1
|
Xiao L, Huang Z, Wu Z, Yang Y, Zhang Z, Kumar M, Wu H, Mao H, Lin L, Lin R, Long J, Zeng L, Guo J, Luo R, Li Y, Zhu P, Liao B, Wang L, Liu J. Reconstitution of pluripotency from mouse fibroblast through Sall4 overexpression. Nat Commun 2024; 15:10787. [PMID: 39737935 PMCID: PMC11686038 DOI: 10.1038/s41467-024-54924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation. Here, we report that SALL4 alone, under an optimized reprogramming medium iCD4, is capable of reprogramming mouse fibroblasts into iPSCs. Mechanistically, SALL4 facilitates reprogramming by inhibiting somatic genes and activating pluripotent genes, such as Esrrb and Tfap2c. Furthermore, we demonstrate that co-overexpressing SALL4 and OCT4 synergistically enhances reprogramming efficiency. Specifically, the activation of Rsk1/Esrrb/Tfap2c by SALL4, alongside OCT4's activation of Sox2 and the suppression of Mndal by SALL4 and Sbsn by OCT4, cooperate to facilitate SALL4+OCT4-mediated reprogramming. Overall, our study not only establishes an efficient method for iPSCs induction using the SALL4 single factor but also provides insights into the synergistic effects of SALL4 and OCT4 in reprogramming.
Collapse
Grants
- This research was supported by grants from the National Key Research and Development Program of China (2018YFE0204800 [J.L.]), National Natural Science Foundation of China (U20A2013 [T.W.], 32370791 [J.L.]), Guangdong Basic and Applied Basic Research Foundation (2020A1515110122 [L.W.]), Science and Technology Projects in Guangzhou, China (Grant No.(202201010510[Z.Z])), Science and Technology Planning Project of Guangdong Province (2023B1212060050 [J.L.], 2023B1212120009 [J.L.], 2022B1212010010 [Y.L. and P.Z]), Basic Research Project of Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences (GIBHBRP23-02[J.L.]), Health@InnoHK Program launched by the Innovation Technology Commission of the Hong Kong SAR, P.R. China, the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (No.GZC20232689[L.Z.].), and Grants from Guangdong Province (2024A1515013168 [B.L.], 2024ZDZX2055 [B.L.]).
Collapse
Affiliation(s)
- Lizhan Xiao
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zifen Huang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zixuan Wu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongzheng Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen Zhang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Manish Kumar
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haokaifeng Wu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huiping Mao
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Runxia Lin
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingxian Long
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihua Zeng
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Guo
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Rongping Luo
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Li
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Baojian Liao
- School of Basic Medical Sciences, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luqin Wang
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Jing Liu
- Center for Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, PR China.
| |
Collapse
|
2
|
Shen Z, Wu Y, Manna A, Yi C, Cairns BR, Evason KJ, Chandrasekharan MB, Tantin D. Oct4 redox sensitivity potentiates reprogramming and differentiation. Genes Dev 2024; 38:308-321. [PMID: 38719541 PMCID: PMC11146590 DOI: 10.1101/gad.351411.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.
Collapse
Affiliation(s)
- Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Yifan Wu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Asit Manna
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Chongil Yi
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Bradley R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Kimberley J Evason
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Mahesh B Chandrasekharan
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
3
|
Shen Z, Wu Y, Mana A, Yi C, Cairns B, Evason KJ, Chandrasekharan MB, Tantin D. Oct4 redox sensitivity potentiates reprogramming and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529404. [PMID: 36865286 PMCID: PMC9980064 DOI: 10.1101/2023.02.21.529404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we use domain swapping and mutagenesis to study Oct4s reprogramming ability, identifying a redox-sensitive DNA binding domain cysteine residue (Cys48) as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs), but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression and aberrant differentiation. Pou5f1C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.
Collapse
|
4
|
Goldman N, Chandra A, Johnson I, Sullivan MA, Patil AR, Vanderbeck A, Jay A, Zhou Y, Ferrari EK, Mayne L, Aguilan J, Xue HH, Faryabi RB, John Wherry E, Sidoli S, Maillard I, Vahedi G. Intrinsically disordered domain of transcription factor TCF-1 is required for T cell developmental fidelity. Nat Immunol 2023; 24:1698-1710. [PMID: 37592014 PMCID: PMC10919931 DOI: 10.1038/s41590-023-01599-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.
Collapse
Affiliation(s)
- Naomi Goldman
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Isabelle Johnson
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Matthew A Sullivan
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Abhijeet R Patil
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Atishay Jay
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Leland Mayne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Jennifer Aguilan
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Robert B Faryabi
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein School of Medicine, New York City, NY, USA
| | - Ivan Maillard
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Rossi A, Blok LS, Neuser S, Klöckner C, Platzer K, Faivre LO, Weigand H, Dentici ML, Tartaglia M, Niceta M, Alfieri P, Srivastava S, Coulter D, Smith L, Vinorum K, Cappuccio G, Brunetti-Pierri N, Torun D, Arslan M, Lauridsen MF, Murch O, Irving R, Lynch SA, Mehta SG, Carmichael J, Zonneveld-Huijssoon E, de Vries B, Kleefstra T, Johannesen KM, Westphall IT, Hughes SS, Smithson S, Evans J, Dudding-Byth T, Simon M, van Binsbergen E, Herkert JC, Beunders G, Oppermann H, Bakal M, Møller RS, Rubboli G, Bayat A. POU3F3-related disorder: Defining the phenotype and expanding the molecular spectrum. Clin Genet 2023; 104:186-197. [PMID: 37165752 PMCID: PMC10330344 DOI: 10.1111/cge.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
POU3F3 variants cause developmental delay, behavioral problems, hypotonia and dysmorphic features. We investigated the phenotypic and genetic landscape, and genotype-phenotype correlations in individuals with POU3F3-related disorders. We recruited unpublished individuals with POU3F3 variants through international collaborations and obtained updated clinical data on previously published individuals. Trio exome sequencing or single exome sequencing followed by segregation analysis were performed in the novel cohort. Functional effects of missense variants were investigated with 3D protein modeling. We included 28 individuals (5 previously published) from 26 families carrying POU3F3 variants; 23 de novo and one inherited from an affected parent. Median age at study inclusion was 7.4 years. All had developmental delay mainly affecting speech, behavioral difficulties, psychiatric comorbidities and dysmorphisms. Additional features included gastrointestinal comorbidities, hearing loss, ophthalmological anomalies, epilepsy, sleep disturbances and joint hypermobility. Autism, hearing and eye comorbidities, dysmorphisms were more common in individuals with truncating variants, whereas epilepsy was only associated with missense variants. In silico structural modeling predicted that all (likely) pathogenic variants destabilize the DNA-binding region of POU3F3. Our study refined the phenotypic and genetic landscape of POU3F3-related disorders, it reports the functional properties of the identified pathogenic variants, and delineates some genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, member of the ERN-EpiCARE, Dianalund, Denmark
- Pediatric Clinic, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Lot Snijders Blok
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Laurence Olivier Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon, France
- Genetics of Developmental Disorders Team, INSERM - Bourgogne Franche-Comté University, UMR 1231 GAD, Dijon, France
| | - Heike Weigand
- Department of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Dr. von Hauner’s Children’s Hospital, University of Munich, Munich, Germany
| | - Maria L. Dentici
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - David Coulter
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Lacey Smith
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Scuola Superiore Meridionale, School for Advanced Studies, Naples, Italy
| | - Deniz Torun
- Department of Medical Genetics, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Mutluay Arslan
- Department of Pediatric Neurology, Gülhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | | | - Oliver Murch
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Rachel Irving
- All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Sally A. Lynch
- Children’s Health Ireland at Crumlin, Dublin 12, Ireland
| | - Sarju G. Mehta
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jenny Carmichael
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Evelien Zonneveld-Huijssoon
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Bert de Vries
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, member of the ERN-EpiCARE, Dianalund, Denmark
- Department of Genetics, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ian T. Westphall
- Department of Paediatrics, Copenhagen University Hospital, Hvidovre, Denmark
| | - Susan S. Hughes
- Division of Genetics, Children’s Mercy Kansas City, Kansas City, MO, USA
| | - Sarah Smithson
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Julie Evans
- Bristol Genetics Laboratory, North Bristol NHS Trust, Pathology Sciences Building, Southmead Hospital, Bristol, UK
| | - Tracy Dudding-Byth
- NSW Genetics of Learning Disability (GOLD) Service, University of Newcastle, NSW Australia
| | - Marleen Simon
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johanna C. Herkert
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Gea Beunders
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Mert Bakal
- Clinic of Radiology, University of Health Sciences Turkey, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, member of the ERN-EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, member of the ERN-EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, member of the ERN-EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Guan R, Lian T, Zhou BR, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4 for pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522631. [PMID: 36789416 PMCID: PMC9928048 DOI: 10.1101/2023.01.03.522631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA motifs. Two use their POUS domains by forming extensive hydrogen bonds. The other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Our study suggests a mechanism whereby OCT4s target the LIN28B nucleosome by forming multivalent interactions with nucleosomal motifs, unwrapping nucleosomal DNA, evicting H1, and cooperatively open closed chromatin to initiate cell reprogramming.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Correspondence:
| |
Collapse
|
7
|
Sukparangsi W, Morganti E, Lowndes M, Mayeur H, Weisser M, Hammachi F, Peradziryi H, Roske F, Hölzenspies J, Livigni A, Godard BG, Sugahara F, Kuratani S, Montoya G, Frankenberg SR, Mazan S, Brickman JM. Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nat Commun 2022; 13:5537. [PMID: 36130934 PMCID: PMC9492771 DOI: 10.1038/s41467-022-32481-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/30/2022] [Indexed: 12/31/2022] Open
Abstract
The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.,Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Elena Morganti
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Hélène Mayeur
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France
| | - Melanie Weisser
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Fabian Roske
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Jurriaan Hölzenspies
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | - Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Benoit Gilbert Godard
- CNRS, Sorbonne Université, UPMC Univ Paris 06, FR2424, Development and Evolution of Vertebrates Group, Station Biologique, F-29688, Roscoff, France.,CNRS, Sorbonne Université, Laboratoire de Biologie du Développement de Villefranche, UMR7009, F-06234, Villefranche sur Mer, France
| | - Fumiaki Sugahara
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark
| | | | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie Intégrative des Organismes Marins, UMR7232, F-66650, Banyuls sur Mer, France.
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 3B Blegdamsvej, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Cui G, Xu Y, Cao S, Shi K. Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development. Mol Reprod Dev 2022; 89:70-85. [PMID: 35075695 DOI: 10.1002/mrd.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The early embryonic development starts with the totipotent zygote upon fertilization of differentiated sperm and egg, which undergoes a range of reprogramming and transformation to acquire pluripotency. Induced pluripotent stem cells (iPSCs), a nonclonal technique to produce stem cells, are originated from differentiated somatic cells via accomplishment of cell reprogramming, which shares common reprogramming process with early embryonic development. iPSCs are attractive in recent years due to the potentially significant applications in disease modeling, potential value in genetic improvement of husbandry animal, regenerative medicine, and drug screening. This review focuses on introducing the research advance of both somatic cell reprogramming and early embryonic development, indicating that the mechanisms of iPSCs also shares common features with that of early embryonic development in several aspects, such as germ cell factors, DNA methylation, histone modification, and/or X chromosome inactivation. As iPSCs can successfully avoid ethical concerns that are naturally present in the embryos and/or embryonic stem cells, the practicality of somatic cell reprogramming (iPSCs) could provide an insightful platform to elucidate the mechanisms underlying the early embryonic development.
Collapse
Affiliation(s)
- Guina Cui
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yanwen Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyuan Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
9
|
Nayak C, Singh SK. In silico identification of natural product inhibitors against Octamer-binding transcription factor 4 (Oct4) to impede the mechanism of glioma stem cells. PLoS One 2021; 16:e0255803. [PMID: 34613998 PMCID: PMC8494328 DOI: 10.1371/journal.pone.0255803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a core regulator in the retention of stemness, invasive, and self-renewal properties in glioma initiating cells (GSCs) and its overexpression inhibits the differentiation of glioma cells promoting tumor cell proliferation. The Pit-Oct-Unc (POU) domain comprising POU-specific domain (POUS) and POU-type homeodomain (POUHD) subdomains is the most critical part of the Oct4 for the generation of induced pluripotent stem cells from somatic cells that lead to tumor initiation, invasion, posttreatment relapse, and therapeutic resistance. Therefore, the present investigation hunts for natural product inhibitors (NPIs) against the POUHD domain of Oct4 by employing receptor-based virtual screening (RBVS) followed by binding free energy calculation and molecular dynamics simulation (MDS). RBVS provided 13 compounds with acceptable ranges of pharmacokinetic properties and good docking scores having key interactions with the POUHD domain. More Specifically, conformational and interaction stability analysis of 13 compounds through MDS unveiled two compounds ZINC02145000 and ZINC32124203 which stabilized the backbone of protein even in the presence of linker and POUS domain. Additionally, ZINC02145000 and ZINC32124203 exhibited stable and strong interactions with key residues W277, R242, and R234 of the POUHD domain even in dynamic conditions. Interestingly, ZINC02145000 and ZINC32124203 established communication not only with the POUHD domain but also with the POUS domain indicating their incredible potency toward thwarting the function of Oct4. ZINC02145000 and ZINC32124203 also reduced the flexibility and escalated the correlations between the amino acid residues of Oct4 evidenced by PCA and DCCM analysis. Finally, our examination proposed two NPIs that can impede the Oct4 function and may help to improve overall survival, diminish tumor relapse, and achieve a cure not only in deadly disease GBM but also in other cancers with minimal side effects.
Collapse
Affiliation(s)
- Chirasmita Nayak
- Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi Tamil Nadu, India
| |
Collapse
|
10
|
Biological importance of OCT transcription factors in reprogramming and development. Exp Mol Med 2021; 53:1018-1028. [PMID: 34117345 PMCID: PMC8257633 DOI: 10.1038/s12276-021-00637-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ectopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences. Cells can be reprogrammed into induced pluripotent stem cells (iPSCs), embryonic-like stem cells that can turn into any cell type and have extensive potential medical uses, without adding the transcription factor OCT4. Although other nearly identical OCT family members had been tried, only OCT4 could induce reprogramming and was previously thought to be indispensable. However, it now appears that the reprogramming can be induced by multiple pathways, as detailed in a review by Hans Schöler, Max Planck Institute for Biomolecular Medicine, Münster, and Johnny Kim, Max Planck Institute for Heart and Lung Research, Bad Nauheim, in Germany. They report that any factors that trigger cells to activate endogeous OCT4 can produce iPSCs without exogeously admistration of OCT4. The mechanisms for producing iPSCs can differ between species. These results illuminate the complex mechanisms of reprogramming.
Collapse
|
11
|
The Core Stem Genes SOX2, POU5F1/OCT4, and NANOG Are Expressed in Human Parathyroid Tumors and Modulated by MEN1, YAP1, and β-catenin Pathways Activation. Biomedicines 2021; 9:biomedicines9060637. [PMID: 34199594 PMCID: PMC8227846 DOI: 10.3390/biomedicines9060637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Tumors of the parathyroid glands are the second most common endocrine neoplasia. Epigenetic studies revealed an embryonic signature involved in parathyroid tumorigenesis. Here, we investigated the expression of the stem core genes SOX2, POU5F1/OCT4, and NANOG. Rare cells within normal parathyroid glands expressed POU5F1/OCT4 and NANOG, while SOX2 was undetectable. Nuclear SOX2 expression was detectable in 18% of parathyroid adenomas (PAds, n = 34) involving 5–30% of cells, while OCT4 and NANOG were expressed at the nuclear level in a more consistent subset of PAds involving 15–40% of cells. Most parathyroid carcinomas expressed the core stem genes. SOX2-expressing cells co-expressed parathormone (PTH). In PAds-derived primary cultures, silencing of the tumor suppressor gene MEN1 induced the expression of SOX2, likely through a MEN1/HAR1B/SOX2 axis, while calcium-sensing receptor activation increased SOX2 mRNA levels through YAP1 activation. In addition, inducing nuclear β-catenin accumulation in PAds-derived primary cultures by short-term incubation with lithium chloride (LiCl), SOX2 and POU5F1/OCT4 expression levels increased, while NANOG transcripts were reduced, and LiCl long-term incubation induced an opposite pattern of gene expression. In conclusion, detection of the core stem genes in parathyroid tumors supports their embryogenic signature, which is modulated by crucial genes involved in parathyroid tumorigenesis.
Collapse
|
12
|
Dan S, Song Y, Duan X, Pan X, Chen C, She S, Su T, Li J, Chen X, Zhou Y, Chen W, Zhang X, Pan X, Wang YJ, Kang B. LSD1-mediated demethylation of OCT4 safeguards pluripotent stem cells by maintaining the transcription of PORE-motif-containing genes. Sci Rep 2021; 11:10285. [PMID: 33986438 PMCID: PMC8119428 DOI: 10.1038/s41598-021-89734-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Reversible lysine methylation is essential for regulating histones and emerges to critically regulate non-histone proteins as well. Here we show that the master transcription factor OCT4 in pluripotent stem cells (PSCs) was methylated at multiple lysine residues. LSD1 that is highly expressed in PSCs can directly interact with and demethylate OCT4 at lysine 222 (K222) in the flexible linker region. Reduced LSD1 activity led to the methylation of OCT4-K222 that diminished the differentiation potential of PSCs while facilitating proteasome-independent degradation of OCT4 proteins. Furthermore, site-specifically replacing K222 with phenylalanine to mimic the constitutively methylated lysine promoted the 'locked-in' mode engagement of the OCT4 PORE-homodimers that tightly bind to and block the transcription of multiple PORE-motif-containing target genes regulating cell fate determination and cell junction organization, and thereby reducing the pluripotency of PSCs. Thus, LSD1-mediated demethylation of OCT4 plays a crucial role in restricting the 'locked-in' mode binding of OCT4 PORE-homodimers to the PORE-motif-containing genes and thereby maintaining their transcription to safeguard the pluripotency of PSCs.
Collapse
Affiliation(s)
- Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yuelin Song
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao Pan
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Tong Su
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Jingchao Li
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yanwen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xiaoyun Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
13
|
Tan DS, Chen Y, Gao Y, Bednarz A, Wei Y, Malik V, Ho DHH, Weng M, Ho SY, Srivastava Y, Velychko S, Yang X, Fan L, Kim J, Graumann J, Stormo GD, Braun T, Yan J, Schöler HR, Jauch R. Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Mol Biol Evol 2021; 38:2854-2868. [PMID: 33720298 PMCID: PMC8233511 DOI: 10.1093/molbev/msab075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.
Collapse
Affiliation(s)
- Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yanpu Chen
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ya Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anastasia Bednarz
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Department of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Yuanjie Wei
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Vikas Malik
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Derek Hoi-Hang Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sik Yin Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Xiaoxiao Yang
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ligang Fan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Max Planck Institute for Heart and Lung Research, Mass Spectrometry Service Group, Bad Nauheim, Germany
| | - Gary D Stormo
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Kim KP, Choi J, Yoon J, Bruder JM, Shin B, Kim J, Arauzo-Bravo MJ, Han D, Wu G, Han DW, Kim J, Cramer P, Schöler HR. Permissive epigenomes endow reprogramming competence to transcriptional regulators. Nat Chem Biol 2021; 17:47-56. [PMID: 32807969 DOI: 10.1038/s41589-020-0618-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Identifying molecular and cellular processes that regulate reprogramming competence of transcription factors broadens our understanding of reprogramming mechanisms. In the present study, by a chemical screen targeting major epigenetic pathways in human reprogramming, we discovered that inhibiting specific epigenetic roadblocks including disruptor of telomeric silencing 1-like (DOT1L)-mediated H3K79/K27 methylation, but also other epigenetic pathways, catalyzed by lysine-specific histone demethylase 1A, DNA methyltransferases and histone deacetylases, allows induced pluripotent stem cell generation with almost all OCT factors. We found that simultaneous inhibition of these pathways not only dramatically enhances reprogramming competence of most OCT factors, but in fact enables dismantling of species-dependent reprogramming competence of OCT6, NR5A1, NR5A2, TET1 and GATA3. Harnessing these induced permissive epigenetic states, we performed an additional screen with 98 candidate genes. Thereby, we identified 25 transcriptional regulators (OTX2, SIX3, and so on) that can functionally replace OCT4 in inducing pluripotency. Our findings provide a conceptual framework for understanding how transcription factors elicit reprogramming in dependency of the donor cell epigenome that differs across species.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jinmi Choi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Early Discovery, Ksilink, Strasbourg, France
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Borami Shin
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Dong Han
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
15
|
Kim DK, Song B, Han S, Jang H, Bae SH, Kim HY, Lee SH, Lee S, Kim JK, Kim HS, Hong KM, Lee BI, Youn HD, Kim SY, Kang SW, Jang H. Phosphorylation of OCT4 Serine 236 Inhibits Germ Cell Tumor Growth by Inducing Differentiation. Cancers (Basel) 2020; 12:cancers12092601. [PMID: 32932964 PMCID: PMC7565739 DOI: 10.3390/cancers12092601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Octamer-binding transcription factor 4 (OCT4) plays an important role in early embryonic development, but is rarely expressed in adults. However, in many cancer cells, this gene is re-expressed, making the cancer malignant. This present study revealed that inhibiting OCT4 transcriptional activity induces cancer cell differentiation and growth retardation. Specifically, when the phosphorylation of OCT4 serine 236 increases by interfering with the binding of protein phosphatase 1 (PP1) to OCT4, OCT4 loses its transcriptional activity and cancer cells differentiate. Therefore, this study presents the basis for the development of protein-protein interaction inhibitors that inhibit the binding of OCT4 and PP1 for cancer treatment. Abstract Octamer-binding transcription factor 4 (Oct4) plays an important role in maintaining pluripotency in embryonic stem cells and is closely related to the malignancies of various cancers. Although posttranslational modifications of Oct4 have been widely studied, most of these have not yet been fully characterized, especially in cancer. In this study, we investigated the role of phosphorylation of serine 236 of OCT4 [OCT4 (S236)] in human germ cell tumors (GCTs). OCT4 was phosphorylated at S236 in a cell cycle-dependent manner in a patient sample and GCT cell lines. The substitution of endogenous OCT4 by a mimic of phosphorylated OCT4 with a serine-to-aspartate mutation at S236 (S236D) resulted in tumor cell differentiation, growth retardation, and inhibition of tumor sphere formation. GCT cells expressing OCT4 S236D instead of endogenous OCT4 were similar to cells with OCT4 depletion at the mRNA transcript level as well as in the phenotype. OCT4 S236D also induced tumor cell differentiation and growth retardation in mouse xenograft experiments. Inhibition of protein phosphatase 1 by chemicals or short hairpin RNAs increased phosphorylation at OCT4 (S236) and resulted in the differentiation of GCTs. These results reveal the role of OCT4 (S236) phosphorylation in GCTs and suggest a new strategy for suppressing OCT4 in cancer.
Collapse
Affiliation(s)
- Dong Keon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Suji Han
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Hansol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Seon-Hyeong Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Seungjin Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Han-Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Goyang 10308, Korea;
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080; Korea;
| | - Soo-Youl Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2239
| |
Collapse
|
16
|
Kim KP, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, MacCarthy CM, Shin B, Röpke A, Arauzo-Bravo MJ, Stehling M, Han DW, Gao Y, Kim J, Gao S, Schöler HR. Reprogramming competence of OCT factors is determined by transactivation domains. SCIENCE ADVANCES 2020; 6:6/36/eaaz7364. [PMID: 32917606 PMCID: PMC7467702 DOI: 10.1126/sciadv.aaz7364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells. OCT6-based reprogramming does not alter the mesenchymal-epithelial transition but is attenuated through the delayed activation of the pluripotency network in comparison with OCT4-based reprogramming. Creating a series of reciprocal domain-swapped chimeras and mutants across all OCT factors, we clearly delineate essential elements of OCT4/OCT6-dependent reprogramming and, conversely, identify the features that prevent induction of pluripotency by other OCT factors. With this strategy, we further discover various chimeric proteins that are superior to OCT4 in reprogramming. Our findings clarify how reprogramming competences of OCT factors are conferred through their structural components.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Caitlin M MacCarthy
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Borami Shin
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, Münster 48149, Germany
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen 529020, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.
- University of Münster, Medical Faculty, Domagkstrasse 3, Münster 48149, Germany
| |
Collapse
|
17
|
Cellular Functions of OCT-3/4 Regulated by Ubiquitination in Proliferating Cells. Cancers (Basel) 2020; 12:cancers12030663. [PMID: 32178477 PMCID: PMC7139964 DOI: 10.3390/cancers12030663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency, and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm. It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and differentiation of proliferating cells.
Collapse
|
18
|
Srivastava Y, Tan DS, Malik V, Weng M, Javed A, Cojocaru V, Wu G, Veerapandian V, Cheung LWT, Jauch R. Cancer-associated missense mutations enhance the pluripotency reprogramming activity of OCT4 and SOX17. FEBS J 2019; 287:122-144. [PMID: 31569299 DOI: 10.1111/febs.15076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/26/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022]
Abstract
The functional consequences of cancer-associated missense mutations are unclear for the majority of proteins. We have previously demonstrated that the activity of SOX and Pit-Oct-Unc (POU) family factors during pluripotency reprogramming can be switched and enhanced with rationally placed point mutations. Here, we interrogated cancer mutation databases and identified recurrently mutated positions at critical structural interfaces of the DNA-binding domains of paralogous SOX and POU family transcription factors. Using the conversion of mouse embryonic fibroblasts to induced pluripotent stem cells as functional readout, we identified several gain-of-function mutations that enhance pluripotency reprogramming by SOX2 and OCT4. Wild-type SOX17 cannot support reprogramming but the recurrent missense mutation SOX17-V118M is capable of inducing pluripotency. Furthermore, SOX17-V118M promotes oncogenic transformation, enhances thermostability and elevates cellular protein levels of SOX17. We conclude that the mutational profile of SOX and POU family factors in cancer can guide the design of high-performance reprogramming factors. Furthermore, we propose cellular reprogramming as a suitable assay to study the functional impact of cancer-associated mutations.
Collapse
Affiliation(s)
- Yogesh Srivastava
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingxi Weng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Asif Javed
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Veeramohan Veerapandian
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Medical University, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165432. [PMID: 30904611 DOI: 10.1016/j.bbadis.2019.03.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem-like cells (CSCs) contribute to the tumorigenicity, progression, and chemoresistance of cancers. It is not known whether CSCs arise from normal stem cells or if they arise from differentiated cancer cells by acquiring self-renewal features. These CSCs share stem cell markers that normal stem cells express. There is a rising interest in octamer-binding transcription factor 4 (OCT4), one of the stem cell factors that are essential in embryogenesis and pluripotency. OCT4 is also overexpressed in CSCs of various cancers. Although the majority of the studies in CSCs reported a positive association between the expression of OCT4 and chemoresistance and an inverse correlation between OCT4 and clinical prognosis, there are studies rebuking these findings, possibly due to the sparsity of stem cells within tumors and the heterogeneity of tumors. In addition, post-translational modification of OCT4 affects its activity and warrants further investigation for its association with chemoresistance and prognosis.
Collapse
|
20
|
Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TI, Taatjes DJ, Young RA. Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell 2018; 175:1842-1855.e16. [PMID: 30449618 PMCID: PMC6295254 DOI: 10.1016/j.cell.2018.10.042] [Citation(s) in RCA: 1180] [Impact Index Per Article: 168.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023]
Abstract
Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well characterized, but little is known about the mechanisms by which ADs effect gene activation. Here, we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin R Sabari
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Eliot L Coffey
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia V Zamudio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Krishna Shrinivas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John C Manteiga
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Lena K Afeyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang E Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jenna K Rimel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Charli B Fant
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Jurian Schuijers
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Cell fate reprogramming through engineering of native transcription factors. Curr Opin Genet Dev 2018; 52:109-116. [PMID: 29980007 DOI: 10.1016/j.gde.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/19/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022]
Abstract
Cellular reprogramming using cocktails of transcription factors (TFs) affirms the epigenetic and developmental plasticity of mammalian cells. It demonstrates the ability of TFs to 'read' genetic information and to rewire regulatory networks in different cellular contexts. Silenced chromatin is not an impediment to the genome engagement by ectopically expressed TFs. Reprogramming TFs have been identified in diverse structural families that lack shared domains or sequence motifs. Interestingly, the reprogramming activity of non-redundant paralogous TFs can be switched with a few point mutations. These findings revealed that the sequence-function relationships influencing reprogramming are tied to subtle features directing genome wide binding. Therefore, endogenous reprogramming TFs are amenable to directed biomolecular engineering that opens up new avenues to optimize cell fate conversions.
Collapse
|
22
|
Choi J, Baek KH. Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system. Cell Mol Life Sci 2018; 75:1947-1957. [PMID: 29423528 PMCID: PMC11105287 DOI: 10.1007/s00018-018-2770-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
Stem cells undergo partitioning through mitosis and separate into specific cells of each of the three embryonic germ layers: endoderm, mesoderm, and ectoderm. Pluripotency, reprogramming, and self-renewal are essential elements of embryonic stem cells (ESCs), and it is becoming evident that regulation of protein degradation mediated by the ubiquitin-proteasome system (UPS) is one of the key cellular mechanisms in ESCs. Although the framework of that mechanism may seem simple, it involves complicated proteolytic machinery. The UPS controls cell development, survival, differentiation, lineage commitment, migration, and homing processes. This review is centered on the connection between stem cell factors NANOG, OCT-3/4, SOX2, KLF4, C-MYC, LIN28, FAK, and telomerase and the UPS. Herein, we summarize recent findings and discuss potential UPS mechanisms involved in pluripotency, reprogramming, differentiation, and self-renewal. Interactions between the UPS and stem cell transcription factors can apply to various human diseases which can be treated by generating more efficient iPSCs. Such complexes may permit the design of novel therapeutics and the establishment of biomarkers that may be used in diagnosis and prognosis development. Therefore, the UPS is an important target for stem cell therapeutic product research.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
23
|
Malik V, Zimmer D, Jauch R. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cell Mol Life Sci 2018; 75:1587-1612. [PMID: 29335749 PMCID: PMC11105716 DOI: 10.1007/s00018-018-2748-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Abstract
The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite 'two-in-one' DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.
Collapse
Affiliation(s)
- Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dennis Zimmer
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
24
|
Jerabek S, Ng CK, Wu G, Arauzo-Bravo MJ, Kim KP, Esch D, Malik V, Chen Y, Velychko S, MacCarthy CM, Yang X, Cojocaru V, Schöler HR, Jauch R. Changing POU dimerization preferences converts Oct6 into a pluripotency inducer. EMBO Rep 2016; 18:319-333. [PMID: 28007765 PMCID: PMC5286379 DOI: 10.15252/embr.201642958] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
The transcription factor Oct4 is a core component of molecular cocktails inducing pluripotent stem cells (iPSCs), while other members of the POU family cannot replace Oct4 with comparable efficiency. Rather, group III POU factors such as Oct6 induce neural lineages. Here, we sought to identify molecular features determining the differential DNA‐binding and reprogramming activity of Oct4 and Oct6. In enhancers of pluripotency genes, Oct4 cooperates with Sox2 on heterodimeric SoxOct elements. By re‐analyzing ChIP‐Seq data and performing dimerization assays, we found that Oct6 homodimerizes on palindromic OctOct more cooperatively and more stably than Oct4. Using structural and biochemical analyses, we identified a single amino acid directing binding to the respective DNA elements. A change in this amino acid decreases the ability of Oct4 to generate iPSCs, while the reverse mutation in Oct6 does not augment its reprogramming activity. Yet, with two additional amino acid exchanges, Oct6 acquires the ability to generate iPSCs and maintain pluripotency. Together, we demonstrate that cell type‐specific POU factor function is determined by select residues that affect DNA‐dependent dimerization.
Collapse
Affiliation(s)
- Stepan Jerabek
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Calista Kl Ng
- Institute of Medical Biology, Singapore City, Singapore
| | - Guangming Wu
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marcos J Arauzo-Bravo
- Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Kee-Pyo Kim
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniel Esch
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Vikas Malik
- Genome Regulation Laboratory, Drug Discovery Pipeline, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanpu Chen
- Genome Regulation Laboratory, Drug Discovery Pipeline, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Xiaoxiao Yang
- Genome Regulation Laboratory, Drug Discovery Pipeline, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Vlad Cojocaru
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Center for Multiscale Theory and Computation, University of Münster, Münster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany .,Medical Faculty, University of Münster, Münster, Germany
| | - Ralf Jauch
- Genome Regulation Laboratory, Drug Discovery Pipeline, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
25
|
Pan X, Cang X, Dan S, Li J, Cheng J, Kang B, Duan X, Shen B, Wang YJ. Site-specific Disruption of the Oct4/Sox2 Protein Interaction Reveals Coordinated Mesendodermal Differentiation and the Epithelial-Mesenchymal Transition. J Biol Chem 2016; 291:18353-69. [PMID: 27369080 DOI: 10.1074/jbc.m116.745414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Although the Oct4/Sox2 complex is crucial for maintaining the pluripotency of stem cells, the molecular basis underlying its regulation during lineage-specific differentiation remains unknown. Here, we revealed that the highly conserved Oct4/Lys-156 is important for maintaining the stability of the Oct4 protein and the intermolecular salt bridge between Oct4/Lys-151 and Sox2/Asp-107 that contributes to the Oct4/Sox2 interaction. Post-translational modifications at Lys-156 and K156N, a somatic mutation detected in bladder cancer patients, both impaired the Lys-151-Asp-107 salt bridge and the Oct4/Sox2 interaction. When produced as a recombinant protein or overexpressed in pluripotent stem cells, Oct4/K156N, with reduced binding to Sox2, significantly down-regulated the stemness genes that are cooperatively controlled by the Oct4/Sox2 complex and specifically up-regulated the mesendodermal genes and the SNAIL family genes that promote the epithelial-mesenchymal transition. Thus, we conclude that Oct4/Lys-156-modulated Oct4/Sox2 interaction coordinately controls the epithelial-mesenchymal transition and mesendoderm specification induced by specific differentiation signals.
Collapse
Affiliation(s)
- Xiao Pan
- From the College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- From the College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Songsong Dan
- the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Jingchao Li
- From the College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jie Cheng
- From the College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China, the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Bo Kang
- the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China
| | - Xiaotao Duan
- the State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China, and
| | - Binghui Shen
- the Department of Radiation Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010
| | - Ying-Jie Wang
- the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310003, China,
| |
Collapse
|