1
|
Gavale R, Singh S, Ekbote A, Jha HC, Misra R. Stimuli-responsive benzothiazole-phenothiazine derivatives: mechanochromism, AIE, acid sensing, and anticancer efficacy in benzo[ a]pyrene-induced cancer models. J Mater Chem B 2025; 13:2834-2854. [PMID: 39876832 DOI: 10.1039/d4tb02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Mechanofluorochromic (MFC) materials are emerging as a versatile candidate for optoelectronic and biomedical applications. In the present work, we designed and synthesized four MFC materials, namely BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2, using Suzuki cross-coupling reaction. These materials possess benzothiazole (BT) as an acceptor moiety and different donors, including phenothiazine (PTZ) and triphenylamine (TPA), with variations in their spacer units. The photophysical properties of these derivatives have been explored, revealing solvatochromism, aggregation-induced emission (AIE), acid sensing, and mechanochromic behaviour. Single crystal X-ray analysis of BT-PTZO-2 provides crucial structural insights, revealing the twisted conformation of the TPA donor and the bent structure of the PTZ oxide spacer. The biological studies of these BT derivatives reveal the therapeutic potential against benzo[a]pyrene (B[a]P)-induced carcinogenesis in A549 (lung) and HEK293 (kidney) cells. Treatment with BT-PTZ-2 reflects anti-cancerous properties, with significant up-regulation of p53 and down-regulation of β-catenin and pNF-κB. Additionally, downregulation of mitochondrial fission protein (DRP1) and oxidative stress through DCFDA staining in lung cells are observed with BT-PTZ-2 treatment. These findings strongly suggest that BT-PTZ-2 can inhibit lung cancer cell proliferation and survival, suggesting it to be a promising anti-cancer agent. This comprehensive study of these MFC materials provides insights into their design, synthesis, and properties, in addition to their potential applications in various optoelectronic and biomedical fields.
Collapse
Affiliation(s)
- Ramakant Gavale
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Siddharth Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Indore 453552, India.
| | - Anupama Ekbote
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Indore 453552, India.
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
2
|
Dumat B, Chieffo C. Harnessing Cyanine-like Properties to Develop Bright Fluorogenic Probes Based on Viscosity-Sensitive Molecular Rotors. Chemistry 2025; 31:e202404077. [PMID: 39617722 PMCID: PMC11814501 DOI: 10.1002/chem.202404077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Dipolar fluorescent molecular rotors (FMRs) are environmentally-sensitive fluorophores that can be used in bioimaging applications to sense local viscosity and polarity. Their sensitivity to viscosity can also be used for the fluorogenic labeling of biomolecules such as DNA or proteins. In particular, we have previously used FMRs to develop a series of tunable fluorogens targeting the self-labeling protein tag Halotag for wash-free protein imaging in live cells. Despite these very useful properties, FMRs typically display moderate molar absorption coefficients that limits their overall fluorescence brightness. Herein, we synthesized a series of three model hemicyanines based on a styrylindolenium scaffold and performed a detailed study of their photophysical properties in solvents with various polarity and viscosity. We show that with a strong julolidine electron-donating group it is possible to combine intense cyanine-like absorption with the high sensitivity to viscosity of FMRs. We use this property to develop a lysosomal pH sensor and two bright cell-impermeant fluorogens targeting HaloTag for imaging membrane proteins. We believe that this bright fluorogenic scaffold based on a simple chemical structure can be used in the future to build up a variety of probes and sensors with efficient photophysical properties.
Collapse
Affiliation(s)
- Blaise Dumat
- Laboratoire des biomoléculesLBMDépartement de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRS75005ParisFrance
| | - Carolina Chieffo
- Laboratoire des biomoléculesLBMDépartement de chimie, École normale supérieurePSL University, Sorbonne UniversitéCNRS75005ParisFrance
| |
Collapse
|
3
|
Rigault D, Nizard P, Daniel J, Blanćhard-Desce M, Deprez E, Tauc P, Dhimane H, Dalko PI. Triphenylamine Sensitized 8-Dimethylaminoquinoline: An Efficient Two-Photon Caging Group for Intracellular Delivery. Chemistry 2024; 30:e202401289. [PMID: 38959014 DOI: 10.1002/chem.202401289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Triphenylamine-sensitized 8-dimethylaminoquinoline (TAQ) probes showed fair two-photon absorption and fragmentation cross sections in releasing kainate and GABA ligands. The water-soluble PEG and TEG-analogs allowed cell internalization and efficient light-gated liberation of the rhodamine reporter under UV and two-photon (NIR) irradiation conditions.
Collapse
Affiliation(s)
- Delphine Rigault
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Philippe Nizard
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Jonathan Daniel
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Mireille Blanćhard-Desce
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Eric Deprez
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Patrick Tauc
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Hamid Dhimane
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Peter I Dalko
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| |
Collapse
|
4
|
Xu C, Law SK, Leung AWN. Comparison of the Differences between Two-Photon Excitation, Upconversion, and Conventional Photodynamic Therapy on Cancers in In Vitro and In Vivo Studies. Pharmaceuticals (Basel) 2024; 17:663. [PMID: 38931331 PMCID: PMC11206628 DOI: 10.3390/ph17060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for several diseases. It combines light energy with a photosensitizer (PS) to destroy the targeted cells or tissues. A PS itself is a non-toxic substance, but it becomes toxic to the target cells through the activation of light at a specific wavelength. There are some limitations of PDT, although it has been used in clinical studies for a long time. Two-photon excitation (TPE) and upconversion (UC) for PDT have been recently developed. A TPE nanoparticle-based PS combines the advantages of TPE and nanotechnology that has emerged as an attractive therapeutic agent for near-infrared red (NIR) light-excited PDT, whilst UC is also used for the NIR light-triggered drug release, activation of 'caged' imaging, or therapeutic molecules during PDT process for the diagnosis, imaging, and treatment of cancers. METHODS Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any language constraints. TPE and UCNP were evaluated to determine if they had different effects from PDT on cancers. All eligible studies were analyzed and summarized in this review. RESULTS TPE-PDT and UCNP-PDT have a high cell or tissue penetration ability through the excitation of NIR light to activate PS molecules. This is much better than the conventional PDT induced by visible or ultraviolet (UV) light. These studies showed a greater PDT efficacy, which was determined by enhanced generation of reactive oxygen species (ROS) and reduced cell viability, as well as inhibited abnormal cell growth for the treatment of cancers. CONCLUSIONS Conventional PDT involves Type I and Type II reactions for the generation of ROS in the treatment of cancer cells, but there are some limitations. Recently, TPE-PDT and UCNP-PDT have been developed to overcome these problems with the help of nanotechnology in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong;
| | | |
Collapse
|
5
|
Agrawal H, Giri PS, Meena P, Rath SN, Mishra AK. A Neutral Flavin-Triphenylamine Probe for Mitochondrial Bioimaging under Different Microenvironments. ACS Med Chem Lett 2023; 14:1857-1862. [PMID: 38116415 PMCID: PMC10726442 DOI: 10.1021/acsmedchemlett.3c00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
A bioinspired design built around a neutral flavin-triphenylamine core has been investigated for selective mitochondrial bioimaging capabilities in different microenvironments. Significant advantages with respect to long-term tracking, faster internalization, penetrability within the spheroid structures, and strong emission signal under induced hypoxia conditions have been observed, which could offer an alternative to the existing mitotrackers for hypoxia-related biological events.
Collapse
Affiliation(s)
- Harsha
Gopal Agrawal
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Pravin Shankar Giri
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Poonam Meena
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| | - Subha Narayan Rath
- Department
of Biomedical Engineering, Indian Institute
of Technology, Sangareddy, Hyderabad502285, Telangana, India
| | - Ashutosh Kumar Mishra
- Department
of Chemistry, Indian Institute of Technology, Sangareddy, Hyderabad 502285, Telangana, India
| |
Collapse
|
6
|
Kose A, Erkan S, Tümer M. A series of phenanthroline-imine compounds: Computational, OLED properties and fluorimetric sensing of nitroaromatic compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122006. [PMID: 36283207 DOI: 10.1016/j.saa.2022.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, Schiff base compounds (1-5) were synthesized by the reaction of 5-amino-1,10-phenanthroline with various aldehydes. The molecular structures of the synthesized compounds were characterized by FT-IR, 1H/13C NMR and mass spectroscopic methods. Single crystals of 1 were obtained and their molecular structures in crystalline form were determined by single crystal X-ray diffraction study. The sensor properties of the synthesized compounds against nitroaromatic compounds [nitrobenzene (NB), 4-nitrophenol (NP), 2,4-dintrophenol (DNP) and 1,3,5-trinitrophenol (TNP)] were investigated by fluorescence spectroscopy. Compound 3 have highest sensitivity for the sensing of 1,3,5-trinitrophenol (TNP) (Ksv: 4.63 × 104 M-1) with LOD of 4.01 µM while compound 5 showed the highest sensitivity for 2,4-dinitrophenol (DNP) (Ksv: 5.71 × 104 M-1) with LOD of 4.75 µM. In addition, the structural parameters (bond angles/lengths), contour diagrams of HOMO/LUMO molecular orbitals, molecular electrostatic potential (MEP) maps, non-linear optical (NLO) and OLED properties were investigated by computational studies. According to the HOMO and LUMO energies, the NLO property of the molecule (5) is higher than both other molecules and the reference substance urea.
Collapse
Affiliation(s)
- Ayşegül Kose
- Department of Property Protection and Safety, Elbistan Vocational School, Istiklal University, Kahramanmaras, Turkey.
| | - Sultan Erkan
- Chemistry Department, Cumhuriyet University, Sivas 58140, Turkey
| | - Mehmet Tümer
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
7
|
Nagarajan S, Poyer F, Fourmois L, Naud‐Martin D, Medjoubi K, Somogyi A, Schanne G, Henry L, Delsuc N, Policar C, Bertrand HC, Mahuteau‐Betzer F. Cellular Detection of a Mitochondria Targeted Brominated Vinyl Triphenylamine Optical Probe (TP−Br) by X‐Ray Fluorescence Microscopy. Chemistry 2022; 28:e202104424. [DOI: 10.1002/chem.202104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sounderya Nagarajan
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Florent Poyer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Laura Fourmois
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Delphine Naud‐Martin
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| | - Kadda Medjoubi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Andrea Somogyi
- Synchrotron SOLEIL, BP 48 Saint-Aubin 91192 Gif sur Yvette France
| | - Gabrielle Schanne
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Helene C. Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie Ecole normale supérieure PSL University Sorbonne université, CNRS 75005 Paris France
| | - Florence Mahuteau‐Betzer
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Institut Curie Université PSL 91400 Orsay France
- CNRS UMR9187, Inserm U1196, Chemistry and Modeling for the Biology of Cancer Université Paris-Saclay 91400 Orsay France
| |
Collapse
|
8
|
Arshad MN, Khalid M, Ghulam Shabbir, Asad M, Asiri AM, Alotaibi MM, Braga AAC, Khan A. Donor moieties with D-π-a framing modulated electronic and nonlinear optical properties for non-fullerene-based chromophores. RSC Adv 2022; 12:4209-4223. [PMID: 35425453 PMCID: PMC8981117 DOI: 10.1039/d1ra07183a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, a series of non-fullerene-based substantial chromophores (FHD1-FHD6) with a D-π-A framework was designed from a synthesized non-fullerene compound (FH) via structural tailoring with various donor moieties. The FH and its designed derivatives were optimized with frequency analysis at the M06/6-311G (d,p) level to confirm their true minima on potential energy surfaces. These optimized geometries were utilized to perform further analyses, such as absorption, natural bonding orbital (NBO), frontier molecular orbital (FMO), and nonlinear orbital (NLO) analyses at the aforesaid level. Quantum chemical study revealed that all the designed chromophores exhibited a lower band gap than that of the parent molecule with the exception of FHD3. Furthermore, density of states (DOS) analysis supported the findings from the FMO study, and this agreement revealed that the efficient charge was transferred from the HOMO to the LUMO. The NBO investigations disclosed that all the compounds comprised donor moieties with positive charges and acceptors having negative charges. Interestingly, π-conjugated linkers were also found with positive charges, showing an effective donating property. These NBO findings explicated that FHD1-FHD6 exhibited an efficient push-pull mechanism. The λ max values of the designed chromophores were observed to be greater than the reference compound. The average polarizability 〈α〉, first hyperpolarizability (β tot), and second hyperpolarizability 〈γ〉 values of FHD2 were found to be 2.170 × 10-22, 3.150 × 10-27, and 4.275 × 10-32 esu, respectively, while all the other derivatives had been reported in the relevant range. Efficient NLO data revealed that FH-based derivatives may contribute significantly toward NLO technology.
Collapse
Affiliation(s)
- Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ghulam Shabbir
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Maha M Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
| |
Collapse
|
9
|
Mougeot R, Oger S, Auvray M, Gallavardin T, Leleu S, Mahuteau‐Betzer F, Franck X. Convergent and Practical Synthesis of Fluorescent Triphenylamine Derivatives and Their Localization in Living Cells. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Romain Mougeot
- Normandie Univ CNRS INSA Rouen UNIROUEN COBRA (UMR 6014 and FR 3038) 76000 Rouen France
| | - Samuel Oger
- Normandie Univ CNRS INSA Rouen UNIROUEN COBRA (UMR 6014 and FR 3038) 76000 Rouen France
| | - Marie Auvray
- Institut Curie Université PSL CNRS UMR9187 Inserm U1196 Chemistry and Modeling for the Biology of Cancer 91400 Orsay France
- Université Paris-Saclay CNRS UMR9187 Inserm U1196 Chemistry and Modeling for the Biology of Cancer 91400 Orsay France
| | - Thibault Gallavardin
- Normandie Univ CNRS INSA Rouen UNIROUEN COBRA (UMR 6014 and FR 3038) 76000 Rouen France
| | - Stéphane Leleu
- Normandie Univ CNRS INSA Rouen UNIROUEN COBRA (UMR 6014 and FR 3038) 76000 Rouen France
| | - Florence Mahuteau‐Betzer
- Institut Curie Université PSL CNRS UMR9187 Inserm U1196 Chemistry and Modeling for the Biology of Cancer 91400 Orsay France
- Université Paris-Saclay CNRS UMR9187 Inserm U1196 Chemistry and Modeling for the Biology of Cancer 91400 Orsay France
| | - Xavier Franck
- Normandie Univ CNRS INSA Rouen UNIROUEN COBRA (UMR 6014 and FR 3038) 76000 Rouen France
| |
Collapse
|
10
|
Mariz IFA, Pinto SN, Santiago AM, Martinho JMG, Recio J, Vaquero JJ, Cuadro AM, Maçôas E. Two-photon activated precision molecular photosensitizer targeting mitochondria. Commun Chem 2021; 4:142. [PMID: 36697839 PMCID: PMC9814857 DOI: 10.1038/s42004-021-00581-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 01/28/2023] Open
Abstract
Mitochondria metabolism is an emergent target for the development of novel anticancer agents. It is amply recognized that strategies that allow for modulation of mitochondrial function in specific cell populations need to be developed for the therapeutic potential of mitochondria-targeting agents to become a reality in the clinic. In this work, we report dipolar and quadrupolar quinolizinium and benzimidazolium cations that show mitochondria targeting ability and localized light-induced mitochondria damage in live animal cells. Some of the dyes induce a very efficient disruption of mitochondrial potential and subsequent cell death under two-photon excitation in the Near-infrared (NIR) opening up possible applications of azonia/azolium aromatic heterocycles as precision photosensitizers. The dipolar compounds could be excited in the NIR due to a high two-photon brightness while exhibiting emission in the red part of the visible spectra (600-700 nm). Interaction with the mitochondria leads to an unexpected blue-shift of the emission of the far-red emitting compounds, which we assign to emission from the locally excited state. Interaction and possibly aggregation at the mitochondria prevents access to the intramolecular charge transfer state responsible for far-red emission.
Collapse
Affiliation(s)
- Inês F A Mariz
- Centro de Química Estrutural (CQE) and Institute of Molecular Sciences (IMS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Sandra N Pinto
- Institute for Bioengineering and Biosciences (IBB) Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory - Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Ana M Santiago
- Centro de Química Estrutural (CQE) and Institute of Molecular Sciences (IMS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - José M G Martinho
- Centro de Química Estrutural (CQE) and Institute of Molecular Sciences (IMS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Javier Recio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, (IRYCIS), 28871-Alcalá de Henares, Madrid, Spain
| | - Juan J Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, (IRYCIS), 28871-Alcalá de Henares, Madrid, Spain
| | - Ana M Cuadro
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, (IRYCIS), 28871-Alcalá de Henares, Madrid, Spain.
| | - Ermelinda Maçôas
- Centro de Química Estrutural (CQE) and Institute of Molecular Sciences (IMS), Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal.
| |
Collapse
|
11
|
Lai Y, Zhang T, Song W, Li Z, Lin W. Evaluation of Cell Viability with a Single Fluorescent Probe Based on Two Kinds of Fluorescence Signal Modes. Anal Chem 2021; 93:12487-12493. [PMID: 34455772 DOI: 10.1021/acs.analchem.1c02911] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Accurate evaluation of cell viability is important for dosage tests of anticancer drugs, pathology, and numerous biological experiments. However, due to the serious insufficieny of fluorescent probes, which can distinguish various cell states, the study of cell viability is immensely limited. To resolve this issue, we design and synthesize a new probe ACD-E to monitor cell viability with two kinds of fluorescence signal modes, the first single fluorescent probe that can distinguish three different cell states and furnish accurate information in biological experiments. ACD-E can discriminate live and dead cells in a dual-color mode by evaluating cell mitochondrial esterase activity and can also discriminate live and early necrosis cells by determining mitochondrial viscosity in a "turn-on" mode in the near-infrared region. Significantly, the novel ACD-E can also distinguish cell viability in vivo. This work establishes a robust strategy for monitoring multiple cell states using a single fluorescent probe.
Collapse
Affiliation(s)
- Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
12
|
Fourmois L, Poyer F, Sourdon A, Naud-Martin D, Nagarajan S, Chennoufi R, Deprez E, Teulade-Fichou MP, Mahuteau-Betzer F. Modulation of Cellular Fate of Vinyl Triarylamines through Structural Fine Tuning: To Stay or Not To Stay in the Mitochondria? Chembiochem 2021; 22:2457-2467. [PMID: 34008276 DOI: 10.1002/cbic.202100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/18/2021] [Indexed: 11/08/2022]
Abstract
Mitochondria are involved in many cellular pathways and dysfunctional mitochondria are linked to various diseases. Hence efforts have been made to design mitochondria-targeted fluorophores for monitoring the mitochondrial status. However, the factors that govern the mitochondria-targeted potential of dyes are not well-understood. In this context, we synthesized analogues of the TP-2Bzim probe belonging to the vinyltriphenylamine (TPA) class and already described for its capacity to bind nuclear DNA in fixed cells and mitochondria in live cells. These analogues (TP-1Bzim, TPn -2Bzim, TP1+ -2Bzim, TN-2Bzim) differ in the cationic charge, the number of vinylbenzimidazolium branches and the nature of the triaryl core. Using microscopy, we demonstrated that the cationic derivatives accumulate in mitochondria but do not reach mtDNA. Under depolarisation of the mitochondrial membrane, TP-2Bzim and TP1+ -2Bzim translocate to the nucleus in direct correlation with their strong DNA affinity. This reversible phenomenon emphasizes that these probes can be used to monitor ΔΨm variations.
Collapse
Affiliation(s)
- Laura Fourmois
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Florent Poyer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Aude Sourdon
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Sounderya Nagarajan
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Rahima Chennoufi
- ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190, Gif-sur-Yvette, France
| | - Eric Deprez
- ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190, Gif-sur-Yvette, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, Chemistry and Modelling for the Biology of Cancer, 91400, Orsay, France
| |
Collapse
|
13
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
14
|
Hu Q, He C, Lu Z, Xu L, Fu Z. Mitochondria and Endoplastic Reticulum Targeting Strategy for Enhanced Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:3015-3026. [PMID: 35014389 DOI: 10.1021/acsabm.1c00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To ensure improved efficacy and minimized toxicity of therapeutic molecules, it is generally accepted that specifically delivering them to the subcellular site of their action will be attractive. Phototherapy has received considerable attention because of its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. As important functional organelles in cells, mitochondria and endoplasmic reticulum (ER) participate in fundamental cellular processes, which make them much more sensitive to reactive oxygen species (ROS) and hyperthermia. Thus, mitochondria- or ER-targeted phototherapy will be rational strategies for synergetic cancer therapy. In this review, we focus on the latest advances in molecules and nanomaterials currently used for mitochondria- and ER-targeted phototherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
15
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
16
|
Yadhukrishnan VO, Muralisankar M, Dheepika R, Konakanchi R, Bhuvanesh NSP, Nagarajan S. Structurally different domains embedded half-sandwich arene Ru(II) complex: DNA/HSA binding and cytotoxic studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1782895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- V. O. Yadhukrishnan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Mathiyan Muralisankar
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramachandran Dheepika
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramaiah Konakanchi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| |
Collapse
|
17
|
Chennoufi R, Trinh ND, Simon F, Bordeau G, Naud-Martin D, Moussaron A, Cinquin B, Bougherara H, Rambaud B, Tauc P, Frochot C, Teulade-Fichou MP, Mahuteau-Betzer F, Deprez E. Interplay between Cellular Uptake, Intracellular Localization and the Cell Death Mechanism in Triphenylamine-Mediated Photoinduced Cell Death. Sci Rep 2020; 10:6881. [PMID: 32327691 PMCID: PMC7181850 DOI: 10.1038/s41598-020-63991-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Triphenylamines (TPAs) were previously shown to trigger cell death under prolonged one- or two-photon illumination. Their initial subcellular localization, before prolonged illumination, is exclusively cytoplasmic and they translocate to the nucleus upon photoactivation. However, depending on their structure, they display significant differences in terms of precise initial localization and subsequent photoinduced cell death mechanism. Here, we investigated the structural features of TPAs that influence cell death by studying a series of molecules differing by the number and chemical nature of vinyl branches. All compounds triggered cell death upon one-photon excitation, however to different extents, the nature of the electron acceptor group being determinant for the overall cell death efficiency. Photobleaching susceptibility was also an important parameter for discriminating efficient/inefficient compounds in two-photon experiments. Furthermore, the number of branches, but not their chemical nature, was crucial for determining the cellular uptake mechanism of TPAs and their intracellular fate. The uptake of all TPAs is an active endocytic process but two- and three-branch compounds are taken up via distinct endocytosis pathways, clathrin-dependent or -independent (predominantly caveolae-dependent), respectively. Two-branch TPAs preferentially target mitochondria and photoinduce both apoptosis and a proper necrotic process, whereas three-branch TPAs preferentially target late endosomes and photoinduce apoptosis only.
Collapse
Affiliation(s)
- Rahima Chennoufi
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Ngoc-Duong Trinh
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Françoise Simon
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Guillaume Bordeau
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.,Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Toulouse-III - Paul Sabatier, F-31400, Toulouse, France
| | - Delphine Naud-Martin
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France
| | - Albert Moussaron
- LRGP, UMR7274 CNRS-Université de Lorraine, F-54000, Nancy, France
| | - Bertrand Cinquin
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Houcine Bougherara
- Institut Cochin, INSERM U1016-CNRS UMR8104-Université Paris Descartes, Sorbonne Paris Cité, F-75014, Paris, France.,Institut de Recherches Servier SA, F-78290, Croissy-sur-Seine, France
| | - Béatrice Rambaud
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Patrick Tauc
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Céline Frochot
- LRGP, UMR7274 CNRS-Université de Lorraine, F-54000, Nancy, France
| | - Marie-Paule Teulade-Fichou
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.
| | - Florence Mahuteau-Betzer
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.
| | - Eric Deprez
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Reza AM, Tavakoli J, Zhou Y, Qin J, Tang Y. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Satrialdi, Munechika R, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun (Camb) 2020; 56:1145-1148. [DOI: 10.1039/c9cc08563g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter.
Collapse
Affiliation(s)
- Satrialdi
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Reina Munechika
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | - Yuta Takano
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | | | - Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| |
Collapse
|
20
|
Abstract
Monitoring cell viability is a crucial task essential for the fundamental studies in apoptosis, necrosis, and drug discovery. Cell apoptosis and necrosis are significant to maintain the cell population, and their abnormality can lead to severe diseases including cancer. During cell death, significant changes occur in the intracellular contents and physical properties, such as decrease of esterase activity, depolarization of the mitochondrial membrane potential (ΔΨm), increase of caspase content, dissipation of membrane asymmetry, and loss of membrane integrity. To detect cell viability, the fluorescent probes have been developed by taking advantage of these biological parameters and using various fluorescence mechanisms. These fluorescent probes can serve as powerful tools to facilitate the research in biology and pathology. In this Account, the representative examples of the fluorescent probes for cell viability during the past decades have been summarized and classified into five types based on the biological changes. The basic principle, design strategy, fluorescence mechanisms, and molecular construction of these fluorescent probes have been discussed. Furthermore, the intrinsic characteristics and merits of these probes have been illustrated. Particularly, this Account describes our recent works for the design and synthesis of the fluorescent probes to detect cell viability in the dual-color and reversible modes. The dual-color and reversible fluorescent probes are highlighted owing to their unique benefits in accurate and dynamic detection of cell viability. In general, the dual-color fluorescent probes were constructed based on the loss of esterase activity during cell death. Excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) process were exploited for the probe design. The construction of such dual-color probes were realized by the acetate of the phenyl group on fluorophores. Esterases in healthy cells hydrolyze the acetate and bring a spectral shift to the probes. Moreover, reversible fluorescent probes for cell viability were designed based on the depolarization of ΔΨm, with relocalization properties dependent on ΔΨm. The probes target mitochondria in healthy cells with high ΔΨm, while they are relocalized into the nucleus in unhealthy cells with depolarized ΔΨm. As ΔΨm is reversibly changed according to the cell viability, these probes reversibly detect cell viability. The reversible and simultaneously dual-color fluorescent probes were developed based on the relocalization mode and aggregation-induced emission shift. The probes target mitochondria to form aggregates with deep-red emission, while they migrate into the nucleus to present in monomers with green fluorescence. In this manner, the probes enable dual-color and reversible detection of cell viability. Fluorescent probes for cell viability based on sensing the membrane integrity, caspase activity, and membrane symmetry are also presented. High-polarity and large-size fluorescent probes impermeable to the intact lipid bilayer selectively target apoptotic cells with a destructive plasma membrane. Fluorescent probes sensing caspases in a turn-on manner exclusively light up apoptotic cells with caspase expression. Membrane-impermeable probes with high affinity to phosphatidylserine (PS) specifically stain the plasma membrane of dead cells, since PS flip-flops to the outer leaflet of the membrane during cell death. In summary, this Account illustrates the basic principles, design strategies, characteristics, and advantages of the fluorescent probes for cell viability, and it highlights the dual-color and reversible probes, which can promote the development of fluorescent probes, apoptosis studies, drug discovery, and other relative areas.
Collapse
Affiliation(s)
- Minggang Tian
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanyan Ma
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
21
|
Muralisankar M, Dheepika R, Haribabu J, Balachandran C, Aoki S, Bhuvanesh NSP, Nagarajan S. Design, Synthesis, DNA/HSA Binding, and Cytotoxic Activity of Half-Sandwich Ru(II)-Arene Complexes Containing Triarylamine-Thiosemicarbazone Hybrids. ACS OMEGA 2019; 4:11712-11723. [PMID: 31460277 PMCID: PMC6682138 DOI: 10.1021/acsomega.9b01022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 05/03/2023]
Abstract
Organoruthenium complexes are potent alternatives for platinum-based complexes because of their superior anticancer activity. In this investigation, a series of new Ru(II)-arene complexes with triarylamine-thiosemicarbazone hybrid ligands with higher anticancer activity than cisplatin are reported. The molecular structure of the ligands and complexes was confirmed spectroscopically and supported by single-crystal X-ray crystallography. These complexes adopted a three-leg piano stool geometry. All the Ru(II)-arene complexes were systematically investigated for their in vitro cytotoxicity against human cervical (HeLa S3), lung (A549) cancer, and human normal lung (IMR-90) cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Interestingly, a pyrrolidine-attached Ru(II)-benzene complex exhibited superior activity against cancer cells with low IC50 values, and colony formation study showed complete inhibition at 5 and 10 μM concentration. Furthermore, morphological changes assessed by acridine orange and propidium iodide staining revealed that the cell death occurred by apoptosis. In addition, the interaction between synthesized Ru(II)-arene complexes and DNA/protein was explored by absorption and emission spectroscopy methods. These synthesized new organoruthenium complexes can be used for developing new metal-based anticancer drugs.
Collapse
Affiliation(s)
| | | | - Jebiti Haribabu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
- Faculty of Pharmaceutical Sciences and Research Institute
of Science and
Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences and Research Institute
of Science and
Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences and Research Institute
of Science and
Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | | | - Samuthira Nagarajan
- Department
of Chemistry, Central University of Tamil
Nadu, Thiruvarur 610005, India
- E-mail:
| |
Collapse
|
22
|
Das AK, Ihmels H, Kölsch S. Diphenylaminostyryl-substituted quinolizinium derivatives as fluorescent light-up probes for duplex and quadruplex DNA. Photochem Photobiol Sci 2019; 18:1373-1381. [PMID: 30916703 DOI: 10.1039/c9pp00096h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(E)-2-[1'-((Diphenylamino)styryl)quinolizinium (3a) and 2,2'-{(phenylimino)-bis[(E)-1'',1'''-styryl]}-bis[quinolizinium] (3b) were synthesized, and their interactions with duplex DNA and quadruplex DNA were investigated with a particular focus on their ability to operate as DNA-sensitive fluorescent probes. Due to the significantly different size and steric demand of these quinolizinium derivatives they exhibit different binding modes. Thus, 3a intercalates into duplex DNA and binds through π stacking to quadruplex DNA, whereas 3b favours groove binding to both DNA forms. The emission intensity of these compounds is very low in aqueous solution, but it increases drastically upon association with duplex DNA by a factor of 11 (3a) and >100 (3b) and with quadruplex DNA by a factor of >100 (3a) and 10 (3b), with emission bands between 600 and 750 nm.
Collapse
Affiliation(s)
- Avijit Kumar Das
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and Engineering, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | | | | |
Collapse
|
23
|
Ihmels H, Karbasiyoun M, Löhl K, Stremmel C. Structural flexibility versus rigidity of the aromatic unit of DNA ligands: binding of aza- and azoniastilbene derivatives to duplex and quadruplex DNA. Org Biomol Chem 2019; 17:6404-6413. [PMID: 31225566 DOI: 10.1039/c9ob00809h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The known azastilbene (E)-1,2-di(quinolin-3-yl)ethane (2a) and the novel azoniastilbene derivatives (E)-2-(2-(naphthalen-2-yl)vinyl)quinolizinium (2b) and (E)-3,3'-(ethane-1,2-diyl)bis(1-methylquinolinin-1-ium) (2c) were synthesized. Their interactions with duplex and quadruplex DNA (G4-DNA) were studied by photometric, fluorimetric, polarimetric and flow-LD analysis, and by thermal DNA denaturation studies, as well as by 1H-NMR spectroscopy. The main goal of this study was a comparison of these conformationally flexible compounds with the known G4-DNA-binding diazoniadibenzo[b,k]chrysenes, that have a comparable π-system extent, but a rigid structure. We have observed that the aza- and azoniastilbene derivatives 2a-c, i.e. compounds with almost the same spatial dimensions and steric demand, bind to DNA with an affinity and selectivity that depends significantly on the number of positive charges. Whereas the charge neutral derivative 2a binds unspecifically to the DNA backbone of duplex DNA, the ionic compounds 2b and 2c are typical DNA intercalators. Notably, the bis-quinolinium derivative 2c binds to G4-DNA with moderate affinity (Kb = 4.8 × 105 M-1) and also stabilizes the G4-DNA towards thermal denaturation (ΔTm = 11 °C at ligand-DNA ratio = 5.0). Strikingly, the corresponding rigid counterpart, 4a,12a-diazonia-8,16-dimethyldibenzo[b,k]chrysene, stabilizes the G4-DNA to an even greater extent under identical conditions (ΔTm = 27 °C). These results indicate that the increased flexibility of a G4-DNA ligand does not necessarily lead to stronger interactions with the G4-DNA as compared with rigid ligands that have essentially the same size and π system extent.
Collapse
Affiliation(s)
- H Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - M Karbasiyoun
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - K Löhl
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - C Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
24
|
Chennoufi R, Cabrié A, Nguyen NH, Bogliotti N, Simon F, Cinquin B, Tauc P, Boucher JL, Slama-Schwok A, Xie J, Deprez E. Light-induced formation of NO in endothelial cells by photoactivatable NADPH analogues targeting nitric-oxide synthase. Biochim Biophys Acta Gen Subj 2019; 1863:1127-1137. [PMID: 30986510 DOI: 10.1016/j.bbagen.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety). Here, we addressed the ability of NTs to photoinduce eNOS-dependent NO production in endothelial cells. METHODS The cellular fate of NTs and their photoinduced effects were studied using multiphoton fluorescence imaging, cell viability assays and a BODIPY-derived NO probe for NO measurements. The eNOS dependence of photoinduced NO production was addressed using two NOS inhibitors (NS1 and L-NAME) targeting the reductase and the oxygenase domains, respectively. RESULTS We found that, two compounds, those bearing a single carboxymethyl group on the 3'-position of the ribose, colocalize with the Golgi apparatus (the main intracellular location of eNOS) and display high intracellular two-photon brightness. Furthermore, a eNOS-dependent photooxidation was observed for these two compounds only, which is accompanied by a substantial intracellular NO production accounting for specific photocytotoxic effects. CONCLUSIONS We show for the first time that NT photoactivation efficiently triggers electron flow at the eNOS level and increases the basal production of NO by endothelial cells. GENERAL SIGNIFICANCE Efficient photoactivatable NADPH analogues targeting NOS could have important implications for generating apoptosis in tumor cells or modulating NO-dependent physiological processes.
Collapse
Affiliation(s)
- Rahima Chennoufi
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Aimeric Cabrié
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nhi Ha Nguyen
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Nicolas Bogliotti
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Françoise Simon
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Bertrand Cinquin
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Patrick Tauc
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Jean-Luc Boucher
- Laboratoire de "Chimie et Biochimie Pharmacologiques et Toxicologiques", CNRS UMR8601, Université Paris Descartes, 75270 Paris, France
| | - Anny Slama-Schwok
- Laboratoire de "Stabilité Génétique et Oncogénèse", CNRS UMR8200, Gustave Roussy, Université Paris-Saclay, 94607 Villejuif, France
| | - Juan Xie
- PPSM, CNRS UMR8531, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France
| | - Eric Deprez
- LBPA, CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-94235 Cachan, France.
| |
Collapse
|
25
|
Du X, Zhang P, Fu H, Ahsan HM, Gao J, Chen Q. Smart mitochondrial-targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity. Int J Pharm 2019; 555:346-355. [DOI: 10.1016/j.ijpharm.2018.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
26
|
Lin F, Bao YW, Wu FG. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 2018; 23:E3016. [PMID: 30453692 PMCID: PMC6278291 DOI: 10.3390/molecules23113016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
Mitochondria-targeted cancer phototherapy (PT), which works by delivering photoresponsive agents specifically to mitochondria, is a powerful strategy to improve the phototherapeutic efficiency of anticancer treatments. Mitochondria play an essential role in cellular apoptosis, and are relevant to the chemoresistance of cancer cells. Furthermore, mitochondria are a major player in many cellular processes and are highly sensitive to hyperthermia and reactive oxygen species. Therefore, mitochondria serve as excellent locations for organelle-targeted phototherapy. In this review, we focus on the recent advances of mitochondria-targeting materials for mitochondria-specific PT. The combination of mitochondria-targeted PT with other anticancer strategies is also summarized. In addition, we discuss both the challenges currently faced by mitochondria-based cancer PT and the promises it holds.
Collapse
Affiliation(s)
- Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | |
Collapse
|
27
|
Asamitsu S, Bando T, Sugiyama H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Chemistry 2018; 25:417-430. [PMID: 30051593 DOI: 10.1002/chem.201802691] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/14/2018] [Indexed: 12/17/2022]
Abstract
A G-quadruplex is a nucleic acid secondary structure that is adopted by guanine-rich sequences, and is considered to be relevant in various pharmacological and biological contexts. G-Quadruplexes have also attracted great attention in the field of DNA nanotechnology because of their extremely high thermal stability and the availability of many defined structures. To date, a large repertory of DNA/RNA G-quadruplex-interactive ligands has been developed by numerous laboratories. Several relevant reviews have also been published that have helped researchers to grasp the full scope of G-quadruplex research from its outset to the present. This review focuses on the G-quadruplex ligands that allow targeting of specific G-quadruplexes. Moreover, unique ligands, successful methodologies, and future perspectives in relation to specific G-quadruplex recognition are also addressed.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
28
|
Wang X, Yin X, Lai XY, Liu YT. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:229-235. [PMID: 29870907 DOI: 10.1016/j.saa.2018.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, the therapeutic activity of a series of water-soluble triphenylamine (TP) photosensitizers (Ps) was explored by using theoretical simulations. The key photophysical parameters which determined the efficiency of Ps, such as absorption electronic spectra, singlet-triplet energy gaps and spin-orbit matrix elements were calculated at density functional theory and its time-dependent extension (DFT, TD-DFT). The calculated results showed that these TP photosensitizers possessed large two-photon absorption cross-section in the near-infrared region (NIR), efficient intersystem crossing (ISC) transition from the first singlet excited state to the low lying triplet excited states and sufficient energy for generating reactive oxygen species (ROS). These suitable features made these TP series holding great promise for applications in two-photon photodynamic therapy (PDT). These TP photosensitizers studied here in principle extended the application range of two-photon PDT in water solution.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China; International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Xue Yin
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ying-Tao Liu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
29
|
Pont I, González-García J, Inclán M, Reynolds M, Delgado-Pinar E, Albelda MT, Vilar R, García-España E. Aza-Macrocyclic Triphenylamine Ligands for G-Quadruplex Recognition. Chemistry 2018; 24:10850-10858. [DOI: 10.1002/chem.201802077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Isabel Pont
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| | - Matthew Reynolds
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Estefanía Delgado-Pinar
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| | - M. Teresa Albelda
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- GIBI2030, Grupo de Investigación Biomédica en Imagen, IIS La Fe; Valencia Spain
| | - Ramon Vilar
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| |
Collapse
|
30
|
Bolze F, Jenni S, Sour A, Heitz V. Molecular photosensitisers for two-photon photodynamic therapy. Chem Commun (Camb) 2018; 53:12857-12877. [PMID: 29115314 DOI: 10.1039/c7cc06133a] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.
Collapse
Affiliation(s)
- F Bolze
- CAMB, UMR 7199, UdS/CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | | | | | | |
Collapse
|
31
|
Zhou T, Cai W, Yang H, Zhang H, Hao M, Yuan L, Liu J, Zhang L, Yang Y, Liu X, Deng J, Zhao P, Yang G, Duan Y. Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy. J Control Release 2018. [PMID: 29522835 DOI: 10.1016/j.jconrel.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In vivo assessment of apoptotic response to cancer therapy is believed to be very important for optimizing management of treatment. However, few noninvasive strategies are currently available to monitor the therapeutic response in vivo. Ultrasonography has been used to detect apoptotic cell death in vivo, but a high-frequency transducer is needed. Fortunately, the capability of ultrasound contrast agents (UCAs) to exit the leaky vasculature of tumors enables ultrasound-targeted imaging of molecular events in response to cancer therapy. In this study, we prepared a novel nano-sized UCA, namely, Annexin V-conjugated nanobubbles (AV-NBs, 635.5 ± 25.4 nm). In vitro studies revealed that AV-NBs were relatively stable and highly echogenic. Moreover, these AV-NBs could easily extravasate into the tumor vasculature and recognize the apoptotic cells with high specificity and affinity in tumors sensitive to chemotherapy. Ultrasound imaging results demonstrated that AV-NBs had higher echogenicity and significantly greater enhancement compared with the untargeted control NBs (P < 0.01) inside the tumors after chemotherapy. Taken together, this study provides a promising method to accurately evaluate therapeutic effects at the molecular level to support cancer management.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Ultrasound Diagnosis, General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Wenbin Cai
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Minghua Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jie Liu
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Li Zhang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yilin Yang
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xi Liu
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jianling Deng
- Department of Ultrasound Diagnosis, General Hospital of the PLA Rocket Force, Beijing 100088, China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
32
|
Nguyen NH, Bogliotti N, Chennoufi R, Henry E, Tauc P, Salas E, Roman LJ, Slama-Schwok A, Deprez E, Xie J. Convergent synthesis and properties of photoactivable NADPH mimics targeting nitric oxide synthases. Org Biomol Chem 2018; 14:9519-9532. [PMID: 27722393 DOI: 10.1039/c6ob01533f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new series of photoactivable NADPH mimics bearing one or two O-carboxymethyl groups on the adenosine moiety have been readily synthesized using click chemistry. These compounds display interesting one- or two-photon absorption properties. Their fluorescence emission wavelength and quantum yields (Φ) are dependent on the solvent polarity, with a red-shift in a more polar environment (λmax,em = 460-467 nm, Φ > 0.53 in DMSO, and λmax,em = 475-491 nm, Φ < 0.17 in Tris). These compounds show good binding affinity towards the constitutive nNOS and eNOS, confirming for the first time that the carboxymethyl group can be used as a surrogate of phosphate. Two-photon fluorescence imaging of nanotriggers in living cells showed that the presence of one carboxymethyl group (especially on the 3' position of the ribose) strongly favors the addressing of nanotriggers to eNOS in the cell context.
Collapse
Affiliation(s)
- N-H Nguyen
- PPSM, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France.
| | - N Bogliotti
- PPSM, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France.
| | - R Chennoufi
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France
| | - E Henry
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France
| | - P Tauc
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France
| | - E Salas
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, USA
| | - L J Roman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, USA
| | - A Slama-Schwok
- Université Paris Saclay, INRA UR 892, Jouy en Josas, 78350, France
| | - E Deprez
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France
| | - J Xie
- PPSM, ENS Cachan, CNRS, Université Paris-Saclay, Cachan, 94235 France.
| |
Collapse
|
33
|
Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy. Bioorg Med Chem 2018; 26:107-118. [DOI: 10.1016/j.bmc.2017.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/11/2022]
|
34
|
Liang P, Wang Y, Wang P, Zou J, Xu H, Zhang Y, Si W, Dong X. Triphenylamine flanked furan-diketopyrrolopyrrole for multi-imaging guided photothermal/photodynamic cancer therapy. NANOSCALE 2017; 9:18890-18896. [PMID: 29177329 DOI: 10.1039/c7nr07204j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) is highly desired to improve the cancer phototherapeutic effect. However, most reported multicomponent therapeutic agents need complex preparation processes and must be excited by using multiple light sources. Herein, triphenylamine flanked furan-diketopyrrolopyrrole (FDPP-TPA) with a donor-acceptor-donor structure has been synthesized and used as a sole-component agent for fluorescence, photoacoustic and photothermal imaging guided photodynamic and photothermal synergistic therapy. FDPP-TPA nanoparticles (NPs) obtained by re-precipitation exhibit a high molar extinction coefficient (ε = 2.13 (±0.2) × 104 M-1 cm-1), excellent photothermal conversion efficiency (η = 47%) and favorable singlet oxygen quantum yield (ΦΔ(X) = 40%). In vitro, the half-maximal inhibitory concentration (IC50) is 13 μg mL-1 determined by cytotoxicity assay. And the apoptosis rate is 67.3% according to flow cytometry analysis. In vivo, the tumor can be completely ablated without recurrence, which suggests that FDPP-TPA NPs can generate considerable poisonous singlet oxygen and hyperthermia for tumor treatment.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li X, Jiang M, Lam JWY, Tang BZ, Qu JY. Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy Using a Probe of the Aggregation-Induced Emission Characteristic. J Am Chem Soc 2017; 139:17022-17030. [PMID: 29111701 DOI: 10.1021/jacs.7b06273] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In vivo quantitative measurement of biodistribution plays a critical role in the drug/probe development and diagnosis/treatment process monitoring. In this work, we report a probe, named AIE-SRS-Mito, for imaging mitochondria in live cells via fluorescence (FL) and stimulated Raman scattering (SRS) imaging. The probe features an aggregation-induced emission (AIE) characteristic and possesses an enhanced alkyne Raman peak at 2223 cm-1. The dual-mode imaging of AIE-SRS-Mito for selective mitochondrion-targeting was examined on a homemade FL-SRS microscope system. The detection limit of the probe in the SRS imaging was estimated to be 8.5 μM. Due to the linear concentration dependence of SRS and inertness of the alkyne Raman signal to environmental changes, the intracellular distribution of the probe was studied, showing a local concentration of >2.0 mM in the mitochondria matrix, which was >100-fold higher than the incubation concentration. To the best of our knowledge, this is the first time that the local concentration of AIE molecules inside cells has been measured noninvasively and directly. Also, the nonquenching effect of such AIE molecules in cell imaging has been verified by the positive correlation of FL and SRS signals. Our work will encourage the utilization of SRS microscopy for quantitative characterization of FL probes or other nonfluorescent compounds in living biological systems and the development of FL-SRS dual-mode probes for specific biotargets.
Collapse
Affiliation(s)
- Xuesong Li
- Department of Electronic and Computer Engineering, ‡Center of Systems Biology and Human Health, School of Science, and Institute for Advanced Study, and §Department of Chemistry, Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Division of Biomedical Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong China
| | - Meijuan Jiang
- Department of Electronic and Computer Engineering, ‡Center of Systems Biology and Human Health, School of Science, and Institute for Advanced Study, and §Department of Chemistry, Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Division of Biomedical Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Electronic and Computer Engineering, ‡Center of Systems Biology and Human Health, School of Science, and Institute for Advanced Study, and §Department of Chemistry, Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Division of Biomedical Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong China
| | - Ben Zhong Tang
- Department of Electronic and Computer Engineering, ‡Center of Systems Biology and Human Health, School of Science, and Institute for Advanced Study, and §Department of Chemistry, Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Division of Biomedical Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, ‡Center of Systems Biology and Human Health, School of Science, and Institute for Advanced Study, and §Department of Chemistry, Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Division of Biomedical Engineering, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
36
|
Jiang M, Kwok RTK, Li X, Gui C, Lam JWY, Qu J, Tang BZ. A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy. J Mater Chem B 2017; 6:2557-2565. [PMID: 32254474 DOI: 10.1039/c7tb02609a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-photon excited photodynamic therapy (TP-PDT) is not only able to offer deeper penetration depth but also much more precise 3D treatment than traditional one-photon excited PDT. However, the achievement of TP-PDT requires photosensitizers with large two-photon absorption cross sections, efficient generation of reactive oxygen species, and bright two-photon fluorescence. In this work, we present a simple AIE luminogen (AIEgen), IQ-TPA, with mitochondrial targeting and susceptible two-photon excitation for image-guided photodynamic therapy in cancer cells. This feasibility of utilizing small molecular multifunctional AIEgens for TP-PDT was demonstrated together with the merits of tiny size, good cell permeability, low dark cytotoxicity and easy synthesis, showing great potential for the development of future theranostic systems.
Collapse
Affiliation(s)
- Meijuan Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
37
|
Li F, Zhao B, Chen Y, Zhang Y, Wang T, Xue S. Synthesis, characterization, and nonlinear optical (NLO) properties of truxene-cored diphenylamine derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:20-26. [PMID: 28531846 DOI: 10.1016/j.saa.2017.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Three star-shaped compounds based on a truxene core (FS11, FS12 and FS13) were prepared. The truxene core is incorporating with asymmetric diphenylamines, including one phenyl of diphenylamine substituted by methoxy group and the other phenyl substituted by tolyl, fluorophenyl and phenylethynyl for FS11, FS12 and FS13, respectively. Their one-photon, two-photon absorption, geometric structures, electrochemical behavior and thermal properties were investigated. The absorption maxima of charge transfer band for FS11, FS12 and FS13 are 375nm, 373nm and 383nm, and the corresponding molar extinction coefficients of FS11, FS12 and FS13 is 79,950M-1cm-1, 67,220M-1cm-1 and 108,780M-1cm-1. The "pull-push" structure promotes charge transfer between asymmetric diphenylamine branches and the truxene core. Their two-photon absorbtion property is measured by two-photon induced fluorescence. The maximum two-photon cross-sections values of FS11, FS12 and FS13 are excited at 750nm, which are 260 GM, 204GM and 367 GM, respectively.
Collapse
Affiliation(s)
- Fusheng Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Baodong Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Yufei Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Song Xue
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
38
|
Ning P, Wang W, Chen M, Feng Y, Meng X. Recent advances in mitochondria- and lysosomes-targeted small-molecule two-photon fluorescent probes. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.09.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Huang CW, Ji WY, Kuo SW. Water-Soluble Fluorescent Nanoparticles from Supramolecular Amphiphiles Featuring Heterocomplementary Multiple Hydrogen Bonding. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Cheng-Wei Huang
- Department of Materials and Optoelectronic
Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wen-Yu Ji
- Department of Materials and Optoelectronic
Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic
Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
40
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1057] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
41
|
Jiang M, Gu X, Lam JWY, Zhang Y, Kwok RTK, Wong KS, Tang BZ. Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chem Sci 2017; 8:5440-5446. [PMID: 28970923 PMCID: PMC5609514 DOI: 10.1039/c7sc01400g] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets are dynamic organelles involved in various physiological processes and their detection is thus of high importance to biomedical research. Recent reports show that AIE probes for lipid droplet imaging have the superior advantages of high brightness, large Stokes shift and excellent photostability compared to commercial dyes but suffer from the problem of having a short excitation wavelength. In this work, an AIE probe, namely TPA-BI, was rationally designed and easily prepared from triphenylamine and imidazolone building blocks for the two-photon imaging of lipid droplets. TPA-BI exhibited TICT+AIE features with a large Stokes shift of up to 202 nm and a large two-photon absorption cross-section of up to 213 GM. TPA-BI was more suitable for two-photon imaging of the lipid droplets with the merits of a higher 3D resolution, lesser photobleaching, a reduced autofluorescence and deeper penetration in tissue slices than a commercial probe based on BODIPY 493/503, providing a promising imaging tool for lipid droplet tracking and analysis in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Meijuan Jiang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Xinggui Gu
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Jacky W Y Lam
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Yilin Zhang
- Department of Physics , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Ryan T K Kwok
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
| | - Kam Sing Wong
- Department of Physics , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction , HKUST Jockey Club Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , State Key Laboratory of Molecular Neuroscience , Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong .
- Guangdong Provincial Key Laboratory of Brain Science , Disease and Drug Development , HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan , Shenzhen 518057 , China
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
42
|
Chennoufi R, Mahuteau-Betzer F, Tauc P, Teulade-Fichou MP, Deprez E. Triphenylamines Induce Cell Death Upon 2-Photon Excitation. Mol Imaging 2017. [PMID: 28627326 PMCID: PMC5480627 DOI: 10.1177/1536012117714164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapeutic method for several diseases, in
particular for cancer. This approach uses a photosensitizer, oxygen, and an external light
source to produce reactive oxygen species (ROS) at lethal doses to induce cell death. One
drawback of current PDT is the use of visible light which has poor penetration in tissues.
Such a limitation could be overcome by the use of novel organic compounds compatible with
photoactivation under near-infrared light excitation. Triphenylamines (TPAs) are highly
fluorescent compounds that are efficient to induce cell death upon visible light
excitation (458 nm), but outside the biological spectral window. Interestingly, we
recently showed that TPAs target cytoplasmic organelles of living cells, mainly
mitochondria, and induce a high ROS production upon 2-photon excitation (in the 760-860 nm
range), leading to a fast apoptosis process. However, we observed significant differences
among the tested TPA compounds in terms of cell distribution and time courses of cell
death–related events (apoptosis vs necrosis). In summary, TPAs represent serious
candidates as photosensitizers that are compatible with 2-photon excitation to
simultaneously trigger and imaging cell death although the relationship between their
subcellular localization and the cell death mechanism involved is still a matter of
debate.
Collapse
Affiliation(s)
- Rahima Chennoufi
- 1 LBPA, CNRS UMR8113, IDA FR3242, ENS Cachan, Université Paris-Saclay, Cachan, France
| | - Florence Mahuteau-Betzer
- 2 Chemistry, Modeling and Imaging for Biology, UMR9187-U1196, Institut Curie, Centre universitaire, Orsay, France
| | - Patrick Tauc
- 1 LBPA, CNRS UMR8113, IDA FR3242, ENS Cachan, Université Paris-Saclay, Cachan, France
| | - Marie-Paule Teulade-Fichou
- 2 Chemistry, Modeling and Imaging for Biology, UMR9187-U1196, Institut Curie, Centre universitaire, Orsay, France
| | - Eric Deprez
- 1 LBPA, CNRS UMR8113, IDA FR3242, ENS Cachan, Université Paris-Saclay, Cachan, France
| |
Collapse
|