1
|
Xia L, Pan Y, Wang X, Hu R, Gao J, Chen W, He K, Cui D, Zhao Y, Liu L, Lai L, Su M. ERMAP attenuates DSS-induced colitis in mice by regulating macrophage and T cell functions. BMC Gastroenterol 2025; 25:362. [PMID: 40355813 PMCID: PMC12070682 DOI: 10.1186/s12876-025-03840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND & AIMS Both macrophages and T cells play a critical role in inflammatory bowel disease (IBD) development. Since our previous studies have shown that a novel immune checkpoint molecule erythrocyte membrane-associated protein (ERMAP) affects macrophage polarization and negatively regulates T cell responses, we investigated the effects of ERMAP on DSS-induced colitis progression in mice. METHODS C57BL/6 mice developed a dextran sodium sulfate (DSS) colitis model, treated with control Fc protein (Control Ig) and ERMAP-Fc fusion protein (ERMAP-Ig) for 12 days to assess colitis severity by disease activity index (DAI), weight loss, colon length, histology, flow cytometry, Q-PCR, WB, ELISA, and the effect of adoptive transfer of ERMAP knockout mice (ERMAP-/-) peritoneal macrophages on DSS colitis mice. In vitro, the effects of the RAW264.7 macrophage cell line that interfered with ERMAP expression on macrophage polarization and T cells were analyzed by flow cytometry. RESULTS We show here that administration of ERMAP protein significantly increases the proportion of anti-inflammatory M2-type macrophages and inhibits T cell activation and proliferation in DSS-induced colitis mice. Knockdown of ERMAP in RAW264.7 macrophages reduces M2-type macrophage polarization and increases T cell responses. Adoptive transfer of macrophages from ERMAP-/- exacerbates DSS-induced colitis. Global gene expression analysis by RNA-seq shows that ERMAP inhibits the NOD-like receptor (NLR) protein family pathway in macrophages. CONCLUSIONS In summary, our results suggest that administration of ERMAP can protect DSS-induced colitis in mice by regulating T cell and macrophage functions. This study adds to the evidence for various mechanistic pathways associated to the pathogenesis of IBD, which could subsequently be translated to novel therapeutics.
Collapse
Affiliation(s)
- Lu Xia
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Yiwen Pan
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xianbin Wang
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Rong Hu
- Translational Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Jie Gao
- Translational Medicine Research Center of Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Wei Chen
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Keke He
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Dongbin Cui
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Youbo Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Lu Liu
- The Public Health Clinical Center of Guiyang City, 6 Daying Road, Guiyang City, 550004, Guizhou, China.
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA.
| | - Min Su
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Department of Histology and Embryology, Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, 6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| |
Collapse
|
2
|
Trachsel-Moncho L, Veroni C, Mathai BJ, Lapao A, Singh S, Asp NT, Schultz SW, Pankiv S, Simonsen A. SNX10 functions as a modulator of piecemeal mitophagy and mitochondrial bioenergetics. J Cell Biol 2025; 224:e202404009. [PMID: 40052924 PMCID: PMC11893173 DOI: 10.1083/jcb.202404009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/12/2025] Open
Abstract
We here identify the endosomal protein SNX10 as a negative regulator of piecemeal mitophagy of OXPHOS machinery components. In control conditions, SNX10 localizes to early endocytic compartments in a PtdIns3P-dependent manner and modulates endosomal trafficking but also shows dynamic connections with mitochondria. Upon hypoxia-mimicking conditions, SNX10 localizes to late endosomal structures containing selected mitochondrial proteins, including COX-IV and SAMM50, and the autophagy proteins SQSTM1/p62 and LC3B. The turnover of COX-IV was enhanced in SNX10-depleted cells, with a corresponding reduced mitochondrial respiration and citrate synthase activity. Importantly, zebrafish larvae lacking Snx10 show reduced levels of Cox-IV, as well as elevated ROS levels and ROS-mediated cell death in the brain, demonstrating the in vivo relevance of SNX10-mediated modulation of mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Laura Trachsel-Moncho
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Chiara Veroni
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ana Lapao
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sakshi Singh
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nagham Theres Asp
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sebastian W. Schultz
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Serhiy Pankiv
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Stryiński R, Fiedorowicz E, Mateos J, Andronowska A, Łopieńska-Biernat E, Carrera M. Exploring the exoproteome of the parasitic nematode Anisakis simplex (s. s.) and its impact on the human host - an in vitro cross-talk proteomic approach. Front Immunol 2025; 16:1509984. [PMID: 39963139 PMCID: PMC11830668 DOI: 10.3389/fimmu.2025.1509984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Anisakis simplex sensu stricto (s. s.) is one of the most widespread parasitic nematodes of marine organisms, with humans as accidental hosts. While many studies have explored nematode biology and host interactions, the role of extracellular vesicles (EVs) as signaling molecules in parasitic nematodes is less understood. Materials and methods Therefore, the proteins present in the EVs of A. simplex (s. s.) (Anis-EVs) were identified. In addition, a cross-talk proteomic approach was used to identify differentially regulated proteins (DRPs) in the proteome of the human intestinal epithelial cell line (Caco-2) co-cultured with L3 larvae of A. simplex (s. s.) or directly exposed to two concentrations (low or high) of Anis-EVs. In addition, DRPs were identified in the proteome of A. simplex (s. s.) larvae affected by co-culture with Caco-2. To achieve this goal, the shotgun proteomics method based on isobaric mass labeling (via tandem mass tags; TMT) was used with a combination of nano high-performance liquid chromatography (nLC) coupled with an LTQ-Orbitrap Elite mass spectrometer. In addition, ELISA assays were used to demonstrate if Caco-2 respond to A. simplex (s. s.) larvae and Anis-EVs with significant changes in selected cytokines secretion. Results The results of this study indicate the anti-inflammatory character of Anis-EVs in relation to Caco-2. At the same time, direct treatment with Anis-EVs resulted in more significant changes in the Caco-2 proteome than co-culture with L3 larvae. Discussion The results obtained should lead to a better understanding of the molecular mechanisms underlying the development of A. simplex (s. s.) infection in humans and will complement the existing knowledge on the role of EVs in host-parasite communication.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| |
Collapse
|
4
|
Chen T, Wang Y, Yang JL, Ni J, You K, Li X, Song Y, Wang X, Li J, Shen X, Fan Y, You Y. Gentisic acid prevents the development of atherosclerotic lesions by inhibiting SNX10-mediated stabilization of LRP6. Pharmacol Res 2024; 210:107516. [PMID: 39603572 DOI: 10.1016/j.phrs.2024.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Atherosclerotic-related acute cardiovascular events remain a leading cause of mortality worldwide, yet there are currently no pharmacological interventions available to address plaque formation or plaque rupture (PR). Here we reported that gentisic acid (GA) exerted potent therapeutic effects on plaque formation and PR in a dose-dependent manner by inhibiting LRP6-mediated macrophage apoptosis. By using the CETSA assay and DARTS assay, we identified sorting nexin 10 (SNX10) as the direct target of GA. The binding of GA to SNX10 disrupts the interaction between SNX10 and LRP6, leading to the degradation of LRP6. The downregulation of LRP6 then significantly attenuated the activation of Wnt/β-catenin pathway to exert an inhibitory effect on apoptosis. Moreover, the specific depletion of SNX10 in macrophages significantly reduced LRP6 levels and subsequently macrophage apoptosis both in vivo and in vitro. In conclusion, our findings not only suggest that GA may serve as a potential therapeutic candidate for the prevention of atherosclerosis and acute cardiovascular events caused by PR, but also confirm the druggability of SNX10 as a promising therapeutic target for atherosclerotic rupture.
Collapse
Affiliation(s)
- Tongqing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Lin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Department of Cardiology, Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| | - Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Shanghai, China.
| |
Collapse
|
5
|
Xie B, Zhang A, Li C, Liu Y, Deng Y, Li R, Qin H, Wu B, He T, Lan D. Differential analysis of sorting nexin 10 and sterol regulatory element-binding protein 2 expression in inflammatory bowel disease. Immunol Res 2024; 72:1417-1423. [PMID: 39412576 DOI: 10.1007/s12026-024-09539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 02/06/2025]
Abstract
Sorting nexin 10 (SNX10) expression induces intestinal barrier dysfunction and inflammatory responses; in contrast, its inhibition promotes intestinal mucosal healing through sterol regulatory element-binding protein 2 (SREBP2)-mediated cholesterol synthesis. However, its regulatory mechanism for the pathogenesis of inflammatory bowel disease (IBD) remains unclear. In this study, we examined SNX10 and SREBP2 expression in ulcerative colitis (UC) and Crohn's disease (CD). A total of 30 and 28 patients with UC and CD, respectively, were recruited. The expression of SNX10 and SREBP2 in the colonic mucosa was measured by immunohistochemistry (IHC). We discovered that patients with CD had significantly higher expression levels of SNX10 and SREBP2 than patients with UC and healthy controls. In addition, the expression of SREBP2 in patients with UC was significantly higher than that in healthy controls. In our study, we indicated that SNX10 and SREBP2 may serve as biomarkers for identifying patients with UC and CD, thereby providing a clinical therapeutic strategy for the treatment of IBD by inhibiting SNX10.
Collapse
Affiliation(s)
- Bicheng Xie
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Anxing Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Canmei Li
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, Yunnan, China
| | - Yu Liu
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Yao Deng
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Ruochang Li
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Haichun Qin
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China
| | - Bian Wu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| | - Tian He
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| | - Danfeng Lan
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Yunnan Digestive Disease Clinical Medical Center, No. 157, Jingbi Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Yang R, Wang R, Zhao D, Lian K, Shang B, Dong L, Yang X, Dang X, Sun D, Cheng Y. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified risk genes for bipolar disorder. Neurosci Lett 2024; 839:137935. [PMID: 39151574 DOI: 10.1016/j.neulet.2024.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Bipolar disorder (BD) is a debilitating neuropsychiatric disorder, which is associated with genetic variation through "vast but mixed" Genome-Wide Association Studies (GWAS). Transcriptome-Wide Association Study (TWAS) is more effective in explaining genetic factors that influence complex diseases and can help identifying risk genes more reliably. So, this study aims to identify potential BD risk genes in pedigrees with TWAS. METHODS We conducted a TWAS analysis with expression quantitative trait loci (eQTL) analysis on extended BD pedigrees, and the BD genome-wide association study (GWAS) summary data acquired from the Psychiatric Genomics Consortium (PGC). Furthermore, the BD-associated genes identified by TWAS were validated by mRNA expression profiles from the Gene Expression Omnibus (GEO) Datasets (GSE23848 and GSE46416). Functional enrichment and annotation analysis were implemented by RStudio (version 4.2.0). RESULTS TWAS identified 362 genes with P value < 0.05, and 18 genes remain significant after Bonferroni correction, such as SEMA3G (PTWAS=1.07 × 10-11), ALOX5AP (PTWAS=3.12 × 10-8), and PLEC (PTWAS=1.27 × 10-7). Further 6 overlapped genes were detected in integrative analysis, such as UQCRB (PTWAS=0.0020, PmRNA=0.0000), TMPRSS9 (PTWAS=0.0405, PmRNA=0.0032), and SNX10 (PTWAS=0.0104, PmRNA=0.0015). Using genes identified by TWAS, Gene Ontology (GO) enrichment analysis identified 40 significant GO terms, such as mitochondrial ATP synthesis coupled electron transport, mitochondrial respiratory, aerobic electron transport chain, oxidative phosphorylation, mitochondrial membrane proteins, and ubiquinone activity. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis identified significant 15 pathways for BD, such as Oxidative phosphorylation, endocannabinoids signaling, neurodegeneration, and reactive oxide species. CONCLUSIONS We found a set of BD-associated genes and pathways, validating the important role of neurodevelopmental abnormalities, inflammatory responses, and mitochondrial dysfunction in the pathology of BD, offering novel information for comprehending the genetic basis of BD.
Collapse
Affiliation(s)
- Runxu Yang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rui Wang
- Department of Prevention and Health Care, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongyan Zhao
- First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Kun Lian
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Binli Shang
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Dong
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuejuan Yang
- Lincang Psychiatric Hospital, Lincang, Yunnan, China
| | - Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Duo Sun
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Psychiatry Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Wang J, Zhao X, Wang Q, Zheng X, Simayi D, Zhao J, Yang P, Mao Q, Xia H. FAM76B regulates PI3K/Akt/NF-κB-mediated M1 macrophage polarization by influencing the stability of PIK3CD mRNA. Cell Mol Life Sci 2024; 81:107. [PMID: 38421448 PMCID: PMC10904503 DOI: 10.1007/s00018-024-05133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Macrophage polarization is closely related to inflammation development, yet how macrophages are polarized remains unclear. In our study, the number of M1 macrophages was markedly increased in Fam76b knockout U937 cells vs. wild-type U937 cells, and FAM76B expression was decreased in M1 macrophages induced from different sources of macrophages. Moreover, Fam76b knockout enhanced the mRNA and protein levels of M1 macrophage-associated marker genes. These results suggest that FAM76B inhibits M1 macrophage polarization. We then further explored the mechanism by which FAM76B regulates macrophage polarization. We found that FAM76B can regulate PI3K/Akt/NF-κB pathway-mediated M1 macrophage polarization by stabilizing PIK3CD mRNA. Finally, FAM76B was proven to protect against inflammatory bowel disease (IBD) by inhibiting M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vivo. In summary, FAM76B regulates M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vitro and in vivo, which may inform the development of future therapeutic strategies for IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xinyue Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qizhi Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China.
| |
Collapse
|
8
|
Wu D, Wang Y, Xu J, Wang D, Zhang J, Meng L, Hu Y, Wang P, Lin J, Zhou S. SNX10 promoted liver IR injury by facilitating macrophage M1 polarization via NLRP3 inflammasome activation. Mol Immunol 2024; 166:79-86. [PMID: 38271879 DOI: 10.1016/j.molimm.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Liver ischemia reperfusion (IR) injury is a common cause of liver dysfunction in patients post liver partial resection and liver transplantation. However, the cellular defense mechanisms underlying IR are not well understood. Macrophage mediated sterile inflammation plays critical roles in liver IR injury. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting. This study aimed to explore the role of sorting nexin 10 (SNX10) during liver IR injury with a focus on regulating macrophage function. METHODS Both the gene and protein expression levels of SNX10 were analyzed in human specimens from 10 patients undergoing liver partial resection with ischemic insult and in a mouse model of liver IR. The in vivo effects of SNX10 in liver IR injury and sterile inflammation in mice were investigated. Bone marrow derived macrophages (BMDMs) were used to determine the role of SNX10 in modulating macrophage function in vitro. RESULTS Increased expression of SNX10 was observed both in human specimens and mice livers post IR. SNX10 knockdown alleviated IR induced sterile inflammation and liver damage in mice. SNX10 promoted M1 polarization of macrophage treated with LPS and facilitated inflammatory response by activating NLRP3 inflammasome. CONCLUSIONS We report for the first time that SNX10 is upregulated in IR-stressed livers. SNX10 activation aggravates liver IR injury and sterile inflammation by facilitating macrophage M1 polarization and inflammatory response suggesting SNX10 as a potential therapeutic target for liver IR injury.
Collapse
Affiliation(s)
- Dongming Wu
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong Wang
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Xu
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dong Wang
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jiawei Zhang
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanchang Hu
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ping Wang
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinde Lin
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Shun Zhou
- Department of Plastic and Cosmetic Surgery of The Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
9
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Bao W, You Y, Ni J, Hou H, Lyu J, Feng G, Wang Y, You K, Zhang S, Zhang L, Cao X, Wang X, Li H, Li H, Xu J, Liu C, Luo X, Du P, Chen D, Shen X. Inhibiting sorting nexin 10 promotes mucosal healing through SREBP2-mediated stemness restoration of intestinal stem cells. SCIENCE ADVANCES 2023; 9:eadh5016. [PMID: 37647408 PMCID: PMC10468130 DOI: 10.1126/sciadv.adh5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Intestinal stem cell (ISC) is a promising therapeutic target for inflammatory bowel disease. Cholesterol availability is critical for ISC stemness. Low plasma cholesterol is a typical feature of Crohn's disease (CD); however, its impact on mucosal healing remains unclear. Here, we identified an essential role of sorting nexin 10 (SNX10) in maintaining the stemness of ISCs. SNX10 expression in intestinal tissues positively correlates with the severity of human CD and mouse colitis. Conditional SNX10 knockout in intestinal epithelial cells or ISCs promotes intestinal mucosal repair by maintaining the ISC population associated with increased intracellular cholesterol synthesis. Disassociation of ERLIN2 with SCAP by SNX10 deletion enhances the activation of SREBP2, resulting in increased cholesterol biosynthesis. DC-SX029, a small-molecule inhibitor of SNX10, was used to verify the druggable potential of SNX10 for the treatment of patients with CD. Our study provides a strategy for mucosal healing through SREBP2-mediated stemness restoration of ISCs.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiaren Lyu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zou F, Wang S, Xu M, Wu Z, Deng F. The role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. Front Physiol 2023; 14:1235656. [PMID: 37560160 PMCID: PMC10407793 DOI: 10.3389/fphys.2023.1235656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a type of bioactive sphingolipid, can regulate various cellular functions of distinct cell types in the human body. S1P is generated intracellularly by the catalysis of sphingosine kinase 1/2 (SphK1/2). S1P is transferred to the extracellular environment via the S1P transporter, binds to cellular S1P receptors (S1PRs) and subsequently activates S1P-S1PR downstream signaling. Dysbiosis of the intestinal microbiota, immune dysregulation and damage to epithelial barriers are associated with inflammatory bowel disease (IBD). Generally, S1P mainly exerts a proinflammatory effect by binding to S1PR1 on lymphocytes to facilitate lymphocyte migration to inflamed tissues, and increased S1P was found in the intestinal mucosa of IBD patients. Notably, there is an interaction between the distribution of gut bacteria and SphK-S1P signaling in the intestinal epithelium. S1P-S1PR signaling can also regulate the functions of intestinal epithelial cells (IECs) in mucosa, including cell proliferation and apoptosis. Additionally, increased S1P in immune cells of the lamina propria aggravates the inflammatory response by increasing the production of proinflammatory cytokines. Several novel drugs targeted at S1PRs have recently been used for IBD treatment. This review provides an overview of the S1P-S1PR signaling pathway and, in particular, summarizes the various roles of S1P in the gut mucosal microenvironment to deeply explore the function of S1P-S1PR signaling during intestinal inflammation and, more importantly, to identify potential therapeutic targets for IBD in the SphK-S1P-S1PR axis.
Collapse
Affiliation(s)
- Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Gimple RC, Zhang G, Wang S, Huang T, Lee J, Taori S, Lv D, Dixit D, Halbert ME, Morton AR, Kidwell RL, Dong Z, Prager BC, Kim LJ, Qiu Z, Zhao L, Xie Q, Wu Q, Agnihotri S, Rich JN. Sorting nexin 10 sustains PDGF receptor signaling in glioblastoma stem cells via endosomal protein sorting. JCI Insight 2023; 8:158077. [PMID: 36795488 PMCID: PMC10070110 DOI: 10.1172/jci.insight.158077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs). We identified sorting nexin 10 (SNX10), an endosomal protein sorting factor, as selectively expressed in GSCs compared with NSCs and essential for GSC survival. Targeting SNX10 impaired GSC viability and proliferation, induced apoptosis, and reduced self-renewal capacity. Mechanistically, GSCs utilized endosomal protein sorting to promote platelet-derived growth factor receptor β (PDGFRβ) proliferative and stem cell signaling pathways through posttranscriptional regulation of the PDGFR tyrosine kinase. Targeting SNX10 expression extended survival of orthotopic xenograft-bearing mice, and high SNX10 expression correlated with poor glioblastoma patient prognosis, suggesting its potential clinical importance. Thus, our study reveals an essential connection between endosomal protein sorting and oncogenic receptor tyrosine kinase signaling and suggests that targeting endosomal sorting may represent a promising therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Shuai Wang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Tengfei Huang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jina Lee
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Suchet Taori
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew E Halbert
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew R Morton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
| | - Zhen Dong
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Qi Xie
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, UCSD, La Jolla, California, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurosciences, UCSD, La Jolla, California, USA
| |
Collapse
|
14
|
Xu C, Li F, Liu Z, Yan C, Xiao J. Pan-cancer analysis of the prognostic and immunological role of SNX29: a potential target for survival and immunotherapy. BMC Med Genomics 2023; 16:34. [PMID: 36829159 PMCID: PMC9951530 DOI: 10.1186/s12920-023-01466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND There is growing evidence that the SNX family is critical for clinical prognosis, immune infiltration and drug sensitivity in many types of tumors. The relationships between the SNX29 gene and clinical prognosis as well as pan-cancer cell infiltration and drug sensitivity have not been fully elucidated. METHODS In the current study, we explored the correlation between SNX29 expression and 33 types of malignancies via TCGA and GTEx. The relationship between SNX29 expression and prognostic outcome in the pan-caner cohort was also analyzed. Immune infiltration, microsatellite instability, tumor mutational burden and potential therapeutic targets of SNX29 were investigated by analyzing public databases. RESULTS The expression of SNX29 was found to be significantly upregulated in most tumor tissues compared to normal tissues. SNX29 expression was associated with prognosis and clinical stage. In the immune infiltration analysis, a significant relationship was found between SNX29 expression and the level of immune infiltration. In addition, we found associations between the SNX29 gene and tumor mutation burden, microsatellite instability, immunoinhibition-related genes and autophagy-related genes. Finally, the expression of SNX29 was significantly associated with the sensitivity of various tumor cell lines to 8 antitumor drugs. These results suggest that SNX29 expression is important in determining the progression, immune infiltration and drug sensitivity of various cancers. CONCLUSION This study provides novel insights into the potential pan-cancer targets of SNX29.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China.,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Fanghan Li
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Zilin Liu
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China.,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Chuanjing Yan
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Jiangwei Xiao
- Department of Gastrointestinal Surgery, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, People's Republic of China. .,First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| |
Collapse
|
15
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
16
|
Wang J, Gao H, Xie Y, Wang P, Li Y, Zhao J, Wang C, Ma X, Wang Y, Mao Q, Xia H. Lycium barbarum polysaccharide alleviates dextran sodium sulfate-induced inflammatory bowel disease by regulating M1/M2 macrophage polarization via the STAT1 and STAT6 pathways. Front Pharmacol 2023; 14:1044576. [PMID: 37144216 PMCID: PMC10151498 DOI: 10.3389/fphar.2023.1044576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization contributes to the development of inflammatory bowel disease (IBD). Lycium barbarum polysaccharide (LBP) is the primary active constituent of traditional Chinese herbal Lycium barbarum L., which has been widely demonstrated to have important functions in regulating immune activity and anti-inflammatory. Thus, LBP may protect against IBD. To test this hypothesis, the DSS-induced colitis model was established in mice, then the mice were treated with LBP. The results indicated that LBP attenuated the weight loss, colon shortening, disease activity index (DAI), and histopathological scores of colon tissues in colitis mice, suggesting that LBP could protect against IBD. Besides, LBP decreased the number of M1 macrophages and the protein level of Nitric oxide synthase 2(NOS2) as a marker of M1 macrophages and enhanced the number of M2 macrophages and the protein level of Arginase 1(Arg-1) as a marker of M2 macrophages in colon tissues from mice with colitis, suggesting that LBP may protect against IBD by regulating macrophage polarization. Next, the mechanistic studies in RAW264.7 cells showed that LBP inhibited M1-like phenotype by inhibiting the phosphorylation of STAT1, and promoted M2-like phenotype by promoting the phosphorylation of STAT6. Finally, immunofluorescence double-staining results of colon tissues showed that LBP regulated STAT1 and STAT6 pathways in vivo. The results in the study demonstrated that LBP could protect against IBD by regulating macrophage polarization through the STAT1 and STAT6 pathways.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiying Gao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuan Xie
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Peng Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chunlin Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin Ma
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yuwen Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qinwen Mao
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Haibin Xia, ,
| |
Collapse
|
17
|
Yarmohammadi F, Hayes AW, Karimi G. Sorting nexins as a promising therapeutic target for cardiovascular disorders: An updated overview. Exp Cell Res 2022; 419:113304. [PMID: 35931142 DOI: 10.1016/j.yexcr.2022.113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Sorting nexins (SNXs) are involved in sorting the protein cargo within the endolysosomal system. Recently, several studies have shown the role of SNXs in cardiovascular pathology. SNXs exert both physiologic and pathologic functions in the cardiovascular system by regulating protein sorting and trafficking, maintaining protein homeostasis, and participating in multiple signaling pathways. SNX deficiency results in blood pressure response to dopamine 5 receptor [D5R] stimulation. SNX knockout protected against atherosclerosis lesions by suppressing foam cell formation. Moreover, SNXs can act as endogenous anti-arrhythmic agents via maintenance of calcium homeostasis. Overexpression SNXs also can reduce cardiac fibrosis in atrial fibrillation. The SNX-STAT3 interaction in cardiac cells promoted heart failure. SNXs may have the potential to act as a pharmacological target against specific cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL,, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
19
|
Pang C, Wen C, Liang Y, Luo H, Wei L, Liu H, Qin T, Tan H, He C, Liu Y, Chen Y, Zeng S, Zhou C. Asperosaponin VI protects mice from sepsis by regulating Hippo and Rho signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154010. [PMID: 35228043 DOI: 10.1016/j.phymed.2022.154010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the novel protective effect of Asperosaponin VI (AVI) on sepsis and its potential mechanism. METHODS In in vitro experiments, bone marrow mononuclear cells and THP-1-derived cells were used to evaluate the viability of AVI treatment. Besides, the quantitative real-time PCR and Western blot were adopted to explore the protective effect of AVI on LPS-induced inflammation. For in vivo work, the effect of AVI on mice was evaluated by using both CLP-induced and the LPS-induced sepsis mice model. The fluctuation of anal temperature and the behavior of mice were recorded after surgery. Further, the content of bacteria in peritoneal lavage fluid was detected, as well as the levels of ALT, AST, LD and LDH in serum with ELISA. H&E staining and real-time PCR were used to evaluate the histopathology of liver, spleen and lung. Finally, relevant signaling pathways were detected by Western blot, real-time PCR and immunohistochemistry. RESULTS AVI inhibited the expression of inflammatory factors in both CLP-induced and LPS-induced sepsis mice models, and reduced the number of bacteria in abdominal lavage fluid. The preventive treatment with AVI alleviated sepsis-induced organ injuries, reduced inflammatory responses, which was through inhibiting Hippo and Rho signaling pathway. CONCLUSIONS This study indicated that AVI effectively protected mice from sepsis by down-regulating the activation of Hippo signaling and Rho family, and reducing inflammation and organ damage. However, conventional treatment was using antibiotics, and its mechanism was different with AVI.
Collapse
Affiliation(s)
- Caixia Pang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Cailing Wen
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Yanxiang Liang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Hui Luo
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Linlin Wei
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China; Deparment of Pharmacy, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou 510317, China
| | - Haiqian Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Tian Qin
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Huijing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Chonghua He
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Ying Liu
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Yang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Siyu Zeng
- Deparment of Pharmacy, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou 510317, China.
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
20
|
Li Z, Kuang X, Chen T, Shen T, Wu J. Peptide YY 3-36 attenuates trinitrobenzene sulfonic acid-induced colitis in mice by modulating Th1/Th2 differentiation. Bioengineered 2022; 13:10144-10158. [PMID: 35443853 PMCID: PMC9161959 DOI: 10.1080/21655979.2022.2064147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide YY (PYY) 3–36, the main circulatory form of PYY, plays important roles in gastrointestinal motility, secretion, and absorption. However, it is unknown whether PYY 3–36 has underlying functions in colitis. The Crohn’s disease (CD)-like mouse model in which CD is induced by trinitrobenzene sulfonic acid (TNBS) was established and utilized to investigate this potential role for PYY 3–36. The results showed that the expression of colonic mucosal PYY and PYY receptors Y1, Y2, Y4 were significantly increased in mice with TNBS-induced colitis. In vitro, PYY 3–36 remarkably inhibited the production of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from lipopolysaccharide (LPS)-induced macrophages. In vivo, a high concentration of PYY 3–36 robustly decreased the weight loss and death rate and attenuated the pathological colon tissue damage observed in mice with TNBS-induced colitis. Further studies uncovered that PYY 3–36 treatment reduced the levels of colon myeloperoxidase (MPO) and both colonic and systemic TNF-α and IL-6 observed in murine colitis. Furthermore, flow cytometric analysis showed PYY 3–36 altered the proportion of Th1/Th2 splenocytes in the disease model of colitis. Collectively, these results suggest that PYY 3–36 may be a promising candidate for the improvement of colitis, reflected by the attenuation of colon inflammatory responses observed in experimental murine colitis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyuan Kuang
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Chen
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Shen
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiahong Wu
- Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
21
|
Pouille CL, Ouaza S, Roels E, Behra J, Tourret M, Molinié R, Fontaine JX, Mathiron D, Gagneul D, Taminiau B, Daube G, Ravallec R, Rambaud C, Hilbert JL, Cudennec B, Lucau-Danila A. Chicory: Understanding the Effects and Effectors of This Functional Food. Nutrients 2022; 14:957. [PMID: 35267932 PMCID: PMC8912540 DOI: 10.3390/nu14050957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Industrial chicory has been the subject of numerous studies, most of which provide clinical observations on its health effects. Whether it is the roasted root, the flour obtained from the roots or the different classes of molecules that enter into the composition of this plant, understanding the molecular mechanisms of action on the human organism remains incomplete. In this study, we were interested in three molecules or classes of molecules present in chicory root: fructose, chlorogenic acids, and sesquiterpene lactones. We conducted experiments on the murine model and performed a nutrigenomic analysis, a metabolic hormone assay and a gut microbiota analysis, associated with in vitro observations for different responses. We have highlighted a large number of effects of all these classes of molecules that suggest a pro-apoptotic activity, an anti-inflammatory, antimicrobial, antioxidant, hypolipidemic and hypoglycemic effect and also an important role in appetite regulation. A significant prebiotic activity was also identified. Fructose seems to be the most involved in these activities, contributing to approximately 83% of recorded responses, but the other classes of tested molecules have shown a specific role for these different effects, with an estimated contribution of 23-24%.
Collapse
Affiliation(s)
- Céline L. Pouille
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Souad Ouaza
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Elise Roels
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Josette Behra
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Melissa Tourret
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—BIOlogie des Plantes et Innovation (BIOPI), 80025 Amiens, France; (R.M.); (J.-X.F.)
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—BIOlogie des Plantes et Innovation (BIOPI), 80025 Amiens, France; (R.M.); (J.-X.F.)
| | - David Mathiron
- Plateforme Analytique UFR des Sciences, UPJV, Bâtiment Serres-Transfert Rue Dallery-Passage du Sourire d’Avril, 80039 Amiens, France;
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Bernard Taminiau
- Department of Food Sciences–Microbiology, FARAH, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Department of Food Sciences–Microbiology, FARAH, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Rozenn Ravallec
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Benoit Cudennec
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Anca Lucau-Danila
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
22
|
Ribeiro ARB, Silva ECO, Araújo PMC, Souza ST, Fonseca EJDS, Barreto E. Application of Raman spectroscopy for characterization of the functional polarization of macrophages into M1 and M2 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120328. [PMID: 34481146 DOI: 10.1016/j.saa.2021.120328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Macrophages are key cells in the immune inflammatory response that can be differentiated into M1 and M2 phenotypes. Polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathophysiological role. Raman spectroscopy has proven to be a promising bioanalytical technique for discriminating different cell types. However, to our knowledge, its application to identify the functional polarization of macrophages into M1 or M2 cells is yet to be investigated. In this work, Raman spectroscopy was applied to the analysis of macrophage polarization, and the spectral datasets were analyzed using principal component analysis (PCA). In vitro, resting J774.1 macrophages were treated with LPS/IFN-γ to induce the M1 phenotype or with IL-4 to induce the M2 phenotype. The resulting Raman spectra showed sufficient biochemical information to distinguish between M1 and M2 phenotypes when analyzed by PCA, reflecting the changes in cell markers caused by differentiation. The Raman spectra collected from LPS-stimulated M1 and M2 macrophages were more intense. The functional phenotype of M1 macrophages was confirmed by IL-6 secretion and TNF-α mRNA expression, while M2 macrophages produced IL-10 and Arg-1 mRNA, as well as by the morphological changes observed by scanning electron microscopy. Taken together, the results indicate that Raman spectroscopy combined with PCA analysis is a useful tool to identify the functional phenotypes of macrophages, providing an alternative way to distinguish between cells in distinct differentiation stages.
Collapse
Affiliation(s)
- Ana Rúbia Batista Ribeiro
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, 57072-900 Maceió-AL, Brazil; Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas, 57072-970 Maceió-AL, Brazil
| | | | - Polliane Maria Cavalcante Araújo
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, 57072-900 Maceió-AL, Brazil
| | - Samuel Teixeira Souza
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas, 57072-970 Maceió-AL, Brazil
| | | | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, 57072-900 Maceió-AL, Brazil.
| |
Collapse
|
23
|
Dickinson MS, Coers J. SNX10 and caspase-5 sort out endosomal LPS for a gut-wrenching Slug-fest. EMBO J 2021; 40:e110128. [PMID: 34796973 DOI: 10.15252/embj.2021110128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Endosomes are important cellular compartments for sorting internalized cargo and immune sensing. In this issue, Wang et al describe a novel signaling pathway induced by endocytosed bacterial outer membrane vesicles, where sorting nexin 10 and caspase-5 act at the endosome to promote cytosolic exposure of LPS and initiate signaling to alter epithelial layer integrity. This study presents the first example of a specialized function for caspase-5, distinct from the inflammasome function executed by the closely related paralog caspase-4.
Collapse
Affiliation(s)
- Mary S Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
24
|
Wu GJ, Ren K, He M, Xu JX, Li ZQ, Bo D, Xue Q. SNX20 Expression Correlates with Immune Cell Infiltration and Can Predict Prognosis in Lung Adenocarcinoma. Int J Gen Med 2021; 14:7599-7611. [PMID: 34764676 PMCID: PMC8575493 DOI: 10.2147/ijgm.s337198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background Sorting nexin-20 (SNX20) is a member of the sorting nexin family of proteins. It plays a crucial role in the regulation of innate immunity. However, the prognostic risk, potential mechanisms, immunotherapy, and other functions of SNX20 in lung adenocarcinoma (LUAD) remain unclear. Methods We analyzed and validated the expression and prognostic role of SNX20 in LUAD through a combination of The Cancer Genome Atlas, Gene Expression Omnibus, Oncomine, TIMER, and Human Protein Atlas databases. Further, we analyzed the correlation between SNX20 expression and clinical characteristics of LUAD, and the prognostic value of SNX20 in LUAD was evaluated. Using fitted SNX20 expression and other clinical parameters, a predictive model with predictive performance for the overall survival of patients with LUAD was constructed. The potential biological function of SNX20 in LUAD was explored using gene set enrichment analysis. In addition, we analyzed the correlation between SNX20 expression and the immune microenvironment and survival. Results SNX20 was downregulated in most cancer types, was associated with poor prognosis in LUAD and could be an independent prognostic factor for patients with LUAD. The predictive model developed by us had good predictive power for determining the overall survival of patients with LUAD. Biofunctional analysis revealed that genes co-expressed with SNX20 mainly promoted the immune process and inhibited the cell proliferation process in LUAD. We observed that high expression of SNX20 was accompanied by a better immune microenvironment and survival in patients with LUAD. Furthermore, the LUAD immune response was elevated with an increase in SNX20 expression. Finally, we found that SNX20 expression was significantly associated with various tumor-infiltrating immune cells, and it was widely involved in regulating various immune molecules in LUAD and affecting immune infiltration in the tumor microenvironment. Conclusion Our results suggested that SNX20 is a potential immune-related biomarker and therapeutic target associated with the prognosis of patients with LUAD. This provided a new strategy for the development of immunotherapeutic and prognostic markers in LUAD.
Collapse
Affiliation(s)
- Gu Jie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Kuan Ren
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jian Xun Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhen Qing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ding Bo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
25
|
Robinson EK, Jagannatha P, Covarrubias S, Cattle M, Smaliy V, Safavi R, Shapleigh B, Abu-Shumays R, Jain M, Cloonan SM, Akeson M, Brooks AN, Carpenter S. Inflammation drives alternative first exon usage to regulate immune genes including a novel iron-regulated isoform of Aim2. eLife 2021; 10:69431. [PMID: 34047695 PMCID: PMC8260223 DOI: 10.7554/elife.69431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Determining the layers of gene regulation within the innate immune response is critical to our understanding of the cellular responses to infection and dysregulation in disease. We identified a conserved mechanism of gene regulation in human and mouse via changes in alternative first exon (AFE) usage following inflammation, resulting in changes to the isoforms produced. Of these AFE events, we identified 95 unannotated transcription start sites in mice using a de novo transcriptome generated by long-read native RNA-sequencing, one of which is in the cytosolic receptor for dsDNA and known inflammatory inducible gene, Aim2. We show that this unannotated AFE isoform of Aim2 is the predominant isoform expressed during inflammation and contains an iron-responsive element in its 5′UTR enabling mRNA translation to be regulated by iron levels. This work highlights the importance of examining alternative isoform changes and translational regulation in the innate immune response and uncovers novel regulatory mechanisms of Aim2.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Pratibha Jagannatha
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States.,Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Matthew Cattle
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Valeriya Smaliy
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Rojin Safavi
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Barbara Shapleigh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Robin Abu-Shumays
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Mark Akeson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| |
Collapse
|
26
|
Liu L, Wu Y, Wang B, Jiang Y, Lin L, Li X, Yang S. DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization. Cell Death Dis 2021; 12:500. [PMID: 34001860 PMCID: PMC8129081 DOI: 10.1038/s41419-021-03778-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
The decrease of neurotransmitter dopamine (DA) levels in the intestine is closely related to the development of inflammatory bowel disease (IBD). However, the functional relevance and underlying mechanistic basis of the effects of DA signaling on IBD remains unclear. Here, we observed that the DRD5 receptor is highly expressed in colonic macrophages, and the deficiency of DA-DRD5 signaling exacerbated experimental colitis. Moreover, DA-DRD5 signaling can inhibit M1 by negatively regulating NF-κB signaling but promote M2 macrophage polarization through activation of the CREB pathway, respectively. The deficiency of DRD5 signaling increased colonic M1 macrophages but reduced M2 cells during colitis. Additionally, the administration of a D1-like agonist that has a higher affinity to DRD5 can attenuate the colitogenic phenotype of mice. Collectively, these findings provide the first demonstration of DA-DRD5 signaling in colonic macrophages controlling the development of colitis by regulating M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Lu Liu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuqing Wu
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yuying Jiang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxi Li
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shuo Yang
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
27
|
Bao W, Liu X, You Y, Hou H, Wang X, Zhang S, Li H, Feng G, Cao X, Jiang H, Zheng M, Shen X. Targeting sorting nexin 10 improves mouse colitis via inhibiting PIKfyve-mediated TBK1/c-Rel signaling activation. Pharmacol Res 2021; 169:105679. [PMID: 34010669 DOI: 10.1016/j.phrs.2021.105679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Sorting nexin 10 (SNX10) has been reported as a critical regulator in macrophage function, and germline SNX10 knockout effectively alleviated mouse colitis. Here, we investigated the precise role of SNX10 in inflammatory responses in macrophages in mouse colitis, and explored the druggability of SNX10 as a therapeutic target for inflammatory bowel disease (IBD). Our results revealed that myeloid-specific SNX10 deletion alleviated inflammation and pathological damage induced by dextran sulfate sodium (DSS). In vitro experiments showed that SNX10 deletion contributed to inflammation elimination by inhibiting PIKfyve-mediated TANK-binding kinase 1 (TBK1) /c-Rel signaling activation. Further study provided rational mechanism that SNX10 was required for the recruitment of PIKfyve to the TRIF-positive endosomes, through which PIKfyve activated TBK1/c-Rel for LPS-induced inflammation response. Based on the structure of SNX10, we discovered a new small-molecule inhibitor DC-SX029, which targeted SNX10 to block the SNX10-PIKfyve interaction, thereby decreased the TBK1/c-Rel signaling activation. Additionally, therapeutic efficiency of DC-SX029 was evaluated in both DSS-induced and IL10-deficient mouse colitis models. Our data demonstrate a new mechanism by which SNX10-PIKfyve interaction regulates LPS-induced inflammation response in macrophages via the TBK1/c-Rel signaling pathway. In vivo and in vitro pharmacological studies of SNX10 protein-protein interaction (PPI) inhibitor DC-SX029 demonstrate the feasibility of targeting SNX10 in IBD treatment.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaohong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, MD, USA
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xu Wang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haidong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyu Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Ji L, Chen Y, Xie L, Liu Z. The role of Dock2 on macrophage migration and functions during Citrobacter rodentium infection. Clin Exp Immunol 2021; 204:361-372. [PMID: 33662140 DOI: 10.1111/cei.13590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Dedicator of cytokinesis 2 (Dock2), an atypical guanine exchange factor, is specifically expressed on immune cells and mediates cell adhesion and migration by activating Rac and regulates actin cytoskeleton remodeling. It plays a crucial role in the migration, formation of immune synapses, cell proliferation, activation of T and B lymphocytes and chemotaxis of pDCs and neutrophils. However, in-vivo physiological functions of Dock2 have been relatively seldom studied. Our previous studies showed that Dock2-/- mice were highly susceptible to colitis induced by Citrobacter rodentium infection, and in early infection, Dock2-/- mice had defects in macrophage migration. However, the specific roles of Dock2 in the migration and functions of macrophages are not clear. In this study, we found that the expression of chemokines such as chemokine (C-C motif) ligand (CCL)4 and CCL5 and chemokine receptors such as chemokine (C-C motif) receptor (CCR)4 and CCR5 in bone marrow-derived macrophages (BMDM) of Dock2-/- mice decreased after infection, which were supported by the in-vivo infection experimental results; the Transwell experiment results showed that Dock2-/- BMDM had a defect in chemotaxis. The bacterial phagocytic and bactericidal experiment results also showed that Dock2-/- BMDM had the defects of bacterial phagocytosis and killing. Furthermore, the adoptive transfer of wild-type BMDM alleviated the susceptibility of Dock2-/- mice to C. rodentium infection. Our results show that Dock2 affects migration and phagocytic and bactericidal ability of macrophages by regulating the expression of chemokines, chemokine receptors and their responses to chemokine stimulation, thus playing an essential role in the host defense against enteric bacterial infection.
Collapse
Affiliation(s)
- L Ji
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Y Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - L Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Z Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
29
|
Xie H, Wu L, Chen X, Gao S, Li H, Yuan Y, Liang J, Wang X, Wang S, Xu C, Chu L, Zhan B, Zhou R, Yang X. Schistosoma japonicum Cystatin Alleviates Sepsis Through Activating Regulatory Macrophages. Front Cell Infect Microbiol 2021; 11:617461. [PMID: 33718268 PMCID: PMC7943722 DOI: 10.3389/fcimb.2021.617461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-organ failure caused by the inflammatory cytokine storm induced by severe infection is the major cause of death for sepsis. Sj-Cys is a cysteine protease inhibitor secreted by Schistosoma japonicum with strong immunomodulatory functions on host immune system. Our previous studies have shown that treatment with Sj-Cys recombinant protein (rSj-Cys) attenuated inflammation caused by sepsis. However, the immunological mechanism underlying the immunomodulation of Sj-Cys for regulating inflammatory diseases is not yet known. In this study, we investigated the effect of Sj-Cys on the macrophage M2 polarization and subsequent therapeutic effect on sepsis. The rSj-Cys was expressed in yeast Pichia pastoris. Incubation of mouse bone marrow-derived macrophages (BMDMs) with yeast-expressed rSj-Cys significantly activated the polarization of macrophages to M2 subtype characterized by the expression of F4/80+ CD206+ with the elated secretion of IL-10 and TGF-β. Adoptive transfer of rSj-Cys treated BMDMs to mice with sepsis induced by cecal ligation and puncture (CLP) significantly improved their survival rates and the systemic clinical manifestations of sepsis compared with mice receiving non-treated normal BMDMs. The therapeutic effect of Sj-Cys-induced M2 macrophages on sepsis was also reflected by the reduced pathological damages in organs of heart, lung, liver and kidney and reduced serological levels of tissue damage-related ALT, AST, BUN and Cr, associated with downregulated pro-inflammatory cytokines (IFN-gamma and IL-6) and upregulated regulatory anti-inflammatory cytokines (IL-10 and TGF-β). Our results demonstrated that Sj-Cys is a strong immunomodulatory protein with anti-inflammatory features through activating M2 macrophage polarization. The findings of this study suggested that Sj-Cys itself or Sj-Cys-induced M2 macrophages could be used as therapeutic agents in the treatment of sepsis or other inflammatory diseases.
Collapse
Affiliation(s)
- Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xingzhi Chen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shifang Gao
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Jinbao Liang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyan Xu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| | - Liang Chu
- Department of General Surgery, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rui Zhou
- Department of Pediatric, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases of Bengbu Medical College, Bengbu, China
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, China.,Department of Basic Medical College, Bengbu Medical College, Bengbu, China
| |
Collapse
|
30
|
Bao WL, Wu Q, Hu B, Sun D, Zhao S, Shen X, Cheng H, Shen W. Oral Nanoparticles of SNX10-shRNA Plasmids Ameliorate Mouse Colitis. Int J Nanomedicine 2021; 16:345-357. [PMID: 33488076 PMCID: PMC7814243 DOI: 10.2147/ijn.s286392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Our previous study found that deletion of Sorting nexin 10 (SNX10) can protect against colonic inflammation and pathological damage induced by dextran sulfate sodium (DSS). This inspired us that modulation of SNX10 expression in colonic epithelial cells might represent a promising therapeutic strategy for inflammatory bowel disease (IBD). Methods Effective delivery of siRNA/shRNA to silence genes is a highly sought-after means in the treatment of multiple diseases. Here, we encapsulated SNX10-shRNA plasmids (SRP) with polylactide-polyglycolide (PLGA) to make oral nanoparticles (NPs), and then applied them to acute and chronic IBD mice model, respectively. The characteristics of the nanoparticles were assayed and the effects of SRP-NPs on mouse IBD were evaluated. Results High-efficiency SNX10-shRNA plasmids were successfully constructed and coated with PLGA to obtain nanoparticles, with a particle size of 275.2 ± 11.4mm, uniform PDI distribution, entrapment efficiency of 87.6 ± 2.5%, and drug loading of 13.11 ± 1.38%, displayed dominant efficiency of SNX10 RNA interference in the colon. In both acute and chronic IBD models, SRP-NPs could effectively reduce the loss of mice body weight, relieve the intestinal mucosal damage and inflammatory infiltration, inhibit the expression of inflammatory cytokines IL-1β, IL-23, TNF-α, and down-regulate the expression of toll-like receptors (TLRs) 2 and 4. Conclusion Oral nanoparticles of SNX10-shRNA plasmid displayed dominant efficiency of SNX10 RNA interference in the colon and ameliorate mouse colitis via TLR signaling pathway. SNX10 is a new target for IBD treatment and nanoparticles of SNX10-shRNA plasmid might be a promising treatment option for IBD.
Collapse
Affiliation(s)
- Wei-Lian Bao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China.,Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Bin Hu
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Dongdong Sun
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Shengnan Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Haibo Cheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| | - Weixing Shen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Jiangsu, Nanjing 210023, People's Republic of China
| |
Collapse
|
31
|
Fan L, Li L, Huang C, Huang S, Deng J, Xiong J. Increased SNX20 and PD-L1 Levels Can Predict the Clinical Response to PD-1 Inhibitors in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:10075-10085. [PMID: 33116590 PMCID: PMC7555289 DOI: 10.2147/ott.s262909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Programmed death ligand 1 (PD-L1) is widely used for predicting immune checkpoint inhibitors but has a limited effect on predicting clinical response. The aim of this study was to examine the prognostic value and PD-1 inhibitor therapeutic efficiency of SNX20 in lung adenocarcinoma. Methods We evaluated the mRNA and protein expression levels of SNX20 and PD-L1 and confirmed their predictive role in clinical response to anti-PD-1 therapy in 56 patients with advanced, refractory lung adenocarcinoma treated with PD-1 inhibitors. The expression of SNX family in different cancer types and the relationship between SNX20 and immune cells were evaluated in TCGA. The protein expression levels of SNX20, PD-L1 in 56 lung adenocarcinoma tissues were evaluated by immunohistochemistry. Results SNX20 mRNA expression has the strongest relationship with CD8a of the sorting nexin (SNX) family in lung adenocarcinoma and is strongly correlated with immune infiltration levels in 30 cancer types, especially in lung adenocarcinoma. A positive correlation between SNX20 and PD-L1 was found based on immunohistochemical data (Pearson’s r=0.3731 and p=0.0466). SNX20 and PD-L1 were also observed to have a significant positive correlation at the mRNA level. According to the receiver operating characteristic (ROC) curve, the best expression differentiation score of SNX20 and PD-L1 between responder versus non-responders in patients with lung adenocarcinoma using PD-1 inhibitors is 5. In univariate logistic regression analysis, both SNX20 (odds ratio [OR]=3.778, p=0.019) and PD-L1 (OR=5.727, p=0.004) expression levels are significant predictors of clinical response in the PD-1 inhibitor responder group, and SNX20 (OR=3.575, p=0.038) and PD-L1 (OR=5.484, p=0.007) are also predictors of the response to PD-1 inhibitors in the multivariate analysis. High SNX20/high PD-L1 expression group had longer overall survival than patients with high SNX20/low PD-L1 expression group or low SNX20/high PD-L1 expression group (p=0.013) and patients with low SNX20/low PD-L1 expression group (p=0.01). Conclusion SNX20 expression can be a promising predictor for therapeutic decision-making and treatment response assessment regarding PD-1 inhibitors, and special attention is required for the subgroup of patients with lung adenocarcinoma whose tumors express both high SNX20 and PD-L1.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
32
|
Fan Y, Yang J, Li H, Li H, Zhang S, Li X, Song Y, Dang W, Liu L, Cao X, Wang X, Nandakumar KS, Shen X, You Y. WITHDRAWN: SNX10 deficiency restricts foam cell formation and protects against atherosclerosis by suppressing CD36-Lyn axis. Can J Cardiol 2020:S0828-282X(20)30456-6. [PMID: 32428616 DOI: 10.1016/j.cjca.2020.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
This article has been withdrawn at the request of the author. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Yujuan Fan
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jialin Yang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - HaiDong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesong Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuping Song
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Xiaoyan Shen
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan You
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; National Institute of Allergy and Infectious, National Institute of Health, Rockville, USA.
| |
Collapse
|
33
|
BIG1 controls macrophage pro-inflammatory responses through ARF3-mediated PI(4,5)P2 synthesis. Cell Death Dis 2020; 11:374. [PMID: 32415087 PMCID: PMC7229175 DOI: 10.1038/s41419-020-2590-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 12/29/2022]
Abstract
Sepsis is caused by a dysregulated host inflammatory response to serious infections resulting in life-threatening organ dysfunction. The high morbidity and mortality make sepsis still a major clinical problem. Here, we investigated the roles of Brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) in the pathogenesis process of sepsis and the underlying mechanisms. We found myeloid cell-specific BIG1 knockout (BIG1 cKO) significantly reduced the mortality and organ damage in LPS-induced and CLP-induced polymicrobial sepsis mouse model. The serum concentration and mRNA expression of pro-inflammatory cytokines including TNF-α, IL-6, IL-1β, and IL-12 were obviously decreased in BIG1 cKO mice. In bone marrow-derived macrophages or THP-1 cells, BIG1 deficiency caused an inhibited ARF3 activation, which reduced PI(4,5)P2 synthesis and the recruitment of TIRAP to the plasma membrane through inhibiting the activation of PIP5K induced by LPS, and eventually resulted in the inhibitory activity of TLR4-MyD88 signaling pathway. These results reveal a crucial new role of BIG1 in regulating macrophage inflammation responses, and provide evidence for BIG1 as a potential promising therapeutic target in sepsis.
Collapse
|
34
|
You Y, Bao WL, Zhang SL, Li HD, Li H, Dang WZ, Zou SL, Cao XY, Wang X, Liu LX, Jiang H, Qu LF, Zheng M, Shen X. Sorting Nexin 10 Mediates Metabolic Reprogramming of Macrophages in Atherosclerosis Through the Lyn-Dependent TFEB Signaling Pathway. Circ Res 2020; 127:534-549. [PMID: 32316875 DOI: 10.1161/circresaha.119.315516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE SNX10 (sorting nexin 10) has been reported to play a critical role in regulating macrophage function and lipid metabolism. OBJECTIVE To investigate the precise role of SNX10 in atherosclerotic diseases and the underlying mechanisms. METHODS AND RESULTS SNX10 expression was compared between human healthy vessels and carotid atherosclerotic plaques. Myeloid cell-specific SNX10 knockdown mice were crossed onto the APOE-/- (apolipoprotein E) background and atherogenesis (high-cholesterol diet-induced) was monitored for 16 weeks. We found that SNX10 expression was increased in atherosclerotic lesions of aortic specimens from humans and APOE-/- mice. Myeloid cell-specific SNX10 deficiency (Δ knockout [KO]) attenuated atherosclerosis progression in APOE-/- mice. The population of anti-inflammatory monocytes/macrophages was increased in the peripheral blood and atherosclerotic lesions of ΔKO mice. In vitro experiments showed that SNX10 deficiency-inhibited foam cell formation through interrupting the internalization of CD36, which requires the interaction of SNX10 and Lyn-AKT (protein kinase B). The reduced Lyn-AKT activation by SNX10 deficiency promoted the nuclear translocation of TFEB (transcription factor EB), thereby enhanced lysosomal biogenesis and LAL (lysosomal acid lipase) activity, resulting in an increase of free fatty acids to fuel mitochondrial fatty acid oxidation. This further promoted the reprogramming of macrophages and shifted toward the anti-inflammatory phenotype. CONCLUSIONS Our data demonstrate for the first time that SNX10 plays a crucial role in diet-induced atherogenesis via the previously unknown link between the Lyn-Akt-TFEB signaling pathway and macrophage reprogramming, suggest that SNX10 may be a potentially promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yan You
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.).,National Institute of Allergy and Infectious, National Institute of Health, Rockville, MD (Y. You)
| | - Wei-Lian Bao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Su-Lin Zhang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hai-Dong Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hui Li
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Wen-Zhen Dang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Si-Li Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Xin-Yue Cao
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Xu Wang
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Li-Xin Liu
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China (S.-L. Zou, L.-F.Q.)
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China (H.J., M.Z.)
| | - Xiaoyan Shen
- From the Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China (Y.Y., W.-L.B., S.-l. Zhang, H.-D.L., H.L., W.-Z.D., X.-Y.C., X.W., L.-X.L., X.S.)
| |
Collapse
|
35
|
Seyedizade SS, Afshari K, Bayat S, Rahmani F, Momtaz S, Rezaei N, Abdolghaffari AH. Current Status of M1 and M2 Macrophages Pathway as Drug Targets for Inflammatory Bowel Disease. Arch Immunol Ther Exp (Warsz) 2020; 68:10. [PMID: 32239308 DOI: 10.1007/s00005-020-00576-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation of the gastrointestinal system is mediated by both the immune system activity and homeostasis, mainly through releasing of various cytokines and chemokines, as well as the transmigration of the inflammatory cells to the affected site. In between, macrophages are key mediators of the immune system, nearly located all over the gastrointestinal tract. Macrophages have vital influence on the inflammatory condition with both pro-inflammatory and anti-inflammatory functions. Their polarization status has been linked to numerous metabolic disorders such as inflammatory bowel disease (IBD). The equilibrium between the phenotypes and functions of inflammatory M1 and anti-inflammatory M2 cells is regulated by both extracellular and intracellular stimuli, determining how the disease progresses. Thereby, factors that interchange such balance in the direction of increasing M2 macrophages offer unique approaches for future management of IBD. This study reflects the novel IBD treatment targets via the immune system's pathway, reporting the latest treatments that regulate the M1/M2 macrophages distribution in a way to favor IBD.
Collapse
Affiliation(s)
- Seyede Sara Seyedizade
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khashayar Afshari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Bayat
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rahmani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, P.O Box: 14194, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Zhang S, Yang Z, Bao W, Liu L, You Y, Wang X, Shao L, Fu W, Kou X, Shen W, Yuan C, Hu B, Dang W, Nandakumar KS, Jiang H, Zheng M, Shen X. SNX10 (sorting nexin 10) inhibits colorectal cancer initiation and progression by controlling autophagic degradation of SRC. Autophagy 2019; 16:735-749. [PMID: 31208298 DOI: 10.1080/15548627.2019.1632122] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The non-receptor tyrosine kinase SRC is a key mediator of cellular protumorigenic signals. SRC is aberrantly over-expressed and activated in more than 80% of colorectal cancer (CRC) patients, therefore regulation of its stability and activity is essential. Here, we report a significant down regulation of SNX10 (sorting nexin 10) in human CRC tissues, which is closely related to tumor differentiation, TNM stage, lymph node metastasis and survival period. SNX10 deficiency in normal and neoplastic colorectal epithelial cells promotes initiation and progression of CRC in mice. SNX10 controls SRC levels by mediating autophagosome-lysosome fusion and SRC recruitment for autophagic degradation. These mechanisms ensure proper controlling of the activities of SRC-STAT3 and SRC-CTNNB1 signaling pathways by up-regulating SNX10 expression under stress conditions. These findings suggest that SNX10 acts as a tumor suppressor in CRC and it could be a potential therapeutic target for future development.Abbreviations: ACTB: actin beta; ATG5: autophagy related 5; ATG12: autophagy related 12; CQ: chloroquine; CRC: colorectal cancer; CTNNB1: catenin beta 1; EBSS: Earle's balanced salt solution; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; MAP1LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; mRNA: messenger RNA; PX: phox homology; RT-qPCR: real time quantitative polymerase chain reaction; siRNA: small interfering RNA; SNX10: sorting nexin 10; SQSTM1: sequestosome 1; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; WT: wild type.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Liming Shao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinhui Kou
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weixing Shen
- The Translational Medicine Research Center, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Congmin Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wenzhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | | | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Calvo AC, Cibreiro GA, Merino PT, Roy JF, Galiana A, Rufián AJ, Cano JM, Martín MA, Moreno L, Larrodé P, Vázquez PC, Galán L, Mora J, Muñoz-Blanco JL, Muñoz MJ, Zaragoza P, Pegoraro E, Sorarù G, Mora M, Lunetta C, Penco S, Tarlarini C, Esteban J, Osta R, Redondo AG. Collagen XIX Alpha 1 Improves Prognosis in Amyotrophic Lateral Sclerosis. Aging Dis 2019; 10:278-292. [PMID: 31011479 PMCID: PMC6457048 DOI: 10.14336/ad.2018.0917] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
The identification of more reliable diagnostic or prognostic biomarkers in age-related neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), is urgently needed. The objective in this study was to identify more reliable prognostic biomarkers of ALS mirroring neurodegeneration that could be of help in clinical trials. A total of 268 participants from three cohorts were included in this study. The muscle and blood cohorts were analyzed in two cross-sectional studies, while the serial blood cohort was analyzed in a longitudinal study at 6-monthly intervals. Fifteen target genes and fourteen proteins involved in muscle physiology and differentiation, metabolic processes and neuromuscular junction dismantlement were studied in the three cohorts. In the muscle biopsy cohort, the risk for a higher mortality in an ALS patient that showed high Collagen type XIX, alpha 1 (COL19A1) protein levels and a fast progression of the disease was 70.5% (P < 0.05), while in the blood cohort, this risk was 20% (P < 0.01). In the serial blood cohort, the linear mixed model analysis showed a significant association between increasing COL19A1 gene levels along disease progression and a faster progression during the follow-up period of 24 months (P < 0.05). Additionally, higher COL19A1 levels and a faster progression increased 17.9% the mortality risk (P < 0.01). We provide new evidence that COL19A1 can be considered a prognostic biomarker that could help the selection of homogeneous groups of patients for upcoming clinical trial and may be pointed out as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Ana C Calvo
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia Cibreiro
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Paz Torre Merino
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Juan F Roy
- 3Ferkauf Graduate School of Psychology, Yeshiva University, NY 10461, USA
| | - Adrián Galiana
- 4Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alexandra Juárez Rufián
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Juan M Cano
- 5Orthopaedic Surgery Department, October 12th Hospital, Madrid, Spain
| | - Miguel A Martín
- 6Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), U723-CIBERER, Madrid, España
| | - Laura Moreno
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Larrodé
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Cordero Vázquez
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Lucía Galán
- 7Neurology Department, ALS Unit, Clínico Universitario San Carlos Hospital, Madrid, Spain
| | - Jesús Mora
- 8Neurology Department, ALS Unit, Carlos III Hospital, Madrid, Spain
| | - José L Muñoz-Blanco
- 9Neurology Department, ALS Unit, Health Research Institute, Gregorio Marañón Hospital "IISGM", Madrid, Spain
| | - María J Muñoz
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Elena Pegoraro
- 10Neurological Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Gianni Sorarù
- 10Neurological Clinic, Department of Neurosciences, University of Padova, Padova, Italy
| | - Marina Mora
- 11Muscle Cell Biology Laboratory, Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Christian Lunetta
- 12NEMO (NEuroMuscular Omnicentre) Clinical Center, Fondazione Serena Onlus, Milan, Italy
| | - Silvana Penco
- 13Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Claudia Tarlarini
- 13Medical Genetics Unit, Department of Laboratory Medicine, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Jesús Esteban
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| | - Rosario Osta
- 1LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-IIS, IA2-CITA, University of Zaragoza, Zaragoza, Spain
| | - Alberto García Redondo
- 2Neurology Department, ALS Unit, CIBERER U-723, Health Research Institute, October 12th Hospital "IIS I+12", Madrid, Spain
| |
Collapse
|
38
|
1,25‑Dihydroxyvitamin D regulates macrophage polarization and ameliorates experimental inflammatory bowel disease by suppressing miR-125b. Int Immunopharmacol 2019; 67:106-118. [DOI: 10.1016/j.intimp.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
|
39
|
Zhang S, Hu B, You Y, Yang Z, Liu L, Tang H, Bao W, Guan Y, Shen X. Sorting nexin 10 acts as a tumor suppressor in tumorigenesis and progression of colorectal cancer through regulating chaperone mediated autophagy degradation of p21 Cip1/WAF1. Cancer Lett 2019; 419:116-127. [PMID: 29355659 DOI: 10.1016/j.canlet.2018.01.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
Chaperone-mediated autophagy (CMA) characterized by the selective degradation of target proteins has been linked with tumorigenesis in recent years. Here, we explored the function of sorting nexin 10 (SNX10), a protein involved in maintaining endosome/lysosome homeostasis, in mediating CMA activity and its impact on the progression of mouse inflammation-driven colorectal cancer. Our results revealed that SNX10 deficiency increased the activation of CMA by preventing the degradation of lysosomal LAMP-2A. In SNX10 KO cells, we disclosed that p21Cip1/WAF1, a master effector in various tumor suppressor pathways, is a substrate of CMA, and decrease of p21Cip1/WAF1 caused by SNX10-mediated CMA activation contributes to HCT116 cell proliferation and survival. Moreover, we found that SNX10 KO promoted tumorigenesis in the mouse colorectum which could be restored by SNX10 over-expression. Furthermore, SNX10 was remarkably down-regulated in human CRC tissues which showed the increased activity of CMA and decreased expression of p21Cip1/WAF1. These findings suggest that SNX10 acts as a tumor suppressor in the mouse colorectum and drives inflammation-associated colorectal cancer by a chaperone-mediated autophagy mechanism.
Collapse
Affiliation(s)
- Sulin Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Hu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lixin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Huanhuan Tang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yunyun Guan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Zhang J, Wu Y, Jin HY, Guo S, Dong Z, Zheng ZC, Wang Y, Zhao Y. Prognostic value of sorting nexin 10 weak expression in stomach adenocarcinoma revealed by weighted gene co-expression network analysis. World J Gastroenterol 2018; 24:4906-4919. [PMID: 30487700 PMCID: PMC6250920 DOI: 10.3748/wjg.v24.i43.4906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To detect significant clusters of co-expressed genes associated with tumorigenesis that might help to predict stomach adenocarcinoma (SA) prognosis.
METHODS The Cancer Genome Atlas database was used to obtain RNA sequences as well as complete clinical data of SA and adjacent normal tissues from patients. Weighted gene co-expression network analysis (WGCNA) was used to investigate the meaningful module along with hub genes. Expression of hub genes was analyzed in 362 paraffin-embedded SA biopsy tissues by immunohistochemical staining. Patients were classified into two groups (according to expression of hub genes): Weak expression and over-expression groups. Correlation of biomarkers with clinicopathological factors indicated patient survival.
RESULTS Whole genome expression level screening identified 6,231 differentially expressed genes. Twenty-four co-expressed gene modules were identified using WGCNA. Pearson’s correlation analysis showed that the tan module was the most relevant to tumor stage (r = 0.24, P = 7 × 10-6). In addition, we detected sorting nexin (SNX)10 as the hub gene of the tan module. SNX10 expression was linked to T category (P = 0.042, χ2 = 8.708), N category (P = 0.000, χ2 = 18.778), TNM stage (P = 0.001, χ2 = 16.744) as well as tumor differentiation (P = 0.000, χ2 = 251.930). Patients with high SNX10 expression tended to have longer disease-free survival (DFS; 44.97 mo vs 33.85 mo, P = 0.000) as well as overall survival (OS; 49.95 vs 40.84 mo, P = 0.000) in univariate analysis. Multivariate analysis showed that dismal prognosis could be precisely predicted clinicopathologically using SNX10 [DFS: P = 0.014, hazard ratio (HR) = 0.698, 95% confidence interval (CI): 0.524-0.930, OS: P = 0.017, HR = 0.704, 95%CI: 0.528-0.940].
CONCLUSION This study provides a new technique for screening prognostic biomarkers of SA. Weak expression of SNX10 is linked to poor prognosis, and is a suitable prognostic biomarker of SA.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yue Wu
- Department of Emergency, Sheng Jing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Hao-Yi Jin
- Pancreatic and Thyroid Surgery Department, Sheng Jing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Shuai Guo
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Zhe Dong
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Zhi-Chao Zheng
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yue Wang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| | - Yan Zhao
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute (Cancer Hospital of China Medical University), Shenyang 110042, Liaoning Province, China
| |
Collapse
|
41
|
Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 2018; 105:526-532. [PMID: 29885636 PMCID: PMC7172164 DOI: 10.1016/j.biopha.2018.05.148] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA,Corresponding author.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden,Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH, Stockholm, Sweden
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
42
|
Lovewell TRJ, McDonagh AJG, Messenger AG, Azzouz M, Tazi-Ahnini R. Meta-Analysis of Autoimmune Regulator-Regulated Genes in Human and Murine Models: A Novel Human Model Provides Insights on the Role of Autoimmune Regulator in Regulating STAT1 and STAT1-Regulated Genes. Front Immunol 2018; 9:1380. [PMID: 30002654 PMCID: PMC6031710 DOI: 10.3389/fimmu.2018.01380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (AIRE) regulates promiscuous expression of tissue-restricted antigens in medullary epithelial cells (mTEC) of the thymus. To understand the diverse effects of AIRE, it is crucial to elucidate the molecular mechanisms underlying the process of AIRE-regulated gene expression. In this study, we generated a recombinant AIRE expression variant of the TEC 1A3 human cell line, TEC 1A3 AIREhi, to determine genes targeted by AIRE, and using microarray analysis, we identified 482 genes showing significant differential expression (P < 0.05; false discovery rate <5%), with 353 upregulated and 129 downregulated by AIRE expression. Microarray data were validated by quantitative PCR, confirming the differential expression of 12 known AIRE-regulated genes. Comparison of AIRE-dependent differential expression in our cell line model with murine datasets identified 447 conserved genes with a number of transcription regulatory interactions, forming several key nodes, including STAT1, which had over 30 interactions with other AIRE-regulated genes. As STAT1 mutations cause dominant chronic mucocutaneous candidiasis and decreased STAT1 levels in monocytes of autoimmune polyglandular syndrome 1 (APS-1) patients, it was important to further characterize AIRE-STAT1 interactions. TEC 1A3AIREhi were treated with the STAT1 phosphorylation inhibitors fludarabine and LLL3 showed that phosphorylated STAT1 (p-STAT1) was not responsible for any of the observed differential expression. Moreover, treatment of TEC 1A3 AIREhi with STAT1 shRNA did not induce any significant variation in the expression of unphosphorylated STAT1 (U-STAT1) downstream genes, suggesting that these genes were directly regulated by AIRE but not via U-STAT1. The novel model system we have developed provides potential opportunities for further analysis of the pathogenesis of (APS-1) and the wider roles of the AIRE gene.
Collapse
Affiliation(s)
- Thomas R. J. Lovewell
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Andrew G. Messenger
- Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mimoun Azzouz
- Department of Neuroscience, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Rachid Tazi-Ahnini
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Satoh JI. Gene expression profiles of M1 and M2 microglia characterized by comparative analysis of public datasets. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology; Meiji Pharmaceutical University; Tokyo Japan
| |
Collapse
|
44
|
Yang Y, Zhou Y, Hu J, Luo F, Xie Y, Shen Y, Bian W, Yin Z, Li H, Zhang X. Ficolin-A/2, acting as a new regulator of macrophage polarization, mediates the inflammatory response in experimental mouse colitis. Immunology 2017; 151:433-450. [PMID: 28380665 PMCID: PMC5506452 DOI: 10.1111/imm.12741] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Human ficolin-2 (FCN-2) and mouse ficolin-A (FCN-A, a ficolin-2-like molecule in mouse) are activators of the lectin complement pathway, present in normal plasma and usually associated with infectious diseases, but little is known about the role of FCN-A/2 in inflammatory bowel disease (IBD). In our present study, we found that patients with IBD exhibited much higher serum FCN-2 levels than healthy controls. In the dextran sulphate sodium-induced acute colitis mouse model, FCN-A knockout mice showed much milder disease symptoms with less histological damage, lower expression levels of pro-inflammatory cytokines [interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α (TNF-α)], chemokines (CXCL1/2/10 and CCL4) and higher levels of the anti-inflammatory cytokine IL-10 compared with wild-type mice. We demonstrated that FCN-A/2 exacerbated the inflammatory pathogenesis of IBD by stimulating M1 polarization through the TLR4/MyD88/MAPK/NF-κB signalling pathway in macrophages. Hence, our data suggest that FCN-A/2 may be used as a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Yi‐Fei Yang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yi‐Dan Zhou
- Department of MicrobiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Jia‐Chen Hu
- Department of Gastroenterology/HepatologyZhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Feng‐Ling Luo
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan Xie
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan‐Ying Shen
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Wen‐Xiu Bian
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Zhi‐Nan Yin
- Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongChina
| | - Hong‐Liang Li
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Xiao‐Lian Zhang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|