Patients and methods The tissue samples were collected at the Second Hospital of Tianjin Medical University (Tianjin, China) between January 2013 and December 2015. The expression of VHL in tissue samples was evaluated by IHC staining. The expression of miR-21 was measured by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-21 target gene was detected by real-time PCR, Western blot and the luciferase reporter assay. Cell viability, cell proliferation, cell migration and invasion were evaluated by the MTT assays, the colony formation assays and the transwell assays. The nude mouse tumor xenograft model was performed to detect the effect of miR-21 on tumor growth in vivo. Results Von Hippel-Lindau tumor suppressor (VHL) was downregulated in pancreatic cancer tissues compared with pancreatic non-tumor tissues. VHL was identified as a novel direct target of miR-21, by which it is negatively regulated. In PANC-1 cells, inhibition of miR-21 and upregulation of VHL significantly suppressed cell proliferation, migration and invasion. Knockdown of miR-21 inhibited the hypoxia-inducible factor (HIF)-1α/vascular endothelial growth factor (VEGF) pathway, while inhibiting the expression of matrix metallopeptidase (MMP)-2 and MMP-9. Silencing of miR-21 inhibited tumor growth in vivo. Conclusion Knockdown miR-21 increased the expression of VHL, and thus modulated the HIF-1α/VEGF pathway and the expression of MMP-2 and MMP-9, which led to the inhibition of the proliferation, migration and invasion of pancreatic cancer cells. All of these results suggest that the miR-21/VHL interaction may be a novel potential target for pancreatic cancer prevention and therapy.
Collapse
Affiliation(s)
- Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhijia Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanxun Li
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Kaiqiang Wang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Geng Liu
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Garg N, Kumar P, Gadhave K, Giri R. The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:371-403. [PMID: 31521236 DOI: 10.1016/bs.pmbts.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dark side of protein is the region (s) where molecular conformation is unknown. Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are the dark matter of biology due to inability to visualize them using standard structure elucidation technique such as X-ray crystallography due to lack in diffraction signal. IDPs are the functionally important class of proteins with entire protein or its parts lack ordered three-dimensional structure. Computational studies have predicted that nearly one-third of the human proteome is disordered, which gives the enormous flexibility and functional diversity to proteins. The conserved residues and elements in disordered proteins are critical for function and might be parts of peptide motifs or protein-protein interaction interfaces. For example, regions of proteins that are involved in disorder-based molecular recognition are known as molecular recognition features (MoRFs). Generally, MoRFs could undergo disorder to order transition or vice versa at interaction with specific partners. Hypoxia inducible factor 1α (HIF-1α) is a master transcriptional regulator involved in response to hypoxia, which is associated with many pathological conditions. Importantly, HIF-1α regulates various steps of cancer progression such as cell survival, tumor cell invasion, and metastasis. In this chapter, we have extensively analyzed the molecular recognition features and their relationship with disordered regions and associated structural islands of HIF-1α. We had also analyzed the disorderness and MoRFs of HIF-1α primary interaction partners that are enriched in IDPRs and MoRFs giving their role in protein-protein interaction and cancer regulation.
Collapse
Affiliation(s)
- Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
17
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci 2019; 76:453-471. [PMID: 30317527 PMCID: PMC11105242 DOI: 10.1007/s00018-018-2941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients' outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Bo Cao
- Air Force Military Medical University, Xi'an, China
| | - Xin Zhou
- Air Force Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Ying Z, Xiang G, Zheng L, Tang H, Duan L, Lin X, Zhao Q, Chen K, Wu Y, Xing G, Lv Y, Li L, Yang L, Bao F, Long Q, Zhou Y, He X, Wang Y, Gao M, Pei D, Chan WY, Liu X. Short-Term Mitochondrial Permeability Transition Pore Opening Modulates Histone Lysine Methylation at the Early Phase of Somatic Cell Reprogramming. Cell Metab 2018; 28:935-945.e5. [PMID: 30174306 DOI: 10.1016/j.cmet.2018.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/11/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells reconfigures chromatin modifications. Whether and how this process is regulated by signals originating in the mitochondria remain unknown. Here we show that the mitochondrial permeability transition pore (mPTP), a key regulator of mitochondrial homeostasis, undergoes short-term opening during the early phase of reprogramming and that this transient activation enhances reprogramming. In mouse embryonic fibroblasts, greater mPTP opening correlates with higher reprogramming efficiency. The reprogramming-promoting function of mPTP opening is mediated by plant homeodomain finger protein 8 (PHF8) demethylation of H3K9me2 and H3K27me3, leading to reduction in their occupancies at the promoter regions of pluripotency genes. mPTP opening increases PHF8 protein levels downstream of mitochondrial reactive oxygen species production and miR-101c and simultaneously elevates levels of PHF8's cofactor, α-ketoglutarate. Our findings represent a novel mitochondria-to-nucleus pathway in cell fate determination by mPTP-mediated epigenetic regulation.
Collapse
Affiliation(s)
- Zhongfu Ying
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ge Xiang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lingjun Zheng
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Haite Tang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lifan Duan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaobing Lin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiuge Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangsuo Xing
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yiwang Lv
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linpeng Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Feixiang Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qi Long
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanshuang Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xueying He
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yaofeng Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Minghui Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
19
|
Wang CZ, Deng F, Li H, Wang DD, Zhang W, Ding L, Tang JH. MiR-101: a potential therapeutic target of cancers. Am J Transl Res 2018; 10:3310-3321. [PMID: 30662588 PMCID: PMC6291716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that could regulate gene expressions transcriptionally or post-transcriptionally through binding to 3' untranslated region (3'UTR) of target messenger RNAs (mRNAs), which were identified to be associated with tumorigenesis in various neoplasms. Among them, miR-101, encoded by two precursor transcripts (miR-101-1 and miR-101-2), was recognized to serve as a tumor suppressor via targeting critical oncogenes or anti-oncogenes. Additionally, studies have shown that miR-101 was participated in multiple cancer-related biological processes, including proliferation, apoptosis, angiogenesis, drug resistance, invasion and metastasis. In this review, we aim to summarize the function of miR-101 in different biological processes by figuring out the underlying target gene networks and explore its potential role as a biomarker in diverse neoplasms, which will provide a brand-new insight in molecular targeting cancer treatment.
Collapse
Affiliation(s)
- Cen-Zhu Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Hao Li
- School of Clinical Medicine, Xuzhou Medical University209 Tongshan Road, Xuzhou 221004, P. R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Li Ding
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, P. R. China
| |
Collapse
|
20
|
Cai L, Wang W, Li X, Dong T, Zhang Q, Zhu B, Zhao H, Wu S. MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor. Oncol Lett 2018; 15:5213-5219. [PMID: 29552160 DOI: 10.3892/ol.2018.7937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have indicated that microRNAs (miRs), a group of small non-coding RNAs, are determining regulatory elements involved in the pathogenesis of various types of cancer, including cervical cancer (CC). Although miR-21-5p upregulation has been demonstrated to associate with tumorigenesis by controlling the expression of oncogenic and tumor suppressor genes, only a small number of studies have investigated the expression of miR-21-5p and its functional role in CC. The objective of the present study was to investigate the effect of miR-21-5p on the proliferation, apoptosis, migration and invasion of CC cells, and the potential underlying molecular mechanism of these effects. The measurement of miR-21-5p levels using quantitative polymerase chain reaction revealed that miR-21-5p was markedly increased in CC cell lines compared with normal cells. Upon silencing of miR-21-5p, a marked suppression of the proliferation, migration and invasion of CaSki cells was observed, with induction of cell apoptosis. These effects were reversed with miR-21-5p overexpression. A database search followed by a luciferase reporter assay ascertained that the 3'-untranslated region of the von Hippel-Lindau tumor suppressor (VHL) mRNA sequence was a direct target of miR-21-5p. Furthermore, silencing of VHL neutralized the effects of miR-21-5p inhibition. These observations suggested that miR-21-5p is an oncogene that is able to promote the metastatic phenotype of CC cells through downregulation of VHL expression, which may present a path to novel therapeutic stratagems for the CC therapy.
Collapse
Affiliation(s)
- Lina Cai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Wuliang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xiaomei Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Baojv Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Hu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Shubiao Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
21
|
Preferential activation of HIF-2α adaptive signalling in neuronal-like cells in response to acute hypoxia. PLoS One 2017; 12:e0185664. [PMID: 28968430 PMCID: PMC5624621 DOI: 10.1371/journal.pone.0185664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stroke causes severe neuronal damage as disrupted cerebral blood flow starves neurons of oxygen and glucose. The hypoxia inducible factors (HIF-1α and HIF-2α) orchestrate oxygen homeostasis and regulate specific aspects of hypoxic adaptation. Here we show the importance of HIF-2α dependant signalling in neuronal adaptation to hypoxic insult. PC12 and NT2 cells were differentiated into neuronal-like cells using NGF and retinoic acid, and exposed to acute hypoxia (1% O2). Gene and protein expression was analysed by qPCR and immunoblotting and the neuronal-like phenotype was examined. PC12 and NT2 differentiation promoted neurite extension and expression of neuronal markers, NSE and KCC2. Induction of HIF-1α mRNA or protein was not detected in hypoxic neuronal-like cells, however marked induction of HIF-2α mRNA and protein expression was observed. Induction of HIF-1α target genes was also not detected in response to acute hypoxia, however significant induction of HIF-2α transcriptional targets was clearly evident. Furthermore, hypoxic insult dramatically reduced both neurite number and length, and attenuated expression of neuronal markers, NSE and KCC2. This correlated with an increase in expression of the neural progenitor and stem cell-like markers, CD44 and vimentin, suggesting HIF-2α molecular mechanisms could potentially promote regression of neuronal-like cells to a stem-like state and trigger neuronal recovery following ischaemic insult. Our findings suggest the HIF-2α pathway predominates over HIF-1α signalling in neuronal-like cells following acute hypoxia.
Collapse
|
22
|
Li CY, Xiong DD, Huang CQ, He RQ, Liang HW, Pan DH, Wang HL, Wang YW, Zhu HW, Chen G. Clinical Value of miR-101-3p and Biological Analysis of its Prospective Targets in Breast Cancer: A Study Based on The Cancer Genome Atlas (TCGA) and Bioinformatics. Med Sci Monit 2017; 23:1857-1871. [PMID: 28416776 PMCID: PMC5404822 DOI: 10.12659/msm.900030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background MiR-101-3p can promote apoptosis and inhibit proliferation, invasion, and metastasis in breast cancer (BC) cells. However, its mechanisms in BC are not fully understood. Therefore, a comprehensive analysis of the target genes, pathways, and networks of miR-101-3p in BC is necessary. Material/Methods The miR-101 profiles for 781 patients with BC from The Cancer Genome Atlas (TCGA) were analyzed. Gene expression profiling of GSE31397 with miR-101-3p transfected MCF-7 cells and scramble control cells was downloaded from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified. The potential genes targeted by miR-101-3p were also predicted. Gene Ontology (GO) and pathway and network analyses were constructed for the DEGs and predicted genes. Results In the TCGA data, a low level of miR-101-2 expression might represent a diagnostic (AUC: 0.63) marker, and the miR-101-1 was a prognostic (HR=1.79) marker. MiR-101-1 was linked to the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), and miR-101-2 was associated with the tumor (T), lymph node (N), and metastasis (M) stages of BC. Moreover, 427 genes were selected from the 921 DEGs in GEO and the 7924 potential target genes from the prediction databases. These genes were related to transcription, metabolism, biosynthesis, and proliferation. The results were also significantly enriched in the VEGF, mTOR, focal adhesion, Wnt, and chemokine signaling pathways. Conclusions MiR-101-1 and miR-101-2 may be prospective biomarkers for the prognosis and diagnosis of BC, respectively, and are associated with diverse clinical parameters. The target genes of miR-101-3p regulate the development and progression of BC. These results provide insight into the pathogenic mechanism and potential therapies for BC.
Collapse
Affiliation(s)
- Chun-Yao Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Chun-Qin Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hai-Wei Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Deng-Hua Pan
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Han-Lin Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi-Wen Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hua-Wei Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
23
|
Liu C, Sun Y, She X, Tu C, Cheng X, Wang L, Yu Z, Li P, Liu Q, Yang H, Li G, Wu M. CASC2c as an unfavorable prognosis factor interacts with miR-101 to mediate astrocytoma tumorigenesis. Cell Death Dis 2017; 8:e2639. [PMID: 28252647 PMCID: PMC5386525 DOI: 10.1038/cddis.2017.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
miR-101 has been suggested as a tumor suppressor, but the promoter methylation and loss of heterozygosity didn't contribute to its low expression in astrocytoma. We investigated the role of a new long non-coding RNA CASC2c binding with miR-101. High CASC2c was positively correlated with astrocytoma progression, and an unfavorable prognosis factor for patients. Knockdown CASC2c inhibited proliferation and tumorgenesis. Overexpression of CASC2c promotes the malignant characteristic of astrocytoma cells.CASC2c directly bound miR-101 and mediated pre-miR-101 processing into mature miR-101, and functions as a competitor of miR-101 target genes such as CPEB1. Patients who possessed both low CASC2c and high miR-101 had a longer survival than those of low CASC2c alone or high miR-101 alone. In summary, CASC2c plays the onco-RNA role in the tumorgenesis of astrocytoma by acting as a decoy miR-101 sponge. Combination of low expression of CASC2c and high expression of miR-101 has an important referential significance to evaluate the prognosis of patients.
Collapse
Affiliation(s)
- Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Xiaoling She
- Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chaofeng Tu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Lin Wang
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhibin Yu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Peiyao Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Qing Liu
- Xiangya Hospital, Central South University, Changsha 410013, China
| | - Honghui Yang
- Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| | - Minghua Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha 410078, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Changsha 410078, China
| |
Collapse
|