1
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
2
|
Ramanathan P, Tigabu B, Santos RI, Ilinykh PA, Kuzmina N, Vogel OA, Thakur N, Ahmed H, Wu C, Amarasinghe GK, Basler CF, Bukreyev A. Ebolavirus Species-Specific Interferon Antagonism Mediated by VP24. Viruses 2023; 15:1075. [PMID: 37243162 PMCID: PMC10222226 DOI: 10.3390/v15051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-β), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Palaniappan Ramanathan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Bersabeh Tigabu
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Rodrigo I. Santos
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hamza Ahmed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Scherm MJ, Gangloff M, Gay NJ. Activation of Toll-like receptor 4 by Ebola virus-shed glycoprotein is direct and requires the internal fusion loop but not glycosylation. Cell Rep 2022; 41:111562. [PMID: 36288690 PMCID: PMC9637988 DOI: 10.1016/j.celrep.2022.111562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Infection by the Ebola virus, a member of the Filoviridae family of RNA viruses, leads to acute viral hemorrhagic fever. End-stage Ebola virus disease is characterized by a cytokine storm that causes tissue damage, vascular disintegration, and multi-organ failure. Previous studies showed that a shed form of the viral spike glycoprotein (sGP1,2) drives this hyperinflammatory response by activating Toll-like receptor 4 (TLR4). Here, we find that glycosylation is not required for activation of TLR4 by sGP1,2 and identify the internal fusion loop (IFL) as essential for inflammatory signaling. sGP1,2 competes with lipid antagonists of TLR4, and the IFL interacts directly with TLR4 and co-receptor MD2. Together, these findings indicate that sGP1,2 activates TLR4 analogously to bacterial agonist lipopolysaccharide (LPS) by binding into a hydrophobic pocket in MD2 and promoting the formation of an active heterotetramer. This conclusion is supported by docking studies that predict binding sites for sGP1,2 on TLR4 and MD2.
Collapse
Affiliation(s)
- Michael J. Scherm
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nicholas J. Gay
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK,Corresponding author
| |
Collapse
|
4
|
Pazos F. Computational prediction of protein functional sites-Applications in biotechnology and biomedicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:39-57. [PMID: 35534114 DOI: 10.1016/bs.apcsb.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are many computational approaches for predicting protein functional sites based on different sequence and structural features. These methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. They complement the more expensive and time-consuming experimental approaches by pointing them to possible candidate positions. In many cases they are jointly used to characterize the functional sites in proteins of biotechnological and biomedical interest and eventually modify them for different purposes. There is a clear trend towards approaches based on machine learning and those using structural information, due to the recent developments in these areas. Nevertheless, "classic" methods based on sequence and evolutionary features are still playing an important role as these features are strongly related to functionality. In this review, the main approaches for predicting general functional sites in a protein are discussed, with a focus on sequence-based approaches.
Collapse
Affiliation(s)
- Florencio Pazos
- Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
5
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
6
|
Glud HA, George S, Skovgaard K, Larsen LE. Zoonotic and reverse zoonotic transmission of viruses between humans and pigs. APMIS 2021; 129:675-693. [PMID: 34586648 PMCID: PMC9297979 DOI: 10.1111/apm.13178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Humans and pigs share a close contact relationship, similar biological traits, and one of the highest estimated number of viruses compared to other mammalian species. The contribution and directionality of viral exchange between humans and pigs remain unclear for some of these viruses, but their transmission routes are important to characterize in order to prevent outbreaks of disease in both host species. This review collects and assesses the evidence to determine the likely transmission route of 27 viruses between humans and pigs.
Collapse
Affiliation(s)
- Helena Aagaard Glud
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sophie George
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Bojkova D, McGreig JE, McLaughlin KM, Masterson SG, Antczak M, Widera M, Krähling V, Ciesek S, Wass MN, Michaelis M, Cinatl J. Differentially conserved amino acid positions may reflect differences in SARS-CoV-2 and SARS-CoV behaviour. Bioinformatics 2021; 37:2282-2288. [PMID: 33560365 PMCID: PMC7929367 DOI: 10.1093/bioinformatics/btab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Motivation SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-CoV. Results Many amino acid positions are differentially conserved between SARS-CoV-2 and SARS-CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the S protein (mediates virus entry) were associated with differences in its interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and biological behaviour. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Jake E McGreig
- School of Biosciences, University of Kent, Canterbury, UK
| | | | | | | | - Marek Widera
- Institute of Virology, Biomedical Research Center (BMFZ), Philipps University Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Biomedical Research Center (BMFZ), Philipps University Marburg, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Germany.,German Center for Infection Research, DZIF, Braunschweig, Germany
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
8
|
Pontes C, Ruiz-Serra V, Lepore R, Valencia A. Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs. Comput Struct Biotechnol J 2021; 19:759-766. [PMID: 33456724 PMCID: PMC7802526 DOI: 10.1016/j.csbj.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the β-CoV spike protein family, using sequence information alone, can provide valuable insights on the molecular basis of the specificity of β-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptor adaptation of circulating and future novel β-CoVs.
Collapse
Key Words
- APC, average product correction
- CoVs, Coronaviruses
- EV, evolutionary rate
- Functional specificity
- MCA, multiple correspondence analysis
- MI, mutual information
- MSA, multiple sequence alignment
- NTD, N-terminal domain
- Phylogenetic analysis
- Protein subfamilies
- RBD, receptor binding domain
- RBM, receptor binding motif
- SARS-CoV-2
- SDPs, specificity determining positions
- Specificity Determining Positions
- Spike protein evolution
- hACE2, human angiotensin converting enzyme 2
Collapse
Affiliation(s)
- Camila Pontes
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- University of Brasília (UnB), 70910-900, Brasília - DF, Brazil
| | | | - Rosalba Lepore
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Computer-designed orthogonal RNA aptamers programmed to recognize Ebola virus glycoproteins. BIOSAFETY AND HEALTH 2019. [DOI: 10.1016/j.bsheal.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Abstract
Objective There have been five documented outbreaks of Ebola Reston virus (RESTV) in animals epidemiologically linked to the Philippines. This assessment was conducted to determine the risk of RESTV occurring in humans in the Philippines and its potential pathogenicity in humans. Methods The World Health Organization Rapid Risk Assessment of Acute Public Health Events Manual was used for the assessment. A literature review was done and a risk assessment matrix was used for the risk characterization of the outbreaks in the Philippines. The risk assessment was conducted by the Philippines Field Epidemiology Training Program. Results The risk of RESTV occurring in humans in the Philippines and its potential pathogenicity in humans were both assessed as moderate. Animals involved in RESTV outbreaks in the Philippines were non-human primates and domestic pigs. The presence of RESTV in pigs poses a possibility of genetic evolution of the virus. Although RESTV has been identified in humans, there was no death or illness attributed to the infection. The Philippines Inter-agency Committee on Zoonoses oversees collaboration between the animal and human health sectors for the prevention and control of zoonoses. However, there is no surveillance of risk animals or previously affected farms to monitor and facilitate early identification of cases. Discussion The moderate risk of RESTV recurring among humans in the Philippines and its potential pathogenicity in humans reinforces the need for early detection, surveillance and continued studies of RESTV pathogenesis and its health consequences. The One Health approach, with the involvement and coordination of public health, veterinary services and the community, is essential in the detection, control and management of zoonosis.
Collapse
|
11
|
Martell HJ, Masterson SG, McGreig JE, Michaelis M, Wass MN. Is the Bombali virus pathogenic in humans? Bioinformatics 2019; 35:3553-3558. [DOI: 10.1093/bioinformatics/btz267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Motivation
The potential of the Bombali virus, a novel Ebolavirus, to cause disease in humans remains unknown. We have previously identified potential determinants of Ebolavirus pathogenicity in humans by analysing the amino acid positions that are differentially conserved (specificity determining positions; SDPs) between human pathogenic Ebolaviruses and the non-pathogenic Reston virus. Here, we include the many Ebolavirus genome sequences that have since become available into our analysis and investigate the amino acid sequence of the Bombali virus proteins at the SDPs that discriminate between human pathogenic and non-human pathogenic Ebolaviruses.
Results
The use of 1408 Ebolavirus genomes (196 in the original analysis) resulted in a set of 166 SDPs (reduced from 180), 146 (88%) of which were retained from the original analysis. This indicates the robustness of our approach and refines the set of SDPs that distinguish human pathogenic Ebolaviruses from Reston virus. At SDPs, Bombali virus shared the majority of amino acids with the human pathogenic Ebolaviruses (63.25%). However, for two SDPs in VP24 (M136L, R139S) that have been proposed to be critical for the lack of Reston virus human pathogenicity because they alter the VP24-karyopherin interaction, the Bombali virus amino acids match those of Reston virus. Thus, Bombali virus may not be pathogenic in humans. Supporting this, no Bombali virus-associated disease outbreaks have been reported, although Bombali virus was isolated from fruit bats cohabitating in close contact with humans, and anti-Ebolavirus antibodies that may indicate contact with Bombali virus have been detected in humans.
Availability and implementation
Data files are available from https://github.com/wasslab/EbolavirusSDPsBioinformatics2019.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Henry J Martell
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Stuart G Masterson
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Jake E McGreig
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
12
|
Zinzula L, Nagy I, Orsini M, Weyher-Stingl E, Bracher A, Baumeister W. Structures of Ebola and Reston Virus VP35 Oligomerization Domains and Comparative Biophysical Characterization in All Ebolavirus Species. Structure 2018; 27:39-54.e6. [PMID: 30482729 DOI: 10.1016/j.str.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
The multifunctional virion protein 35 (VP35) of ebolaviruses is a critical determinant of virulence and pathogenesis indispensable for viral replication and host innate immune evasion. Essential for VP35 function is homo-oligomerization via a coiled-coil motif. Here we report crystal structures of VP35 oligomerization domains from the prototypic Ebola virus (EBOV) and the non-pathogenic Reston virus (RESTV), together with a comparative biophysical characterization of the domains from all known species of the Ebolavirus genus. EBOV and RESTV VP35 oligomerization domains form bipartite parallel helix bundles with a canonical coiled coil in the N-terminal half and increased plasticity in the highly conserved C-terminal half. The domain assembles into trimers and tetramers in EBOV, whereas it exclusively forms tetramers in all other ebolavirus species. Substitution of coiled-coil leucine residues critical for immune antagonism leads to aberrant oligomerization. A conserved arginine involved in inter-chain salt bridges stabilizes the VP35 oligomerization domain and modulates between coiled-coil oligomeric states.
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Massimiliano Orsini
- Istituto Zooprofilattico dell'Abruzzo e del Molise, Campo Boario, 64100 Teramo, Italy
| | - Elisabeth Weyher-Stingl
- The Max-Planck Institute of Biochemistry, Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
13
|
Goldstein T, Anthony SJ, Gbakima A, Bird BH, Bangura J, Tremeau-Bravard A, Belaganahalli MN, Wells HL, Dhanota JK, Liang E, Grodus M, Jangra RK, DeJesus VA, Lasso G, Smith BR, Jambai A, Kamara BO, Kamara S, Bangura W, Monagin C, Shapira S, Johnson CK, Saylors K, Rubin EM, Chandran K, Lipkin WI, Mazet JAK. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 2018; 3:1084-1089. [PMID: 30150734 PMCID: PMC6557442 DOI: 10.1038/s41564-018-0227-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
Abstract
Here we describe the complete genome of a new ebolavirus, Bombali virus (BOMV) detected in free-tailed bats in Sierra Leone (little free-tailed (Chaerephon pumilus) and Angolan free-tailed (Mops condylurus)). The bats were found roosting inside houses, indicating the potential for human transmission. We show that the viral glycoprotein can mediate entry into human cells. However, further studies are required to investigate whether exposure has actually occurred or if BOMV is pathogenic in humans.
Collapse
Affiliation(s)
- Tracey Goldstein
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- EcoHealth Alliance, New York, NY, USA.
| | - Aiah Gbakima
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Brian H Bird
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - James Bangura
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Alexandre Tremeau-Bravard
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Manjunatha N Belaganahalli
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Heather L Wells
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jasjeet K Dhanota
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- EcoHealth Alliance, New York, NY, USA
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Veronica A DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gorka Lasso
- Department of Systems Biology, Irving Cancer Research Center, Columbia University, New York, NY, USA
| | - Brett R Smith
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | | | - Sorie Kamara
- Livestock and Veterinary Services Division, Ministry of Agriculture, Forestry and Food Security, Freetown, Sierra Leone
| | - William Bangura
- Forestry and Wildlife Division, Ministry of Agriculture, Forestry and Food Security, Freetown, Sierra Leone
| | - Corina Monagin
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
- Metabiota, Inc., San Francisco, CA, USA
| | - Sagi Shapira
- Department of Systems Biology, Irving Cancer Research Center, Columbia University, New York, NY, USA
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Christine K Johnson
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jonna A K Mazet
- One Health Institute & Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Chery J, Petri A, Wagschal A, Lim SY, Cunningham J, Vasudevan S, Kauppinen S, Näär AM. Development of Locked Nucleic Acid Antisense Oligonucleotides Targeting Ebola Viral Proteins and Host Factor Niemann-Pick C1. Nucleic Acid Ther 2018; 28:273-284. [PMID: 30133337 DOI: 10.1089/nat.2018.0722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Ebola virus is a zoonotic pathogen that can cause severe hemorrhagic fever in humans, with up to 90% lethality. The deadly 2014 Ebola outbreak quickly made an unprecedented impact on human lives. While several vaccines and therapeutics are under development, current approaches contain several limitations, such as virus mutational escape, need for formulation or refrigeration, poor scalability, long lead-time, and high cost. To address these challenges, we developed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to target critical Ebola viral proteins and the human intracellular host protein Niemann-Pick C1 (NPC1), required for viral entry into infected cells. We generated noninfectious viral luciferase reporter assays to identify LNA ASOs that inhibit translation of Ebola viral proteins in vitro and in human cells. We demonstrated specific inhibition of key Ebola genes VP24 and nucleoprotein, which inhibit a proper immune response and promote Ebola virus replication, respectively. We also identified LNA ASOs targeting human host factor NPC1 and demonstrated reduced infection by chimeric vesicular stomatitis virus harboring the Ebola glycoprotein, which directly binds to NPC1 for viral infection. These results support further in vivo testing of LNA ASOs in infectious Ebola virus disease animal models as potential therapeutic modalities for treatment of Ebola.
Collapse
Affiliation(s)
- Jessica Chery
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Andreas Petri
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Alexandre Wagschal
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Sun-Young Lim
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - James Cunningham
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - Shobha Vasudevan
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,6 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| | - Sakari Kauppinen
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Anders M Näär
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
15
|
Masterson SG, Lobel L, Carroll MW, Wass MN, Michaelis M. Herd Immunity to Ebolaviruses Is Not a Realistic Target for Current Vaccination Strategies. Front Immunol 2018; 9:1025. [PMID: 29867992 PMCID: PMC5954026 DOI: 10.3389/fimmu.2018.01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The recent West African Ebola virus pandemic, which affected >28,000 individuals increased interest in anti-Ebolavirus vaccination programs. Here, we systematically analyzed the requirements for a prophylactic vaccination program based on the basic reproductive number (R0, i.e., the number of secondary cases that result from an individual infection). Published R0 values were determined by systematic literature research and ranged from 0.37 to 20. R0s ≥ 4 realistically reflected the critical early outbreak phases and superspreading events. Based on the R0, the herd immunity threshold (Ic) was calculated using the equation Ic = 1 - (1/R0). The critical vaccination coverage (Vc) needed to provide herd immunity was determined by including the vaccine effectiveness (E) using the equation Vc = Ic/E. At an R0 of 4, the Ic is 75% and at an E of 90%, more than 80% of a population need to be vaccinated to establish herd immunity. Such vaccination rates are currently unrealistic because of resistance against vaccinations, financial/logistical challenges, and a lack of vaccines that provide long-term protection against all human-pathogenic Ebolaviruses. Hence, outbreak management will for the foreseeable future depend on surveillance and case isolation. Clinical vaccine candidates are only available for Ebola viruses. Their use will need to be focused on health-care workers, potentially in combination with ring vaccination approaches.
Collapse
Affiliation(s)
- Stuart G Masterson
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Leslie Lobel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Emerging and Re-Emerging Diseases and Special Pathogens, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Miles W Carroll
- Research & Development Institute, National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
16
|
Bzhalava Z, Hultin E, Dillner J. Extension of the viral ecology in humans using viral profile hidden Markov models. PLoS One 2018; 13:e0190938. [PMID: 29351302 PMCID: PMC5774701 DOI: 10.1371/journal.pone.0190938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/23/2017] [Indexed: 11/18/2022] Open
Abstract
When human samples are sequenced, many assembled contigs are "unknown", as conventional alignments find no similarity to known sequences. Hidden Markov models (HMM) exploit the positions of specific nucleotides in protein-encoding codons in various microbes. The algorithm HMMER3 implements HMM using a reference set of sequences encoding viral proteins, "vFam". We used HMMER3 analysis of "unknown" human sample-derived sequences and identified 510 contigs distantly related to viruses (Anelloviridae (n = 1), Baculoviridae (n = 34), Circoviridae (n = 35), Caulimoviridae (n = 3), Closteroviridae (n = 5), Geminiviridae (n = 21), Herpesviridae (n = 10), Iridoviridae (n = 12), Marseillevirus (n = 26), Mimiviridae (n = 80), Phycodnaviridae (n = 165), Poxviridae (n = 23), Retroviridae (n = 6) and 89 contigs related to described viruses not yet assigned to any taxonomic family). In summary, we find that analysis using the HMMER3 algorithm and the "vFam" database greatly extended the detection of viruses in biospecimens from humans.
Collapse
Affiliation(s)
- Zurab Bzhalava
- Dept. of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Hultin
- Dept. of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joakim Dillner
- Dept. of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
17
|
Banerjee A, Pal A, Pal D, Mitra P. Ebolavirus interferon antagonists—protein interaction perspectives to combat pathogenesis. Brief Funct Genomics 2017; 17:392-401. [DOI: 10.1093/bfgp/elx034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:3-13. [PMID: 27913149 DOI: 10.1016/j.pbiomolbio.2016.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
|
19
|
Dutta P, Halder AK, Basu S, Kundu M. A survey on Ebola genome and current trends in computational research on the Ebola virus. Brief Funct Genomics 2017; 17:374-380. [DOI: 10.1093/bfgp/elx020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
20
|
Pappalardo M, Collu F, Macpherson J, Michaelis M, Fraternali F, Wass MN. Investigating Ebola virus pathogenicity using molecular dynamics. BMC Genomics 2017; 18:566. [PMID: 28812539 PMCID: PMC5558184 DOI: 10.1186/s12864-017-3912-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. RESULTS As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. CONCLUSION Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.
Collapse
Affiliation(s)
| | - Francesca Collu
- Randall Division of Cell and Molecular Biophysics King's College London, London, UK
| | - James Macpherson
- Randall Division of Cell and Molecular Biophysics King's College London, London, UK
| | | | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics King's College London, London, UK.
| | - Mark N Wass
- School of Biosciences, University of Kent, Kent, UK.
| |
Collapse
|
21
|
Olejnik J, Forero A, Deflubé LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Mühlberger E. Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. J Virol 2017; 91:e00179-17. [PMID: 28331091 PMCID: PMC5432886 DOI: 10.1128/jvi.00179-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) and Reston virus (RESTV) are members of the Ebolavirus genus which greatly differ in their pathogenicity. While EBOV causes a severe disease in humans characterized by a dysregulated inflammatory response and elevated cytokine and chemokine production, there are no reported disease-associated human cases of RESTV infection, suggesting that RESTV is nonpathogenic for humans. The underlying mechanisms determining the pathogenicity of different ebolavirus species are not yet known. In this study, we dissected the host response to EBOV and RESTV infection in primary human monocyte-derived macrophages (MDMs). As expected, EBOV infection led to a profound proinflammatory response, including strong induction of type I and type III interferons (IFNs). In contrast, RESTV-infected macrophages remained surprisingly silent. Early activation of IFN regulatory factor 3 (IRF3) and NF-κB was observed in EBOV-infected, but not in RESTV-infected, MDMs. In concordance with previous results, MDMs treated with inactivated EBOV and Ebola virus-like particles (VLPs) induced NF-κB activation mediated by Toll-like receptor 4 (TLR4) in a glycoprotein (GP)-dependent manner. This was not the case in cells exposed to live RESTV, inactivated RESTV, or VLPs containing RESTV GP, indicating that RESTV GP does not trigger TLR4 signaling. Our results suggest that the lack of immune activation in RESTV-infected MDMs contributes to lower pathogenicity by preventing the cytokine storm observed in EBOV infection. We further demonstrate that inhibition of TLR4 signaling abolishes EBOV GP-mediated NF-κB activation. This finding indicates that limiting the excessive TLR4-mediated proinflammatory response in EBOV infection should be considered as a potential supportive treatment option for EBOV disease.IMPORTANCE Emerging infectious diseases are a major public health concern, as exemplified by the recent devastating Ebola virus (EBOV) outbreak. Different ebolavirus species are associated with widely varying pathogenicity in humans, ranging from asymptomatic infections for Reston virus (RESTV) to severe disease with fatal outcomes for EBOV. In this comparative study of EBOV- and RESTV-infected human macrophages, we identified key differences in host cell responses. Consistent with previous data, EBOV infection is associated with a proinflammatory signature triggered by the surface glycoprotein (GP), which can be inhibited by blocking TLR4 signaling. In contrast, infection with RESTV failed to stimulate a strong host response in infected macrophages due to the inability of RESTV GP to stimulate TLR4. We propose that disparate proinflammatory host signatures contribute to the differences in pathogenicity reported for ebolavirus species and suggest that proinflammatory pathways represent an intriguing target for the development of novel therapeutics.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adriana Forero
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Laure R Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Whitney A Manhart
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Pappalardo M, Reddin IG, Cantoni D, Rossman JS, Michaelis M, Wass MN. Changes associated with Ebola virus adaptation to novel species. Bioinformatics 2017; 33:1911-1915. [DOI: 10.1093/bioinformatics/btx065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/12/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
| | - Ian G Reddin
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Diego Cantoni
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| |
Collapse
|
23
|
Guito JC, Albariño CG, Chakrabarti AK, Towner JS. Novel activities by ebolavirus and marburgvirus interferon antagonists revealed using a standardized in vitro reporter system. Virology 2017; 501:147-165. [PMID: 27930961 PMCID: PMC11524407 DOI: 10.1016/j.virol.2016.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/10/2023]
Abstract
Filoviruses are highly lethal in humans and nonhuman primates, likely due to potent antagonism of host interferon (IFN) responses early in infection. Filoviral protein VP35 is implicated as the major IFN induction antagonist, while Ebola virus (EBOV) VP24 or Marburg virus (MARV) VP40 are known to block downstream IFN signaling. Despite progress elucidating EBOV and MARV antagonist function, those for most other filoviruses, including Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV), Bundibugyo (BDBV) and Ravn (RAVV) viruses, remain largely neglected. Thus, using standardized vectors and reporter assays, we characterized activities by each IFN antagonist from all known ebolavirus and marburgvirus species side-by-side. We uncover noncanonical suppression of IFN induction by ebolavirus VP24, differing potencies by MARV and RAVV proteins, and intriguingly, weaker antagonism by VP24 of RESTV. These underlying molecular explanations for differential virulence in humans could guide future investigations of more-neglected filoviruses as well as treatment and vaccine studies.
Collapse
Affiliation(s)
- Jonathan C Guito
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - César G Albariño
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ayan K Chakrabarti
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jonathan S Towner
- Viral Special Pathogens Branch, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
24
|
Abstract
Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs.
Collapse
|
25
|
Computational analysis of Ebolavirus data: prospects, promises and challenges. Biochem Soc Trans 2016; 44:973-8. [DOI: 10.1042/bst20160074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/22/2022]
Abstract
The ongoing Ebola virus (also known as Zaire ebolavirus, a member of the Ebolavirus family) outbreak in West Africa has so far resulted in >28000 confirmed cases compared with previous Ebolavirus outbreaks that affected a maximum of a few hundred individuals. Hence, Ebolaviruses impose a much greater threat than we may have expected (or hoped). An improved understanding of the virus biology is essential to develop therapeutic and preventive measures and to be better prepared for future outbreaks by members of the Ebolavirus family. Computational investigations can complement wet laboratory research for biosafety level 4 pathogens such as Ebolaviruses for which the wet experimental capacities are limited due to a small number of appropriate containment laboratories. During the current West Africa outbreak, sequence data from many Ebola virus genomes became available providing a rich resource for computational analysis. Here, we consider the studies that have already reported on the computational analysis of these data. A range of properties have been investigated including Ebolavirus evolution and pathogenicity, prediction of micro RNAs and identification of Ebolavirus specific signatures. However, the accuracy of the results remains to be confirmed by wet laboratory experiments. Therefore, communication and exchange between computational and wet laboratory researchers is necessary to make maximum use of computational analyses and to iteratively improve these approaches.
Collapse
|