1
|
Crowell HL, Nagesan RS, Davis Rabosky AR, Kolmann MA. Differential performance of aqueous- and ethylic-Lugol's iodine stain to visualize anatomy in μCT-scanned vertebrates. J Anat 2025; 246:678-684. [PMID: 39323056 PMCID: PMC11996703 DOI: 10.1111/joa.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Museum specimens are an increasingly important tool for studying global biodiversity. With the advent of diffusible iodine-based contrast-enhanced computed tomography (diceCT), researchers can now visualize an organism's internal soft tissue anatomy without the need for physical dissection or other highly destructive sampling methods. However, there are many considerations when deciding which method of staining to use for diceCT to produce the best gray-scale contrast for facilitating downstream anatomical analyses. The general lack of direct comparisons among staining methodologies can make it difficult for researchers to determine which approaches are most appropriate for their study. Here, we compare the performance of ethylic-Lugol's iodine solution with aqueous-Lugol's staining solution across several vertebrate orders to assess differential imaging outcomes. We found that ethylic-Lugol's is better for visualizing muscle attachment to bone but provides overall lower contrast between soft tissue types. Comparatively, aqueous-based Lugol's provides high-contrast imaging among soft tissue types, although bone is more difficult to discern. We conclude that the choice of staining methodology largely depends on the type of anatomical data the researcher wishes to collect, and we provide a decision-based framework for assessing which staining methodology (ethylic or aqueous) is most appropriate for desired imaging results.
Collapse
Affiliation(s)
- Hayley L. Crowell
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ramon S. Nagesan
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Alison R. Davis Rabosky
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew A. Kolmann
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of BiologyUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
2
|
Yamhure-Ramírez D, Wainwright PC, Ramírez SR. Sexual dimorphism and morphological integration in the orchid bee brain. Sci Rep 2025; 15:8915. [PMID: 40087395 PMCID: PMC11909157 DOI: 10.1038/s41598-025-92712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Sex-specific behaviours are common across animals and often associated with sexual dimorphism in the nervous system. Using micro-CT scanning we standardized sex-specific brain atlases and tested for sexual dimorphism in the brain of the orchid bee Euglossa dilemma, a species with marked sex differences in social behaviour, mating strategies and foraging. Males show greater investment in all primary visual processing neuropils and are uniquely integrated with the central complex, evidenced by a strong positive covariation. This suggests that males invest more on locomotor control, flight stability and sky-compass navigation which may have evolved in response to sex-specific behaviours, like courtship display. In contrast, females have larger mushroom bodies that strongly and positively covary with the optic lobes and have increased volume of the Kenyon cell cluster, implying greater capabilities for visual associative memory. We speculate this is an adaptation to social and nest-building behaviours, and reliance on learning visual landmarks required for central place foraging. Our study provides the first record of sexually dimorphic morphological integration in the brain of an insect, an approach that revealed sex-specific brain traits that lack an apparent morphological signal. These subtle differences provide further evidence for the causal link between brain architecture and behaviour.
Collapse
Affiliation(s)
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Penna‐Gonçalves V, Willmott NJ, Kelly MBJ, Black JR, Lowe EC, Herberstein ME. Comparing microCT Staining and Scanning Methodology for Brain Studies in Various Sizes of Spiders. J Comp Neurol 2025; 533:e70017. [PMID: 39833126 PMCID: PMC11937621 DOI: 10.1002/cne.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in microCT are facilitating the investigation of microstructures in spiders and insects leading to an increased number of studies investigating their neuroanatomy. Although microCT is a powerful tool, its effectiveness depends on appropriate tissue preparation and scan settings, particularly for soft, non-sclerotized tissues, such as muscles, organs, and neural tissues. As the application of microCT in spiders is only in its infancy, published protocols are often difficult to implement due to substantial size variation of the specimens. The present study was initiated to determine how to account for this variation. Our work builds on previous methods using microCT to image spider brains, with the aim to consolidate current knowledge and reduce time spent troubleshooting appropriate methodology, thereby facilitating future studies of spiders and their central nervous systems (CNS). We tested three different preparation and imaging techniques based on published protocols with minor modifications using 216 spiders with prosoma lengths ranging from 1.25 mm (small spiders) to 13.33 mm (large spiders). We compared the efficacy of the various specimen preparations, staining methods, and scan settings by categorizing the quality of dorsal and lateral microCT scans. We observed that only the phosphotungstic acid (PTA) staining agent resulted in complete staining of the prosoma and the CNS, allowing the CNS structures to be distinguished for small, medium, and large spiders. The use of image averaging, increased number of projections, image exposure timing, and detector binning did not greatly affect image quality for small and larger spiders but reduced noise. These settings did help improve image quality for medium spiders in conjunction with higher resolutions and an aluminum filter. We discussed the suitability of methods concerning spider size, effort, chemical risk, and image quality.
Collapse
Affiliation(s)
| | | | - Michael B. J. Kelly
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Jay R. Black
- School of Geography, Earth and Atmospheric SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Elizabeth C. Lowe
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
| | - Marie E. Herberstein
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Department of BiologyUniversity of HamburgHamburgGermany
| |
Collapse
|
4
|
Macrì S, Di-Poï N. The SmARTR pipeline: A modular workflow for the cinematic rendering of 3D scientific imaging data. iScience 2024; 27:111475. [PMID: 39720527 PMCID: PMC11667014 DOI: 10.1016/j.isci.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Advancements in noninvasive surface and internal imaging techniques, along with computational methods, have revolutionized 3D visualization of organismal morphology-enhancing research, medical anatomical analysis, and facilitating the preservation and digital archiving of scientific specimens. We introduce the SmARTR pipeline (Small Animal Realistic Three-dimensional Rendering), a comprehensive workflow integrating wet lab procedures, 3D data acquisition, and processing to produce photorealistic scientific data through 3D cinematic rendering. This versatile pipeline supports multiscale visualizations-from tissue-level to whole-organism details across diverse living organisms-and is adaptable to various imaging sources. Its modular design and customizable rendering scenarios, enabled by the global illumination modeling and programming modules available in the free MeVisLab software and seamlessly integrated into detailed SmARTR networks, make it a powerful tool for 3D data analysis. Accessible to a broad audience, the SmARTR pipeline serves as a valuable resource across multiple life science research fields and for education, diagnosis, outreach, and artistic endeavors.
Collapse
Affiliation(s)
- Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Birckhead A, O'Hare Doig R, Carstens A, Jenkins D, Shamsi S. Exploring the anatomy of Linguatula serrata using micro-computed tomography. Int J Parasitol Parasites Wildl 2024; 25:101002. [PMID: 39498242 PMCID: PMC11532890 DOI: 10.1016/j.ijppaw.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Micro-computed tomography (micro-CT) is an emerging tool in parasitology that can assist in analysing morphology and host-parasitic interactions. It is a non-destructive, cross-sectional imaging technique that offers good resolution and the ability to create three-dimensional (3D) reconstructions. Here, we used micro-CT to study Linguatula serrata, which is a zoonotic pentastome parasite that infects dogs and ruminants throughout the world. The aims of this study were to describe the internal and external anatomy of adult L. serrata specimens using micro-CT, and to describe and compare specimens stained with 0.3% phosphotungstic acid (PTA) and 1% iodine (I2). Ten adult L. serrata specimens were subjected to micro-CT examination. The specimens were fixed in 70% ethanol and stained with 0.3% PTA or 1% I2. Both stains offered good tissue contrast. The main identifying external features of L. serrata (hooks, mouth, buccal cadre) were clearly visible. Virtual sections and 3D reconstructions provided a good overview of the coelomic cavity, with visualisation of the digestive tract, nervous system, and male and female reproductive organs. These micro-CT images and morphological descriptions may serve as an anatomical reference for L. serrata, in particular, the internal anatomy which has not been described in recent years.
Collapse
Affiliation(s)
- Alice Birckhead
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Ryan O'Hare Doig
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Ann Carstens
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Sciences, University of Pretoria, Onderstepoort, South Africa
| | - David Jenkins
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
- Gulbali Institute, Charles Sturt University, Australia
| |
Collapse
|
6
|
Chapuis L, Andres CS, Gerneke DA, Radford CA. Bioimaging marine crustacean brain: quantitative comparison of micro-CT preparations in an Alpheid snapping shrimp. Front Neurosci 2024; 18:1428825. [PMID: 39659887 PMCID: PMC11628493 DOI: 10.3389/fnins.2024.1428825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Non-invasive bioimaging techniques like X-ray micro-computed tomography (μCT), combined with contrast-enhancing techniques, allow the 3D visualization of the central nervous system in situ, without the destruction of the sample. However, quantitative comparisons of the most common fixation and contrast-enhancing protocols are rare, especially in marine invertebrates. Using the snapping shrimp (Alpheus richardsoni) as a model, we test three common fixation and staining agents combinations to prepare specimens prior to μCT scanning. The contrast ratios of the resulting images are then quantitatively compared. Our results show that a buffered iodine solution on a specimen fixed with 10% formalin offers the best nervous tissue discriminability. This optimal combination allows a semi-automated segmentation of the central nervous system organs from the μCT images. We thus provide general guidance for μCT applications, particularly suitable for marine crustaceans. Species-specific morphological adaptations can then be characterized and studied in the context of evolution and behavioral ecology.
Collapse
Affiliation(s)
- Lucille Chapuis
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Cara-Sophia Andres
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| | - Dane A. Gerneke
- Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Craig A. Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh, New Zealand
| |
Collapse
|
7
|
Ngu MS, Vanselow DJ, Sugarman AL, Saint-Fort RA, Zaino CR, Yakovlev MA, Cheng KC, Ang KC. Staining and resin embedding of whole Daphnia magna samples for micro-CT imaging enabling 3D visualization of cells, tissues, and organs. PLoS One 2024; 19:e0313389. [PMID: 39514482 PMCID: PMC11548835 DOI: 10.1371/journal.pone.0313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Micro-CT imaging is a powerful tool for generating high-resolution, isotropic, three-dimensional datasets of whole, centimeter-scale model organisms. At histological resolutions, micro-CT can be used for whole-animal qualitative and quantitative characterization of tissue and organismal structure in health and disease. The small size, global freshwater distribution, wide range of cell size and structures of micron scale, and common use of Daphnia magna in toxicological and environmental studies make it an ideal model for demonstrating the potential power of micro-CT-enabled whole-organism phenotyping. This protocol details the steps involved in D. magna samples preparation for micro-CT, including euthanasia, fixation, staining, and resin embedding. Micro-CT reconstructions of samples imaged using synchrotron micro-CT reveal histological (microanatomic) features of organ systems, tissues, and cells in the context of the entire organism at sub-micron resolution and in 3D. The enabled "3D histology" and 3D renderings can be used for morphometric analyses across cells, tissues, and organ systems.
Collapse
Affiliation(s)
- Mee S. Ngu
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Daniel J. Vanselow
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Andrew L. Sugarman
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachelle A. Saint-Fort
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Carolyn R. Zaino
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Maksim A. Yakovlev
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Keith C. Cheng
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Institute for Computational and Data Sciences, Pennsylvania State University, State College, Pennsylvania, United States of America
- Molecular and Precision Medicine Program, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Khai C. Ang
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
8
|
Hildebrand T, Ma Q, Loca D, Rubenis K, Locs J, Nogueira LP, Haugen HJ. Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques. Biofabrication 2024; 17:015016. [PMID: 39467387 DOI: 10.1088/1758-5090/ad8bf5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
9
|
Vommaro ML, Donato S, Caputo S, Agostino RG, Montali A, Tettamanti G, Giglio A. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis. Cell Tissue Res 2024; 396:19-40. [PMID: 38409390 PMCID: PMC10997553 DOI: 10.1007/s00441-024-03877-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Sandro Donato
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
- Istituto Nazionale di Fisica Nucleare, Division of Frascati, Rome, Italy
| | - Simone Caputo
- University of Calabria, Department of Environmental Engineering, Rende, Italy
| | - Raffaele G Agostino
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
| | - Aurora Montali
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
| | - Gianluca Tettamanti
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
10
|
Muinde J, Zhang TH, Liang ZL, Liu SP, Kioko E, Huang ZZ, Ge SQ. Functional Anatomy of Split Compound Eyes of the Whirligig Beetles Dineutus mellyi (Coleoptera: Gyrinidae). INSECTS 2024; 15:122. [PMID: 38392541 PMCID: PMC10889679 DOI: 10.3390/insects15020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.
Collapse
Affiliation(s)
- Jacob Muinde
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Hao Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-Long Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Esther Kioko
- National Museums of Kenya, Museum Hill, Nairobi P.O. Box 40658-00100, Kenya
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Wainwright JB, Schofield C, Conway M, Phillips D, Martin-Silverstone E, Brodrick EA, Cicconardi F, How MJ, Roberts NW, Montgomery SH. Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies. J Exp Biol 2023; 226:jeb246423. [PMID: 37921078 PMCID: PMC10714147 DOI: 10.1242/jeb.246423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.
Collapse
Affiliation(s)
- J. Benito Wainwright
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Corin Schofield
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Max Conway
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Daniel Phillips
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Elizabeth Martin-Silverstone
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Emelie A. Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Francesco Cicconardi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Martin J. How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Nicholas W. Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Lafon G, Paoli M, Paffhausen BH, Sanchez GDB, Lihoreau M, Avarguès-Weber A, Giurfa M. Efficient visual learning by bumble bees in virtual-reality conditions: Size does not matter. INSECT SCIENCE 2023; 30:1734-1748. [PMID: 36734172 DOI: 10.1111/1744-7917.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.
Collapse
Affiliation(s)
- Gregory Lafon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marco Paoli
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin H Paffhausen
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriela de Brito Sanchez
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Mathieu Lihoreau
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- French Academy of Sciences for University Professors, Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
13
|
Lösel PD, Monchanin C, Lebrun R, Jayme A, Relle JJ, Devaud JM, Heuveline V, Lihoreau M. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning. PLoS Comput Biol 2023; 19:e1011529. [PMID: 37782674 PMCID: PMC10569549 DOI: 10.1371/journal.pcbi.1011529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.
Collapse
Affiliation(s)
- Philipp D. Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, Australia
| | - Coline Monchanin
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Renaud Lebrun
- Institut des Sciences de l’Evolution de Montpellier, CC64, Université de Montpellier, Montpellier, France
- BioCampus, Montpellier Ressources Imagerie, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Alejandra Jayme
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jacob J. Relle
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Heidelberg University Computing Centre (URZ), Heidelberg, Germany
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| |
Collapse
|
14
|
Jie VW, Miettinen A, Baird E. Novel Methodology for Localizing and Studying Insect Dorsal Rim Area Morphology in 2D and 3D. INSECTS 2023; 14:670. [PMID: 37623380 PMCID: PMC10455470 DOI: 10.3390/insects14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Polarized light-based navigation in insects is facilitated by a polarization-sensitive part of the eye, the dorsal rim area (DRA). Existing methods to study the anatomy of the DRA are destructive and time-consuming. We presented a novel method for DRA localization, dissection, and measurement using 3D volumetric images from X-ray micro-computed tomography in combination with 2D photographs. Applying the method on size-polymorphic buff-tailed bumblebees, Bombus terrestris, we found that the DRA was easily obtainable from photographs of the dorsal eye region. Allometric analysis of the DRA in relation to body size in B. terrestris showed that it increased with the body size but not at the same rate. By localizing the DRA of individual bumblebees, we could also perform individual-level descriptions and inter-individual comparisons between the ommatidial structures (lens, crystalline cones, rhabdoms) of three different eye regions (DRA, non-DRA, proximate to DRA). One feature distinct to the bumblebee DRA was the smaller dimension of the crystalline cones in comparison to other regions of the eye. Using our novel methodology, we provide the first individual-level description of DRA ommatidial features and a comparison of how the DRA varies with body size in bumblebees.
Collapse
Affiliation(s)
- Vun Wen Jie
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| | - Arttu Miettinen
- Department of Physics, University of Jyvaskyla, 40014 Jyvaskyla, Finland;
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Emily Baird
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| |
Collapse
|
15
|
Geier B, Gil-Mansilla E, Liutkevičiūtė Z, Hellinger R, Vanden Broeck J, Oetjen J, Liebeke M, Gruber CW. Multiplexed neuropeptide mapping in ant brains integrating microtomography and three-dimensional mass spectrometry imaging. PNAS NEXUS 2023; 2:pgad144. [PMID: 37215633 PMCID: PMC10194420 DOI: 10.1093/pnasnexus/pgad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.
Collapse
Affiliation(s)
- Benedikt Geier
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Pediatrics and Infectious Diseases, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Esther Gil-Mansilla
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Zita Liutkevičiūtė
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Group, Zoological Institute, KU Leuven, Leuven 3000, Belgium
| | - Janina Oetjen
- Bruker Daltonics GmbH & Co. KG, Life Science Mass Spectrometry, Bremen 28359, Germany
- MALDI Imaging Lab, University of Bremen, Bremen 28359, Germany
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
- Department of Metabolomics, Institute of Human Nutrition and Food Science, Kiel University, 24118 Kiel, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
16
|
Currea JP, Sondhi Y, Kawahara AY, Theobald J. Measuring compound eye optics with microscope and microCT images. Commun Biol 2023; 6:246. [PMID: 36882636 PMCID: PMC9992655 DOI: 10.1038/s42003-023-04575-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.
Collapse
Affiliation(s)
- John Paul Currea
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
| | - Yash Sondhi
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
17
|
Vommaro ML, Donato S, Lo LK, Brandmayr P, Giglio A. Anatomical study of the red flour beetle using synchrotron radiation X-ray phase-contrast micro-tomography. J Anat 2023; 242:510-524. [PMID: 36417320 PMCID: PMC9919503 DOI: 10.1111/joa.13796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Synchrotron X-ray phase-contrast microtomography (SR-PhC micro-CT) is well established, fast and non-destructive imaging technique for data acquisition that is currently being used to obtain new insights into insect anatomy and function in physiological, morphological and phylogenetic studies. In this study, we described in situ the internal organs of the red flour beetle Tribolium castaneum Herbst 1797, a widespread pest of cereals and stored food causing serious damage to the human economy. Two-dimensional virtual sections and volumetric reconstructions of the nervous, alimentary and reproductive systems were carried out in both sexes. The results provided a comprehensive overview of the morphological characteristics of this species, such as the different maturation stages of ovarioles and the realistic location, size and shape of internal organs. Given the great interest in this model species in experimental biology and forensic entomology, complete knowledge of the general anatomy is required for future functional applications in pest control and experimental studies. In addition, this study confirms SR-PhC micro-CT as a powerful and innovative tool in entomology, particularly suitable for small species and chitinized structures that are difficult to analyse using conventional dissection and histological methods.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Sandro Donato
- Department of PhysicsUniversity of CalabriaCosenzaItaly
- Division of Frascati, Istituto Nazionale di Fisica NucleareRomeItaly
| | - Lai Ka Lo
- Animal Evolutionary Ecology GroupInstitute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | - Pietro Brandmayr
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Anita Giglio
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| |
Collapse
|
18
|
Hill L, Gérard M, Hildebrandt F, Baird E. Bumblebee cognitive abilities are robust to changes in colony size. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
Eusocial insect colonies act as a superorganism, which can improve their ability to buffer the negative impact of some anthropogenic stressors. However, this buffering effect can be affected by anthropogenic factors that reduce their colony size. A reduction in colony size is known to negatively affect several parameters like brood maintenance or thermoregulation, but the effects on behaviour and cognition have been largely overlooked. It remains unclear how a sudden change in group size, such as that which might be caused by anthropogenic stressors, affects individual behaviour within a colony. In this study, the bumblebee Bombus terrestris was used to study the effect of social group size on behaviour by comparing the associative learning capabilities of individuals from colonies that were unmanipulated, reduced to a normal size (a colony of 100 workers) or reduced to a critically low but functional size (a colony of 20 workers). The results demonstrated that workers from the different treatments performed equally well in associative learning tasks, which also included no significant differences in the learning capacity of workers that had fully developed after the colony size manipulation. Furthermore, we found that the size of workers had no impact on associative learning ability. The learning abilities of bumblebee workers were thus resilient to the colony reduction they encountered. Our study is a first step towards understanding how eusocial insect cognition can be impacted by drastic reductions in colony size.
Significance statement
While anthropogenic stressors can reduce the colony size of eusocial insects, the impact of this reduction is poorly studied, particularly among bumblebees. We hypothesised that colony size reduction would affect the cognitive capacity of worker bumblebees as a result of fewer social interactions or potential undernourishment. Using differential conditioning, we showed that drastic reductions in colony size have no effect on the associative learning capabilities of the bumblebee Bombus terrestris and that this was the same for individuals that were tested just after the colony reduction and individuals that fully developed under the colony size reduction. We also showed that body size did not affect learning capabilities. This resilience could be an efficient buffer against the ongoing impacts of global change.
Collapse
|
19
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
20
|
Balcaen T, Piens C, Mwema A, Chourrout M, Vandebroek L, Des Rieux A, Chauveau F, De Borggraeve WM, Hoffmann D, Kerckhofs G. Revealing the three-dimensional murine brain microstructure by contrast-enhanced computed tomography. Front Neurosci 2023; 17:1141615. [PMID: 37034159 PMCID: PMC10076597 DOI: 10.3389/fnins.2023.1141615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
To improve our understanding of the brain microstructure, high-resolution 3D imaging is used to complement classical 2D histological assessment techniques. X-ray computed tomography allows high-resolution 3D imaging, but requires methods for enhancing contrast of soft tissues. Applying contrast-enhancing staining agents (CESAs) ameliorates the X-ray attenuating properties of soft tissue constituents and is referred to as contrast-enhanced computed tomography (CECT). Despite the large number of chemical compounds that have successfully been applied as CESAs for imaging brain, they are often toxic for the researcher, destructive for the tissue and without proper characterization of affinity mechanisms. We evaluated two sets of chemically related CESAs (organic, iodinated: Hexabrix and CA4+ and inorganic polyoxometalates: 1:2 hafnium-substituted Wells-Dawson phosphotungstate and Preyssler anion), for CECT imaging of healthy murine hemispheres. We then selected the CESA (Hexabrix) that provided the highest contrast between gray and white matter and applied it to a cuprizone-induced demyelination model. Differences in the penetration rate, effect on tissue integrity and affinity for tissue constituents have been observed for the evaluated CESAs. Cuprizone-induced demyelination could be visualized and quantified after Hexabrix staining. Four new non-toxic and non-destructive CESAs to the field of brain CECT imaging were introduced. The added value of CECT was shown by successfully applying it to a cuprizone-induced demyelination model. This research will prove to be crucial for further development of CESAs for ex vivo brain CECT and 3D histopathology.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Catherine Piens
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ariane Mwema
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Brussels, Belgium
| | - Matthieu Chourrout
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Laurens Vandebroek
- Laboratory of Biomolecular Modelling and Design (LBMD), Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Anne Des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
| | - Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Wim M. De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Delia Hoffmann
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
- *Correspondence: Greet Kerckhofs,
| |
Collapse
|
21
|
Thomson BR, Hagenbucher S, Zboray R, Oesch MA, Aellen R, Richter H. Automated computed tomography based parasitoid detection in mason bee rearings. PLoS One 2022; 17:e0275891. [PMID: 36227883 PMCID: PMC9560145 DOI: 10.1371/journal.pone.0275891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, insect husbandry has seen an increased interest in order to supply in the production of raw materials, food, or as biological/environmental control. Unfortunately, large insect rearings are susceptible to pathogens, pests and parasitoids which can spread rapidly due to the confined nature of a rearing system. Thus, it is of interest to monitor the spread of such manifestations and the overall population size quickly and efficiently. Medical imaging techniques could be used for this purpose, as large volumes can be scanned non-invasively. Due to its 3D acquisition nature, computed tomography seems to be the most suitable for this task. This study presents an automated, computed tomography-based, counting method for bee rearings that performs comparable to identifying all Osmia cornuta cocoons manually. The proposed methodology achieves this in an average of 10 seconds per sample, compared to 90 minutes per sample for the manual count over a total of 12 samples collected around lake Zurich in 2020. Such an automated bee population evaluation tool is efficient and valuable in combating environmental influences on bee, and potentially other insect, rearings.
Collapse
Affiliation(s)
- Bart R. Thomson
- Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Zurich, Switzerland
- Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | | | - Robert Zboray
- Center for X-ray Analytics, EMPA, Dübendorf, Switzerland
| | | | | | - Henning Richter
- Diagnostic Imaging Research Unit, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Morimoto J, Barcellos R, Schoborg TA, Nogueira LP, Colaço MV. Assessing Anatomical Changes in Male Reproductive Organs in Response to Larval Crowding Using Micro-computed Tomography Imaging. NEOTROPICAL ENTOMOLOGY 2022; 51:526-535. [PMID: 35789989 PMCID: PMC9304064 DOI: 10.1007/s13744-022-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Ecological conditions shape (adaptive) responses at the molecular, anatomical, and behavioral levels. Understanding these responses is key to predict the outcomes of intra- and inter-specific competitions and the evolutionary trajectory of populations. Recent technological advances have enabled large-scale molecular (e.g., RNAseq) and behavioral (e.g., computer vision) studies, but the study of anatomical responses to ecological conditions has lagged behind. Here, we highlight the role of X-ray micro-computed tomography (micro-CT) in generating in vivo and ex vivo 3D imaging of anatomical structures, which can enable insights into adaptive anatomical responses to ecological environments. To demonstrate the application of this method, we manipulated the larval density of Drosophila melanogaster Meigen flies and applied micro-CT to investigate the anatomical responses of the male reproductive organs to varying intraspecific competition levels during development. Our data is suggestive of two classes of anatomical responses which broadly agree with sexual selection theory: increasing larval density led to testes and ejaculatory duct to be overall larger (in volume), while the volume of accessory glands and, to a lesser extent, ejaculatory duct decreased. These two distinct classes of anatomical responses might reflect shared developmental regulation of the structures of the male reproductive system. Overall, we show that micro-CT can be an important tool to advance the study of anatomical (adaptive) responses to ecological environments.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
- Institute of Mathematics, University of Aberdeen, Aberdeen, UK.
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal Do Paraná, Curitiba, Paraná, Brazil.
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Leibniz Universität Hannover, Hannover, Germany.
| | - Renan Barcellos
- COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Todd A Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Zhang ZJ, Zheng H. Bumblebees with the socially transmitted microbiome: A novel model organism for gut microbiota research. INSECT SCIENCE 2022; 29:958-976. [PMID: 35567381 DOI: 10.1111/1744-7917.13040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eusocial bumble and honey bees are important pollinators for global ecology and the agricultural economy. Although both the bumble and honey bees possess similar and host-restricted gut microbiota, they differ in aspects of morphology, autonomy, physiology, behavior, and life cycle. The social bee gut bacteria exhibit host specificity that is likely a result of long-term co-evolution. The unique life cycle of bumblebees is key for the acquisition and development of their gut microbiota, and affects the strain-level diversity of the core bacterial species. Studies on bumblebee gut bacteria show that they retain less functional capacity for carbohydrate metabolism compared with that of the honeybee. We discuss the potential roles of the bumblebee gut microbiota against pathogenic threats and the application of host-specific probiotics for bumblebees. Given the advantages of the bumblebee microbiome, including the simple structure and host specificity, and the ease of manipulating bumblebee colonies, we propose that bumblebees may provide a valuable system for understanding the general principles of host-microbe interactions, gut-brain axis, and vertical transmission.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
De Paula JC, Doello K, Mesas C, Kapravelou G, Cornet-Gómez A, Orantes FJ, Martínez R, Linares F, Prados JC, Porres JM, Osuna A, de Pablos LM. Exploring Honeybee Abdominal Anatomy through Micro-CT and Novel Multi-Staining Approaches. INSECTS 2022; 13:insects13060556. [PMID: 35735893 PMCID: PMC9224579 DOI: 10.3390/insects13060556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Apis mellifera or western honeybees are insects belonging to the Order Hymenoptera and the most important pollinators worldwide with great implications in natural biodiversity and agriculture due to their importance in pollination and honey production. The characterization of honeybee anatomy with precise tools will allow a better comprehension of the physiology of these insects under different biological conditions. Here, we employed Micro-computed tomography and novel staining methods to define the morphoanatomical characteristics of the worker honeybee abdomen. We defined the 3D and 2Ds structures of the midgut and hindgut and discovered a new cell type called ventricular telocyte, with possible roles in honeybee epithelium maintenance. Overall, we propose that this method will be useful for further investigation of the structure of the honeybee abdomen under a wide variety of environmental conditions. Abstract Continuous improvements in morphological and histochemical analyses of Apis mellifera could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on the abdomen of worker bees: (i) Micro-computed tomography (Micro-CT), which allows the identification of small-scale structures (micrometers) with adequate/optimal resolution and avoids sample damage and, (ii) histochemical multi-staining with Periodic Acid-Schiff-Alcian blue, Lactophenol-Saphranin O and pentachrome staining to precisely characterize the histological structures of the midgut and hindgut. Micro-CT allowed high-resolution imaging of anatomical structures of the honeybee abdomen with particular emphasis on the proventriculus and pyloric valves, as well as the connection of the sting apparatus with the terminal abdominal ganglia. Furthermore, the histochemical analyses have allowed for the first-time description of ventricular telocytes in honeybees, a cell type located underneath the midgut epithelium characterized by thin and long cytoplasmic projections called telopodes. Overall, the analysis of these images could help the detailed anatomical description of the cryptic structures of honeybees and also the characterization of changes due to abiotic or biotic stress conditions.
Collapse
Affiliation(s)
- Jessica Carreira De Paula
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Garyfalia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Alberto Cornet-Gómez
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco José Orantes
- Apinevada S.L Parque Metropolitano Industrial de Granada, Calle Rubiales 17, 18130 Granada, Spain;
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Fátima Linares
- Unidad de Microscopía de Fuerza Atómica, Centro de Instrumentación Científica, Universidad de Granada, 18003 Granada, Spain;
| | - Jose Carlos Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Jesus María Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Miguel de Pablos
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +0034-958244163
| |
Collapse
|
25
|
Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT). Life (Basel) 2022; 12:life12050741. [PMID: 35629408 PMCID: PMC9145526 DOI: 10.3390/life12050741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Compound eyes in insects are primary visual receptors of surrounding environments. They show considerable design variations, from the apposition vision of most day-active species to the superposition vision of nocturnal insects, that sacrifice resolution to increase sensitivity and are able to overcome the challenges of vision during lightless hours or in dim habitats. In this study, Synchrotron radiation X-ray phase-contrast microtomography was used to describe the eye structure of four coleopteran species, showing species-specific habitat demands and different feeding habits, namely the saproxylic Clinidium canaliculatum (Costa, 1839) (Rhysodidae), the omnivorous Tenebrio molitor (Linnaeus, 1758) and Tribolium castaneum (Herbest, 1797) (Tenebrionidae), and the generalist predator Pterostichus melas italicus (Dejean, 1828) (Carabidae). Virtual sections and 3D volume renderings of the heads were performed to evaluate the application and limitations of this technique for studying the internal dioptrical and sensorial parts of eyes, and to avoid time-consuming methods such as ultrastructural analyses and classic histology. Morphological parameters such as the area of the corneal facet lens and cornea, interocular distance, facet density and corneal lens thickness were measured, and differences among the studied species were discussed concerning the differences in lifestyle and habitat preferences making different demands on the visual system. Our imaging results provide, for the first time, morphological descriptions of the compound eyes in these species, supplementing their ecological and behavioural traits.
Collapse
|
26
|
Virtual sections and 3D reconstructions of female reproductive system in a carabid beetle using synchrotron X-ray phase-contrast microtomography. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Katzke J, Puchenkov P, Stark H, Economo EP. A Roadmap to Reconstructing Muscle Architecture from CT Data. INTEGRATIVE ORGANISMAL BIOLOGY (OXFORD, ENGLAND) 2022; 4:obac001. [PMID: 35211665 PMCID: PMC8857456 DOI: 10.1093/iob/obac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 02/02/2023]
Abstract
Skeletal muscle is responsible for voluntary force generation across animals, and muscle architecture largely determines the parameters of mechanical output. The ability to analyze muscle performance through muscle architecture is thus a key step towards better understanding the ecology and evolution of movements and morphologies. In pennate skeletal muscle, volume, fiber lengths, and attachment angles to force transmitting structures comprise the most relevant parameters of muscle architecture. Measuring these features through tomographic techniques offers an alternative to tedious and destructive dissections, particularly as the availability of tomographic data is rapidly increasing. However, there is a need for streamlined computational methods to access this information efficiently. Here, we establish and compare workflows using partially automated image analysis for fast and accurate estimation of animal muscle architecture. After isolating a target muscle through segmentation, we evaluate freely available and proprietary fiber tracing algorithms to reconstruct muscle fibers. We then present a script using the Blender Python API to estimate attachment angles, fiber lengths, muscle volume, and physiological cross-sectional area. We apply these methods to insect and vertebrate muscle and provide guided workflows. Results from fiber tracing are consistent compared to manual measurements but much less time-consuming. Lastly, we emphasize the capabilities of the open-source three-dimensional software Blender as both a tool for visualization and a scriptable analytic tool to process digitized anatomical data. Across organisms, it is feasible to extract, analyze, and visualize muscle architecture from tomography data by exploiting the spatial features of scans and the geometric properties of muscle fibers. As digital libraries of anatomies continue to grow, the workflows and approach presented here can be part of the open-source future of digital comparative analysis.
Collapse
Affiliation(s)
| | - Pavel Puchenkov
- Scientific Computing and Data Analysis Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495 Okinawa, Japan
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Fürstengraben 1,07743 Jena, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495 Okinawa, Japan
| |
Collapse
|
28
|
Perl CD, Johansen ZB, Jie VW, Moradinour Z, Guiraud M, Restrepo CE, Miettinen A, Baird E. Substantial variability in morphological scaling among bumblebee colonies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211436. [PMID: 35242346 PMCID: PMC8753140 DOI: 10.1098/rsos.211436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Differences in organ scaling among individuals may play an important role in determining behavioural variation. In social insects, there are well-documented intraspecific differences in colony behaviour, but the extent that organ scaling differs within and between colonies remains unclear. Using 12 different colonies of the bumblebee Bombus terrestris, we aim to address this knowledge gap by measuring the scaling relationships between three different organs (compound eyes, wings and antennae) and body size in workers. Though colonies were exposed to different rearing temperatures, this environmental variability did not explain the differences of the scaling relationships. Two colonies had differences in wing versus antenna slopes, three colonies showed differences in wing versus eye slopes and a single colony has differences between eye versus antenna slopes. There are also differences in antennae scaling slopes between three different colonies, and we present evidence for putative trade-offs in morphological investment. We discuss the utility of having variable scaling among colonies and the implication for understanding variability in colony fitness and behaviour.
Collapse
Affiliation(s)
- C. D. Perl
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Z. B. Johansen
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - V. W. Jie
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - Z. Moradinour
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - M. Guiraud
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - C. E. Restrepo
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - A. Miettinen
- Swiss Light Source, Paul Scherrer Institute, 5234 Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| | - E. Baird
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
- Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
29
|
Moradinour Z, Wiklund C, Jie VW, Restrepo CE, Gotthard K, Miettinen A, Perl CD, Baird E. Sensory Organ Investment Varies with Body Size and Sex in the Butterfly Pieris napi. INSECTS 2021; 12:insects12121064. [PMID: 34940152 PMCID: PMC8707955 DOI: 10.3390/insects12121064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
In solitary insect pollinators such as butterflies, sensory systems must be adapted for multiple tasks, including nectar foraging, mate-finding, and locating host-plants. As a result, the energetic investments between sensory organs can vary at the intraspecific level and even among sexes. To date, little is known about how these investments are distributed between sensory systems and how it varies among individuals of different sex. We performed a comprehensive allometric study on males and females of the butterfly Pieris napi where we measured the sizes and other parameters of sensory traits including eyes, antennae, proboscis, and wings. Our findings show that among all the sensory traits measured, only antenna and wing size have an allometric relationship with body size and that the energetic investment in different sensory systems varies between males and females. Moreover, males had absolutely larger antennae and eyes, indicating that they invest more energy in these organs than females of the same body size. Overall, the findings of this study reveal that the size of sensory traits in P. napi are not necessarily related to body size and raises questions about other factors that drive sensory trait investment in this species and in other insect pollinators in general.
Collapse
Affiliation(s)
- Zahra Moradinour
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
- Correspondence:
| | - Christer Wiklund
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
| | - Vun Wen Jie
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
| | - Carlos E. Restrepo
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
| | - Arttu Miettinen
- Swiss Light Source, Paul Scherrer Institute, 5234 Villigen, Switzerland;
- Department of Physics, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Craig D. Perl
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
- Department of Biology, Lund University, 223 62 Lund, Sweden
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Emily Baird
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden; (C.W.); (V.W.J.); (C.E.R.); (K.G.); (C.D.P.); (E.B.)
| |
Collapse
|
30
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
31
|
Ricciardi R, Izzetti R, Romanelli M, Caramella D, Lucchi A, Benelli G. Echoentomography for Assessing Braconid Parasitization on Soft-Bodied Tephritid Hosts. INSECTS 2021; 12:980. [PMID: 34821781 PMCID: PMC8621329 DOI: 10.3390/insects12110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Entomological approaches currently available for assessing host parasitization require dissection, polymerase chain reaction (PCR), or waiting for adult emergence. The first two methods are relatively fast but destructive, whereas the third one allows the emergence of the parasitoid but it is time consuming. In this framework, new diagnostic imaging tools may contribute to solve the lack of an accurate, rapid, and non-invasive approach to evaluate the parasitization of soft-bodied insects by their endoparasitoids. In this study, ultra-high frequency ultrasound (UHFUS) technology, which is currently used in medical and preclinical fields, was adopted to assess the parasitization of the invasive polyphagous Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), testing 2nd and 3rd instar larvae. Parasitization assays were carried out with the solitary koinobiont endophagous parasitoid Psyttalia concolor (Hymenoptera: Braconidae: Opiinae). The efficacy of UHFUS-based echoentomography was compared with the classical method of dissecting the larval host under a stereomicroscope. Our results showed that the UHFUS diagnostic capability was statistically comparable with that of dissection, both on C. capitata 2nd and 3rd larvae. Overall, UHFUS-based echoentomography may be further considered as a fast, non-invasive, and effective approach to evaluate the parasitoid's ability to successfully oviposit in soft-bodied hosts.
Collapse
Affiliation(s)
- Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (R.R.); (A.L.)
| | - Rossana Izzetti
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Marco Romanelli
- Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Davide Caramella
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (R.R.); (A.L.)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (R.R.); (A.L.)
| |
Collapse
|
32
|
Hall MJR, Ghosh D, Martín-Vega D, Clark B, Clatworthy I, Cheke RA, Rogers ME. Micro-CT visualization of a promastigote secretory gel (PSG) and parasite plug in the digestive tract of the sand fly Lutzomyia longipalpis infected with Leishmania mexicana. PLoS Negl Trop Dis 2021; 15:e0009682. [PMID: 34449767 PMCID: PMC8396784 DOI: 10.1371/journal.pntd.0009682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023] Open
Abstract
Leishmaniasis is a debilitating disease of the tropics, subtropics and southern Europe caused by Leishmania parasites that are transmitted during blood feeding by phlebotomine sand flies (Diptera: Psychodidae). Using non-invasive micro-computed tomography, we were able to visualize the impact of the laboratory model infection of Lutzomyia longipalpis with Leishmania mexicana and its response to a second blood meal. For the first time we were able to show in 3D the plug of promastigote secretory gel (PSG) and parasites in the distended midgut of whole infected sand flies and measure its volume in relation to that of the midgut. We were also able to measure the degree of opening of the stomodeal valve and demonstrate the extension of the PSG and parasites into the pharynx. Although our pilot study could only examine a few flies, it supports the hypothesis that a second, non-infected, blood meal enhances parasite transmission as we showed that the thoracic PSG-parasite plug in infected flies after a second blood meal was, on average, more than twice the volume of the plug in infected flies that did not have a second blood meal.
Collapse
Affiliation(s)
| | - Debashis Ghosh
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Daniel Martín-Vega
- Natural History Museum, London, United Kingdom
- Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| | - Brett Clark
- Natural History Museum, London, United Kingdom
| | | | - Robert A. Cheke
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Matthew E. Rogers
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
33
|
Rother L, Kraft N, Smith DB, El Jundi B, Gill RJ, Pfeiffer K. A micro-CT-based standard brain atlas of the bumblebee. Cell Tissue Res 2021; 386:29-45. [PMID: 34181089 PMCID: PMC8526489 DOI: 10.1007/s00441-021-03482-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nadine Kraft
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Basil El Jundi
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
34
|
Sieber KR, Dorman T, Newell N, Yan H. (Epi)Genetic Mechanisms Underlying the Evolutionary Success of Eusocial Insects. INSECTS 2021; 12:498. [PMID: 34071806 PMCID: PMC8229086 DOI: 10.3390/insects12060498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Eusocial insects, such as bees, ants, and wasps of the Hymenoptera and termites of the Blattodea, are able to generate remarkable diversity in morphology and behavior despite being genetically uniform within a colony. Most eusocial insect species display caste structures in which reproductive ability is possessed by a single or a few queens while all other colony members act as workers. However, in some species, caste structure is somewhat plastic, and individuals may switch from one caste or behavioral phenotype to another in response to certain environmental cues. As different castes normally share a common genetic background, it is believed that much of this observed within-colony diversity results from transcriptional differences between individuals. This suggests that epigenetic mechanisms, featured by modified gene expression without changing genes themselves, may play an important role in eusocial insects. Indeed, epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs, have been shown to influence eusocial insects in multiple aspects, along with typical genetic regulation. This review summarizes the most recent findings regarding such mechanisms and their diverse roles in eusocial insects.
Collapse
Affiliation(s)
- Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Taylor Dorman
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Nicholas Newell
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; (K.R.S.); (T.D.); (N.N.)
- Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. Sci Rep 2021; 11:10947. [PMID: 34040068 PMCID: PMC8154950 DOI: 10.1038/s41598-021-90400-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Sociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule's chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.
Collapse
|
36
|
Donato S, Vommaro ML, Tromba G, Giglio A. Synchrotron X-ray phase contrast micro tomography to explore the morphology of abdominal organs in Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101044. [PMID: 33743431 DOI: 10.1016/j.asd.2021.101044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Micro-computer tomography imaging is a fast and non-destructive data acquisition technique which can replace or complement the traditional investigation methodologies used in entomology to study morphology. In this paper, Synchrotron Radiation X-ray Phase-Contrast micro tomography (SR-PhC micro-CT) was combined with histology and scanning electron microscopy (SEM) observations to describe the abdominal organs of Pterostichus melas italicus Dejean, 1828 (Coleoptera, Carabidae). This species was used as a representative model because of its ecological role as a generalist predator in agroecosystems. SR-PhC micro-CT allowed us to identify in situ abdominal structures including dorsal vessel, digestive tract with Malpighian tubules, male reproductive system, ganglia, fat bodies, pygidial glands, muscles and tracheae. The histology was performed to define the tissue organization of the digestive and reproductive systems. SR-PhC micro-CT and 3D rendering provided more accurate information on shape and size of organs than histological and SEM analyses, respectively. The finding of this study was to describe the anatomy and histology of organs involved in crucial life history traits, such as reproduction, nutrition and excretion. High quality images and the supplementary video represent a significant advance in knowledge of the carabid anatomy and are a baseline for future research.
Collapse
Affiliation(s)
- Sandro Donato
- Department of Physics, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy; Istituto Nazionale di Fisica Nucleare, Division of Frascati, Via Fermi, 54, 00044 Frascati, Rome, Italy; Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
37
|
Martín-Vega D, Wicklein M, Simonsen TJ, Garbout A, Ahmed F, Hall MJ. Anatomical reconfiguration of the optic lobe during metamorphosis in the blow fly Calliphora vicina (Diptera: Calliphoridae) revealed by X-ray micro-computed tomography. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Yao Z, Qi Y, Yue B, Fu J. Brain size variation along altitudinal gradients in the Asiatic Toad ( Bufo gargarizans). Ecol Evol 2021; 11:3015-3027. [PMID: 33841763 PMCID: PMC8019028 DOI: 10.1002/ece3.7192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Size changes in brain and brain regions along altitudinal gradients provide insight into the trade-off between energetic expenditure and cognitive capacity. We investigated the brain size variations of the Asiatic Toad (Bufo gargarizans) across altitudes from 700 m to 3,200 m. A total of 325 individuals from 11 sites and two transects were sampled. To reduce confounding factors, all sampling sites within each transect were within a maximum distance of 85 km and an altitudinal difference close to 2,000 m. Brains were dissected, and five regions were both measured directly and with 3D CT scan. There is a significant negative correlation between the relative whole-brain volume (to snout-vent length) and altitude. Furthermore, the relative volumes (to whole-brain volume) of optic tectum and cerebellum also decrease along the altitudinal gradients, while the telencephalon increases its relative volume along the gradients. Therefore, our results are mostly consistent with the expensive brain hypothesis and the functional constraint hypothesis. We suggest that most current hypotheses are not mutually exclusive and data supporting one hypothesis are often partially consistent with others. More studies on mechanisms are needed to explain the brain size evolution in natural populations.
Collapse
Affiliation(s)
- Zhongyi Yao
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- College of Life SciencesSichuan UniversityChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yin Qi
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Bisong Yue
- College of Life SciencesSichuan UniversityChengduChina
| | - Jinzhong Fu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
39
|
Rodrigues PV, Tostes K, Bosque BP, de Godoy JVP, Amorim Neto DP, Dias CSB, Fonseca MDC. Illuminating the Brain With X-Rays: Contributions and Future Perspectives of High-Resolution Microtomography to Neuroscience. Front Neurosci 2021; 15:627994. [PMID: 33815039 PMCID: PMC8010130 DOI: 10.3389/fnins.2021.627994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The assessment of three-dimensional (3D) brain cytoarchitecture at a cellular resolution remains a great challenge in the field of neuroscience and constant development of imaging techniques has become crucial, particularly when it comes to offering direct and clear obtention of data from macro to nano scales. Magnetic resonance imaging (MRI) and electron or optical microscopy, although valuable, still face some issues such as the lack of contrast and extensive sample preparation protocols. In this context, x-ray microtomography (μCT) has become a promising non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens. It is a new supplemental method to be explored for deciphering the cytoarchitecture and connectivity of the brain. This review aims to bring together published works using x-ray μCT in neurobiology in order to discuss the achievements made so far and the future of this technique for neuroscience.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Katiane Tostes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Dionisio Pedro Amorim Neto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Structural and Functional Biology, State University of Campinas, Campinas, Brazil
| | - Carlos Sato Baraldi Dias
- Brazilian Synchrotron Light National Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Matheus de Castro Fonseca
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
40
|
Using micro-computed tomography to reveal the anatomy of adult Diaphorina citri Kuwayama (Insecta: Hemiptera, Liviidae) and how it pierces and feeds within a citrus leaf. Sci Rep 2021; 11:1358. [PMID: 33446699 PMCID: PMC7809155 DOI: 10.1038/s41598-020-80404-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri, is a harmful pest of citrus trees that transmits Candidatus Liberibacter spp. which causes Huanglongbing (HLB) (citrus greening disease); this is considered to be the most serious bacterial disease of citrus plants. Here we detail an anatomical study of the external and internal anatomy (excluding the reproductive system) using micro-computed tomography (micro-CT). This is the first complete 3D micro-CT reconstruction of the anatomy of a psylloid insect and includes a 3D reconstruction of an adult feeding on a citrus leaf that can be used on mobile devices. Detailed rendered images and videos support first descriptions of coxal and scapus antennal glands and sexual differences in the internal anatomy (hindgut rectum, mesothoracic ganglion and brain). This represents a significant advance in our knowledge of ACP anatomy, and of psyllids in general. Together the images, videos and 3D model constitute a unique anatomical atlas and are useful tools for future research and as teaching aids.
Collapse
|
41
|
Morphological response of the red palm weevil, Rhynchophorus ferrugineus, to a transient low temperature analyzed by computer tomography and holographic microscopy. J Therm Biol 2020; 94:102748. [PMID: 33292989 DOI: 10.1016/j.jtherbio.2020.102748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022]
Abstract
The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests worldwide. Our study aims to assess its internal and external morphological response to a sudden but transient decrease in the environmental temperature. Wild pre-pupae were subjected for 7 days to either low (5.0 ± 0.5 °C) or ambient temperature (23 ± 1 °C). Such conditions mimic a thermal anomaly happening in the larval stage most exposed to environmental factors. We quantified the changes undergone at: 1) the internal morphology, by X-Ray Computer Tomography (CT); 2) the 3-D integument' architecture, by Digital Holographic Microscopy (DHM); and 3) the glucose in hemolymph as a potential endogenous cryoprotectant. From X-ray CT we found that both pre-pupae subjected to cold and those remaining at ambient temperature follow a development where their fat body content decreases while a thick and dense cuticle is formed. There was no difference between both groups in the rate of change of fat body/dense tissues. Nevertheless, the cold group presents a slight developmental delay at the level of hemolymph content. Through DHM we again obtained that pre-pupae subjected to cold have not experienced a stop in their development. However, a more obvious developmental delay is now observed in this group at the level of the integumental roughness. Finally, regarding glucose, we found similar levels in control and ambient temperature larvae, while it was clearly increased in 51,7% of those subjected to cold. Our whole results provide morphological and biochemical evidence showing that the larval-pupal transition of the RPW continues almost undisturbed even during the quiescent state induced by a sudden and severe cold event. Nevertheless, a certain developmental delay is observed in both internal and external morphology. Additionally, the increased glucose level only found in the cold group suggests that glucose is part of the RPW cold tolerance strategy.
Collapse
|
42
|
Baird E, Tichit P, Guiraud M. The neuroecology of bee flight behaviours. CURRENT OPINION IN INSECT SCIENCE 2020; 42:8-13. [PMID: 32818691 DOI: 10.1016/j.cois.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
By combining functional, ecological and evolutionary perspectives, neuroecology can provide key insights into understanding how behaviour and the underlying sensory and neural processes are shaped by ecology and evolutionary history. Bees are an ideal system for neuroecological studies because they represent a numerous and diverse insect group that inhabit a broad range of environments. Flight is central to the evolutionary success of bees and is the key to their survival and fitness but this review of recent work on fundamental flight behaviours in different species - landing, collision avoidance and speed control - reveals striking differences. We discuss the potential ecological and evolutionary drivers behind this variation but argue that to understand their adaptive value future work should include multidisciplinary approaches that integrate neuroscience, ecology, phylogeny and behaviour.
Collapse
Affiliation(s)
- Emily Baird
- Department of Zoology, Stockholm University, Sweden; Department of Biology, Lund University, Sweden.
| | | | | |
Collapse
|
43
|
Sayol F, Collado MÁ, Garcia-Porta J, Seid MA, Gibbs J, Agorreta A, San Mauro D, Raemakers I, Sol D, Bartomeus I. Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proc Biol Sci 2020; 287:20200762. [PMID: 32933447 DOI: 10.1098/rspb.2020.0762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains-relative to their body size-than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.
Collapse
Affiliation(s)
- Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Miguel Á Collado
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092, Sevilla, Spain
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, USA
| | - Marc A Seid
- Biology Department, Neuroscience Program, The University of Scranton, Scranton, PA, USA
| | - Jason Gibbs
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ainhoa Agorreta
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Daniel Sol
- CREAF, Cerdanyola del Vallès, Catalonia, Spain.,CSIC, Cerdanyola del Vallès, Catalonia, Spain
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092, Sevilla, Spain
| |
Collapse
|
44
|
Schoborg TA. Whole Animal Imaging of Drosophila melanogaster using Microcomputed Tomography. J Vis Exp 2020. [PMID: 32955492 DOI: 10.3791/61515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biomedical imaging tools permit investigation of molecular mechanisms across spatial scales, from genes to organisms. Drosophila melanogaster, a well-characterized model organism, has benefited from the use of light and electron microscopy to understand gene function at the level of cells and tissues. The application of imaging platforms that allow for an understanding of gene function at the level of the entire intact organism would further enhance our knowledge of genetic mechanisms. Here a whole animal imaging method is presented that outlines the steps needed to visualize Drosophila at any developmental stage using microcomputed tomography (µ-CT). The advantages of µ-CT include commercially available instrumentation and minimal hands-on time to produce accurate 3D information at micron-level resolution without the need for tissue dissection or clearing methods. Paired with software that accelerate image analysis and 3D rendering, detailed morphometric analysis of any tissue or organ system can be performed to better understand mechanisms of development, physiology, and anatomy for both descriptive and hypothesis testing studies. By utilizing an imaging workflow that incorporates the use of electron microscopy, light microscopy, and µ-CT, a thorough evaluation of gene function can be performed, thus furthering the usefulness of this powerful model organism.
Collapse
|
45
|
Alba-Alejandre I, Alba-Tercedor J, Hunter WB. Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography. Sci Rep 2020; 10:7161. [PMID: 32346040 PMCID: PMC7189384 DOI: 10.1038/s41598-020-64132-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fluorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the first detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a significant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Wayne B Hunter
- U.S. Department Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA
| |
Collapse
|
46
|
Smith DB, Arce AN, Ramos Rodrigues A, Bischoff PH, Burris D, Ahmed F, Gill RJ. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc Biol Sci 2020; 287:20192442. [PMID: 32126960 DOI: 10.1098/rspb.2019.2442] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction.
Collapse
Affiliation(s)
- Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Philipp H Bischoff
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daisy Burris
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Farah Ahmed
- Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
47
|
Schoborg TA, Smith SL, Smith LN, Morris HD, Rusan NM. Micro-computed tomography as a platform for exploring Drosophila development. Development 2019; 146:dev.176685. [PMID: 31722883 DOI: 10.1242/dev.176685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of a bnormal spindle (asp) and WD repeat domain 62 (W dr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.
Collapse
Affiliation(s)
- Todd A Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha L Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren N Smith
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Douglas Morris
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Udagawa S, Miyara K, Takekata H, Takeuchi Y, Takemura A. Investigation on the validity of 3D micro-CT imaging in the fish brain. J Neurosci Methods 2019; 328:108416. [PMID: 31472188 DOI: 10.1016/j.jneumeth.2019.108416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Micro-computed tomography (CT) is a non-invasive technique that is used to obtain three-dimensional (3D) images of tissue structure in small animals. Compared with extensive mammal studies, few 3D imaging studies of fish have been conducted using micro-CT. An optimized method for imaging fish tissue structure is necessary, because they have adapted to diverse environments via functional and structural specialization. NEW METHOD Brains of three species with different sizes and habitats were fixed in 4% paraformaldehyde and immersed in non-ionic iodinated contrast agent (Iopamiron). We examined the relationship between Iopamiron concentration and immersion time to determine universally optimal conditions for use in fish. RESULTS We reconstructed 3D images of whole fish brains from cross-sections of brains from the Malabar grouper (Epinephelus malabaricus), bastard halibut (Paralichthys olivaceus), and threespot wrasse (Halichoeres trimaculatus). Developmental changes in brain structure were observed in the bastard halibut. Most brain regions of the threespot wrasse were distinguishable, although inner regions of the brain were less visible. COMPARISON WITH EXISTING METHODS Histological techniques are typically used to observe fish brain structure, despite its drawbacks in terms of tissue sample preparation (shrinkage and distortion) and image capture (3D image constriction). The technique examined in the present study solves these problems and allows for the simultaneous handling of multiple specimens. CONCLUSION Micro-CT imaging is suitable for observing the surfaces and inner structures of fish of various species.
Collapse
Affiliation(s)
- Shingo Udagawa
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Keitaro Miyara
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Hiroki Takekata
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Okinawa Institute of Science and Technology Graduate University, 1919-1, Onna, Okinawa 904-0495, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
49
|
Lesciotto KM, Motch Perrine SM, Kawasaki M, Stecko T, Ryan TM, Kawasaki K, Richtsmeier JT. Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice. Dev Dyn 2019; 249:573-585. [PMID: 31736206 DOI: 10.1002/dvdy.136] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the need for descriptive and increasingly mechanistic morphological analyses, contrast-enhanced microcomputed tomography (microCT) represents perhaps the best method for visualizing 3D biological soft tissues in situ. Although staining protocols using phosphotungstic acid (PTA) have been published with beautiful visualizations of soft tissue structures, these protocols are often aimed at highly specific research questions and are applicable to a limited set of model organisms, specimen ages, or tissue types. We provide detailed protocols for micro-level visualization of soft tissue structures in mice at several embryonic and early postnatal ages using PTA-enhanced microCT. RESULTS Our protocols produce microCT scans that enable visualization and quantitative analyses of whole organisms, individual tissues, and organ systems while preserving 3D morphology and relationships with surrounding structures, with minimal soft tissue shrinkage. Of particular note, both internal and external features of the murine heart, lungs, and liver, as well as embryonic cartilage, are captured at high resolution. CONCLUSION These protocols have broad applicability to mouse models for a variety of diseases and conditions. Minor experimentation in the staining duration can expand this protocol to additional age groups, permitting ontogenetic studies of internal organs and soft tissue structures within their 3D in situ position.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Mizuho Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Timothy Stecko
- Center for Quantitative Imaging, Pennsylvania State University, University Park, Pennsylvania
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
50
|
Alba-Alejandre I, Alba-Tercedor J, Vega FE. Anatomical study of the coffee berry borer (Hypothenemus hampei) using micro-computed tomography. Sci Rep 2019; 9:17150. [PMID: 31748574 PMCID: PMC6868283 DOI: 10.1038/s41598-019-53537-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
Traditionally, the study of anatomy in insects has been based on dissection techniques. Micro-computed tomography (micro-CT) is an X-ray based technique that allows visualization of the internal anatomy of insects in situ and does not require dissections. We report on the use of micro-CT scans to study, in detail, the internal structures and organs of the coffee berry borer (Hypothenemus hampei), the most damaging insect pest of coffee worldwide. Detailed images and videos allowed us to make the first description of the aedeagus and the first report of differences between the sexes based on internal anatomy (flight musculature, midgut shape, hindgut convolutions, brain shape and size) and external morphology (lateral outline of the pronotum and number of abdominal tergites). This study is the first complete micro-CT reconstruction of the anatomy of an insect and is also the smallest insect to have been evaluated in this way. High quality rendered images, and additional supplementary videos and 3D models are suitable for use with mobile devices and are useful tools for future research and as teaching aids.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, 18071, Granada, Spain
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, 18071, Granada, Spain.
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|